Produits ROHM Voir d'autres produits électroniques ou électriques Revenir à l'accueil  

 

Branding

POUR COMMANDER CES PRODUITS, Cliquez ici

Prix indicatif au 12/04/2013
Zener Diode
SMD LED
Transistor
  • Diodes - Redresseurs (111)
  • Diodes - RF (3)
  • Diodes - Faibles signaux (50)
  • Diodes zener - Réseaux (11)
  • Diodes zener (155)
  • MOSFET (101)
  • Transistors bipolaires - Réseaux(138)
  • Transistors bipolaires (349)
  • Transistors bipolaires - Numériques(3)
  • Amplificateurs et Comparateurs(79)
  • Contrôleurs - Audio (4)
  • Gestion d'horloge, temps et fréquence (11)
  • CODEC, Encodeurs & Décodeurs(31)
  • Convertisseurs de données & Signaux (9)
  • Drivers et Interfaces (76)
  • Logiques (8)
  • Mémoires (44)
  • Gestion de puissance (146)
  • Capteurs (48)
  • Fonctions spéciales (12)
  • Surveillance (22)
  • Commutateurs, Multiplexeurs & Démultiplexeurs (2)
  • Video (2)
  • Emetteurs infrarouges (3)
  • LED (168)
  • LED - Standard Multicolores (10)
  • Optocoupleurs (1)
  • Phototransistors (2)
  • TVS - Diodes (8)
  • VOIR EGALEMENT :

    AMP

    AMPLI

    AMPLIFICATEUR

    BATTERIE

    BOITIER CIRCULAIRE

    BORNIER

    BOUTON

    CAPACITOR

    CABLE

    CAPOT

    CAPTEUR

    CINCH-SD-LB-CONNECTOR-BACKSHELL

    CINCH-12-140-BLOC-DE-TERMINAISON12VOIES

    CAMDEN-BOSS-BIM2001-11-EMI-RFI-COFFRET-GRIS-BLIND

    SIBA-160016-5A-FUSIBLE-5A-250V-RETARDE-4.5X8MM

    SERVISOL-200002000-GREASE-SILICONE-50G

    CINCH-DBM25S-CONNECTEUR-SUB-MINIATURE

    CINCH-50GP1-CARD-EDGE-CONNECTOR

    CINCH-JA7784800000L00-FICHE-MALE-12-VOIES

    CINCH-581-01-18-920-EXTRACTOR

    CINCH-5810130045-HEADER-ENCLOSURE-LE-30WAY

    ADAPTATEURS

    ALIMENATIONS

    CORDON

    CONVERTISSEUR

    CIRCUIT

    CHOKE

    CARTE

    FILTRE

    FORET

    FIL

    EMBASE.2.54MM

    CORDON

    FUSIBLE

    GAINE

    INDUCTANCE

    INDUCTOR

    KIT

    LED

    LOGIC

    MCU

    MEMOIRE

    MICROCONTROLEUR

    ACCESSOIRE-POUR-BORN..> 14-Dec-2012 08:45  2.9K  
    

    [TXT]

     ACCESSOIRE-POUR-BORN..> 14-Dec-2012 08:45  2.9K  
    

    [TXT]

     ACCESSOIRE-POUR-BORN..> 14-Dec-2012 08:45  2.9K  
    

    [TXT]

     ACCESSOIRE-POUR-BORN..> 14-Dec-2012 08:47  2.8K  
    

    [TXT]

     ACCESSOIRE-POUR-BORN..> 14-Dec-2012 08:47  2.8K  
    

    [TXT]

     ACCESSOIRE-POUR-BORN..> 14-Dec-2012 08:45  3.1K  
    

    [TXT]

     ACCESSOIRE-PQ2-10751..> 14-Dec-2012 08:43  2.8K  
    

    [TXT]

     ACCU.-NIMH-4AH-(2-CE..> 14-Dec-2012 08:50  3.0K  
    

    [TXT]

     ACCU.-NIMH-4AH--3-CE..> 14-Dec-2012 08:53  3.0K  
    

    [TXT]

     ACCU.-NIMH-4AH--3-CE..> 14-Dec-2012 08:52  133K  
    

    [TXT]

     ADAPT-BNC-BHKD-ISOLE..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     ADAPTATEUR-12V-60W-1..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     ADAPTATEUR-24V-60W-1..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     ADAPTATEUR-ATX-20BRO..> 14-Dec-2012 08:47  3.0K  
    

    [TXT]

     ADAPTATEUR-BNC-BKHD-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     ADAPTATEUR-BNC-DROIT..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     ADAPTATEUR-BNC-EN-T-..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     ADAPTATEUR-BNC-TYPE-..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     ADAPTATEUR-BNC-VERS-..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     ADAPTATEUR-BNC-VERS-..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     ADAPTATEUR-BNC-VERS-..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     ADAPTATEUR-DE-VOYAGE..> 14-Dec-2012 08:45  2.9K  
    

    [TXT]

     ADAPTATEUR-DROIT-BNC..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     ADAPTATEUR-DROIT-DOU..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     ADAPTATEUR-MONTAGE-P..> 14-Dec-2012 08:45  2.8K  
    

    [TXT]

     ADAPTATEUR-PERIPH.-2..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     ADAPTATEUR-POUR-MEMO..> 14-Dec-2012 08:54  2.7K  
    

    [TXT]

     ADAPTATEUR-POUR-MEMO..> 13-Dec-2012 19:02  2.7K  
    

    [TXT]

     ADAPTATEUR-SERIE-100..> 14-Dec-2012 08:44  3.1K  
    

    [TXT]

     ADAPTATEUR-U.FL-FEME..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     ADAPTATEUR-U.FL-MALE..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     ADAPTATEUR-USB-VERS-..> 14-Dec-2012 08:47  2.9K  
    

    [TXT]

     ADAPTATEURS.htm         04-Jan-2013 18:16  2.9M  
    

    [TXT]

     ADAPTOR,-MICROMOT-10..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     ADHESIF-DOUBLE-FACE-..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     ADHESIF-SILICONE-90M..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     ADHESIF-SILICONE-310..> 14-Dec-2012 08:48  3.1K  
    

    [TXT]

     ADHESIVE,-EVOSTICK,-..> 14-Dec-2012 08:50  2.9K  
    

    [TXT]

     AFFICHEUR-A-LEDS-7.6..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     AFFICHEUR-A-LEDS-7.6..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     AFFICHEUR-A-LEDS-7.6..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     AFFICHEUR-A-LEDS-7.6..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     AFFICHEUR-A-LEDS-7.6..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     AFFICHEUR-A-LEDS-7.6..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     AFFICHEUR-A-LEDS-7.6..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     AFFICHEUR-A-LEDS-7.6..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     AFFICHEUR-A-LEDS-7.6..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     AFFICHEUR-A-LEDS-7.6..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     AFFICHEUR-A-LEDS-7.6..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     AFFICHEUR-A-LEDS-7.6..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     AFFICHEUR-A-LEDS-7.6..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     AFFICHEUR-A-LEDS-10...> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     AFFICHEUR-A-LEDS-10...> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     AFFICHEUR-A-LEDS-10...> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     AFFICHEUR-A-LEDS-10...> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     AFFICHEUR-A-LEDS-14...> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     AFFICHEUR-A-LEDS-14...> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     AFFICHEUR-A-LEDS-14...> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     AFFICHEUR-A-LEDS-14...> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     AFFICHEUR-A-LEDS-14...> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     AFFICHEUR-A-LEDS-14...> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     AFFICHEUR-A-LEDS-14...> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     AFFICHEUR-A-LEDS-14...> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     AFFICHEUR-A-LEDS-14...> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     AFFICHEUR-A-LEDS-14...> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     AFFICHEUR-A-LEDS-14...> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     AFFICHEUR-A-LEDS-14...> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     AFFICHEUR-A-LEDS-14...> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     AFFICHEUR-A-LEDS-14...> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     AFFICHEUR-A-LEDS-14...> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     AFFICHEUR-A-LEDS-14...> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     AFFICHEUR-A-LEDS-14...> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     AFFICHEUR-A-LEDS-14...> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     AFFICHEUR-A-LEDS-14...> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     AFFICHEUR-A-LEDS-14...> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     AFFICHEUR-A-LEDS-14...> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     AFFICHEUR-A-LEDS-14...> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     AFFICHEUR-A-LEDS-14...> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     AFFICHEUR-A-LEDS-14...> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     AFFICHEUR-A-LEDS-14...> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     AFFICHEUR-A-LEDS-20...> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     AFFICHEUR-A-LEDS-20...> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     AFFICHEUR-A-LEDS-20...> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     AFFICHEUR-A-LEDS-20...> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     AFFICHEUR-A-LEDS-20...> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     AFFICHEUR-A-LEDS-20...> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     AFFICHEUR-A-LEDS-20...> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     AFFICHEUR-A-LEDS-20...> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     AFFICHEUR-A-LEDS-20...> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     AFFICHEUR-A-LEDS-20...> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     AFFICHEUR-A-LEDS-26...> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     AFFICHEUR-A-LEDS-26...> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     AFFICHEUR-A-LEDS-26...> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     AFFICHEUR-A-LEDS-26...> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     AFFICHEUR-A-LEDS-26...> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     AFFICHEUR-A-LEDS-26...> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     AFFICHEUR-A-LEDS-26...> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     AFFICHEUR-A-LEDS-26...> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     AIMANT-PERMANENT-107..> 14-Dec-2012 08:42  2.9K  
    

    [TXT]

     AIMANT-PERMANENT-107..> 14-Dec-2012 08:41  2.8K  
    

    [TXT]

     AIMANT-PERMANENT-107..> 14-Dec-2012 08:41  2.8K  
    

    [TXT]

     AIMANT-PERMANENT-107..> 14-Dec-2012 08:41  2.8K  
    

    [TXT]

     AIMANT-PERMANENT-107..> 14-Dec-2012 08:44  2.8K  
    

    [TXT]

     AIMANT-PERMANENT-107..> 14-Dec-2012 08:37  2.8K  
    

    [TXT]

     AIMANT-PERMANENT-107..> 14-Dec-2012 08:44  2.8K  
    

    [TXT]

     AIMANT-PERMANENT-107..> 14-Dec-2012 08:44  2.8K  
    

    [TXT]

     AIMANT-PERMANENT-107..> 14-Dec-2012 08:42  2.9K  
    

    [TXT]

     ALESOIR-107232.html     14-Dec-2012 08:44  2.8K  
    

    [TXT]

     ALIMENTATION-10W-MON..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     ALIMENTATION-10W-MON..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     ALIMENTATION-10W-MON..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     ALIMENTATION-10W-MON..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     ALIMENTATION-10W-MON..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     ALIMENTATION-10W-MON..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     ALIMENTATION-15W-MON..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     ALIMENTATION-15W-MON..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     ALIMENTATION-15W-MON..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     ALIMENTATION-20W-CHA..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     ALIMENTATION-20W-CHA..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     ALIMENTATION-20W-CHA..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     ALIMENTATION-20W-CHA..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     ALIMENTATION-20W-CHA..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     ALIMENTATION-20W-CHA..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     ALIMENTATION-100W-9V..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     ALIMENTATION-100W-9V..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     ALIMENTATION-100W-12..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     ALIMENTATION-100W-12..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     ALIMENTATION-100W-15..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     ALIMENTATION-100W-15..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     ALIMENTATION-100W-24..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     ALIMENTATION-100W-24..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     ALIMENTATION-100W-48..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     ALIMENTATION-100W-48..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     ALIMENTATION-120W-EX..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     ALIMENTATION-120W-EX..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     ALIMENTATION-120W-EX..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     ALIMENTATION-120W-EX..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     ALIMENTATION-120W-EX..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     ALIMENTATION-120W-EX..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     ALIMENTATION-500W-24..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     ALIMENTATION-500W-24..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     ALIMENTATION-500W-48..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     ALIMENTATION-500W-48..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     ALIMENTATION-600W-12..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     ALIMENTATION-600W-12..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     ALIMENTATION-600W-24..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     ALIMENTATION-600W-24..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     ALIMENTATION-600W-48..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     ALIMENTATION-600W-48..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     ALIMENTATION-A-DECOU..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     ALIMENTATION-CA-CC-1..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     ALIMENTATION-CA-CC-1..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     ALIMENTATION-CA-CC-3..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     ALIMENTATION-CA-CC-3..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     ALIMENTATION-CA-CC-5..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     ALIMENTATION-CA-CC-1..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     ALIMENTATION-CA-CC-1..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     ALIMENTATION-CA-CC-1..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     ALIMENTATION-POUR-MC..> 14-Dec-2012 08:40  2.9K  
    

    [TXT]

     ALIMENTATIONS.htm       04-Jan-2013 18:32  3.3M  
    

    [TXT]

     ALTERNISTOR-25A-1200..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     ALTERNISTOR-40A-600V..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     AMP.htm                 05-Jan-2013 11:08  2.4M  
    

    [TXT]

     AMPLI-AUDIO-CMS-1W-B..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     AMPLI-AUDIO-CMS-1W-B..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     AMPLI-AUDIO-CMS-1W-S..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     AMPLI-AUDIO-CMS-1W-S..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     AMPLI-AUDIO-CMS-DOUB..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     AMPLI-CMS-AUTO-ZERO-..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     AMPLI-CMS-AUTO-ZERO-..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     AMPLI-CMS-AVEC-FILTR..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     AMPLI-CMS-DIFFERENTI..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     AMPLI-CMS-DIFFERENTI..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     AMPLI-CMS-DIFFERENTI..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     AMPLI-D´INSTRUMEN..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     AMPLI-D´INSTRUMEN..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     AMPLI-DC-LOG-500MHZ-..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     AMPLI-DE-PUISSANCE-1..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     AMPLI-DIFFIRENTIEL-V..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     AMPLI-JFET-CMS-QUADR..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     AMPLI-JFET-CMS-R-R-1..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     AMPLI-JFET-CMS-R-R-1..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     AMPLI-OP-240MHZ-1079..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     AMPLI-OP-BASSE-PUISS..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     AMPLI-OP-BIFET-10943..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     AMPLI-OP-CMOS-7611-D..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     AMPLI-OP-CMOS-PROGRA..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     AMPLI-OP-CMS--SORTIE..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     AMPLI-OP-CMS--SORTIE..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     AMPLI-OP-CMS--SORTIE..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     AMPLI-OP-CMS-1.2-GHZ..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     AMPLI-OP-CMS-1.2-GHZ..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     AMPLI-OP-CMS-1018165..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     AMPLI-OP-CMS-CMOS-PR..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     AMPLI-OP-CMS-DIFFERE..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     AMPLI-OP-CMS-DIFFERE..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     AMPLI-OP-CMS-DIFFERE..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     AMPLI-OP-CMS-DIFFERE..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     AMPLI-OP-CMS-DOUBLE-..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     AMPLI-OP-CMS-DOUBLE-..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     AMPLI-OP-CMS-DOUBLE-..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     AMPLI-OP-CMS-DOUBLE-..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     AMPLI-OP-CMS-DOUBLE-..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     AMPLI-OP-CMS-DOUBLE-..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     AMPLI-OP-CMS-DOUBLE-..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     AMPLI-OP-CMS-DOUBLE-..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     AMPLI-OP-CMS-DOUBLE-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     AMPLI-OP-CMS-ECHANTI..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     AMPLI-OP-CMS-ENTREE-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     AMPLI-OP-CMS-HAUTE-T..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     AMPLI-OP-CMS-HAUTE-T..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     AMPLI-OP-CMS-MICROPO..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     AMPLI-OP-CMS-QUAD-10..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     AMPLI-OP-CMS-QUAD-CM..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     AMPLI-OP-CMS-QUAD-RA..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     AMPLI-OP-CMS-QUAD-RA..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     AMPLI-OP-CMS-QUAD-RA..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     AMPLI-OP-CMS-QUAD-RA..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     AMPLI-OP-CMS-QUADRUP..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     AMPLI-OP-CMS-QUADRUP..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     AMPLI-OP-CMS-QUADRUP..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     AMPLI-OP-CMS-QUADRUP..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     AMPLI-OP-CMS-QUADRUP..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     AMPLI-OP-CMS-QUADRUP..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     AMPLI-OP-CMS-QUADRUP..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     AMPLI-OP-CMS-QUADRUP..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     AMPLI-OP-CMS-QUADRUP..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     AMPLI-OP-CMS-QUADRUP..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     AMPLI-OP-CMS-QUADRUP..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     AMPLI-OP-CMS-RAIL-RA..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     AMPLI-OP-CMS-RAIL-RA..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     AMPLI-OP-CMS-RAIL-RA..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     AMPLI-OP-CMS-RAIL-RA..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     AMPLI-OP-CMS-RAIL-TO..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     AMPLI-OP-CMS-RAIL-TO..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     AMPLI-OP-CMS-RAIL-TO..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     AMPLI-OP-CMS-RAPIDE-..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     AMPLI-OP-CMS-SIMPLE-..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     AMPLI-OP-CMS-SIMPLE-..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     AMPLI-OP-CMS-SIMPLE-..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     AMPLI-OP-CMS-SIMPLE-..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     AMPLI-OP-CMS-VOLT-FB..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     AMPLI-OP-COMPENSE-DI..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     AMPLI-OP-DOUBLE-AUDI..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     AMPLI-OP-DOUBLE-CMOS..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     AMPLI-OP-DOUBLE-FAIB..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     AMPLI-OP-DOUBLE-FAIB..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     AMPLI-OP-DOUBLE-FAIB..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     AMPLI-OP-DOUBLE-JFET..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     AMPLI-OP-DOUBLE-LOW-..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     AMPLI-OP-DOUBLE-RAIL..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     AMPLI-OP-DOUBLE-RAPI..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     AMPLI-OP-DOUBLE-RAPI..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     AMPLI-OP-E-S-RAIL-RA..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     AMPLI-OP-FAIBLE-DIST..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     AMPLI-OP-HAUTE-PRECI..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     AMPLI-OP-HAUTE-PRECI..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     AMPLI-OP-HAUTE-TENSI..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     AMPLI-OP-HIGH-CURREN..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     AMPLI-OP-IMPROVED-CA..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     AMPLI-OP-JFET-DIP8-1..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     AMPLI-OP-JFET-FAIBLE..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     AMPLI-OP-MOS-IP-CMOS..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     AMPLI-OP-POUR-THERMO..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     AMPLI-OP-QUAD-HIGH-P..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     AMPLI-OP-RAPIDE-1079..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     AMPLI-OP-RAPIDE-1079..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     AMPLI-OP-RECEPTEUR-D..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     AMPLI-RF-FAIBLE-BRUI..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     AMPLI-RF-FAIBLE-BRUI..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     AMPLI-RF-FAIBLE-BRUI..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     AMPLI.htm               05-Jan-2013 11:13  3.8M  
    

    [TXT]

     AMPLIFICATEUR-A-GAIN..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     AMPLIFICATEUR-AUDIO-..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     AMPLIFICATEUR-AUDIO-..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     AMPLIFICATEUR-AUDIO-..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     AMPLIFICATEUR-CONTRO..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     AMPLIFICATEUR-CONTRO..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     AMPLIFICATEUR-D´E..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     AMPLIFICATEUR-D´E..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     AMPLIFICATEUR-D´E..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     AMPLIFICATEUR-D´E..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     AMPLIFICATEUR-D´I..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     AMPLIFICATEUR-D´I..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     AMPLIFICATEUR-D´I..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     AMPLIFICATEUR-D´I..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     AMPLIFICATEUR-D´I..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     AMPLIFICATEUR-D´I..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     AMPLIFICATEUR-DOUBLE..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     AMPLIFICATEUR-MMIC-1..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     AMPLIFICATEUR-MMIC-1..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     AMPLIFICATEUR-VIDEO-..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     AMPLIFICATEUR.htm       05-Jan-2013 11:23  4.0M  
    

    [TXT]

     AMPLIFICATEURFICATEU..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     AMPLIFIER,-UNIVERSAL..> 14-Dec-2012 08:42  2.7K  
    

    [TXT]

     AMPOULE--50W-24V-CAP..> 14-Dec-2012 08:40  2.9K  
    

    [TXT]

     AMPOULE-50W-12V-CAPS..> 14-Dec-2012 08:44  2.9K  
    

    [TXT]

     ANALYSEUR-DE-SPECTRE..> 14-Dec-2012 08:43  3.0K  
    

    [TXT]

     ANTENNE-1096142.html    14-Dec-2012 08:39  2.7K  
    

    [TXT]

     ATOMISER-ULTRASONIC-..> 14-Dec-2012 08:56  3.1K  
    

    [TXT]

     ATOMISER-ULTRASONIC-..> 13-Dec-2012 19:02  3.1K  
    

    [TXT]

     ATTACHE-ADHEVISE-POU..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     ATTACHE-REGLABLE-DET..> 14-Dec-2012 08:50  3.1K  
    

    [TXT]

     ATTACHE-REGLABLE-DET..> 14-Dec-2012 08:45  3.1K  
    

    [TXT]

     ATTACHE-REGLABLE-DET..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     ATTACHES-ADHESIVES-P..> 14-Dec-2012 08:50  3.0K  
    

    [TXT]

     ATTACHES-ADHESIVES-P..> 14-Dec-2012 08:45  3.0K  
    

    [TXT]

     BAGUE-DE-COULEUR-BLA..> 14-Dec-2012 08:54  2.9K  
    

    [TXT]

     BAGUE-DE-COULEUR-BLA..> 13-Dec-2012 19:02  2.9K  
    

    [TXT]

     BAGUE-DE-COULEUR-BLE..> 14-Dec-2012 08:54  2.9K  
    

    [TXT]

     BAGUE-DE-COULEUR-BLE..> 13-Dec-2012 19:02  2.9K  
    

    [TXT]

     BAGUE-DE-COULEUR-GRI..> 14-Dec-2012 08:54  2.9K  
    

    [TXT]

     BAGUE-DE-COULEUR-GRI..> 13-Dec-2012 19:02  2.9K  
    

    [TXT]

     BAGUE-DE-COULEUR-MAR..> 14-Dec-2012 08:57  2.9K  
    

    [TXT]

     BAGUE-DE-COULEUR-MAR..> 13-Dec-2012 19:03  2.9K  
    

    [TXT]

     BAGUE-DE-COULEUR-ROU..> 14-Dec-2012 08:54  2.9K  
    

    [TXT]

     BAGUE-DE-COULEUR-ROU..> 13-Dec-2012 19:02  2.9K  
    

    [TXT]

     BAGUE-DE-COULEUR-VER..> 14-Dec-2012 08:56  2.9K  
    

    [TXT]

     BAGUE-DE-COULEUR-VER..> 13-Dec-2012 19:02  2.9K  
    

    [TXT]

     BAGUE-JAUNE-POUR-CON..> 14-Dec-2012 08:57  2.9K  
    

    [TXT]

     BAGUE-JAUNE-POUR-CON..> 13-Dec-2012 19:03  2.9K  
    

    [TXT]

     BAGUE-ORANGE-POUR-CO..> 14-Dec-2012 08:57  2.9K  
    

    [TXT]

     BAGUE-ORANGE-POUR-CO..> 13-Dec-2012 19:03  2.9K  
    

    [TXT]

     BALISE-8-TONS-JAUNE-..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     BALL-DRIVE,-EPICYCLI..> 14-Dec-2012 08:50  2.8K  
    

    [TXT]

     BARETTE-MTA-2V-10563..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     BARETTES-SECABLES-RA..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     BARRETTE-DE-CONNEXIO..> 14-Dec-2012 08:49  2.9K  
    

    [TXT]

     BARRETTE-DE-CONNEXIO..> 14-Dec-2012 08:48  2.9K  
    

    [TXT]

     BARRETTE-DE-CONNEXIO..> 14-Dec-2012 08:49  2.9K  
    

    [TXT]

     BARRETTE-SECABLE-105..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     BARRETTE-SECABLE-109..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     BARRETTE-SECABLE-DOU..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     BARRETTE-SECABLE-DOU..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     BATTERIE-NIMH-3-V600..> 14-Dec-2012 08:37  3.1K  
    

    [TXT]

     BATTERIE-NIMH-3-V600..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     BATTERIE.htm            05-Jan-2013 11:23  4.0M  
    

    [TXT]

     BELT-SANDER,-230V,-E..> 14-Dec-2012 08:39  3.0K  
    

    [TXT]

     BENCH-DRILL,-EURO-PL..> 14-Dec-2012 08:46  3.1K  
    

    [TXT]

     BEZEL,-WITH-20X4-LCD..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     BLOC-CONTACT-1N-O---..> 14-Dec-2012 08:39  3.1K  
    

    [TXT]

     BLOC-CONTACT-1N-O-10..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     BLOC-CONTACT-2N-C-10..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     BLOC-CONTACT-2N-O-10..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     BLOC-D´ARRET-1017..> 14-Dec-2012 08:47  2.8K  
    

    [TXT]

     BLOC-DE-COUPE-106572..> 14-Dec-2012 08:46  2.8K  
    

    [TXT]

     BLOC-DE-COUPLAGE-PQ2..> 14-Dec-2012 08:43  2.8K  
    

    [TXT]

     BLOC-DE-JONCTION-MKK..> 14-Dec-2012 08:41  2.8K  
    

    [TXT]

     BLOC-DE-SECURITE-GRI..> 14-Dec-2012 08:41  3.0K  
    

    [TXT]

     BLOCK-CONTACTS-10823..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     BLOCK-CONTACTS-10823..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     BLOW-TORCH,-BURNER,-..> 14-Dec-2012 08:39  2.9K  
    

    [TXT]

     BOITE-DE-JONCTION-10..> 14-Dec-2012 08:42  2.9K  
    

    [TXT]

     BOITE-DE-JONCTION-10..> 14-Dec-2012 08:38  2.9K  
    

    [TXT]

     BOITE-DE-JONCTION-10..> 14-Dec-2012 08:45  2.9K  
    

    [TXT]

     BOITE-DE-STOCKAGE-CM..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     BOITIER-22AWG.-12-VO..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     BOITIER-24AWG.-4-VOI..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     BOITIER-24AWG.-20-VO..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     BOITIER-70.5X50.5X35..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     BOITIER-90X60X20-109..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     BOITIER-100X50X25-10..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     BOITIER-100X100X35-C..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     BOITIER-100X100X35-C..> 14-Dec-2012 08:44  3.1K  
    

    [TXT]

     BOITIER-100X100X50-C..> 14-Dec-2012 08:44  3.1K  
    

    [TXT]

     BOITIER-100X100X50-C..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     BOITIER-100X100X60-C..> 14-Dec-2012 08:44  3.1K  
    

    [TXT]

     BOITIER-100X100X60-C..> 14-Dec-2012 08:44  3.1K  
    

    [TXT]

     BOITIER-100X100X75-C..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     BOITIER-ABS-GRIS-100..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     BOITIER-ABS-NOIR-100..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     BOITIER-ABS-NOIR-100..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     BOITIER-ABS-NOIR-100..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     BOITIER-ABS-NOIR-100..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     BOITIER-ABS-NOIR-100..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     BOITIER-ABS-NOIR-100..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     BOITIER-ABS-NOIR-100..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     BOITIER-ABS-NOIR-100..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     BOITIER-ABS-NOIR-100..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     BOITIER-ABS-NOIR-100..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     BOITIER-ABS-NOIR.html   13-Dec-2012 19:02  3.2K  
    

    [TXT]

     BOITIER-ABS-RFI-NOIR..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     BOITIER-ABS-RFI-NOIR..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     BOITIER-ABS-RFI-NOIR..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     BOITIER-ABS-RFI-NOIR..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     BOITIER-ABS-RFI-NOIR..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     BOITIER-ABS-RFI-NOIR..> 14-Dec-2012 08:50  3.1K  
    

    [TXT]

     BOITIER-ABS-RFI-NOIR..> 14-Dec-2012 08:54  3.0K  
    

    [TXT]

     BOITIER-ABS-RFI-NOIR..> 14-Dec-2012 08:48  3.0K  
    

    [TXT]

     BOITIER-ABS-RFI-NOIR..> 14-Dec-2012 08:54  3.0K  
    

    [TXT]

     BOITIER-ABS-RFI-NOIR..> 13-Dec-2012 19:02  3.0K  
    

    [TXT]

     BOITIER-ABS-WATERTIG..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     BOITIER-ABS-WATERTIG..> 14-Dec-2012 08:48  3.1K  
    

    [TXT]

     BOITIER-ABS-WATERTIG..> 14-Dec-2012 08:50  3.1K  
    

    [TXT]

     BOITIER-ABS-WATERTIG..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     BOITIER-BASE-EG-45-G..> 14-Dec-2012 08:41  2.8K  
    

    [TXT]

     BOITIER-BASE-ME-225-..> 14-Dec-2012 08:42  2.8K  
    

    [TXT]

     BOITIER-CAP-KIT-ME-2..> 14-Dec-2012 08:41  2.8K  
    

    [TXT]

     BOITIER-CARDMASTER-3..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     BOITIER-CARDMASTER-3..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     BOITIER-CIRCULAIRE.htm  05-Jan-2013 11:25  5.0M  
    

    [TXT]

     BOITIER-DE-RANGEMENT..> 14-Dec-2012 08:41  2.9K  
    

    [TXT]

     BOITIER-DVD-3X-NOIR-..> 14-Dec-2012 08:54  2.8K  
    

    [TXT]

     BOITIER-DVD-3X-NOIR...> 13-Dec-2012 19:02  2.8K  
    

    [TXT]

     BOITIER-DVD-8X-NOIR-..> 14-Dec-2012 08:56  2.8K  
    

    [TXT]

     BOITIER-DVD-8X-NOIR...> 13-Dec-2012 19:03  2.8K  
    

    [TXT]

     BOITIER-FEM.-CONTACT..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     BOITIER-FEMELLE-6-VO..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     BOITIER-FEMELLE-6-VO..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     BOITIER-FEMELLE-8-VO..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     BOITIER-KIT-EMG-45-B..> 14-Dec-2012 08:39  2.7K  
    

    [TXT]

     BOITIER-MALE-CONTACT..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     BOITIER-MALE-CONTACT..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     BOITIER-ME-MAX-62-SC..> 14-Dec-2012 08:41  2.8K  
    

    [TXT]

     BOITIER-ME-MAX-62-SP..> 14-Dec-2012 08:42  2.8K  
    

    [TXT]

     BOITIER-ME-MAX-175-3..> 14-Dec-2012 08:39  2.8K  
    

    [TXT]

     BOITIER-ME-MAX-225-2..> 14-Dec-2012 08:41  2.8K  
    

    [TXT]

     BOITIER-ME-MAX-225-3..> 14-Dec-2012 08:41  2.8K  
    

    [TXT]

     BOITIER-MOULE-IP54-5..> 14-Dec-2012 08:50  3.1K  
    

    [TXT]

     BOITIER-MOULE-IP54-5..> 14-Dec-2012 08:54  3.1K  
    

    [TXT]

     BOITIER-MOULE-IP54-5..> 13-Dec-2012 19:02  3.1K  
    

    [TXT]

     BOITIER-MOULE-IP54-9..> 14-Dec-2012 08:54  3.1K  
    

    [TXT]

     BOITIER-MOULE-IP54-9..> 14-Dec-2012 08:48  3.1K  
    

    [TXT]

     BOITIER-MOULE-IP54-9..> 13-Dec-2012 19:02  3.1K  
    

    [TXT]

     BOITIER-MOULE-IP54-1..> 14-Dec-2012 08:54  3.1K  
    

    [TXT]

     BOITIER-MOULE-IP54-1..> 14-Dec-2012 08:53  3.1K  
    

    [TXT]

     BOITIER-MOULE-IP54-1..> 13-Dec-2012 19:02  3.1K  
    

    [TXT]

     BOITIER-MOULE-IP54-1..> 13-Dec-2012 19:02  3.1K  
    

    [TXT]

     BOITIER-MOULE-IP54-1..> 14-Dec-2012 08:53  3.1K  
    

    [TXT]

     BOITIER-MOULE-IP54-1..> 13-Dec-2012 19:02  3.1K  
    

    [TXT]

     BOITIER-MOULE-IP65-9..> 14-Dec-2012 08:50  3.1K  
    

    [TXT]

     BOITIER-MTA-FEMELLE-..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     BOITIER-MTA-FEMELLE-..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     BOITIER-MTA-FEMELLE-..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     BOITIER-MTA-FEMELLE-..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     BOITIER-POLYCARBONAT..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     BOITIER-POLYCARBONAT..> 14-Dec-2012 08:50  3.1K  
    

    [TXT]

     BOITIER-POLYCARBONAT..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     BOITIER-POLYCARBONAT..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     BOITIER-POLYCARBONAT..> 14-Dec-2012 08:48  3.1K  
    

    [TXT]

     BOITIER-POLYCARBONAT..> 14-Dec-2012 08:45  3.1K  
    

    [TXT]

     BOITIER-POLYCARBONAT..> 14-Dec-2012 08:50  3.1K  
    

    [TXT]

     BOITIER-POLYCARBONAT..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     BOITIER-POLYCARBONAT..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     BOITIER-POLYCARBONAT..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     BOITIER-POLYCARBONAT..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     BOITIER-POLYCARBONAT..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     BOITIER-POLYCARBONAT..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     BOITIER-POLYCARBONAT..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     BOITIER-POLYCARBONAT..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     BOITIER-POLYCARBONAT..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     BOITIER-POLYCARBONAT..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     BOITIER-POLYCARBONAT..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     BOITIER-POLYCARBONAT..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     BOITIER-POLYCARBONAT..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     BOITIER-POLYCARBONAT..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     BOITIER-POLYCARBONAT..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     BOITIER-POLYCARBONAT..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     BOITIER-POLYCARBONAT..> 14-Dec-2012 08:48  3.1K  
    

    [TXT]

     BOITIER-POLYCARBONAT..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     BOITIER-UEGM-25-1082..> 14-Dec-2012 08:42  2.7K  
    

    [TXT]

     BORNE---PLOT-DE-TEST..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     BORNE---PLOT-DE-TEST..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     BORNE---PLOT-DE-TEST..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     BORNE---PLOT-DE-TEST..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     BORNE---PLOT-DE-TEST..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     BORNE---PLOT-DE-TEST..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     BORNE---PLOT-DE-TEST..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     BORNE---PLOT-DE-TEST..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     BORNE---PLOT-DE-TEST..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     BORNE---PLOT-DE-TEST..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     BORNE-4MM-ISOLEE-BLA..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     BORNE-4MM-ISOLEE-BLE..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     BORNE-4MM-ISOLEE-BLE..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     BORNE-4MM-ISOLEE-JAU..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     BORNE-4MM-ISOLEE-NOI..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     BORNE-4MM-ISOLEE-ROU..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     BORNE-4MM-ISOLEE-ROU..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     BORNE-4MM-ISOLEE-VER..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     BORNE-4MM-MONTAGE-PA..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     BORNE-4MM-MONTAGE-PA..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     BORNE-D´ALIMENTAT..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     BORNE-D´ALIMENTAT..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     BORNE-D´ALIMENTAT..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     BORNE-D´ALIMENTAT..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     BORNE-D´ALIMENTAT..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     BORNE-D´ALIMENTAT..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     BORNE-D´ALIMENTAT..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     BORNE-DE-TERRE-2.5-4..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     BORNE-DE-TERRE-6-10M..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     BORNE-FUSIBLE-101540..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     BORNE-RAIL-DIN-3-NIV..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     BORNE-RAIL-DIN-D´..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     BORNIER-4-VOIES-5.00..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     BORNIER.htm             05-Jan-2013 11:33  5.0M  
    

    [TXT]

     BOUCHON-CPC-ETANCHE-..> 14-Dec-2012 08:47  3.0K  
    

    [TXT]

     BOUCHON-CPC-ETANCHE-..> 14-Dec-2012 08:45  3.0K  
    

    [TXT]

     BOUCHON-FEMELLE-SERI..> 14-Dec-2012 08:44  3.1K  
    

    [TXT]

     BOUCHON-FEMELLE-SERI..> 14-Dec-2012 08:48  3.1K  
    

    [TXT]

     BOUCHON-MALE-SERIE-1..> 14-Dec-2012 08:48  3.1K  
    

    [TXT]

     BOUCHON-PROTECTEUR-M..> 14-Dec-2012 08:47  2.9K  
    

    [TXT]

     BOUCHON-SERINGUE-10M..> 14-Dec-2012 08:44  2.8K  
    

    [TXT]

     BOUTON-COMPTE-TOURS-..> 14-Dec-2012 08:39  3.1K  
    

    [TXT]

     BOUTON-POUSS.PLASTIQ..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     BOUTON-POUSS.PLASTIQ..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     BOUTON-POUSS.PLASTIQ..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     BOUTON-POUSSOIR-1072..> 14-Dec-2012 08:39  3.0K  
    

    [TXT]

     BOUTON-POUSSOIR-EN-M..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     BOUTON-POUSSOIR-IP67..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     BOUTON-POUSSOIR-META..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     BOUTON-POUSSOIR-META..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     BOUTON-POUSSOIR-META..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     BOUTON-POUSSOIR-META..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     BOUTON-POUSSOIR-META..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     BOUTON-POUSSOIR-PLAS..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     BOUTON-POUSSOIR-ROND..> 14-Dec-2012 08:39  3.0K  
    

    [TXT]

     BOUTON.htm              05-Jan-2013 11:49  4.8M  
    

    [TXT]

     BOX,-POTTING,-25X25X..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     BOX,-POTTING,-40.5X1..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     BOX,-POTTING,-40X40X..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     BOX,-POTTING,-45X30X..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     BP-PLASTIQUE-MOMENTA..> 14-Dec-2012 08:43  3.0K  
    

    [TXT]

     BP-VERROUILLABLE-MET..> 14-Dec-2012 08:43  3.0K  
    

    [TXT]

     BP-VERROUILLABLE-PLA..> 14-Dec-2012 08:43  3.1K  
    

    [TXT]

     BROCHE-AUTODENUDANTE..> 14-Dec-2012 08:40  3.0K  
    

    [TXT]

     BT-PLUG-TO-PLUG-631A..> 14-Dec-2012 08:53  2.8K  
    

    [TXT]

     BT-PLUG-TO-PLUG-631A..> 13-Dec-2012 19:01  2.8K  
    

    [TXT]

     BUCK-REG-CMS-5970-SO..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     BUCK-REG-CMS-5973-HS..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     BUFFER-VIDEO-A-GAIN-..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     BUFFER-VIDEO-A-GAIN-..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     BUSE-18AWG-INOXIDABL..> 14-Dec-2012 08:44  2.9K  
    

    [TXT]

     BUSE-19-AWG-INOXIDAB..> 14-Dec-2012 08:40  2.9K  
    

    [TXT]

     BUSE-20AWG-PLASTIQUE..> 14-Dec-2012 08:38  2.8K  
    

    [TXT]

     BUSE-21-AWG-INOXYDAB..> 14-Dec-2012 08:44  2.9K  
    

    [TXT]

     BUSE-DE-SOUDAGE-POUR..> 14-Dec-2012 08:45  2.8K  
    

    [TXT]

     BUSE-DE-SOUDAGE-POUR..> 14-Dec-2012 08:48  2.8K  
    

    [TXT]

     BUSE-POUR-STATION-DE..> 14-Dec-2012 08:49  2.9K  
    

    [TXT]

     BUSE.-ANTISTATIQUE.-..> 14-Dec-2012 08:40  2.8K  
    

    [TXT]

     BUSE.-PISTOLET-A-DES..> 14-Dec-2012 08:54  2.8K  
    

    [TXT]

     BUSE.-PISTOLET-A-DES..> 13-Dec-2012 19:02  2.8K  
    

    [TXT]

     BUZZER,-ELECTROMECH,..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     BUZZER,-ELECTROMECH,..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     CABLE-ASSEMBLE-DE-PU..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     CABLE-D´ASSEMBLAG..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     CABLE-D´ASSEMBLAG..> 14-Dec-2012 08:43  3.1K  
    

    [TXT]

     CABLE-D´ASSEMBLAG..> 14-Dec-2012 08:46  3.1K  
    

    [TXT]

     CABLE-DE-DONNEE-SATA..> 14-Dec-2012 08:53  3.1K  
    

    [TXT]

     CABLE-DE-DONNEE-SATA..> 13-Dec-2012 19:02  3.1K  
    

    [TXT]

     CABLE-DE-MISE-A-LA-T..> 14-Dec-2012 08:41  3.0K  
    

    [TXT]

     CABLE-DE-PUISSANCE-S..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     CABLE-DE-SIGNAL-SATA..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     CABLE-DE-SIGNAL-SATA..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     CABLE-EN-NAPPE-10-VO..> 14-Dec-2012 08:53  3.1K  
    

    [TXT]

     CABLE-EN-NAPPE-10-VO..> 13-Dec-2012 19:02  3.1K  
    

    [TXT]

     CABLE-ISP-POUR-KIT-8..> 14-Dec-2012 08:39  2.8K  
    

    [TXT]

     CABLE-NAPPE-FFC-6-VO..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     CABLE-NAPPE-FFC-8-VO..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CABLE-NAPPE-FFC-10-V..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     CABLE-NAPPE-FFC-12-V..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     CABLE-NAPPE-FFC-14-V..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CABLE-NAPPE-FFC-16-V..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     CABLE-NAPPE-FFC-20-V..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     CABLE-NAPPE-FFC-26-V..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     CABLE-NAPPE-FFC-30-V..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     CABLE-POUR-CABLE-D6F..> 14-Dec-2012 08:49  2.9K  
    

    [TXT]

     CABLE.htm               05-Jan-2013 11:48  4.2M  
    

    [TXT]

     CABOCHON-105988.html    14-Dec-2012 08:40  2.8K  
    

    [TXT]

     CACHE-ME-MAX-B-225-K..> 14-Dec-2012 08:39  2.7K  
    

    [TXT]

     CAISSE-A-OUTILS-1059..> 14-Dec-2012 08:44  2.9K  
    

    [TXT]

     CALCULATOR,-SCIENTIF..> 14-Dec-2012 08:48  2.8K  
    

    [TXT]

     CALIBRATOR,-SOUND-LE..> 14-Dec-2012 08:41  2.9K  
    

    [TXT]

     CALL-POINT,-RED,-470..> 14-Dec-2012 08:54  3.1K  
    

    [TXT]

     CALL-POINT,-RED,-470..> 13-Dec-2012 19:02  3.1K  
    

    [TXT]

     CAMDEN-BOSS-BIM2001-..> 04-Jan-2013 17:29  2.3M  
    

    [TXT]

     CAN-8-BITS-CMS-2-CAN..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     CAN-8-BITS-CMS-4-CAN..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     CAN-8-BITS-CMS-4-CAN..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CAN-8-BITS-CMS-10782..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     CAN-10-BITS-CMS-4-CA..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     CAN-10-BITS-CMS-4CH-..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     CAN-10-BITS-CMS-4CH-..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     CAN-10-BITS-CMS-8CH-..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     CAN-10-BITS-CMS-1078..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     CAN-12-BITS-3V-10794..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CAN-12-BITS-1079289...> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CAN-12-BITS-1079356...> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     CAN-12-BITS-1079357...> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     CAN-12-BITS-1079358...> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CAN-12-BITS-1079424...> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     CAN-12-BITS-CMS-1-CA..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     CAN-12-BITS-CMS-1-CA..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CAN-12-BITS-CMS-1.2M..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CAN-12-BITS-CMS-2-CA..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CAN-12-BITS-CMS-2-CA..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CAN-12-BITS-CMS-2.7V..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CAN-12-BITS-CMS-2CH-..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     CAN-12-BITS-CMS-2CH-..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     CAN-12-BITS-CMS-4CH-..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     CAN-12-BITS-CMS-8CH-..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     CAN-12-BITS-CMS-8CH-..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     CAN-12-BITS-CMS-1078..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     CAN-12-BITS-CMS-1078..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     CAN-12-BITS-CMS-MULT..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     CAN-12-BITS-CMS-MULT..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     CAN-12-BITS-CMS-MULT..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     CAN-12-BITS-CMS-SAR-..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     CAN-14-BITS-CMS-1078..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     CAN-14-BITS-CMS-1078..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     CAN-16-BITS-CMS-2-CH..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     CAN-16-BITS-CMS-3-CH..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     CAN-16-BITS-CMS-100K..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     CAN-16-BITS-CMS-100K..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     CAN-16-BITS-CMS-250-..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     CAN-16-BITS-CMS-SAR-..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     CAN-16-BITS-CMS-SAR-..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     CAN-16-BITS-CMS-SAR-..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     CAN-22-BITS-CMS-DELT..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     CAN-22-BITS-CMS-DELT..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     CAN-24-BITS-CMS-3-VO..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     CAN-24-BITS-CMS-6-VO..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     CAPACITOR.htm           05-Jan-2013 11:48  3.7M  
    

    [TXT]

     CAPOT-105432.html       14-Dec-2012 08:47  2.8K  
    

    [TXT]

     CAPOT-BLINDE-IP68-LA..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     CAPOT-BLINDE-IP68-LA..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CAPOT-BLINDE-IP68-LA..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CAPOT-BLINDE-IP68-LA..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     CAPOT-BLINDE-IP68-LA..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     CAPOT-BLINDE-IP68-LA..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CAPOT-BLINDE-IP68-LA..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CAPOT-BLINDE-IP68-LA..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     CAPOT-BLINDE-IP68-LA..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CAPOT-BLINDE-IP68-LA..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CAPOT-BLINDE-IP68-LA..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     CAPOT-BLINDE-IP68-LA..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CAPOT-BLINDE-IP68-LA..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     CAPOT-BLINDE-IP68-LA..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     CAPOT-BLINDE-IP68-LA..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CAPOT-BLINDE-IP68-SZ..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     CAPOT-BLINDE-IP68-SZ..> 14-Dec-2012 08:55  3.1K  
    

    [TXT]

     CAPOT-BLINDE-IP68-SZ..> 13-Dec-2012 19:02  3.1K  
    

    [TXT]

     CAPOT-BLINDE-IP68-SZ..> 14-Dec-2012 08:52  3.1K  
    

    [TXT]

     CAPOT-BLINDE-IP68-SZ..> 13-Dec-2012 19:01  3.1K  
    

    [TXT]

     CAPOT-BLINDE-IP68-SZ..> 14-Dec-2012 08:56  3.1K  
    

    [TXT]

     CAPOT-BLINDE-IP68-SZ..> 13-Dec-2012 19:02  3.1K  
    

    [TXT]

     CAPOT-BLINDE-IP68-SZ..> 14-Dec-2012 08:52  3.1K  
    

    [TXT]

     CAPOT-BLINDE-IP68-SZ..> 13-Dec-2012 19:01  3.1K  
    

    [TXT]

     CAPOT-BLINDE-IP68-SZ..> 14-Dec-2012 08:52  3.1K  
    

    [TXT]

     CAPOT-BLINDE-IP68-SZ..> 13-Dec-2012 19:01  3.1K  
    

    [TXT]

     CAPOT-DOUBLE-ENTREE-..> 14-Dec-2012 08:47  3.1K  
    

    [TXT]

     CAPOT-DOUBLE-ENTREE-..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     CAPOT-DOUBLE-ENTREE-..> 14-Dec-2012 08:45  3.1K  
    

    [TXT]

     CAPOT-DOUBLE-ENTREE-..> 14-Dec-2012 08:47  3.1K  
    

    [TXT]

     CAPOT-IP68-SZ12-1007..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CAPOT-IP68-SZ14-1007..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CAPOT-IP68-SZ16-1007..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CAPOT-IP68-SZ18-1007..> 14-Dec-2012 08:56  3.1K  
    

    [TXT]

     CAPOT-IP68-SZ18.html    13-Dec-2012 19:02  3.1K  
    

    [TXT]

     CAPOT-IP68-SZ20-1007..> 14-Dec-2012 08:55  3.1K  
    

    [TXT]

     CAPOT-IP68-SZ20.html    13-Dec-2012 19:02  3.1K  
    

    [TXT]

     CAPOT-LARGE-ENTREE-D..> 14-Dec-2012 08:55  3.1K  
    

    [TXT]

     CAPOT-LARGE-ENTREE-D..> 13-Dec-2012 19:02  3.1K  
    

    [TXT]

     CAPOT-LARGE-ENTREE-D..> 14-Dec-2012 08:55  3.1K  
    

    [TXT]

     CAPOT-LARGE-ENTREE-D..> 13-Dec-2012 19:02  3.1K  
    

    [TXT]

     CAPOT-LARGE-ENTREE-D..> 14-Dec-2012 08:52  3.1K  
    

    [TXT]

     CAPOT-LARGE-ENTREE-D..> 13-Dec-2012 19:01  3.1K  
    

    [TXT]

     CAPOT-LARGE-ENTREE-D..> 14-Dec-2012 08:56  3.1K  
    

    [TXT]

     CAPOT-LARGE-ENTREE-D..> 13-Dec-2012 19:02  3.1K  
    

    [TXT]

     CAPOT-LARGE-ENTREE-D..> 14-Dec-2012 08:56  3.1K  
    

    [TXT]

     CAPOT-LARGE-ENTREE-D..> 13-Dec-2012 19:02  3.1K  
    

    [TXT]

     CAPOT-METAL-ANTIPOUS..> 14-Dec-2012 08:49  3.0K  
    

    [TXT]

     CAPOT-METAL-ANTIPOUS..> 14-Dec-2012 08:52  3.0K  
    

    [TXT]

     CAPOT-METAL-ANTIPOUS..> 14-Dec-2012 08:49  3.0K  
    

    [TXT]

     CAPOT-METAL-ANTIPOUS..> 14-Dec-2012 08:55  3.0K  
    

    [TXT]

     CAPOT-METAL-ANTIPOUS..> 14-Dec-2012 08:52  3.0K  
    

    [TXT]

     CAPOT-METAL-ANTIPOUS..> 14-Dec-2012 08:49  3.0K  
    

    [TXT]

     CAPOT-METAL-ANTIPOUS..> 13-Dec-2012 19:01  3.0K  
    

    [TXT]

     CAPOT-METALLIQUE-ET-..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     CAPOT-METALLIQUE-ET-..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CAPOT-METALLIQUE-ET-..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CAPOT-METALLIQUE-ET-..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     CAPOT-METALLIQUE-ET-..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CAPOT-METALLIQUE-ET-..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     CAPOT-METALLIQUE-ET-..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     CAPOT-METALLIQUE-ET-..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CAPOT-METALLIQUE-ET-..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     CAPOT-METALLIQUE-ET-..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CAPOT-METALLIQUE-ET-..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     CAPOT-METALLIQUE-ET-..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CAPOT-METALLIQUE-ET-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CAPOT-METALLIQUE-ET-..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     CAPOT-METALLIQUE-ET-..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CAPOT-METALLISE-SUB-..> 14-Dec-2012 08:39  3.1K  
    

    [TXT]

     CAPOT-METALOK-8V-105..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     CAPOT-NOIR-1082525.html 14-Dec-2012 08:39  2.8K  
    

    [TXT]

     CAPOT-POUR-ALIMENTAT..> 14-Dec-2012 08:57  3.0K  
    

    [TXT]

     CAPOT-POUR-ALIMENTAT..> 14-Dec-2012 08:54  2.9K  
    

    [TXT]

     CAPOT-POUR-ALIMENTAT..> 14-Dec-2012 08:56  3.0K  
    

    [TXT]

     CAPOT-POUR-ALIMENTAT..> 14-Dec-2012 08:54  2.9K  
    

    [TXT]

     CAPOT-POUR-ALIMENTAT..> 13-Dec-2012 19:02  2.9K  
    

    [TXT]

     CAPOT-POUR-HAN-10152..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     CAPOT-POUR-SUB-D-9P-..> 14-Dec-2012 08:44  3.1K  
    

    [TXT]

     CAPOT-POUR-SUB-D-15P..> 14-Dec-2012 08:46  3.1K  
    

    [TXT]

     CAPOT-POUR-SUB-D-15P..> 14-Dec-2012 08:37  3.1K  
    

    [TXT]

     CAPOT-POUR-SUB-D-25P..> 14-Dec-2012 08:43  3.1K  
    

    [TXT]

     CAPOT-POUR-SUB-D-37P..> 14-Dec-2012 08:43  3.1K  
    

    [TXT]

     CAPOT-PROTECTION-108..> 14-Dec-2012 08:41  2.9K  
    

    [TXT]

     CAPOT-PROTECTION-108..> 14-Dec-2012 08:39  2.9K  
    

    [TXT]

     CAPOT-SUB-D-15-VOIES..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     CAPOT-SUB-D-25-VOIES..> 14-Dec-2012 08:47  3.0K  
    

    [TXT]

     CAPOT-SUB-D-25VOIES-..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     CAPOT-SUB-D-37-VOIES..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     CAPOT-SUB-D-METALLIS..> 14-Dec-2012 08:39  3.1K  
    

    [TXT]

     CAPOT-SUB-D-NOIR-9-V..> 14-Dec-2012 08:39  3.0K  
    

    [TXT]

     CAPOT.htm               05-Jan-2013 11:51  2.7M  
    

    [TXT]

     CAPTEUR-A-EFFET-HALL..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     CAPTEUR-A-EFFET-HALL..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     CAPTEUR-DE-DEBIT-NOR..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     CAPTEUR-DE-DEBIT-NOR..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CAPTEUR-DE-DEBIT-NOR..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     CAPTEUR-DE-DEBIT-NOR..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CAPTEUR-DE-NIVEAU-90..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     CAPTEUR-DE-NIVEAU-90..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CAPTEUR-DE-NIVEAU-HO..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     CAPTEUR-DE-NIVEAU-HO..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     CAPTEUR-DE-NIVEAU-HO..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     CAPTEUR-DE-NIVEAU-HO..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     CAPTEUR-DE-NIVEAU-HO..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     CAPTEUR-DE-NIVEAU-HO..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CAPTEUR-DE-NIVEAU-HO..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     CAPTEUR-DE-NIVEAU-RE..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     CAPTEUR-DE-NIVEAU-RE..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     CAPTEUR-DE-NIVEAU-RE..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CAPTEUR-DE-NIVEAU-VE..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CAPTEUR-DE-NIVEAU-VE..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     CAPTEUR-DE-NIVEAU-VE..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     CAPTEUR-DE-NIVEAU-XT..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     CAPTEUR-DE-NIVEAU-XT..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     CAPTEUR-DE-NIVEAU-XT..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CAPTEUR-DE-POSITION-..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     CAPTEUR-DE-POSITION-..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     CAPTEUR-DE-POSITION-..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CAPTEUR-DE-POSITION-..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     CAPTEUR-DE-POSITION...> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     CAPTEUR-DE-TEMPERATU..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CAPTEUR-DE-TEMPERATU..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     CAPTEUR-DE-TEMPERATU..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     CAPTEUR-EFFET-HALL-1..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     CAPTEUR-PIEZO-FILM-1..> 14-Dec-2012 08:56  3.0K  
    

    [TXT]

     CAPTEUR-PIEZO-FILM.html 13-Dec-2012 19:02  3.0K  
    

    [TXT]

     CAPTEUR-REED-1079473..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CAPTEUR-REED-1079474..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     CAPTEUR-REED-1079476..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CAPTEUR-REED-1079477..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CAPTEUR-REED-1079478..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     CAPTEUR-REED-1079479..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     CAPTEUR-REED-1079480..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     CAPTEUR-REED-1079481..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     CAPTEUR-REED-1079482..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     CAPTEUR-REED-1079483..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     CAPTEUR-REED-1079484..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     CAPTEUR-REED-1079485..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     CAPTEUR-REED-1079486..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     CAPTEUR-REED-1079488..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CAPTEUR-TEMP.-ANALOG..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     CAPTEUR.htm             05-Jan-2013 12:03  3.3M  
    

    [TXT]

     CAPUCHON-DE-SECURITE..> 14-Dec-2012 08:41  2.9K  
    

    [TXT]

     CAPUCHON-ETANCHE-108..> 14-Dec-2012 08:41  2.9K  
    

    [TXT]

     CAPUCHON-ETANCHE-108..> 14-Dec-2012 08:41  2.9K  
    

    [TXT]

     CAPUCHON-ETANCHE-108..> 14-Dec-2012 08:39  2.9K  
    

    [TXT]

     CAPUCHON-ETANCHE-108..> 14-Dec-2012 08:42  2.9K  
    

    [TXT]

     CAPUCHON-NOIR-108252..> 14-Dec-2012 08:42  2.9K  
    

    [TXT]

     CAPUCHON-ROUGE-10825..> 14-Dec-2012 08:41  2.9K  
    

    [TXT]

     CAPUCHON-VERTICALE-1..> 14-Dec-2012 08:42  2.9K  
    

    [TXT]

     CARTE-A-BORNES-10763..> 14-Dec-2012 08:39  2.7K  
    

    [TXT]

     CARTE-PCI-1-PORT-RS2..> 14-Dec-2012 08:45  2.8K  
    

    [TXT]

     CARTE.htm               05-Jan-2013 12:30  2.3M  
    

    [TXT]

     CARTRIDGE,-LABEL,-WH..> 14-Dec-2012 08:46  2.8K  
    

    [TXT]

     CASIER-104903.html      14-Dec-2012 08:46  3.0K  
    

    [TXT]

     CASIER-104904.html      14-Dec-2012 08:46  3.0K  
    

    [TXT]

     CASQUES-1004564.html    14-Dec-2012 08:54  3.0K  
    

    [TXT]

     CASQUES.html            13-Dec-2012 19:02  3.0K  
    

    [TXT]

     CAVALIER-2.54MM-ETAI..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     CAVALIER-CMS-1022336..> 14-Dec-2012 08:46  2.9K  
    

    [TXT]

     CD-R--PQ-25--IMPRIMA..> 14-Dec-2012 08:54  2.7K  
    

    [TXT]

     CD-R--PQ-25--IMPRIMA..> 13-Dec-2012 19:02  2.7K  
    

    [TXT]

     CD-R--PQ-25--SPINDLE..> 14-Dec-2012 08:54  2.7K  
    

    [TXT]

     CD-R--PQ-25--SPINDLE..> 13-Dec-2012 19:02  2.7K  
    

    [TXT]

     CD-R--PQ-50--SPINDLE..> 14-Dec-2012 08:56  2.7K  
    

    [TXT]

     CD-R--PQ-50--SPINDLE..> 13-Dec-2012 19:03  2.7K  
    

    [TXT]

     CD-R--PQ-100--IMPRIM..> 14-Dec-2012 08:54  2.7K  
    

    [TXT]

     CD-R--PQ-100--IMPRIM..> 13-Dec-2012 19:02  2.7K  
    

    [TXT]

     CD-R--PQ-100--SPINDL..> 14-Dec-2012 08:57  2.7K  
    

    [TXT]

     CD-R--PQ-100--SPINDL..> 13-Dec-2012 19:03  2.7K  
    

    [TXT]

     CD-R-SIMPLE-1004622...> 14-Dec-2012 08:54  2.7K  
    

    [TXT]

     CD-R-SIMPLE.html        13-Dec-2012 19:02  2.7K  
    

    [TXT]

     CD-RW-SIMPLE-1004623..> 14-Dec-2012 08:54  2.7K  
    

    [TXT]

     CD-RW-SIMPLE.html       13-Dec-2012 19:02  2.7K  
    

    [TXT]

     CDR,-SUDOKU-MASTER-1..> 14-Dec-2012 08:48  2.7K  
    

    [TXT]

     CELLULE-PHOTO-ELECTR..> 14-Dec-2012 08:39  2.8K  
    

    [TXT]

     CF-HEADER-STD-2MM-ST..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     CF-TYPE-1-BAS-PROFIL..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     CHAIN,-6X600MM-10580..> 14-Dec-2012 08:44  2.9K  
    

    [TXT]

     CHAIN,-10X800MM-1058..> 14-Dec-2012 08:40  2.9K  
    

    [TXT]

     CHALUMINIUMMEAU-PANN..> 14-Dec-2012 08:44  2.9K  
    

    [TXT]

     CHARGEUR-DE-BATTERIE..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     CHASSIS-HAN-10E-42DD..> 14-Dec-2012 08:57  3.1K  
    

    [TXT]

     CHASSIS-HAN-10E-42DD..> 13-Dec-2012 19:03  3.1K  
    

    [TXT]

     CHOKE.htm               05-Jan-2013 12:30  2.6M  
    

    [TXT]

     CHUCK,-KEYLESS,-3-JA..> 14-Dec-2012 08:46  2.8K  
    

    [TXT]

     CI-ME-LP-1082637.html   14-Dec-2012 08:41  2.7K  
    

    [TXT]

     CI-P1-UEGM-1082601.html 14-Dec-2012 08:41  2.8K  
    

    [TXT]

     CINCH-12-140-BLOC-DE..> 04-Jan-2013 17:56  2.3M  
    

    [TXT]

     CINCH-50GP1-CARD-EDG..> 04-Jan-2013 17:44  2.3M  
    

    [TXT]

     CINCH-581-01-18-920-..> 04-Jan-2013 18:03  2.3M  
    

    [TXT]

     CINCH-5810130045-HEA..> 04-Jan-2013 18:07  2.3M  
    

    [TXT]

     CINCH-DBM25S-CONNECT..> 04-Jan-2013 17:44  2.3M  
    

    [TXT]

     CINCH-JA7784800000L0..> 04-Jan-2013 17:56  2.3M  
    

    [TXT]

     CINCH-SD-LB-CONNECTO..> 04-Jan-2013 17:29  2.3M  
    

    [TXT]

     CIRCUIT-16-BITS-CMS-..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     CIRCUIT-16-BITS-CMS-..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     CIRCUIT-16-BITS-CMS-..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     CIRCUIT-16-BITS-CMS-..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     CIRCUIT-CAPTEUR-DE-T..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     CIRCUIT-CAPTEUR-DE-T..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CIRCUIT-D´ALIMENT..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     CIRCUIT-D´ALIMENT..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     CIRCUIT-D´ALIMENT..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     CIRCUIT-D´ALIMENT..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     CIRCUIT-D´ALIMENT..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     CIRCUIT-D´ALIMENT..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     CIRCUIT-D´INTERFA..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CIRCUIT-D´INTERFA..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CIRCUIT-DDM-3-3-4-DI..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     CIRCUIT-DE-CONTROL-D..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     CIRCUIT-DE-SUPERVISI..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     CIRCUIT-DE-SUPERVISI..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     CIRCUIT-DE-SUPERVISI..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     CIRCUIT-DE-SUPERVISI..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE--74A..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE--74A..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE--74A..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     CIRCUIT-LOGIQUE-SERI..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     CIRCUIT-MODULE-DE-PU..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CIRCUIT-MODULE-DE-PU..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CIRCUIT-MODULE-DE-PU..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CIRCUIT-MODULE-DE-PU..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CIRCUIT-MODULE-DE-PU..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     CIRCUIT-PFC-PWM-1013..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CIRCUIT-SUPERVISEUR-..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     CIRCUIT.htm             05-Jan-2013 12:30  2.6M  
    

    [TXT]

     CLAVIER-LUMINEUX-101..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     CLE-A-MOLETTE-105215..> 14-Dec-2012 08:41  2.9K  
    

    [TXT]

     CLE-A-MOLETTE-105216..> 14-Dec-2012 08:47  2.9K  
    

    [TXT]

     CLE-A-MOLETTE-105217..> 14-Dec-2012 08:46  2.9K  
    

    [TXT]

     CLE-A-MOLETTE-105218..> 14-Dec-2012 08:45  2.8K  
    

    [TXT]

     CLE-A-OEUIL-ISOLEE-8..> 14-Dec-2012 08:40  2.8K  
    

    [TXT]

     CLE-A-OEUIL-ISOLEE-1..> 14-Dec-2012 08:42  2.8K  
    

    [TXT]

     CLE-PLATE-11MM-10801..> 14-Dec-2012 08:36  2.8K  
    

    [TXT]

     CLE-PLATE-JEU-104685..> 14-Dec-2012 08:41  2.9K  
    

    [TXT]

     CLE-PLATE-JEU-METRIQ..> 14-Dec-2012 08:46  2.8K  
    

    [TXT]

     CLE-POUR-ECROU-3.0-1..> 14-Dec-2012 08:41  2.8K  
    

    [TXT]

     CLE-POUR-ECROU-3.2-1..> 14-Dec-2012 08:38  2.8K  
    

    [TXT]

     CLE-POUR-ECROU-5.5-1..> 14-Dec-2012 08:38  2.8K  
    

    [TXT]

     CLES-POLYGONALES-A-C..> 14-Dec-2012 08:38  2.9K  
    

    [TXT]

     CLIP-ACIER-ETD-34-10..> 14-Dec-2012 08:46  2.8K  
    

    [TXT]

     CLIP-ACIER-ETD-39-10..> 14-Dec-2012 08:46  2.8K  
    

    [TXT]

     CLIP-ACIER-ETD-44-10..> 14-Dec-2012 08:44  2.8K  
    

    [TXT]

     CLIP-ACIER-ETD-49-10..> 14-Dec-2012 08:44  2.8K  
    

    [TXT]

     CLIP-CABLE-ADHESIF-T..> 14-Dec-2012 08:45  3.1K  
    

    [TXT]

     CLIP-CABLE-ANTI-TRAC..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     CLIP-CABLE-ANTI-TRAC..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     CLIP-CABLE-ANTI-TRAC..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     CLIP-CABLE-ANTI-TRAC..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     CLIP-CABLE-ANTI-TRAC..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CLIP-CABLE-ANTI-TRAC..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CLIP-CABLE-ANTI-TRAC..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     CLIP-CABLE-IP65.-TAI..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CLIP-CABLE-IP65.-TAI..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     CLIP-CABLE-IP65.-TAI..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CLIP-CABLE-IP65.-TAI..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     CLIP-CABLE-IP65.-TAI..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     CLIP-CABLE-IP65.-TAI..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     CLIP-DE-CABLE-ADHESI..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     CLIP-DE-MAINTIEN-PQ2..> 14-Dec-2012 08:42  2.8K  
    

    [TXT]

     CLIP-DE-POLARISATION..> 14-Dec-2012 08:38  2.9K  
    

    [TXT]

     CLIP-MY-LY-RELAIS-2P..> 14-Dec-2012 08:46  2.8K  
    

    [TXT]

     CLIP-POUR-SUPPORT-RE..> 14-Dec-2012 08:46  2.8K  
    

    [TXT]

     CMS-SONAR-RANGING-CM..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     CMS-SONAR-RANGING-CM..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CNA-12-BITS-CMS-SAR-..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     CODEC-24-BITS-AUDIO-..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     CODEC-24-BITS-AVEC-R..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     CODEUR-6-CYCLES-TR-1..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     COFFRET-A-MAIN-BLANC..> 14-Dec-2012 08:49  3.0K  
    

    [TXT]

     COFFRET-A-MAIN-BLANC..> 14-Dec-2012 08:50  3.0K  
    

    [TXT]

     COFFRET-A-MAIN-NOIR-..> 14-Dec-2012 08:50  3.0K  
    

    [TXT]

     COFFRET-A-TIROIR-BLE..> 14-Dec-2012 08:39  3.0K  
    

    [TXT]

     COFFRET-ABS-35X35X15..> 14-Dec-2012 08:54  3.1K  
    

    [TXT]

     COFFRET-ABS-35X35X15..> 13-Dec-2012 19:02  3.1K  
    

    [TXT]

     COFFRET-ABS-35X35X20..> 14-Dec-2012 08:50  3.1K  
    

    [TXT]

     COFFRET-ABS-40X40X15..> 14-Dec-2012 08:53  3.1K  
    

    [TXT]

     COFFRET-ABS-40X40X15..> 13-Dec-2012 19:02  3.1K  
    

    [TXT]

     COFFRET-ABS-40X40X20..> 14-Dec-2012 08:53  3.1K  
    

    [TXT]

     COFFRET-ABS-40X40X20..> 13-Dec-2012 19:02  3.0K  
    

    [TXT]

     COFFRET-ABS-40X40X20..> 14-Dec-2012 08:48  3.1K  
    

    [TXT]

     COFFRET-ABS-50X50X20..> 14-Dec-2012 08:53  3.1K  
    

    [TXT]

     COFFRET-ABS-50X50X20..> 13-Dec-2012 19:02  3.1K  
    

    [TXT]

     COFFRET-ABS-80X40X15..> 14-Dec-2012 08:50  3.1K  
    

    [TXT]

     COFFRET-ABS-117X79X2..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     COFFRET-ABS-117X79X2..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     COFFRET-ABS-117X79X2..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     COFFRET-ABS-117X79X2..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     COFFRET-ABS-117X79X2..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     COFFRET-ABS-117X79X2..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     COFFRET-ABS-147X89X2..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     COFFRET-ABS-147X89X2..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     COFFRET-ABS-147X89X2..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     COFFRET-ABS-1094700...> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     COFFRET-ABS-1094703...> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     COFFRET-ABS-ETANCHE-..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     COFFRET-ABS-IP65-COU..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     COFFRET-ABS-IP65-COU..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     COFFRET-ABS-IP65-COU..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     COFFRET-ABS-IP65-COU..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     COFFRET-ABS-IP65-COU..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     COFFRET-ABS-IP65-COU..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     COFFRET-ABS-IP65-COU..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     COFFRET-ABS-IP65-COU..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     COFFRET-ABS-IP65-COU..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     COFFRET-ABS-IP65-COU..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     COFFRET-ABS-IP65-COU..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     COFFRET-ABS-IP65-COU..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     COFFRET-ABS-IP65-COU..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     COFFRET-ABS-IP65-COU..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     COFFRET-ABS-IP65-COU..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     COFFRET-ABS-IP65-COU..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     COFFRET-ABS-IP65-COU..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     COFFRET-ABS-IP65-COU..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     COFFRET-ABS-IP65-COU..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     COFFRET-ABS-IP65-COU..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     COFFRET-ABS-IP65-COU..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     COFFRET-ABS-IP65-COU..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     COFFRET-ABS-IP65-COU..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     COFFRET-ABS-IP65-COU..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     COFFRET-ABS-IP65-COU..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     COFFRET-ABS-IP65-COU..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     COFFRET-ACIER-AE-IP6..> 14-Dec-2012 08:43  3.1K  
    

    [TXT]

     COFFRET-ACIER-AE-IP6..> 14-Dec-2012 08:43  3.1K  
    

    [TXT]

     COFFRET-ACIER-AE-IP6..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     COFFRET-ALU-MOULE-12..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     COFFRET-ALU-MOULE-12..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     COFFRET-ALU-MOULE-15..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     COFFRET-ALUMINIUM-ET..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     COFFRET-ALUMINIUM-ET..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     COFFRET-ALUMINIUM-ET..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     COFFRET-ALUMINUM-30X..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     COFFRET-ALUMINUM-30X..> 14-Dec-2012 08:45  3.1K  
    

    [TXT]

     COFFRET-ALUMINUM-30X..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     COFFRET-ALUMINUM-30X..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     COFFRET-ALUMINUM-30X..> 14-Dec-2012 08:48  3.1K  
    

    [TXT]

     COFFRET-ALUMINUM-30X..> 14-Dec-2012 08:48  3.1K  
    

    [TXT]

     COFFRET-ALUMINUM-30X..> 14-Dec-2012 08:49  3.0K  
    

    [TXT]

     COFFRET-ALUMINUM-30X..> 14-Dec-2012 08:50  3.0K  
    

    [TXT]

     COFFRET-ALUMINUM-45X..> 14-Dec-2012 08:45  3.1K  
    

    [TXT]

     COFFRET-ALUMINUM-45X..> 14-Dec-2012 08:48  3.1K  
    

    [TXT]

     COFFRET-ALUMINUM-45X..> 14-Dec-2012 08:50  3.1K  
    

    [TXT]

     COFFRET-ALUMINUM-45X..> 14-Dec-2012 08:48  3.1K  
    

    [TXT]

     COFFRET-ALUMINUM-45X..> 14-Dec-2012 08:45  3.1K  
    

    [TXT]

     COFFRET-ALUMINUM-45X..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     COFFRET-ALUMINUM-45X..> 14-Dec-2012 08:50  3.1K  
    

    [TXT]

     COFFRET-ALUMINUM-45X..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     COFFRET-ALUMINUM-45X..> 14-Dec-2012 08:48  3.1K  
    

    [TXT]

     COFFRET-ALUMINUM-45X..> 14-Dec-2012 08:50  3.1K  
    

    [TXT]

     COFFRET-ALUMINUM-54X..> 14-Dec-2012 08:45  3.1K  
    

    [TXT]

     COFFRET-ALUMINUM-54X..> 14-Dec-2012 08:50  3.1K  
    

    [TXT]

     COFFRET-ALUMINUM-54X..> 14-Dec-2012 08:48  3.1K  
    

    [TXT]

     COFFRET-ALUMINUM-54X..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     COFFRET-ALUMINUM-54X..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     COFFRET-ALUMINUM-54X..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     COFFRET-ALUMINUM-64X..> 14-Dec-2012 08:50  3.1K  
    

    [TXT]

     COFFRET-DOUILLES-1-4..> 14-Dec-2012 08:37  2.9K  
    

    [TXT]

     COFFRET-GRP-IP65-GRI..> 14-Dec-2012 08:50  3.1K  
    

    [TXT]

     COFFRET-GRP-IP65-GRI..> 14-Dec-2012 08:50  3.1K  
    

    [TXT]

     COFFRET-GRP-IP65-GRI..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     COFFRET-GRP-IP65-GRI..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     COFFRET-GRP-IP65-GRI..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     COFFRET-GRP-IP65-GRI..> 14-Dec-2012 08:50  3.1K  
    

    [TXT]

     COFFRET-GRP-IP65-GRI..> 14-Dec-2012 08:50  3.1K  
    

    [TXT]

     COFFRET-GRP-IP65-GRI..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     COFFRET-GRP-IP65-GRI..> 14-Dec-2012 08:50  3.1K  
    

    [TXT]

     COFFRET-GRP-IP65-GRI..> 14-Dec-2012 08:48  3.1K  
    

    [TXT]

     COFFRET-GRP-IP65-GRI..> 14-Dec-2012 08:50  3.1K  
    

    [TXT]

     COFFRET-GRP-IP65-GRI..> 14-Dec-2012 08:45  3.1K  
    

    [TXT]

     COFFRET-GRP-IP65-GRI..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     COFFRET-GRP-IP65-GRI..> 14-Dec-2012 08:45  3.1K  
    

    [TXT]

     COFFRET-H=150-L=300-..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     COFFRET-H=200-L=300-..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     COFFRET-H=200-L=300-..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     COFFRET-H=200-L=400-..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     COFFRET-H=200-L=400-..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     COFFRET-H=300-L=400-..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     COFFRET-IP67-EX-GRIS..> 14-Dec-2012 08:57  3.1K  
    

    [TXT]

     COFFRET-IP67-EX-GRIS..> 13-Dec-2012 19:03  3.1K  
    

    [TXT]

     COFFRET-IP67-EX-GRIS..> 14-Dec-2012 08:57  3.1K  
    

    [TXT]

     COFFRET-IP67-EX-GRIS..> 13-Dec-2012 19:03  3.1K  
    

    [TXT]

     COFFRET-IP67-EX-GRIS..> 14-Dec-2012 08:57  3.1K  
    

    [TXT]

     COFFRET-IP67-EX-GRIS..> 13-Dec-2012 19:03  3.1K  
    

    [TXT]

     COFFRET-IP67-EX-GRIS..> 14-Dec-2012 08:57  3.1K  
    

    [TXT]

     COFFRET-IP67-EX-GRIS..> 14-Dec-2012 08:57  3.1K  
    

    [TXT]

     COFFRET-IP67-EX-GRIS..> 14-Dec-2012 08:56  3.1K  
    

    [TXT]

     COFFRET-IP67-EX-GRIS..> 14-Dec-2012 08:56  3.1K  
    

    [TXT]

     COFFRET-IP67-EX-GRIS..> 14-Dec-2012 08:56  3.1K  
    

    [TXT]

     COFFRET-IP67-EX-GRIS..> 14-Dec-2012 08:55  3.1K  
    

    [TXT]

     COFFRET-IP67-EX-GRIS..> 13-Dec-2012 19:02  3.1K  
    

    [TXT]

     COFFRET-IP67-EX-TRAN..> 14-Dec-2012 08:57  3.1K  
    

    [TXT]

     COFFRET-IP67-EX-TRAN..> 13-Dec-2012 19:03  3.1K  
    

    [TXT]

     COFFRET-IP67-EX-TRAN..> 14-Dec-2012 08:57  3.1K  
    

    [TXT]

     COFFRET-IP67-EX-TRAN..> 13-Dec-2012 19:03  3.1K  
    

    [TXT]

     COFFRET-IP67-EX-TRAN..> 14-Dec-2012 08:57  3.1K  
    

    [TXT]

     COFFRET-IP67-EX-TRAN..> 13-Dec-2012 19:03  3.1K  
    

    [TXT]

     COFFRET-IP67-EX-TRAN..> 14-Dec-2012 08:57  3.1K  
    

    [TXT]

     COFFRET-IP67-EX-TRAN..> 14-Dec-2012 08:57  3.1K  
    

    [TXT]

     COFFRET-IP67-EX-TRAN..> 14-Dec-2012 08:56  3.1K  
    

    [TXT]

     COFFRET-IP67-EX-TRAN..> 14-Dec-2012 08:56  3.1K  
    

    [TXT]

     COFFRET-IP67-EX-TRAN..> 14-Dec-2012 08:56  3.1K  
    

    [TXT]

     COFFRET-IP67-EX-TRAN..> 13-Dec-2012 19:02  3.1K  
    

    [TXT]

     COFFRET-IP67-GRIS-LI..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     COFFRET-IP67-GRIS-LI..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     COFFRET-IP67-GRIS-LI..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     COFFRET-IP67-GRIS-LI..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     COFFRET-IP67-GRIS-LI..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     COFFRET-IP67-GRIS-LI..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     COFFRET-IP67-TRANSP...> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     COFFRET-IP67-TRANSP...> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     COFFRET-IP67-TRANSP...> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     COFFRET-IP67-TRANSP...> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     COFFRET-MOULE-IP65-1..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     COFFRET-MOULE-IP65-1..> 14-Dec-2012 08:48  3.1K  
    

    [TXT]

     COFFRET-MOULE-IP65-1..> 14-Dec-2012 08:48  3.1K  
    

    [TXT]

     COFFRET-MOULE-IP65-1..> 14-Dec-2012 08:48  3.1K  
    

    [TXT]

     COFFRET-MOULE-IP65-1..> 14-Dec-2012 08:50  3.1K  
    

    [TXT]

     COFFRET-MOULE-IP65-1..> 14-Dec-2012 08:50  3.1K  
    

    [TXT]

     COFFRET-MOULE-IP65-1..> 14-Dec-2012 08:48  3.1K  
    

    [TXT]

     COFFRET-MOULE-IP65-1..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     COFFRET-MOULE-IP65-1..> 14-Dec-2012 08:48  3.1K  
    

    [TXT]

     COFFRET-MOULE-IP65-1..> 14-Dec-2012 08:50  3.1K  
    

    [TXT]

     COFFRET-MOULE-IP65-1..> 14-Dec-2012 08:48  3.1K  
    

    [TXT]

     COFFRET-MOULE-IP65-1..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     COFFRET-MOULE-IP65-G..> 14-Dec-2012 08:48  3.1K  
    

    [TXT]

     COFFRET-MOULE-IP65-G..> 14-Dec-2012 08:45  3.1K  
    

    [TXT]

     COFFRET-MOULE-IP65-G..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     COFFRET-MOULE-IP65-G..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     COFFRET-MOULE-IP65-G..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     COFFRET-MOULE-IP65-G..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     COFFRET-MOULE-IP65-G..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     COFFRET-MOULE-IP65-G..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     COFFRET-MOULE-IP65-G..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     COFFRET-MOULE-IP65-G..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     COFFRET-MOULE-IP65-G..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     COFFRET-MOULE-IP65-G..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     COFFRET-MOULE-IP65-G..> 14-Dec-2012 08:48  3.1K  
    

    [TXT]

     COFFRET-MOULE-IP65-G..> 14-Dec-2012 08:45  3.1K  
    

    [TXT]

     COFFRET-MOULE-IP65-G..> 14-Dec-2012 08:48  3.1K  
    

    [TXT]

     COFFRET-MOULE-IP65-G..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     COFFRET-MOULE-IP65-G..> 14-Dec-2012 08:48  3.1K  
    

    [TXT]

     COFFRET-NOIR-AVEC-FE..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     COFFRET-POLYCARBONAT..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     COFFRET-POLYCARBONAT..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     COFFRET-POLYCARBONAT..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     COFFRET-POLYPROPYLEN..> 14-Dec-2012 08:44  3.0K  
    

    [TXT]

     COFFRET-POLYPROPYLEN..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     COFFRET-POLYPROPYLEN..> 14-Dec-2012 08:40  3.0K  
    

    [TXT]

     COL-LUMINEUSE-METAL-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     COLLE-D´ETANCHEIT..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     COLLE-D´ETANCHEIT..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     COLLE-D´ETANCHEIT..> 14-Dec-2012 08:45  3.1K  
    

    [TXT]

     COLLE-D´ETANCHEIT..> 14-Dec-2012 08:45  3.1K  
    

    [TXT]

     COLLET-SET,-STEEL,-1..> 14-Dec-2012 08:43  2.8K  
    

    [TXT]

     COLLIER-D´INSTAL-..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     COLLIER-D´INSTALL..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     COLLIER-D´INSTALL..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     COLLIER-D´INSTALL..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     COLLIER-D´INSTALL..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     COLLIER-D´INSTALL..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     COLLIER-D´INSTALL..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     COLLIER-D´INSTALL..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     COLLIER-D´INSTALL..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:49  3.0K  
    

    [TXT]

     COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:49  3.0K  
    

    [TXT]

     COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:49  3.0K  
    

    [TXT]

     COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:48  3.0K  
    

    [TXT]

     COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:45  3.0K  
    

    [TXT]

     COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:49  3.0K  
    

    [TXT]

     COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:48  3.0K  
    

    [TXT]

     COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:49  3.0K  
    

    [TXT]

     COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:45  3.0K  
    

    [TXT]

     COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:45  3.0K  
    

    [TXT]

     COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:48  3.0K  
    

    [TXT]

     COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:45  3.0K  
    

    [TXT]

     COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:48  3.0K  
    

    [TXT]

     COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:49  3.0K  
    

    [TXT]

     COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:45  3.0K  
    

    [TXT]

     COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:50  3.0K  
    

    [TXT]

     COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:48  3.0K  
    

    [TXT]

     COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:50  3.0K  
    

    [TXT]

     COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:50  3.0K  
    

    [TXT]

     COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:50  3.0K  
    

    [TXT]

     COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:49  3.0K  
    

    [TXT]

     COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:45  3.0K  
    

    [TXT]

     COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:49  3.0K  
    

    [TXT]

     COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:50  3.0K  
    

    [TXT]

     COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:49  3.0K  
    

    [TXT]

     COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:49  3.0K  
    

    [TXT]

     COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:49  3.0K  
    

    [TXT]

     COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:48  3.0K  
    

    [TXT]

     COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:45  3.0K  
    

    [TXT]

     COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:49  3.0K  
    

    [TXT]

     COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:49  3.0K  
    

    [TXT]

     COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:48  3.0K  
    

    [TXT]

     COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:48  3.0K  
    

    [TXT]

     COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:50  3.0K  
    

    [TXT]

     COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:45  3.0K  
    

    [TXT]

     COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:49  3.0K  
    

    [TXT]

     COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:45  3.0K  
    

    [TXT]

     COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:50  3.0K  
    

    [TXT]

     COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:48  3.0K  
    

    [TXT]

     COLLIER-DE-DIAMETRE-..> 14-Dec-2012 08:48  3.0K  
    

    [TXT]

     COLLIER-DE-SERRAGE-1..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     COLLIER-DE-SERRAGE-1..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     COLLIER-DE-SERRAGE-A..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     COLLIER-DE-SERRAGE-A..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     COLLIER-DE-SERRAGE-A..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     COLLIER-DE-SERRAGE-A..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     COLLIER-DE-SERRAGE-A..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     COLLIER-DE-SERRAGE-A..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     COLLIER-DE-SERRAGE-A..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     COLLIER-DE-SERRAGE-A..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     COLLIER-DE-SERRAGE-A..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     COLLIER-DE-SERRAGE-N..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     COLLIER-DE-SERRAGE-N..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     COLLIER-DE-SERRAGE-N..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     COLLIER-DE-SERRAGE-P..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     COLLIER-DE-SERRAGE-P..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     COLLIER-DE-SERRAGE-P..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     COLLIER-DE-SERRAGE-P..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     COLLIER-DE-SERRAGE-P..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     COLLIER-DE-SERRAGE-P..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     COMMUT-ANALOG-1-OHM-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     COMMUTATEUR-3PDT-108..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     COMMUTATEUR-3PDT-108..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     COMMUTATEUR-4PDT-108..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     COMMUTATEUR-4PDT-108..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     COMMUTATEUR-A-CLE-10..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     COMMUTATEUR-A-CLE-10..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     COMMUTATEUR-A-CLE-10..> 14-Dec-2012 08:39  3.1K  
    

    [TXT]

     COMMUTATEUR-A-GLISSI..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     COMMUTATEUR-A-GLISSI..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     COMMUTATEUR-A-GLISSI..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     COMMUTATEUR-A-GLISSI..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     COMMUTATEUR-A-GLISSI..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     COMMUTATEUR-A-PIED-D..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     COMMUTATEUR-A-PIED-D..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     COMMUTATEUR-A-PIED-D..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     COMMUTATEUR-ANALOGIQ..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     COMMUTATEUR-ANALOGIQ..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     COMMUTATEUR-ANALOGIQ..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     COMMUTATEUR-ANALOGIQ..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     COMMUTATEUR-ANALOGIQ..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     COMMUTATEUR-ANALOGIQ..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     COMMUTATEUR-ARRET-DÃ..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     COMMUTATEUR-BACK-UP-..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     COMMUTATEUR-BCD-1082..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     COMMUTATEUR-BCD-1082..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     COMMUTATEUR-BCD-1082..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     COMMUTATEUR-BCD-1082..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     COMMUTATEUR-CMS-BCD-..> 14-Dec-2012 08:39  3.2K  
    

    [   ]

     COMMUTATEUR-CMS-MUX-..> 14-Dec-2012 08:52    0   
    

    [TXT]

     COMMUTATEUR-CMS-MUX-..> 14-Dec-2012 08:43  3.2K  
    

    [   ]

     COMMUTATEUR-CMS-MUX-..> 14-Dec-2012 08:52    0   
    

    [TXT]

     COMMUTATEUR-CMS-MUX-..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     COMMUTATEUR-CMS-SPDT..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     COMMUTATEUR-CMS-SPDT..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     COMMUTATEUR-CMS-SPST..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     COMMUTATEUR-CMS-SPST..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     COMMUTATEUR-CMS-SPST..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     COMMUTATEUR-CMS-SPST..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     COMMUTATEUR-CMS-SPST..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     COMMUTATEUR-DARLINGT..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     COMMUTATEUR-DECIMAL-..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     COMMUTATEUR-DIL-BCD-..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     COMMUTATEUR-DIL-HEX-..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     COMMUTATEUR-DOUBLE-S..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     COMMUTATEUR-DOUBLE-S..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     COMMUTATEUR-DPDT-12V..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     COMMUTATEUR-DPDT-24V..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     COMMUTATEUR-DPDT-108..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     COMMUTATEUR-DPDT-108..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     COMMUTATEUR-DPDT-108..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     COMMUTATEUR-DPDT-108..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     COMMUTATEUR-DPDT-108..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     COMMUTATEUR-DPDT-108..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     COMMUTATEUR-DPDT-108..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     COMMUTATEUR-DPDT-108..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     COMMUTATEUR-DPDT-108..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     COMMUTATEUR-DPDT-108..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     COMMUTATEUR-DPDT-108..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     COMMUTATEUR-DPDT-108..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     COMMUTATEUR-DPDT-108..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     COMMUTATEUR-DPDT-BIA..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     COMMUTATEUR-DPDT-BIA..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     COMMUTATEUR-DPDT-CTR..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     COMMUTATEUR-DPDT-CTR..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     COMMUTATEUR-DPDT-NOI..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     COMMUTATEUR-DPDT-ROU..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     COMMUTATEUR-DPST-108..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     COMMUTATEUR-DPST-108..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     COMMUTATEUR-DPST-ILL..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     COMMUTATEUR-DPST-NOI..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     COMMUTATEUR-DPST-NOI..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     COMMUTATEUR-FLOTTANT..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     COMMUTATEUR-FLOTTANT..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     COMMUTATEUR-FLOTTANT..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     COMMUTATEUR-FLOTTANT..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     COMMUTATEUR-FLOTTANT..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     COMMUTATEUR-HEX-1082..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     COMMUTATEUR-HEX-1082..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     COMMUTATEUR-HEX-1082..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     COMMUTATEUR-LAN-CMS-..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     COMMUTATEUR-LAN-CMS-..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     COMMUTATEUR-POUSSOIR..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     COMMUTATEUR-POUSSOIR..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     COMMUTATEUR-POUSSOIR..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     COMMUTATEUR-POUSSOIR..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     COMMUTATEUR-POUSSOIR..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     COMMUTATEUR-POUSSOIR..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     COMMUTATEUR-POUSSOIR..> 14-Dec-2012 08:41  3.1K  
    

    [TXT]

     COMMUTATEUR-POUSSOIR..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     COMMUTATEUR-POUSSOIR..> 14-Dec-2012 08:41  3.0K  
    

    [TXT]

     COMMUTATEUR-POUSSOIR..> 14-Dec-2012 08:39  3.0K  
    

    [TXT]

     COMMUTATEUR-POUSSOIR..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     COMMUTATEUR-POUSSOIR..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     COMMUTATEUR-POUSSOIR..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     COMMUTATEUR-QUAD-SPS..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     COMMUTATEUR-REED-5MM..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     COMMUTATEUR-REED-5MM..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     COMMUTATEUR-REED-20...> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     COMMUTATEUR-REED-SPS..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     COMMUTATEUR-ROTATIF-..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     COMMUTATEUR-ROTATIF-..> 14-Dec-2012 08:41  3.1K  
    

    [TXT]

     COMMUTATEUR-SPDT-103..> 14-Dec-2012 08:46  3.1K  
    

    [TXT]

     COMMUTATEUR-SPDT-107..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     COMMUTATEUR-SPDT-107..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     COMMUTATEUR-SPDT-108..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     COMMUTATEUR-SPDT-108..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     COMMUTATEUR-SPDT-108..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     COMMUTATEUR-SPDT-108..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     COMMUTATEUR-SPDT-108..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     COMMUTATEUR-SPDT-108..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     COMMUTATEUR-SPDT-108..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     COMMUTATEUR-SPDT-108..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     COMMUTATEUR-SPDT-108..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     COMMUTATEUR-SPDT-108..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     COMMUTATEUR-SPDT-108..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     COMMUTATEUR-SPDT-108..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     COMMUTATEUR-SPDT-BIA..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     COMMUTATEUR-SPDT-BIA..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     COMMUTATEUR-SPDT-CAR..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     COMMUTATEUR-SPDT-CTR..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     COMMUTATEUR-SPNC-108..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     COMMUTATEUR-SPNO-108..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     COMMUTATEUR-SPNO-RON..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     COMMUTATEUR-SPNO-RON..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     COMMUTATEUR-SPNO-RON..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     COMMUTATEUR-SPNO-SPN..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     COMMUTATEUR-SPNO-SPN..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     COMMUTATEUR-SPNO-SPN..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     COMMUTATEUR-SPNO-SPN..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     COMMUTATEUR-SPNO-SPN..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     COMMUTATEUR-SPST-107..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     COMMUTATEUR-SPST-108..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     COMMUTATEUR-SPST-108..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     COMMUTATEUR-SPST-108..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     COMMUTATEUR-SPST-108..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     COMMUTATEUR-SPST-108..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     COMMUTATEUR-SPST-108..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     COMMUTATEUR-SPST-QUA..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     COMMUTATEUR-SPST-QUA..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     COMMUTATEUR-SPST-QUA..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     COMMUTATEUR-SPST-QUA..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     COMMUTATEUR-SPST-QUA..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     COMMUTATEUR-SPST-QUA..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     COMMUTATEUR-SPST-QUA..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     COMMUTATEUR-SPST-QUA..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     COMMUTATEUR-SPST-QUA..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     COMMUTATEUR-SPST-QUA..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     COMMUTATEUR-SPST-QUA..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     COMMUTATEUR-SPST-QUA..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     COMMUTATEUR-SPST-QUA..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     COMMUTATEUR-SPST-QUA..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     COMMUTATEUR-VIDEO-SP..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     COMMUTATEUR-VIDEO-SP..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     COMMUTATUR-SPST-CMS-..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     COMMUTATUR-SPST-CMS-..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     COMMUTATUR-SPST-CMS-..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     COMMUTATUR-SPST-CMS-..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     COMMUTEUR-ECLAIRAGE-..> 14-Dec-2012 08:39  3.0K  
    

    [TXT]

     COMPARATEUR-CMS-DOUB..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     COMPARATEUR-CMS-DOUB..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     COMPARATEUR-CMS-QUAD..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     COMPARATEUR-DOUBLE-1..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     COMPTEUR-12VCC-10732..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     COMPTEUR-PRESET-24VC..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     COMPTEUR-PRESET-220V..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     COMPTEUR-RESET-24VDC..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     COMPTEUR-RESET-110VA..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     COMPTEUR-RESET-220VA..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     CONDENSATEUR-0.01UF-..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     CONDENSATEUR-0.01UF-..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     CONDENSATEUR-0.01UF-..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CONDENSATEUR-0.01UF-..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     CONDENSATEUR-0.01UF-..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     CONDENSATEUR-0.01UF-..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     CONDENSATEUR-0.01UF-..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CONDENSATEUR-0.01UF-..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     CONDENSATEUR-0.01UF-..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CONDENSATEUR-0.015UF..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     CONDENSATEUR-0.015UF..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     CONDENSATEUR-0.015UF..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     CONDENSATEUR-0.022UF..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     CONDENSATEUR-0.022UF..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     CONDENSATEUR-0.022UF..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CONDENSATEUR-0.022UF..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     CONDENSATEUR-0.022UF..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     CONDENSATEUR-0.022UF..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     CONDENSATEUR-0.022UF..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     CONDENSATEUR-0.022UF..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CONDENSATEUR-0.033UF..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     CONDENSATEUR-0.033UF..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     CONDENSATEUR-0.033UF..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     CONDENSATEUR-0.047UF..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     CONDENSATEUR-0.047UF..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     CONDENSATEUR-0.047UF..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     CONDENSATEUR-0.047UF..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     CONDENSATEUR-0.047UF..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CONDENSATEUR-0.047UF..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     CONDENSATEUR-0.047UF..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CONDENSATEUR-0.068UF..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     CONDENSATEUR-0.068UF..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     CONDENSATEUR-0.068UF..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CONDENSATEUR-0.1UF-6..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     CONDENSATEUR-0.1UF-6..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CONDENSATEUR-0.1UF-1..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CONDENSATEUR-0.1UF-1..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     CONDENSATEUR-0.1UF-2..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     CONDENSATEUR-0.1UF-2..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CONDENSATEUR-0.22UF-..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     CONDENSATEUR-0.22UF-..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CONDENSATEUR-0.22UF-..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     CONDENSATEUR-0.33UF-..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CONDENSATEUR-0.33UF-..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     CONDENSATEUR-0.33UF-..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     CONDENSATEUR-0.33UF-..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     CONDENSATEUR-0.47UF-..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     CONDENSATEUR-0.47UF-..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     CONDENSATEUR-0.47UF-..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CONDENSATEUR-0.47UF-..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     CONDENSATEUR-0.47UF-..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CONDENSATEUR-0.47UF-..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     CONDENSATEUR-0.47UF-..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CONDENSATEUR-0.68UF-..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CONDENSATEUR-0.68UF-..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     CONDENSATEUR-1.0NF-1..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     CONDENSATEUR-1.0NF-1..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     CONDENSATEUR-1.5NF-1..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     CONDENSATEUR-1.5NF-1..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     CONDENSATEUR-1.5NF-1..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CONDENSATEUR-1UF-63V..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CONDENSATEUR-1UF-63V..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     CONDENSATEUR-2.2NF-1..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     CONDENSATEUR-2.2NF-1..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     CONDENSATEUR-2.2NF-1..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CONDENSATEUR-2.2UF-6..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CONDENSATEUR-2.2UF-6..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     CONDENSATEUR-2.2UF-4..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     CONDENSATEUR-2.2UF-4..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CONDENSATEUR-3.3NF-6..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     CONDENSATEUR-3.3NF-6..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CONDENSATEUR-3.3NF-1..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     CONDENSATEUR-3.3NF-1..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CONDENSATEUR-3.3UF-6..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CONDENSATEUR-3.3UF-6..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     CONDENSATEUR-4.7NF-1..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     CONDENSATEUR-4.7NF-1..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CONDENSATEUR-4.7UF-6..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CONDENSATEUR-4.7UF-6..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     CONDENSATEUR-6.8NF-1..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     CONDENSATEUR-6.8NF-1..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CONDENSATEUR-6.8UF-6..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     CONDENSATEUR-6.8UF-6..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     CONDENSATEUR-10NF-63..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     CONDENSATEUR-10NF-63..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CONDENSATEUR-10NF-10..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     CONDENSATEUR-10NF-10..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     CONDENSATEUR-150PF-1..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     CONDENSATEUR-150PF-1..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CONDENSATEUR-220PF-1..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     CONDENSATEUR-220PF-1..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     CONDENSATEUR-330PF-1..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     CONDENSATEUR-330PF-1..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CONDENSATEUR-470PF-1..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     CONDENSATEUR-470PF-1..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CONDENSATEUR-680PF-1..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     CONDENSATEUR-680PF-1..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     CONDENSATEUR-2220-0...> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     CONDENSATEUR-2220-0...> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     CONDENSATEUR-2220-0...> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     CONDENSATEUR-2220-0...> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CONDENSATEUR-2220-0...> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     CONDENSATEUR-2220-0...> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CONDENSATEUR-2220-0...> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     CONDENSATEUR-2220-0...> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     CONDENSATEUR-2220-0...> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     CONDENSATEUR-2220-0...> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CONDENSATEUR-2220-0...> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     CONDENSATEUR-2220-0...> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     CONDENSATEUR-2824-0...> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     CONDENSATEUR-2824-0...> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CONDENSATEUR-2824-0...> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     CONDENSATEUR-2824-0...> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CONDENSATEUR-2824-0...> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     CONDENSATEUR-2824-0...> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CONDENSATEUR-2824-0...> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     CONDENSATEUR-2824-0...> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CONDENSATEUR-2824-0...> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     CONDENSATEUR-2824-0...> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CONDENSATEUR-2824-0...> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     CONDENSATEUR-2824-0...> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     CONDENSATEUR-2824-0...> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     CONDENSATEUR-2824-0...> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     CONDENSATEUR-107422...> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     CONDENSATEUR-107423...> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     CONDENSATEUR-CLASS-X..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     CONDENSATEUR-CLASS-X..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CONDENSATEUR-CLASS-X..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CONDENSATEUR-CLASS-X..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     CONDENSATEUR-CLASS-Y..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     CONDENSATEUR-CLASS-Y..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CONDENSATEUR-CLASS-Y..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     CONDENSATEUR-CLASS-Y..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CONDENSATEUR-CLASS-Y..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     CONDENSATEUR-CLASS-Y..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CONNCETUR-JACK-SMA-1..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CONNCETUR-JACK-SMA-1..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     CONNCETUR-JACK-SMA-1..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     CONNCETUR-JACK-SMA-1..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CONNCTEUR-JACK-SMA-1..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONNECT.-FFC-FPC-NON..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     CONNECT.-FFC-FPC-NON..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CONNECT.-FFC-FPC-NON..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     CONNECT.-FFC-FPC-NON..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CONNECT.-FFC-FPC-NON..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONNECT.-FFC-FPC-NON..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     CONNECT.-FFC-FPC-NON..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     CONNECT.-FFC-FPC-NON..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     CONNECT.-FFC-FPC-NON..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     CONNECT.-FFC-FPC-NON..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CONNECT.-FFC-FPC-NON..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONNECT.-FFC-FPC-NON..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONNECTEUR-´D´..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     CONNECTEUR-´D´..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     CONNECTEUR-´D´..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     CONNECTEUR-´D´..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     CONNECTEUR-´D´..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     CONNECTEUR-´D´..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     CONNECTEUR-´D´..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     CONNECTEUR-3-V-COUD...> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     CONNECTEUR-3-VOIES-D..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONNECTEUR-4-VOIES-C..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONNECTEUR-4-VOIES-D..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     CONNECTEUR-6-V-COUD...> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     CONNECTEUR-6-V-COUD...> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     CONNECTEUR-6-VOIES-D..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     CONNECTEUR-6-VOIES-D..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     CONNECTEUR-8-V-COUD...> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     CONNECTEUR-8-VOIES-C..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     CONNECTEUR-8-VOIES-D..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     CONNECTEUR-10-V-COUD..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     CONNECTEUR-10-VOIES-..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     CONNECTEUR-10-VOIES-..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     CONNECTEUR-12-VOIES-..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     CONNECTEUR-12-VOIES-..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     CONNECTEUR-16-VOIES-..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     CONNECTEUR-40-VOIES-..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     CONNECTEUR-60-VOIES-..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     CONNECTEUR-60-VOIES-..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     CONNECTEUR-80-VOIES-..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     CONNECTEUR-1096841.html 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     CONNECTEUR-1096843.html 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     CONNECTEUR-1096846.html 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     CONNECTEUR-1098485.html 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     CONNECTEUR-A-ECROU-1..> 14-Dec-2012 08:44  3.0K  
    

    [TXT]

     CONNECTEUR-AVEC-COLL..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     CONNECTEUR-AVEC-COLL..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONNECTEUR-AVEC-COLL..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     CONNECTEUR-BUS-225-1..> 14-Dec-2012 08:41  2.8K  
    

    [TXT]

     CONNECTEUR-CARTE-A-P..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     CONNECTEUR-CENTRONIC..> 14-Dec-2012 08:37  2.8K  
    

    [TXT]

     CONNECTEUR-CMS-FFC-F..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CONNECTEUR-CMS-FFC-F..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     CONNECTEUR-CMS-FFC-F..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     CONNECTEUR-CMS-FFC-F..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     CONNECTEUR-CMS-FFC-F..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     CONNECTEUR-CMS-FFC-F..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     CONNECTEUR-CMS-FFC-F..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     CONNECTEUR-CMS-FFC-F..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     CONNECTEUR-CMS-FFC-F..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     CONNECTEUR-CMS-FFC-F..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     CONNECTEUR-CMS-FFC-F..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     CONNECTEUR-CMS-FFC-F..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     CONNECTEUR-CMS-FFC-F..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     CONNECTEUR-CMS-FFC-F..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     CONNECTEUR-CMS-FFC-F..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     CONNECTEUR-CMS-FFC-F..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     CONNECTEUR-CMS-FFC-F..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     CONNECTEUR-CMS-FFC-F..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     CONNECTEUR-CMS-FFC-F..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CONNECTEUR-CMS-FFC-F..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     CONNECTEUR-CMS-FFC-F..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     CONNECTEUR-CMS-FFC-F..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     CONNECTEUR-CMS-FFC-F..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     CONNECTEUR-CMS-FFC-F..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CONNECTEUR-D-FEM.-CO..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     CONNECTEUR-D-FEM.-CO..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     CONNECTEUR-DIL-16-VO..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     CONNECTEUR-DIP14-103..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     CONNECTEUR-DROIT-SER..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     CONNECTEUR-DUBOX-VER..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     CONNECTEUR-DUBOX-VER..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     CONNECTEUR-DUBOX-VER..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     CONNECTEUR-DUBOX-VER..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     CONNECTEUR-DUBOX-VER..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     CONNECTEUR-FEM-DIN41..> 14-Dec-2012 08:37  3.1K  
    

    [TXT]

     CONNECTEUR-FEM-DIN41..> 14-Dec-2012 08:39  3.1K  
    

    [TXT]

     CONNECTEUR-FEMELLE-2..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     CONNECTEUR-FEMELLE-2..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     CONNECTEUR-FEMELLE-4..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     CONNECTEUR-FEMELLE-5..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     CONNECTEUR-FEMELLE-C..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     CONNECTEUR-FIBRE-ST-..> 14-Dec-2012 08:40  3.0K  
    

    [TXT]

     CONNECTEUR-FOND-DE-P..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     CONNECTEUR-JACK-SMA-..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     CONNECTEUR-KIT-PSU-1..> 14-Dec-2012 08:57  2.8K  
    

    [TXT]

     CONNECTEUR-KIT-PSU.html 13-Dec-2012 19:03  2.8K  
    

    [TXT]

     CONNECTEUR-MALE-CMS-..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     CONNECTEUR-MALE-SCSI..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     CONNECTEUR-MINI-DIP-..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     CONNECTEUR-MSTBT-25-..> 14-Dec-2012 08:41  2.8K  
    

    [TXT]

     CONNECTEUR-PRESSFIT-..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     CONNECTEUR-SCSI2-FEM..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     CONNECTEUR-SCSI2-FEM..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     CONNECTEUR-SERIE-MMC..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     CONNECTEUR-SERIE-MMC..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     CONNECTEUR-SUB-D-BOI..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     CONNECTEUR-SUB-D-FEM..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     CONNECTEUR-SUB-D-FEM..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     CONNECTEUR-USB-COUDE..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     CONNECTEUR-USB-COUDE..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     CONNECTEUR-USB-VERTI..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     CONNECTEUR-Z-PACK-10..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     CONNECTION-BOX,-4GAN..> 14-Dec-2012 08:37  2.8K  
    

    [TXT]

     CONTACT-A--SERTIR-18..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONTACT-A--SERTIR-26..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     CONTACT-A--SERTIR-26..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CONTACT-A-SERTIR-18-..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     CONTACT-A-SERTIR-22-..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     CONTACT-A-SERTIR-22-..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     CONTACT-A-SERTIR-24-..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     CONTACT-A-SERTIR-MAL..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     CONTACT-A-SERTIR-MAL..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CONTACT-A-SERTIR-PQ1..> 14-Dec-2012 08:50  2.8K  
    

    [TXT]

     CONTACT-COAX-FEMELLE..> 14-Dec-2012 08:40  2.9K  
    

    [TXT]

     CONTACT-COAX-MALE-10..> 14-Dec-2012 08:44  2.9K  
    

    [TXT]

     CONTACT-FEMELLE-18-2..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CONTACT-FEMELLE-22-2..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     CONTACT-FEMELLE-22-2..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CONTACT-FEMELLE-24-2..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     CONTACT-FEMELLE-A-SE..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CONTACT-FEMELLE-A-SE..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CONTACT-FEMELLE-A-SE..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CONTACT-FEMELLE-A-SE..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     CONTACT-FEMELLE-A-SE..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CONTACT-FEMELLE-A-SE..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     CONTACT-FEMELLE-A-SE..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     CONTACT-FEMELLE-ETAM..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     CONTACT-FEMELLE-PQ10..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     CONTACT-FEMELLE-PQ10..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     CONTACT-MAGNETIQUE-1..> 14-Dec-2012 08:49  3.0K  
    

    [TXT]

     CONTACT-MAGNETIQUE-1..> 14-Dec-2012 08:48  3.0K  
    

    [TXT]

     CONTACT-MAGNETIQUE-1..> 14-Dec-2012 08:48  3.0K  
    

    [TXT]

     CONTACT-MALE-18-16AW..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     CONTACT-MALE-22-20-A..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CONTACT-MALE-22-20-A..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     CONTACT-MALE-A-SERTI..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CONTACT-MALE-A-SERTI..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONTACT-MALE-A-SERTI..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CONTACT-MALE-A-SERTI..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     CONTACT-MALE-PQ100-1..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     CONTACT-MALE-PQ100-1..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     CONTACT-MALE-PQ100-1..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     CONTACT-MICROFIT.-20..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONTACT-MINI-FIT.-PQ..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     CONTACT-MINI-FIT.-PQ..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CONTACT-PQ100-109694..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     CONTACT-SUB-D-FEMELL..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     CONTENEUR-UNIVERSEL-..> 14-Dec-2012 08:44  2.8K  
    

    [TXT]

     CONTRACT-A-SERTIR-36..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     CONTRACT-A-SERTIR-ET..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     CONTRACT-A-SERTIR-OR..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     CONTROLEUR-1077127.html 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     CONTROLEUR-DE-BALLAS..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     CONTROLEUR-DE-CHARGE..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     CONTROLEUR-DE-TEMPER..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CONTROLEUR-ETHERNET-..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     CONTROLEUR-HOT-SWAP-..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     CONTROLEUR-HOT-SWAP-..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CONTROLEUR-IRDA-1084..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     CONTROLEUR-POUR-MOTE..> 14-Dec-2012 08:53  3.1K  
    

    [TXT]

     CONTROLEUR-POUR-MOTE..> 13-Dec-2012 19:02  3.0K  
    

    [TXT]

     CONTROLEUR-POUR-MOTE..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     CONTROLEUR-POUR-MOTE..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CONTROLEUR-PWM--DRIV..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     CONTROLEUR-PWM--DRIV..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CONTROLEUR-PWM-10138..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     CONTROLEUR-PWM-CMS-1..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     CONTROLEUR-SYNC.-CMS..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     CONTROLEUR-SYNC.-CMS..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CONTROLEUR-X-PHASE-C..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     CONVERT-DE-TENSION-7..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-A-N-8-..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     CONVERTISSEUR-A-N-8-..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     CONVERTISSEUR-A-N-10..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     CONVERTISSEUR-A-N-10..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     CONVERTISSEUR-A-N-12..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     CONVERTISSEUR-A-N-12..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CONVERTISSEUR-A-N-12..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     CONVERTISSEUR-A-N-12..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     CONVERTISSEUR-A-N-16..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CONVERTISSEUR-A-N-16..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     CONVERTISSEUR-A-N-AU..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     CONVERTISSEUR-A-N-AU..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CONVERTISSEUR-A-N-N-..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CONVERTISSEUR-BOOST-..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     CONVERTISSEUR-BOOST-..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CONVERTISSEUR-BUCK-C..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     CONVERTISSEUR-CAPACI..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     CONVERTISSEUR-CAPACI..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     CONVERTISSEUR-CMS-ST..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CONVERTISSEUR-CMS-ST..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     CONVERTISSEUR-CMS-ST..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     CONVERTISSEUR-CMS-ST..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     CONVERTISSEUR-CMS-ST..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52  170K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC-..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC...> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC5..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC1..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC1..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DC1..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DCD..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CONVERTISSEUR-DC-DCS..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CONVERTISSEUR-DE-DOU..> 14-Dec-2012 08:46  2.9K  
    

    [TXT]

     CONVERTISSEUR-DE-DOU..> 14-Dec-2012 08:41  2.9K  
    

    [TXT]

     CONVERTISSEUR-DE-DOU..> 14-Dec-2012 08:41  2.9K  
    

    [TXT]

     CONVERTISSEUR-F-V-V-..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     CONVERTISSEUR-N-A-8-..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     CONVERTISSEUR-N-A-8-..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     CONVERTISSEUR-N-A-8-..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     CONVERTISSEUR-N-A-8-..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     CONVERTISSEUR-N-A-8-..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     CONVERTISSEUR-N-A-8-..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     CONVERTISSEUR-N-A-10..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CONVERTISSEUR-N-A-10..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     CONVERTISSEUR-N-A-10..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     CONVERTISSEUR-N-A-10..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     CONVERTISSEUR-N-A-12..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     CONVERTISSEUR-N-A-12..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     CONVERTISSEUR-N-A-14..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     CONVERTISSEUR-N-A-24..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     CONVERTISSEUR-N-A-24..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     CONVERTISSEUR-N-A-24..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     CONVERTISSEUR-N-A-24..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     CONVERTISSEUR-RMS-DC..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CONVERTISSEUR-TENSIO..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     CONVERTISSEUR-USB---..> 14-Dec-2012 08:56  2.9K  
    

    [TXT]

     CONVERTISSEUR-USB---..> 13-Dec-2012 19:03  2.9K  
    

    [TXT]

     CONVERTISSEUR.htm       05-Jan-2013 12:29  4.3M  
    

    [TXT]

     CORDON-ASSEMBLE-TYPE..> 14-Dec-2012 08:53  3.0K  
    

    [TXT]

     CORDON-ASSEMBLE-TYPE..> 13-Dec-2012 19:02  3.0K  
    

    [TXT]

     CORDON-BNC-M-F-50-OH..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     CORDON-BNC-M-F-50-OH..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CORDON-BNC-M-F-50-OH..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CORDON-BNC-M-M-50-OH..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     CORDON-BNC-M-M-50-OH..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CORDON-BNC-M-M-50-OH..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     CORDON-BNC-M-M-50-OH..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     CORDON-BNC-M-M-50-OH..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CORDON-BNC-M-M-50-OH..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     CORDON-BNC-M-M-50-OH..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     CORDON-BNC-M-M-50-OH..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     CORDON-BNC-M-M-50-OH..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CORDON-BNC-M-M-50-OH..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CORDON-BNC-M-M-50-OH..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     CORDON-BNC-M-M-50-OH..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CORDON-BNC-M-M-50-OH..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     CORDON-BNC-M-M-75-OH..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     CORDON-BNC-M-M-75-OH..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     CORDON-BNC-M-M-75-OH..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CORDON-BNC-M-M-75-OH..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     CORDON-BNC-M-M-75-OH..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CORDON-CAT-5E-FTP-GR..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     CORDON-DE-TEST-AVEC-..> 14-Dec-2012 08:57  3.1K  
    

    [TXT]

     CORDON-DE-TEST-AVEC-..> 14-Dec-2012 08:56  3.1K  
    

    [TXT]

     CORDON-DE-TEST-AVEC-..> 13-Dec-2012 19:02  3.1K  
    

    [TXT]

     CORDON-DE-TEST-BLEU-..> 14-Dec-2012 08:54  2.9K  
    

    [TXT]

     CORDON-DE-TEST-BLEU-..> 13-Dec-2012 19:02  2.9K  
    

    [TXT]

     CORDON-DE-TEST-BNC-V..> 14-Dec-2012 08:56  3.0K  
    

    [TXT]

     CORDON-DE-TEST-BNC-V..> 13-Dec-2012 19:03  2.9K  
    

    [TXT]

     CORDON-DE-TEST-NOIR-..> 14-Dec-2012 08:47  2.9K  
    

    [TXT]

     CORDON-DE-TEST-ROUGE..> 14-Dec-2012 08:53  3.0K  
    

    [TXT]

     CORDON-DE-TEST-ROUGE..> 13-Dec-2012 19:02  3.0K  
    

    [TXT]

     CORDON-DE-TEST-ROUGE..> 14-Dec-2012 08:50  2.9K  
    

    [TXT]

     CORDON-FTP.0.5M-CAT6..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     CORDON-FTP.1.5M-CAT6..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     CORDON-FTP.2M-CAT6-1..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     CORDON-FTP.3.5M-CAT6..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     CORDON-FTP.4M-CAT6-1..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     CORDON-FTP.5M-CAT6-1..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     CORDON-MCXM-M-50-OHM..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     CORDON-MCXM-M-50-OHM..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CORDON-N-M-M-50-OHMS..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CORDON-N-M-M-50-OHMS..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CORDON-N-M-M-50-OHMS..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     CORDON-N-M-M-50-OHMS..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CORDON-N-M-M-50-OHMS..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     CORDON-SERIAL-ATA-DA..> 14-Dec-2012 08:49  2.9K  
    

    [TXT]

     CORDON-SERIAL-ATA-PO..> 14-Dec-2012 08:47  3.0K  
    

    [TXT]

     CORDON-SMA-M-M-50-OH..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CORDON-SMA-M-M-50-OH..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CORDON-SMA-M-M-50-OH..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     CORDON-SMA-M-M-50-OH..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CORDON-SMA-M-M-50-OH..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CORDON-SMA-M-M-50-OH..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     CORDON-SMA-M-M-50-OH..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CORDON-SMA-M-M-50-OH..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CORDON-SMA-M-M-50-OH..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     CORDON-SMA-M-M-50-OH..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CORDON-SMA-M-M-50-OH..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CORDON-SMA-M-M-50-OH..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     CORDON-SMA-M-M-50-OH..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CORDON-SMB-M-M-50-OH..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CORDON-SMB-M-M-50-OH..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     CORDON-SMB-M-M-50-OH..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     CORDON-SMB-M-M-50-OH..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     CORDON-SMB-M-M-50-OH..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     CORDON-SMB-M-M-50-OH..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     CORDON-SMB-M-M-50-OH..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     CORDON-SMB-M-M-50-OH..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CORDON-SMB-M-M-50-OH..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     CORDON-SMB-M-M-50-OH..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CORDON-SMB-M-M-50-OH..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     CORDON-SMB-M-M-50-OH..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CORDON-SMC-M-M-50-OH..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CORDON-SPIRALE-4P-NO..> 14-Dec-2012 08:39  3.0K  
    

    [TXT]

     CORDON-SPIRALE-4P-NO..> 14-Dec-2012 08:39  3.0K  
    

    [TXT]

     CORDON-SPIRALE-6P-NO..> 14-Dec-2012 08:39  3.0K  
    

    [TXT]

     CORDON-SPIRALE-8P-NO..> 14-Dec-2012 08:39  3.0K  
    

    [TXT]

     CORDON-TNC-M-M-50-OH..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CORDON-USB-2.0-A-MAL..> 14-Dec-2012 08:49  3.0K  
    

    [TXT]

     CORDON-USB-2.0-A-MAL..> 14-Dec-2012 08:47  3.0K  
    

    [TXT]

     CORDON.htm              05-Jan-2013 15:12  3.3M  
    

    [TXT]

     CORDONS-DE-TEST-A-FU..> 14-Dec-2012 08:39  2.9K  
    

    [TXT]

     CORDONS-DE-TEST-STAN..> 14-Dec-2012 08:36  2.9K  
    

    [TXT]

     CORPS-DE-CONNECTEUR-..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     CORPS-DIN41612-FEMEL..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     CORPS-POUR-FICHE-BAN..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     CORPS-POUR-FICHE-BAN..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     CORRECTEUR-DE-FACTEU..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     CORUNDUM-DISC,-22MM,..> 14-Dec-2012 08:43  2.9K  
    

    [TXT]

     CORUNDUM-DISC,-22MM,..> 14-Dec-2012 08:43  2.8K  
    

    [TXT]

     CORUNDUM-DISC,-38MM,..> 14-Dec-2012 08:43  2.9K  
    

    [TXT]

     COSSE-A-FOURCHE-3MM-..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     COSSE-A-OEILLET-12MM..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     COSSE-A-SERTIR-2.5MM..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     COSSE-A-SERTIR-3MM-J..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     COSSE-A-SERTIR-6MM-B..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     COSSE-A-SERTIR-BLEUE..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     COSSE-A-SERTIR-JAUNE..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     COSSE-A-SERTIR-ROUGE..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     COSSE-FASTON-ROUGE-1..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     COSSE-FOURCHE-M6-BLE..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     COSSE-FOURCHE-SOLIST..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     COSSE-OEILLET-M5-PQ1..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     COSSE-OEILLET-M6-PQ5..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     COSSE-PIDG-FOURCHE-M..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     COUPE-CIRCUIT-0.5A-1..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     COUPE-CIRCUIT-0.5A.html 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     COUPE-CIRCUIT-1-POLE..> 14-Dec-2012 08:39  3.1K  
    

    [TXT]

     COUPE-CIRCUIT-1.0A-1..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     COUPE-CIRCUIT-1.0A.html 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     COUPE-CIRCUIT-2-POLE..> 14-Dec-2012 08:36  3.1K  
    

    [TXT]

     COUPE-CIRCUIT-2.0A-1..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     COUPE-CIRCUIT-2.0A.html 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     COUPE-CIRCUIT-3.0A-1..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     COUPE-CIRCUIT-3.0A.html 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     COUPE-CIRCUIT-5.0A-1..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     COUPE-CIRCUIT-5.0A.html 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     COUPE-CIRCUIT-10A-10..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     COUPE-CIRCUIT-10A.html  13-Dec-2012 19:02  3.2K  
    

    [TXT]

     COUPE-CIRCUIT-16A-10..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     COUPE-CIRCUIT-16A.html  13-Dec-2012 19:03  3.2K  
    

    [TXT]

     COUPLEUR-110V-2P+TER..> 14-Dec-2012 08:50  3.0K  
    

    [TXT]

     COUPLEUR-110V-2P-+TE..> 14-Dec-2012 08:48  3.0K  
    

    [TXT]

     COUPLEUR-240V-2P+TER..> 14-Dec-2012 08:45  3.0K  
    

    [TXT]

     COUPLEUR-240V-2P-+TE..> 14-Dec-2012 08:45  3.0K  
    

    [TXT]

     COUPLEUR-415V-3P+TER..> 14-Dec-2012 08:48  3.0K  
    

    [TXT]

     COUPLEUR-415V-3P-+TE..> 14-Dec-2012 08:49  3.0K  
    

    [TXT]

     COUPLEUR-415V-3P-+TE..> 14-Dec-2012 08:50  3.0K  
    

    [TXT]

     COUPLEUR-415V-3P-N+T..> 14-Dec-2012 08:49  3.0K  
    

    [TXT]

     COUTEAU-ISOLE-1000V-..> 14-Dec-2012 08:40  2.8K  
    

    [TXT]

     COUVERCLE-105430.html   14-Dec-2012 08:45  2.9K  
    

    [TXT]

     COUVERCLE-POUR-BOITI..> 14-Dec-2012 08:38  3.0K  
    

    [TXT]

     COUVERCLE-POUR-BOITI..> 14-Dec-2012 08:38  3.0K  
    

    [TXT]

     COUVERCLE-POUR-BOITI..> 14-Dec-2012 08:40  3.0K  
    

    [TXT]

     COUVERCLE-POUR-BOITI..> 14-Dec-2012 08:40  3.0K  
    

    [TXT]

     COUVERCLE-POUR-BOITI..> 14-Dec-2012 08:38  3.0K  
    

    [TXT]

     COUVERCLE-POUR-BOITI..> 14-Dec-2012 08:40  3.0K  
    

    [TXT]

     COVER,-HINGED,-FOR-C..> 14-Dec-2012 08:54  2.8K  
    

    [TXT]

     COVER,-HINGED,-FOR-C..> 13-Dec-2012 19:02  2.8K  
    

    [TXT]

     CRIMP-HOUSING-1.25MM..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CRIMP-PIN-10AWG-1012..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     CRIMP-PIN-22-28AWG-P..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     CRIMP-PIN-22-28AWG-P..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     CRIMP-SOCKET-8AWG-10..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     CUTTING-DISC,-FOR-DI..> 14-Dec-2012 08:43  2.8K  
    

    [TXT]

     CUTTING-DISC,-FOR-DI..> 14-Dec-2012 08:39  2.8K  
    

    [TXT]

     CUTTING-DISC,-FOR-ME..> 14-Dec-2012 08:43  2.8K  
    

    [TXT]

     DATALOGGER,-4CH-1056..> 14-Dec-2012 08:47  2.7K  
    

    [TXT]

     DATALOGGER,-HI-RES-1..> 14-Dec-2012 08:43  2.9K  
    

    [TXT]

     DATALOGGER,-HI-RES-1..> 14-Dec-2012 08:43  2.9K  
    

    [TXT]

     DATALOGGER-USB-CO-10..> 14-Dec-2012 08:54  3.0K  
    

    [TXT]

     DATALOGGER-USB-CO.html  13-Dec-2012 19:02  3.0K  
    

    [TXT]

     DC-DC-CONTROLEUR-340..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     DEMI-PONT+OSC+DDTIM-..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     DETECTEUR-5-MB-TTL--..> 14-Dec-2012 08:43  2.9K  
    

    [TXT]

     DETECTEUR-DE-DEBIT-D..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     DETECTEUR-DE-DEBIT-D..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     DETECTEUR-DE-DEBIT-D..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     DETECTEUR-DE-DEBIT-D..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     DETECTEUR-DE-DEBIT-D..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     DETECTEUR-DE-NIVEAU-..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     DETECTEUR-DE-PROXIMI..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     DETECTEUR-DE-PROXIMI..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     DETECTEUR-DE-TENSION..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     DETECTEUR-DE-TENSION..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     DETECTEUR-DE-TENSION..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     DETECTEUR-DE-TENSION..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     DETECTEUR-DE-TENSION..> 14-Dec-2012 08:49  2.9K  
    

    [TXT]

     DETECTEUR-INFRA-ROUG..> 14-Dec-2012 08:48  3.0K  
    

    [TXT]

     DETECTEUR-INFRAROUGE..> 14-Dec-2012 08:56  3.0K  
    

    [TXT]

     DETECTEUR-INFRAROUGE..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     DETECTEUR-INFRAROUGE..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     DETECTEUR-INFRAROUGE..> 13-Dec-2012 19:02  3.0K  
    

    [TXT]

     DIN-41612-MALE-DROIT..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     DIN41612-FEMELLE-B64..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     DIN41612-FEMELLE-C-2..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     DIN41612-FEMELLE-C32..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     DIN41612-FEMELLE-C64..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     DIN41612-FEMELLE-C96..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     DIN41612-FEMELLE-H15..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     DIN41612-FEMELLE-MH3..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     DIN41612-FEMELLE-R96..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     DIN41612-MALE-B64-10..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     DIN41612-MALE-B64-10..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     DIN41612-MALE-C-2-32..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     DIN41612-MALE-C-2-48..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     DIN41612-MALE-C32-10..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     DIN41612-MALE-C32-10..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     DIN41612-MALE-C32-CL..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     DIN41612-MALE-C96-10..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     DIN41612-MALE-F48-10..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     DIN41612-MALE-H15-10..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     DIN41612-MALE-H15-10..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     DIN41612-MALE-MH15-1..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     DIN41612-MALE-R64-10..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     DIN41612-MALE-R96-10..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     DIN41612-TYPE-B-64-V..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     DIN41612-TYPE-B-64-V..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     DIN41612-TYPE-C-96-V..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     DIN41612-TYPE-F-48-V..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     DIN41612-TYPE-M-24+8..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     DIN41612-TYPE-R-48-V..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     DIN41612-TYPE-R-96-V..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     DIN41612-TYPEC-96-VO..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     DIN41612-TYPEC-96-VO..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     DIN41612-TYPEM60+4-V..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     DIODE--DE-SUPPRESSIO..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     DIODE--DE-SUPPRESSIO..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     DIODE--DE-SUPPRESSIO..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     DIODE--DE-SUPPRESSIO..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     DIODE--DE-SUPPRESSIO..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     DIODE--DE-SUPPRESSIO..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     DIODE--DE-SUPPRESSIO..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     DIODE--DE-SUPPRESSIO..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     DIODE--DE-SUPPRESSIO..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     DIODE--DE-SUPPRESSIO..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     DIODE--DE-SUPPRESSIO..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     DIODE--DE-SUPPRESSIO..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     DIODE--DE-SUPPRESSIO..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     DIODE--DE-SUPPRESSIO..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     DIODE--DE-SUPPRESSIO..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     DIODE--DE-SUPPRESSIO..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     DIODE--DE-SUPPRESSIO..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     DIODE--DE-SUPPRESSIO..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     DIODE--DE-SUPPRESSIO..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     DIODE--DE-SUPPRESSIO..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     DIODE-2X56A-1200V-10..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     DIODE-4A-1075757.html   14-Dec-2012 08:46  3.1K  
    

    [TXT]

     DIODE-AVALANCHE-2A-1..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     DIODE-CMS-1.0A-600V-..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     DIODE-CMS-3A-50V-101..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     DIODE-CMS-3A-200V-10..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     DIODE-DE-COMMUTATION..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     DIODE-DE-COMMUTATION..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     DIODE-DE-REDRESSEMEN..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     DIODE-DE-REDRESSEMEN..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     DIODE-DE-SUPPRESSION..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     DIODE-DOUBLE-SOT-23-..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     DIODE-DOUBLE-SOT-23-..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     DIODE-DOUBLE-SOT-143..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     DIODE-DOUBLE-SOT-143..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     DIODE-DOUBLE-SOT-323..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     DIODE-DOUBLE-SOT-323..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     DIODE-HAUTE-TENSION-..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     DIODE-HAUTE-TENSION-..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     DIODE-PETIT-SIGNAL-D..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     DIODE-PETITS-SIGNAUX..> 14-Dec-2012 08:43  3.1K  
    

    [TXT]

     DIODE-RAPIDE-BOITIER..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     DIODE-RAPIDE-BOITIER..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     DIODE-RAPIDE-DOUBLE-..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     DIODE-RAPIDE-SOD-80C..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     DIODE-RAPIDE-SOD-80C..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     DIODE-REDRESSEMENT-D..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     DIODE-REDRESSEMENT-D..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     DIODE-REDRESSEMENT-R..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     DIODE-REDRESSEMENT-R..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     DIODE-REDRESSEMENT-R..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     DIODE-REDRESSEMENT-R..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     DIODE-REDRESSEMENT-R..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     DIODE-REDRESSEMENT-R..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     DIODE-RF-BOITIER-SOT..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     DIODE-RF-COMMUTATION..> 14-Dec-2012 08:44  3.1K  
    

    [TXT]

     DIODE-RF-COMMUTATION..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     DIODE-RF-COMMUTATION..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     DIODE-RF-DOUBLE-ATTE..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     DIODE-RF-SC-79-10956..> 14-Dec-2012 08:37  3.0K  
    

    [TXT]

     DIODE-RF-SOT-23-1095..> 14-Dec-2012 08:40  3.0K  
    

    [TXT]

     DIODE-RF-SOT-23-1095..> 14-Dec-2012 08:37  3.0K  
    

    [TXT]

     DIODE-RF-SOT-343-109..> 14-Dec-2012 08:40  3.0K  
    

    [TXT]

     DIODE-SCHOTTKY-1A-30..> 14-Dec-2012 08:45  3.1K  
    

    [TXT]

     DIODE-SCHOTTKY-1A-40..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     DIODE-SCHOTTKY-2.0A-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     DIODE-SCHOTTKY-2.0A-..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     DIODE-SCHOTTKY-2X5A-..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     DIODE-SCHOTTKY-2X10A..> 14-Dec-2012 08:36  3.1K  
    

    [TXT]

     DIODE-SCHOTTKY-2X15A..> 14-Dec-2012 08:36  3.1K  
    

    [TXT]

     DIODE-SCHOTTKY-2X20A..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     DIODE-SCHOTTKY-2X20A..> 14-Dec-2012 08:36  3.1K  
    

    [TXT]

     DIODE-SCHOTTKY-2X25A..> 14-Dec-2012 08:36  3.1K  
    

    [TXT]

     DIODE-SCHOTTKY-2X30A..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     DIODE-SCHOTTKY-2X30A..> 14-Dec-2012 08:36  3.1K  
    

    [TXT]

     DIODE-SCHOTTKY-2X35A..> 14-Dec-2012 08:44  3.1K  
    

    [TXT]

     DIODE-SCHOTTKY-2X40A..> 14-Dec-2012 08:36  3.1K  
    

    [TXT]

     DIODE-SCHOTTKY-2X40A..> 14-Dec-2012 08:36  3.1K  
    

    [TXT]

     DIODE-SCHOTTKY-2X40A..> 14-Dec-2012 08:44  3.1K  
    

    [TXT]

     DIODE-SCHOTTKY-2X60A..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     DIODE-SCHOTTKY-2X60A..> 14-Dec-2012 08:44  3.1K  
    

    [TXT]

     DIODE-SCHOTTKY-2X100..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     DIODE-SCHOTTKY-2X120..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     DIODE-SCHOTTKY-3A-20..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     DIODE-SCHOTTKY-3A-30..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     DIODE-SCHOTTKY-3A-10..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     DIODE-SCHOTTKY-25A-1..> 14-Dec-2012 08:44  3.1K  
    

    [TXT]

     DIODE-SCHOTTKY-25A-1..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     DIODE-SCHOTTKY-60A-1..> 14-Dec-2012 08:40  3.0K  
    

    [TXT]

     DIODE-SCHOTTKY-10811..> 14-Dec-2012 08:36  3.0K  
    

    [TXT]

     DIODE-SCHOTTKY-10811..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     DIODE-SCHOTTKY-DOUBL..> 14-Dec-2012 08:43  3.1K  
    

    [TXT]

     DIODE-SCHOTTKY-DOUBL..> 14-Dec-2012 08:43  3.1K  
    

    [TXT]

     DIODE-SCHOTTKY-DOUBL..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     DIODE-SCHOTTKY-DOUBL..> 14-Dec-2012 08:36  3.1K  
    

    [TXT]

     DIODE-SCHOTTKY-DOUBL..> 14-Dec-2012 08:43  3.1K  
    

    [TXT]

     DIODE-SCHOTTKY-DOUBL..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     DIODE-SCHOTTKY-DOUBL..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     DIODE-SCHOTTKY-MICRO..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     DIODE-SCHOTTKY-RF-BO..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     DIODE-SCHOTTKY-RF-BO..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     DIODE-SCHOTTKY-RF-BO..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     DIODE-SCHOTTKY-RF-BO..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     DIODE-SCHOTTKY-RF-DO..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     DIODE-SCHOTTKY-RF-DO..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     DIODE-SCHOTTKY-RF-DO..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     DIODE-SCHOTTKY-RF-DO..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     DIODE-SCHOTTKY-RF-DO..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     DIODE-SCHOTTKY-SOD-3..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     DIODE-SCHOTTKY-SOT-2..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     DIODE-SCHOTTKY-SOT-2..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     DIODE-SCHOTTKY-TO-22..> 14-Dec-2012 08:47  3.1K  
    

    [TXT]

     DIODE-SCHOTTKY-TO-24..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     DIODE-SCHOTTKY-TO-24..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     DIODE-SCHOTTKY-TO-24..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     DIODE-SCHOTTKY-TO-24..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     DIODE-SCHOTTKY-TO-24..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     DIODE-SCHOTTKY-TO220..> 14-Dec-2012 08:44  3.1K  
    

    [TXT]

     DIODE-TO220AB-30A-80..> 14-Dec-2012 08:44  3.1K  
    

    [TXT]

     DIODE-TO220AB-30A-12..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     DIODE-TO220AC-2X11A-..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     DIODE-TO247AD-2X28A-..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     DIODE-TO247AD-2X28A-..> 14-Dec-2012 08:36  3.1K  
    

    [TXT]

     DIODE-TO247AD-2X45A-..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     DIODE-TO247AD-2X45A-..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     DIODE-TO247AD-48A-80..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     DIODE-TO247AD-48A-12..> 14-Dec-2012 08:36  3.1K  
    

    [TXT]

     DIODE-TO247AD-48A-16..> 14-Dec-2012 08:44  3.1K  
    

    [TXT]

     DIODE-ULTRA-FAST-2X1..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     DIODE-ULTRA-FAST-2X1..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     DIODE-ULTRA-FAST-2X1..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     DIODE-ULTRA-FAST-8A-..> 14-Dec-2012 08:43  3.1K  
    

    [TXT]

     DIODE-ULTRA-FAST-9A-..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     DIODE-ULTRA-FAST-15A..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     DIODE-ULTRA-RAPIDE-1..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     DIODE-ULTRA-RAPIDE-1..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     DIODE-ULTRA-RAPIDE-1..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     DIODE-ULTRA-RAPIDE-2..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     DIODE-ULTRA-RAPIDE-2..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     DIODE-ULTRA-RAPIDE-2..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     DIODE-ULTRA-RAPIDE-3..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     DIODE-ULTRA-RAPIDE-C..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     DIODE-ULTRA-RAPIDE-T..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     DIODE-ULTRA-RAPIDE-T..> 13-Dec-2012 19:01  3.1K  
    

    [TXT]

     DIODE-ULTRA-RAPIDE-T..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     DIODE-ULTRA-RAPIDE-T..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     DIODE-ULTRA-RAPIDE-T..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     DIODE-ULTRA-RAPIDE-T..> 13-Dec-2012 19:01  3.1K  
    

    [TXT]

     DIODE-ULTRA-RAPIDE-T..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     DIODE-ULTRA-RAPIDE-T..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     DIODE-ULTRA-RAPIDE-T..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     DIODE-VARI-CAP-SOT-2..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     DIODE-ZENER-1.3W-5.6..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     DIODE-ZENER-1.3W-10V..> 14-Dec-2012 08:39  3.1K  
    

    [TXT]

     DIODE-ZENER-1.3W-18V..> 14-Dec-2012 08:39  3.1K  
    

    [TXT]

     DIODE-ZENER-1.3W-30V..> 14-Dec-2012 08:39  3.1K  
    

    [TXT]

     DIODE-ZENER-1.3W-47V..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     DIODE-ZENER-1.3W-51V..> 14-Dec-2012 08:43  3.1K  
    

    [TXT]

     DIODE-ZENER-1.3W-56V..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     DIODE-ZENER-1.3W-75V..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     DIODE-ZENER-1.5W-5.1..> 14-Dec-2012 08:43  3.1K  
    

    [TXT]

     DIODE-ZENER-1.5W-6.2..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     DIODE-ZENER-1.5W-8.2..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     DIODE-ZENER-1.5W-15V..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     DIODE-ZENER-1.5W-27V..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     DIODE-ZENER-500MW-2...> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     DIODE-ZENER-500MW-3...> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     DIODE-ZENER-500MW-4...> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     DIODE-ZENER-500MW-4...> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     DIODE-ZENER-500MW-5...> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     DIODE-ZENER-500MW-6...> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     DIODE-ZENER-500MW-6...> 14-Dec-2012 08:39  3.1K  
    

    [TXT]

     DIODE-ZENER-500MW-9...> 14-Dec-2012 08:39  3.1K  
    

    [TXT]

     DIODE-ZENER-500MW-10..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     DIODE-ZENER-500MW-11..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     DIODE-ZENER-500MW-12..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     DIODE-ZENER-500MW-12..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     DIODE-ZENER-500MW-18..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     DIODE-ZENER-500MW-22..> 14-Dec-2012 08:39  3.1K  
    

    [TXT]

     DIODE-ZENER-500MW-30..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     DIODE-ZENER-500MW-43..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     DIP-SWITCH-2V-108246..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     DIP-SWITCH-4V-108246..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     DIP-SWITCH-8V-108246..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     DIP-SWITCH-10V-10824..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     DIP-SWITCH-ROTATIF-1..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     DIP-SWITCH-ROTATIF-1..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     DISTRIBUTION-D´HO..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     DISTRIBUTION-D´HO..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     DISTRIBUTION-D´HO..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     DOUBLE-TRANSCEIVER-D..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     DOUILLE-ROUGE-4MM-PQ..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     DOWNLIGHT,-MAINS,-SI..> 14-Dec-2012 08:41  3.1K  
    

    [TXT]

     DPM-THERMOMETRE-1074..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     DRILL-GRINDER,-EURO-..> 14-Dec-2012 08:46  3.0K  
    

    [TXT]

     DRILL-GRINDER,-EURO-..> 14-Dec-2012 08:46  3.0K  
    

    [TXT]

     DRILL-STAND-1075595...> 14-Dec-2012 08:46  2.8K  
    

    [TXT]

     DRIVER---RECEPTEUR-D..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     DRIVER---RECEPTEUR-D..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     DRIVER---RECEPTEUR-D..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     DRIVER---RECEPTEUR-D..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     DRIVER---RECEPTEUR-D..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     DRIVER---RECEPTEUR-D..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     DRIVER---RECEPTEUR-D..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     DRIVER---RECEPTEUR-D..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     DRIVER-CMS-3PH-HI-&-..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     DRIVER-CMS-AUDIO-HI-..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     DRIVER-CMS-DEMI-PONT..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     DRIVER-CMS-DOUBLE-LO..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     DRIVER-CMS-HI-&-LO-S..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     DRIVER-CMS-HI-SIDE-O..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     DRIVER-CMS-HI-SIDE-Q..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     DRIVER-CMS-SIMPLE-HI..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     DRIVER-DE-LIGNE-1079..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     DRIVER-DE-MOSFET-3PH..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     DRIVER-DE-MOSFET-3PH..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     DRIVER-DE-MOSFET-3PH..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     DRIVER-DE-MOSFET-CMS..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     DRIVER-DE-MOSFET-CMS..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     DRIVER-DE-MOSFET-CMS..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     DRIVER-DE-MOSFET-CMS..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     DRIVER-DE-MOSFET-CMS..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     DRIVER-DE-MOSFET-CMS..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     DRIVER-DE-MOSFET-CMS..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     DRIVER-DE-MOSFET-CMS..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     DRIVER-DE-MOSFET-CMS..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     DRIVER-DE-MOSFET-CMS..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     DRIVER-DE-MOSFET-CMS..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     DRIVER-DE-MOSFET-DOU..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     DRIVER-DE-MOSFET-DOU..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     DRIVER-DE-MOSFET-HI-..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     DRIVER-DE-MOSFET-HI-..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     DRIVER-DE-MOSFET-HI-..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     DRIVER-DE-MOSFET-HI-..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     DRIVER-DE-MOSFET-HI-..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     DRIVER-DE-MOSFET-HI-..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     DRIVER-DE-MOSFET-HI-..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     DRIVER-DE-MOSFET-HI-..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     DRIVER-DE-MOSFET-HI-..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     DRIVER-DE-MOSFET-SIM..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     DRIVER-DE-MOSFET-SIM..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     DRIVER-DE-PWM-109742..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     DRIVER-DEMI-PONT-CMS..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     DRIVER-DEMI-PONT-CMS..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     DRIVER-DEMI-PONT-CMS..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     DRIVER-DEMI-PONT-CMS..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     DRIVER-DEMI-PONT-CMS..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     DRIVER-DEMI-PONT-CMS..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     DRIVER-DEMI-PONT-SIM..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     DRIVER-HI-&-LO-SIDE-..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     DVI-I-R-A-RCPT-FORKL..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     DVI-I-R-A-RCPT-FORKL..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     ECHELLE-DIN72-0-1MA-..> 14-Dec-2012 08:50  3.1K  
    

    [TXT]

     ECHELLE-DIN72-1A-101..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     ECHELLE-DIN72-5A-101..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     ECHELLE-DIN72-60MV-1..> 14-Dec-2012 08:50  3.1K  
    

    [TXT]

     ECHELLE-DIN96-0-1MA-..> 14-Dec-2012 08:48  3.1K  
    

    [TXT]

     ECHELLE-DIN96-4-20MA..> 14-Dec-2012 08:48  3.0K  
    

    [TXT]

     ECHELLE-DIN96-60MV-1..> 14-Dec-2012 08:48  3.0K  
    

    [TXT]

     ECLAIRAGE-MURAL-BLAN..> 14-Dec-2012 08:41  3.0K  
    

    [TXT]

     ECLAIRAGE-TRIPLE-SPO..> 14-Dec-2012 08:41  3.1K  
    

    [TXT]

     ECROU-BNC-TNC-102096..> 14-Dec-2012 08:44  2.8K  
    

    [TXT]

     ECROU-LAITON-PLAQUE-..> 14-Dec-2012 08:53  3.0K  
    

    [TXT]

     ECROU-LAITON-PLAQUE-..> 13-Dec-2012 19:02  3.0K  
    

    [TXT]

     ELASTOMER,-BLACK,-17..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     ELASTOMER,-CLEAR,-18..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     ELECTROMECH-TRANSDUC..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     EMBASE--CMS-DOUBLE-R..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     EMBASE--CMS-DOUBLE-R..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     EMBASE--CMS-DOUBLE-R..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     EMBASE--CMS-DOUBLE-R..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     EMBASE--CMS-DOUBLE-R..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     EMBASE--COUDEE-DOUBL..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     EMBASE--COUDEE-DOUBL..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     EMBASE--COUDEE-DOUBL..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     EMBASE--COUDEE-DOUBL..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     EMBASE-1-RANGEE-2-VO..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     EMBASE-1-RANGEE-3-VO..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     EMBASE-1-RANGEE-3-VO..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     EMBASE-1-RANGEE-4-VO..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     EMBASE-1-RANGEE-4-VO..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     EMBASE-1-RANGEE-5-VO..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     EMBASE-1-RANGEE-5-VO..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     EMBASE-1-RANGEE-6-VO..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     EMBASE-1-RANGEE-6-VO..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     EMBASE-1-RANGEE-8-VO..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     EMBASE-1-RANGEE-8-VO..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     EMBASE-1-RANGEE-10-V..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     EMBASE-1-RANGEE-10-V..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     EMBASE-1-RANGEE-20-V..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     EMBASE-1-RANGEE-36-V..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     EMBASE-1-RANGEE-36-V..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     EMBASE-2-RANGEES-3-V..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     EMBASE-2-RANGEES-3-V..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     EMBASE-2-RANGEES-4-V..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     EMBASE-2-RANGEES-4-V..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     EMBASE-2-RANGEES-5-V..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     EMBASE-2-RANGEES-5-V..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     EMBASE-2-RANGEES-6-V..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     EMBASE-2-RANGEES-6-V..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     EMBASE-2-RANGEES-8-V..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     EMBASE-2-RANGEES-8-V..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     EMBASE-2-RANGEES-10-..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     EMBASE-2-RANGEES-10-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     EMBASE-2-RANGEES-36+..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     EMBASE-2-RANGEES-36+..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     EMBASE-3-POLES-10774..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     EMBASE-3.96MM-12-VOI..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     EMBASE-4-POLES-10774..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     EMBASE-4-RANGEES-4-P..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     EMBASE-5-POLES-10774..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     EMBASE-8-POLES-10774..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     EMBASE-A-4-ENTREES-S..> 14-Dec-2012 08:45  3.1K  
    

    [TXT]

     EMBASE-A-PROFIL-SURB..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     EMBASE-A-PROFIL-SURB..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     EMBASE-A-RIVET-10148..> 14-Dec-2012 08:45  3.1K  
    

    [TXT]

     EMBASE-A-RIVET-10148..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     EMBASE-BANANE-4MM-IS..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     EMBASE-BLINDEE-BNC-F..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     EMBASE-BLINDEE-BNC-F..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     EMBASE-BLINDEE-BNC-F..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     EMBASE-BLINDEE-BNC-F..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     EMBASE-BNC-FEMELLE-I..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     EMBASE-BNC-FEMELLE-I..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     EMBASE-BNC-FEMELLE-I..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     EMBASE-BNC-FEMELLE-I..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     EMBASE-BNC-FEMELLE-I..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     EMBASE-BNC-FEMELLE-I..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     EMBASE-BNC-FEMELLE-I..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     EMBASE-BNC-ISOLEE-PA..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     EMBASE-BNC-PANNEAU-5..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     EMBASE-CI-4-VOIES-90..> 14-Dec-2012 08:41  3.1K  
    

    [TXT]

     EMBASE-CI-COUDE.-20-..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     EMBASE-CI-COUDE.-26-..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     EMBASE-CI-COUDE.-34-..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     EMBASE-CI-COUDE.-50-..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     EMBASE-CMS-COMPACT-F..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     EMBASE-CMS-VERTICALE..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     EMBASE-CMS-VERTICALE..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     EMBASE-CMS-VERTICALE..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     EMBASE-CMS.-6-VOIES-..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     EMBASE-COUDEE-2-VOIE..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     EMBASE-COUDEE-2-VOIE..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     EMBASE-COUDEE-3.96MM..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     EMBASE-COUDEE-3.96MM..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     EMBASE-COUDEE-3.96MM..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     EMBASE-COUDEE-3.96MM..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     EMBASE-COUDEE-3.96MM..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     EMBASE-COUDEE-6-VOIE..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     EMBASE-COUDEE-6-VOIE..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     EMBASE-COUDEE-9-VOIE..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     EMBASE-COUDEE-9-VOIE..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     EMBASE-COUDEE-10-VOI..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     EMBASE-COUDEE-14-VOI..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     EMBASE-COUDEE-16-VOI..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     EMBASE-COUDEE-20-VOI..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     EMBASE-COUDEE-26-VOI..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     EMBASE-COUDEE-34-VOI..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     EMBASE-COUDEE-50-VOI..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     EMBASE-COUDEE-VERROU..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     EMBASE-COUDEE-VERROU..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     EMBASE-COUDEE-VERROU..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     EMBASE-DE-COLLIERS-A..> 14-Dec-2012 08:50  3.1K  
    

    [TXT]

     EMBASE-DE-COLLIERS-A..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     EMBASE-DE-COLLIERS-A..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     EMBASE-DE-COLLIERS-A..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     EMBASE-DE-COLLIERS-A..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     EMBASE-DE-COLLIERS-A..> 14-Dec-2012 08:45  3.1K  
    

    [TXT]

     EMBASE-DE-COLLIERS-A..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     EMBASE-DE-COLLIERS-A..> 14-Dec-2012 08:50  3.1K  
    

    [TXT]

     EMBASE-DE-COLLIERS-A..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     EMBASE-DE-COLLIERS-A..> 14-Dec-2012 08:45  3.1K  
    

    [TXT]

     EMBASE-DE-COLLIERS-A..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     EMBASE-DE-FAISCEAU-3..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     EMBASE-DF17-2MM-40-V..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     EMBASE-DF17-2MM-80-V..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     EMBASE-DF17-3MM-80-V..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     EMBASE-DF17-4MM-40-V..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     EMBASE-DF17-4MM-80-V..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     EMBASE-DOUBLE-RANGEE..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     EMBASE-DOUBLE-RANGEE..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     EMBASE-DROITE-6-VOIE..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     EMBASE-DROITE-8-VOIE..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     EMBASE-DROITE-10-VOI..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     EMBASE-DROITE-10-VOI..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     EMBASE-DROITE-10-VOI..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     EMBASE-DROITE-13-VOI..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     EMBASE-DROITE-14-VOI..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     EMBASE-DROITE-14-VOI..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     EMBASE-DROITE-16-VOI..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     EMBASE-DROITE-16-VOI..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     EMBASE-DROITE-20-VOI..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     EMBASE-DROITE-26-VOI..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     EMBASE-DROITE-26-VOI..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     EMBASE-DROITE-26-VOI..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     EMBASE-DROITE-30-VOI..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     EMBASE-DROITE-34-VOI..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     EMBASE-DROITE-34-VOI..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     EMBASE-DROITE-40-VOI..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     EMBASE-DROITE-40-VOI..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     EMBASE-DROITE-50-VOI..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     EMBASE-DROITE-50-VOI..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     EMBASE-DROITE-50-VOI..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     EMBASE-DROITE-50-VOI..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     EMBASE-DROITE-DOUBLE..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     EMBASE-DROITE-DOUBLE..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     EMBASE-DROITE-DOUBLE..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     EMBASE-DROITE-DOUBLE..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     EMBASE-DROITE-DOUBLE..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     EMBASE-DROITE-STD-50..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     EMBASE-DROITE-VERROU..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     EMBASE-DROITE-VERROU..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     EMBASE-DROITE-VERROU..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     EMBASE-DROITE-VERROU..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     EMBASE-DROITE-VERROU..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     EMBASE-DROITE-VERROU..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     EMBASE-DROITE-VERROU..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     EMBASE-DROITE-VERROU..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     EMBASE-F-HE10-DROIT-..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     EMBASE-F-HE10-DROIT-..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     EMBASE-FEMEL.DROITE-..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     EMBASE-FEMEL.DROITE-..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     EMBASE-FEMEL.DROITE-..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     EMBASE-FEMEL.DROITE-..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     EMBASE-FEMEL.DROITE-..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     EMBASE-FEMELLE-4V-10..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     EMBASE-FEMELLE-6P-10..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     EMBASE-FEMELLE-6P-10..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     EMBASE-FEMELLE-6V-10..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     EMBASE-FEMELLE-6V-10..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     EMBASE-FEMELLE-7P-10..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     EMBASE-FEMELLE-8-VOI..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     EMBASE-FEMELLE-8P-10..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     EMBASE-FEMELLE-10P-1..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     EMBASE-FEMELLE-19P-1..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     EMBASE-FEMELLE-26P-1..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     EMBASE-FEMELLE-32P-1..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     EMBASE-FEMELLE-CI-90..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     EMBASE-FEMELLE-CI-90..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     EMBASE-FEMELLE-CI-90..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     EMBASE-FEMELLE-CI-VE..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     EMBASE-FEMELLE-CMS-S..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     EMBASE-FEMELLE-DROIT..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     EMBASE-FEMELLE-R-A-2..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     EMBASE-FEMELLE-VERTI..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     EMBASE-HE10-10P-1099..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     EMBASE-IDC--6-VOIES-..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     EMBASE-IDC--10-VOIES..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     EMBASE-IDC--14-VOIES..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     EMBASE-IDC--16-VOIES..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     EMBASE-IDC--20-VOIES..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     EMBASE-IDC--20-VOIES..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     EMBASE-IDC--26-VOIES..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     EMBASE-IDC--34-VOIES..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     EMBASE-IDC--34-VOIES..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     EMBASE-IDC--50-VOIES..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     EMBASE-IDC--60-VOIES..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     EMBASE-IDC-D.-FILETE..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     EMBASE-IDC-D.-FILETE..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     EMBASE-IDC-D.-NON-FI..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     EMBASE-IEC-FILTREE-2..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     EMBASE-IEC-FILTREE-2..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     EMBASE-IEC-FILTREE-2..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     EMBASE-IEC-FILTREE-2..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     EMBASE-IEC-FILTREE-2..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     EMBASE-IEC-FILTREE-2..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     EMBASE-IEC-FILTREE-2..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     EMBASE-IEC-FILTREE-2..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     EMBASE-IEC-FILTREE-2..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     EMBASE-IEC-FILTREE-2..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     EMBASE-ISOLE-BNC-FEM..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     EMBASE-ISOLE-BNC-FEM..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     EMBASE-ISOLE-COUDEE-..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     EMBASE-ISOLEE-BNC-FE..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     EMBASE-JACK.6-POSITI..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     EMBASE-M-HE10-COUDE-..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     EMBASE-M-HE10-COUDE-..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     EMBASE-M-HE10-COUDE-..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     EMBASE-M-HE10-COUDE-..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     EMBASE-M-HE10-COUDE-..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     EMBASE-M-HE10-DROIT-..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     EMBASE-M-HE10-DROIT-..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     EMBASE-M-HE10-DROIT-..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     EMBASE-MALE-3-POLES-..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     EMBASE-MALE-3V-10777..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     EMBASE-MALE-4V-10777..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     EMBASE-MALE-6P-10791..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     EMBASE-MALE-6V-10777..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     EMBASE-MALE-6V-10777..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     EMBASE-MALE-6V-10777..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     EMBASE-MALE-10-VOIES..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     EMBASE-MALE-10-VOIES..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     EMBASE-MALE-16-VOIES..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     EMBASE-MALE-16V-1097..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     EMBASE-MALE-20-VOIES..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     EMBASE-MALE-20-VOIES..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     EMBASE-MALE-26-VOIES..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     EMBASE-MALE-26P-1079..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     EMBASE-MALE-26V-1097..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     EMBASE-MALE-26V-1097..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     EMBASE-MALE-26V-1097..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     EMBASE-MALE-34-VOIES..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     EMBASE-MALE-90DEG-20..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     EMBASE-MALE-90DG-1RG..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     EMBASE-MALE-90DG-1RG..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     EMBASE-MALE-90DG-2RG..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     EMBASE-MALE-90DG-2RG..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     EMBASE-MALE-DIL-90DG..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     EMBASE-MALE-DROITE-D..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     EMBASE-MALE-DROITE-D..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     EMBASE-MALE-DROITE-D..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     EMBASE-MALE-DROITE-U..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     EMBASE-MALE-DROITE-U..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     EMBASE-MALE-PROTEGEE..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     EMBASE-MALE-PROTEGEE..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     EMBASE-MALE-PROTEGEE..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     EMBASE-MALE-PROTEGEE..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     EMBASE-MALE-PROTEGEE..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     EMBASE-MALE-SIL-90DG..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     EMBASE-MALE-VERTICAL..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     EMBASE-MALE-VERTICAL..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     EMBASE-MINI-FIT-COUD..> 14-Dec-2012 08:53  3.1K  
    

    [TXT]

     EMBASE-MINI-FIT-COUD..> 13-Dec-2012 19:01  3.1K  
    

    [TXT]

     EMBASE-MINI-FIT-COUD..> 14-Dec-2012 08:53  3.1K  
    

    [TXT]

     EMBASE-MINI-FIT-COUD..> 13-Dec-2012 19:01  3.1K  
    

    [TXT]

     EMBASE-MODULAIRE-RJ4..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     EMBASE-MONTEE-SUR-GO..> 14-Dec-2012 08:45  3.1K  
    

    [TXT]

     EMBASE-MSTBO-25--3-G..> 14-Dec-2012 08:39  2.8K  
    

    [TXT]

     EMBASE-MSTBO-25--3-G..> 14-Dec-2012 08:39  2.8K  
    

    [TXT]

     EMBASE-MSTBO-25--4-G..> 14-Dec-2012 08:42  2.8K  
    

    [TXT]

     EMBASE-MSTBO-25--4-G..> 14-Dec-2012 08:39  2.8K  
    

    [TXT]

     EMBASE-PANNEAU-POAG-..> 14-Dec-2012 08:41  2.9K  
    

    [TXT]

     EMBASE-POUR-COLLIER-..> 14-Dec-2012 08:50  3.1K  
    

    [TXT]

     EMBASE-POUR-COLLIER-..> 14-Dec-2012 08:50  3.1K  
    

    [TXT]

     EMBASE-POUR-COLLIER-..> 14-Dec-2012 08:45  3.1K  
    

    [TXT]

     EMBASE-PROLONGEE-DOU..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     EMBASE-PROLONGEE-DOU..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     EMBASE-PROLONGEE-DOU..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     EMBASE-PROLONGEE-DOU..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     EMBASE-RELAIS-(PQ5)-..> 14-Dec-2012 08:47  3.0K  
    

    [TXT]

     EMBASE-RELAIS-RAIL-D..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     EMBASE-RELAIS-RAIL-D..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     EMBASE-RELAIS-RAIL-D..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     EMBASE-RELAIS-RAIL-D..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     EMBASE-RJ45-CAT.-6-P..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     EMBASE-SMA-A-ECROU-1..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     EMBASE-SMA-CI-DROITE..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     EMBASE-SMA-PANNEAU-1..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     EMBASE-SUB-D-COUDEE-..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     EMBASE-SUB-D-COUDEE-..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     EMBASE-SUB-D-HD-FEME..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     EMBASE-SUB-D-HD-FEME..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     EMBASE-SUB-D-HD-FEME..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     EMBASE-UNE-RANGEE-36..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     EMBASE-UNE-RANGEE-36..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     EMBASE-VERTICALE-DOU..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     EMBASE.-COUDE.-2-VOI..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     EMBASE.-COUDE.-2-VOI..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     EMBASE.-COUDE.-6-VOI..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     EMBASE.-COUDE.-8-VOI..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     EMBASE.-COUDE.-10-VO..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     EMBASE.-COUDE.-24-VO..> 14-Dec-2012 08:47  3.1K  
    

    [TXT]

     EMBASE.-MICROFIT.-CO..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     EMBASE.-MICROFIT.-CO..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     EMBASE.-VERTICAL.-4-..> 14-Dec-2012 08:47  3.1K  
    

    [TXT]

     EMBASE.-VERTICAL.-6-..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     EMBASE.-VERTICAL.-8-..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     EMBASE.-VERTICAL.-10..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     EMBASE.-VERTICAL.-20..> 14-Dec-2012 08:53  3.1K  
    

    [TXT]

     EMBASE.-VERTICAL.-20..> 13-Dec-2012 19:02  3.1K  
    

    [TXT]

     EMBASE.-VERTICAL.-24..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     EMBASE.-VERTICAL.-24..> 13-Dec-2012 19:01  3.1K  
    

    [TXT]

     EMBASE.2.54MM.htm       05-Jan-2013 15:12  4.4M  
    

    [TXT]

     EMBOUT-22AWG-PLASTIQ..> 14-Dec-2012 08:44  2.8K  
    

    [TXT]

     EMBOUT-38MM-BLANC-10..> 14-Dec-2012 08:44  2.8K  
    

    [TXT]

     EMBOUT-38MM-BRUN-106..> 14-Dec-2012 08:44  2.8K  
    

    [TXT]

     EMBOUT-DE-PIED-10664..> 14-Dec-2012 08:39  3.0K  
    

    [TXT]

     EMBOUT-NYLON-1.3-4-1..> 14-Dec-2012 08:44  2.8K  
    

    [TXT]

     EMBOUT-POUR-MAILLET-..> 14-Dec-2012 08:39  2.8K  
    

    [TXT]

     EMBOUT-POUR-VIS-A-FE..> 14-Dec-2012 08:42  2.8K  
    

    [TXT]

     EMETTEUR-INFRAROUGE-..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     EMETTEUR-INFRAROUGE-..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     EMETTEUR-INFRAROUGE-..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     EMETTEUR-INFRAROUGE-..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     EMETTEUR-INFRAROUGE-..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     EMETTEUR-INFRAROUGE-..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     EMETTEUR-INFRAROUGE-..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     EMETTEUR-INFRAROUGE-..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     EMETTEUR-ULTRASONIC-..> 14-Dec-2012 08:52  3.1K  
    

    [TXT]

     EMETTEUR-ULTRASONIC-..> 13-Dec-2012 19:01  3.1K  
    

    [TXT]

     EMETTEUR-ULTRASONIC-..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     EMETTEUR-ULTRASONIC-..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     EMETTEUR-ULTRASONIC-..> 13-Dec-2012 19:01  3.1K  
    

    [TXT]

     EMETTEUR-ULTRASONIC-..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     EMETTEUR-ULTRASONIC-..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     EMETTEUR-ULTRASONIC-..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     EMETTEUR-ULTRASONIC-..> 13-Dec-2012 19:02  3.1K  
    

    [TXT]

     EMETTEUR-ULTRASONIC-..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     EMETTEUR-ULTRASONIC-..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     EMETTEUR-ULTRASONIC-..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     EMETTEUR-ULTRASONIC-..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     EMETTEUR-ULTRASONIC-..> 13-Dec-2012 19:02  3.1K  
    

    [TXT]

     ENCODEUR-OPTIQUE-100..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     ENCODEUR-OPTIQUE-100..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     ENCODEUR-OPTIQUE.html   13-Dec-2012 19:02  3.2K  
    

    [TXT]

     ENGRAVER-BIT,-SOLID-..> 14-Dec-2012 08:45  2.9K  
    

    [TXT]

     ENROULEUR-IP44-15M-1..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     ENTRETOISE-SUB-D-CI-..> 14-Dec-2012 08:39  2.8K  
    

    [TXT]

     EQUERRE-108345.html     14-Dec-2012 08:42  2.8K  
    

    [TXT]

     ETIQUETTE-19-X-76.2-..> 14-Dec-2012 08:39  3.0K  
    

    [TXT]

     ETIQUETTE-STOP-10823..> 14-Dec-2012 08:39  2.9K  
    

    [TXT]

     ETIQUETTES-´LEAD-..> 14-Dec-2012 08:49  3.0K  
    

    [TXT]

     ETUI-DE-TRANSPORT-10..> 14-Dec-2012 08:42  2.8K  
    

    [TXT]

     EXTRACTEUR-105498.html  14-Dec-2012 08:45  2.8K  
    

    [TXT]

     FAISCEAU-DE-CABLES-1..> 14-Dec-2012 08:54  3.1K  
    

    [TXT]

     FAISCEAU-DE-CABLES.html 13-Dec-2012 19:02  3.1K  
    

    [TXT]

     FASQUE-D´EXTREMIT..> 14-Dec-2012 08:48  3.1K  
    

    [TXT]

     FAX-ROLL,-210MMX15M-..> 14-Dec-2012 08:50  2.7K  
    

    [TXT]

     FAX-ROLL,-210MMX30MX..> 14-Dec-2012 08:47  2.7K  
    

    [TXT]

     FAX-ROLL,-210MMX100M..> 14-Dec-2012 08:50  2.7K  
    

    [TXT]

     FEMELLE-BNC-DROITE-R..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     FER-A-SOUDER-1018758..> 14-Dec-2012 08:47  2.8K  
    

    [TXT]

     FEUILLE-ADHESIVE-101..> 14-Dec-2012 08:48  3.1K  
    

    [TXT]

     FIBRE-CUT-DISC,-22MM..> 14-Dec-2012 08:43  2.9K  
    

    [TXT]

     FIBRE-CUT-DISC,-22MM..> 14-Dec-2012 08:39  2.9K  
    

    [TXT]

     FIBRE-CUT-DISC,-38MM..> 14-Dec-2012 08:39  2.8K  
    

    [TXT]

     FICHE-2MM-BLEU-PQ5-1..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     FICHE-2MM-EMPILABLE-..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     FICHE-2MM-EMPILABLE-..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     FICHE-2MM-EMPILABLE-..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     FICHE-2MM-JAUNE-PQ5-..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     FICHE-2MM-NOIR-PQ5-1..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     FICHE-2MM-ROUGE-PQ5-..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     FICHE-2MM-VERT-PQ5-1..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     FICHE-4-POLES-FEMELL..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     FICHE-4MM-BLANC-PQ5-..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     FICHE-4MM-BLEU-PQ5-1..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     FICHE-4MM-EMPILABLE-..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     FICHE-4MM-EMPILABLE-..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     FICHE-4MM-JAUNE-PQ5-..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     FICHE-4MM-NOIRE-PROT..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     FICHE-4MM-ROUGE-PQ5-..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     FICHE-4MM-ROUGE-PQ5-..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     FICHE-6-POLES-FEMELL..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     FICHE-6-POLES-MALE-1..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     FICHE-BANANE-EMPILAB..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     FICHE-BANANE-EMPILAB..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     FICHE-BANANE-EMPILAB..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     FICHE-BNC-50-OHM-RG5..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     FICHE-BNC-50-OHM-RG2..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     FICHE-BNC-MALE-ISOLE..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     FICHE-BNC-MALE-ISOLE..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     FICHE-D-IDC-FILETE-9..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     FICHE-D-IDC-NON-FILE..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     FICHE-D-IDC-NON-FILE..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     FICHE-DE-SECURITE-1...> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     FICHE-DE-SECURITE-2M..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     FICHE-DE-SECURITE-A-..> 14-Dec-2012 08:41  3.1K  
    

    [TXT]

     FICHE-DE-SECURITE-A-..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     FICHE-DE-SECURITE-FE..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     FICHE-DE-TEST-MALE-4..> 14-Dec-2012 08:47  3.0K  
    

    [TXT]

     FICHE-DE-TEST-MALE-4..> 14-Dec-2012 08:54  3.1K  
    

    [TXT]

     FICHE-DE-TEST-MALE-4..> 13-Dec-2012 19:02  3.1K  
    

    [TXT]

     FICHE-DE-TEST-MALE-4..> 14-Dec-2012 08:47  3.0K  
    

    [TXT]

     FICHE-DE-TEST-MALE-4..> 14-Dec-2012 08:53  3.0K  
    

    [TXT]

     FICHE-DE-TEST-MALE-4..> 13-Dec-2012 19:02  3.0K  
    

    [TXT]

     FICHE-DE-TEST-MALE-N..> 14-Dec-2012 08:50  3.0K  
    

    [TXT]

     FICHE-DE-TEST-MALE-R..> 14-Dec-2012 08:54  3.0K  
    

    [TXT]

     FICHE-DE-TEST-MALE-R..> 13-Dec-2012 19:02  3.0K  
    

    [TXT]

     FICHE-DIN-41612-C64-..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     FICHE-FEM.-CMS-64-VO..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     FICHE-FEM.-CMS-64-VO..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     FICHE-FEM.-CMS-64-VO..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     FICHE-FEM.-CMS-64-VO..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     FICHE-FEMELLE-2P-107..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     FICHE-FEMELLE-3-POLE..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     FICHE-FEMELLE-3-POLE..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     FICHE-FEMELLE-3P-107..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     FICHE-FEMELLE-3V-107..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     FICHE-FEMELLE-4-POLE..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     FICHE-FEMELLE-4-POLE..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     FICHE-FEMELLE-4-POLE..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     FICHE-FEMELLE-4V-107..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     FICHE-FEMELLE-6-VOIE..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     FICHE-FEMELLE-6P-107..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     FICHE-FEMELLE-6V-107..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     FICHE-FEMELLE-6V-107..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     FICHE-FEMELLE-6V-107..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     FICHE-FEMELLE-8P-107..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     FICHE-FEMELLE-19P-10..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     FICHE-FEMELLE-22-18-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     FICHE-FEMELLE-26P-10..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     FICHE-FEMELLE-32P-10..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     FICHE-FEMELLE-90DEG-..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     FICHE-FEMELLE-90DEG-..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     FICHE-FEMELLE-90DEG-..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     FICHE-FEMELLE-A-SERT..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     FICHE-FEMELLE-BNC-BL..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     FICHE-FEMELLE-BNC-BU..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     FICHE-FEMELLE-BNC-BU..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     FICHE-FEMELLE-BNC-BU..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     FICHE-FEMELLE-BNC-CO..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     FICHE-FEMELLE-BNC-IS..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     FICHE-FEMELLE-BNC-IS..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     FICHE-FEMELLE-BNC-IS..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     FICHE-FEMELLE-BNC-IS..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     FICHE-FEMELLE-BNC-IS..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     FICHE-FEMELLE-BNC-IS..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     FICHE-FEMELLE-BNC-IS..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     FICHE-FEMELLE-BNC-IS..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     FICHE-FEMELLE-BNC-IS..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     FICHE-FEMELLE-BNC-IS..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     FICHE-FEMELLE-BNC-IS..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     FICHE-FEMELLE-BNC-IS..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     FICHE-FEMELLE-BNC-IS..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     FICHE-FEMELLE-BNC-IS..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     FICHE-FEMELLE-BNC-ST..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     FICHE-FEMELLE-BNC-ST..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     FICHE-FEMELLE-CMS-1...> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     FICHE-FEMELLE-CMS-1...> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     FICHE-FEMELLE-CMS-1...> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     FICHE-FEMELLE-CMS-1...> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     FICHE-FEMELLE-CMS-1...> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     FICHE-FEMELLE-CMS-1...> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     FICHE-FEMELLE-CMS-1...> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     FICHE-FEMELLE-CMS-SA..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     FICHE-FEMELLE-COUDEE..> 14-Dec-2012 08:45  3.1K  
    

    [TXT]

     FICHE-FEMELLE-DROITE..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     FICHE-FEMELLE-DROITE..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     FICHE-FEMELLE-DROITE..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     FICHE-FEMELLE-DROITE..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     FICHE-FEMELLE-DROITE..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     FICHE-FEMELLE-DROITE..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     FICHE-FEMELLE-MONTAG..> 14-Dec-2012 08:50  3.1K  
    

    [TXT]

     FICHE-FEMELLE-MONTAG..> 14-Dec-2012 08:45  3.0K  
    

    [TXT]

     FICHE-FEMELLE-MONTAG..> 14-Dec-2012 08:45  3.0K  
    

    [TXT]

     FICHE-FEMELLE-MONTAG..> 14-Dec-2012 08:48  3.1K  
    

    [TXT]

     FICHE-FEMELLE-MONTAG..> 14-Dec-2012 08:49  3.0K  
    

    [TXT]

     FICHE-FEMELLE-MONTAG..> 14-Dec-2012 08:45  3.0K  
    

    [TXT]

     FICHE-FEMELLE-PANNEA..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     FICHE-FEMELLE-PG7-10..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     FICHE-FEMELLE-PG8-10..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     FICHE-FEMELLE-PG8.html  13-Dec-2012 19:02  3.2K  
    

    [TXT]

     FICHE-FEMELLE-SCSI2-..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     FICHE-FEMELLE-SUB-D-..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     FICHE-FEMELLE-USB-CO..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     FICHE-FEMELLE-USB-CO..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     FICHE-FEMELLE-VERTIC..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     FICHE-IDC-D-METAL-15..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     FICHE-IDC-D-METAL-37..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     FICHE-JACK-BNC-BULKH..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     FICHE-JACK-BNC-BULKH..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     FICHE-JACK-BNC-BULKH..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     FICHE-JACK-BNC-DROIT..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     FICHE-JACK-DROITE-50..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     FICHE-JACK-DROITE-75..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     FICHE-JACK-TNC-DROIT..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     FICHE-LIBRE-MALE-8-V..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     FICHE-MALE-2P-107942..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     FICHE-MALE-2P-107956..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     FICHE-MALE-3-POLES-B..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     FICHE-MALE-3-POLES-V..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     FICHE-MALE-3V-107771..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     FICHE-MALE-4-POLES-R..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     FICHE-MALE-4MM-EMPIL..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     FICHE-MALE-4MM-EMPIL..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     FICHE-MALE-4MM-MOULE..> 14-Dec-2012 08:37  3.0K  
    

    [TXT]

     FICHE-MALE-4MM-MOULE..> 14-Dec-2012 08:42  3.0K  
    

    [TXT]

     FICHE-MALE-4MM-MOULE..> 14-Dec-2012 08:37  3.0K  
    

    [TXT]

     FICHE-MALE-4MM-MOULE..> 14-Dec-2012 08:37  3.0K  
    

    [TXT]

     FICHE-MALE-4V-107770..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     FICHE-MALE-6P-107894..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     FICHE-MALE-6V-107770..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     FICHE-MALE-6V-107771..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     FICHE-MALE-7P-107895..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     FICHE-MALE-8-POLES-J..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     FICHE-MALE-8P-107896..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     FICHE-MALE-10P-10789..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     FICHE-MALE-10P-10795..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     FICHE-MALE-12P-10789..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     FICHE-MALE-16A-IP44-..> 14-Dec-2012 08:45  3.1K  
    

    [TXT]

     FICHE-MALE-16A-IP44-..> 14-Dec-2012 08:45  3.1K  
    

    [TXT]

     FICHE-MALE-16A-IP44-..> 14-Dec-2012 08:49  3.0K  
    

    [TXT]

     FICHE-MALE-16A-IP44-..> 14-Dec-2012 08:50  3.0K  
    

    [TXT]

     FICHE-MALE-19P-10789..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     FICHE-MALE-19P-10794..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     FICHE-MALE-32A-IP44-..> 14-Dec-2012 08:48  3.0K  
    

    [TXT]

     FICHE-MALE-32A-IP44-..> 14-Dec-2012 08:50  3.0K  
    

    [TXT]

     FICHE-MALE-32A-IP44-..> 14-Dec-2012 08:49  3.0K  
    

    [TXT]

     FICHE-MALE-32P-10790..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     FICHE-MALE-90DEG-9-V..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     FICHE-MALE-90DEG-9-V..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     FICHE-MALE-90DEG-15-..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     FICHE-MALE-90DEG-25-..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     FICHE-MALE-90DEG-37-..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     FICHE-MALE-BNC-COUDE..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     FICHE-MALE-BNC-COUDE..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     FICHE-MALE-BNC-COUDE..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     FICHE-MALE-BNC-COUDE..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     FICHE-MALE-BNC-DROIT..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     FICHE-MALE-BNC-DROIT..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     FICHE-MALE-CHASSIS-2..> 14-Dec-2012 08:41  3.1K  
    

    [TXT]

     FICHE-MALE-CI-1.25MM..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     FICHE-MALE-CI-1.25MM..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     FICHE-MALE-CI-1.25MM..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     FICHE-MALE-CI-1.25MM..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     FICHE-MALE-CI-1.25MM..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     FICHE-MALE-CMS-1.25M..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     FICHE-MALE-CMS-1.25M..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     FICHE-MALE-CMS-1.25M..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     FICHE-MALE-CMS-1.25M..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     FICHE-MALE-CMS-1.25M..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     FICHE-MALE-CMS-1.25M..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     FICHE-MALE-CMS-1.25M..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     FICHE-MALE-CMS-1.25M..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     FICHE-MALE-CMS-1.25M..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     FICHE-MALE-CMS-1.25M..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     FICHE-MALE-CMS-1.25M..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     FICHE-MALE-CMS-1.25M..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     FICHE-MALE-CMS-1.25M..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     FICHE-MALE-CMS-SATA-..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     FICHE-MALE-COUDE-SAT..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     FICHE-MALE-COUDEE-TY..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     FICHE-MALE-DROITE-15..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     FICHE-MALE-DROITE-25..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     FICHE-MALE-DROITE-38..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     FICHE-MALE-DROITE-38..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     FICHE-MALE-DROITE-50..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     FICHE-MALE-DROITE-BN..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     FICHE-MALE-DROITE-BN..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     FICHE-MALE-DROITE-BN..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     FICHE-MALE-DROITE-BN..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     FICHE-MALE-DROITE-BN..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     FICHE-MALE-DROITE-BN..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     FICHE-MALE-DROITE-SA..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     FICHE-MALE-FOURCHE-4..> 14-Dec-2012 08:50  2.9K  
    

    [TXT]

     FICHE-MALE-FOURCHE-4..> 14-Dec-2012 08:53  2.9K  
    

    [TXT]

     FICHE-MALE-FOURCHE-4..> 13-Dec-2012 19:02  2.9K  
    

    [TXT]

     FICHE-MALE-LIBRE-32A..> 14-Dec-2012 08:48  3.0K  
    

    [TXT]

     FICHE-MALE-LIBRE-BLE..> 14-Dec-2012 08:50  3.0K  
    

    [TXT]

     FICHE-MALE-LIBRE-ROU..> 14-Dec-2012 08:48  3.0K  
    

    [TXT]

     FICHE-MALE-LIBRE-ROU..> 14-Dec-2012 08:45  3.0K  
    

    [TXT]

     FICHE-MALE-PANNEAU-B..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     FICHE-MALE-SMA-COUDE..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     FICHE-MALE-SMA-DROIT..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     FICHE-MALE-SMA-DROIT..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     FICHE-MALE-SMA-DROIT..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     FICHE-MALE-SMA-DROIT..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     FICHE-MALE-SMA-DROIT..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     FICHE-MALE-SMB-COUDE..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     FICHE-MALE-SUB-D-25-..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     FICHE-MALE-SUB-D-37-..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     FICHE-MALE-UHF-DROIT..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     FICHE-N-DROITE-50-OH..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     FICHE-N-DROITE-50-OH..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     FICHE-N-DROITE-50-OH..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     FICHE-NOIR-4MM-(PQ5)..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     FICHE-ROUGE-4MM-(PQ5..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     FICHE-SECU-FEMELLE-1..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     FICHE-SECU-FEMELLE-2..> 14-Dec-2012 08:36  3.1K  
    

    [TXT]

     FICHE-SECU-FEMELLE-4..> 14-Dec-2012 08:54  3.0K  
    

    [TXT]

     FICHE-SECU-FEMELLE-4..> 14-Dec-2012 08:47  3.1K  
    

    [TXT]

     FICHE-SECU-FEMELLE-4..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     FICHE-SECU-FEMELLE-4..> 13-Dec-2012 19:02  3.0K  
    

    [TXT]

     FICHE-SECU-FEMELLE-4..> 14-Dec-2012 08:50  3.0K  
    

    [TXT]

     FICHE-SECU-FEMELLE-4..> 14-Dec-2012 08:53  3.1K  
    

    [TXT]

     FICHE-SECU-FEMELLE-4..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     FICHE-SECU-FEMELLE-4..> 13-Dec-2012 19:02  3.0K  
    

    [TXT]

     FICHE-SECU-FEMELLE-4..> 14-Dec-2012 08:53  3.0K  
    

    [TXT]

     FICHE-SECU-FEMELLE-4..> 14-Dec-2012 08:54  3.1K  
    

    [TXT]

     FICHE-SECU-FEMELLE-4..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     FICHE-SECU-FEMELLE-4..> 13-Dec-2012 19:02  3.0K  
    

    [TXT]

     FICHE-SECU-FEMELLE-4..> 14-Dec-2012 08:54  3.0K  
    

    [TXT]

     FICHE-SECU-FEMELLE-4..> 14-Dec-2012 08:50  3.1K  
    

    [TXT]

     FICHE-SECU-FEMELLE-4..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     FICHE-SECU-FEMELLE-4..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     FICHE-SECU-FEMELLE-4..> 14-Dec-2012 08:50  3.0K  
    

    [TXT]

     FICHE-SECU-FEMELLE-4..> 14-Dec-2012 08:50  3.1K  
    

    [TXT]

     FICHE-SECU-FEMELLE-4..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     FICHE-SECU-FEMELLE-4..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     FICHE-SECURITE-1.5MM..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     FICHE-SECURITE-A-SER..> 14-Dec-2012 08:41  3.1K  
    

    [TXT]

     FICHE-TNC-DROITE-50-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     FIL.htm                 05-Jan-2013 15:12  3.9M  
    

    [TXT]

     FILTRE-EXTRACTION-DE..> 14-Dec-2012 08:48  3.0K  
    

    [TXT]

     FILTRE-VIDEO-CMS-AVE..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     FILTRE.htm              05-Jan-2013 15:10  3.4M  
    

    [TXT]

     FIN-DE-COURSE-103469..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     FIN-DE-COURSE-103470..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     FIN-DE-COURSE-103471..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     FIN-DE-COURSE-103473..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     FIN-DE-COURSE-103474..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     FIN-DE-COURSE-103487..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     FIN-DE-COURSE-103488..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     FIN-DE-COURSE-103489..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     FIN-DE-COURSE-103490..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     FIN-DE-COURSE-103491..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     FIN-DE-COURSE-103492..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     FIN-DE-COURSE-103493..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     FIXATION-1004149.html   14-Dec-2012 08:57  2.8K  
    

    [TXT]

     FIXATION-ADHESIVE-10..> 14-Dec-2012 08:49  3.0K  
    

    [TXT]

     FIXATION-ADHESIVE-10..> 14-Dec-2012 08:49  3.0K  
    

    [TXT]

     FIXATION-ADHESIVE-DO..> 14-Dec-2012 08:45  3.0K  
    

    [TXT]

     FIXATION-COFFRET-H=2..> 14-Dec-2012 08:46  2.9K  
    

    [TXT]

     FIXATION-MURALE--PQ-..> 14-Dec-2012 08:57  2.7K  
    

    [TXT]

     FIXATION-MURALE--PQ-..> 13-Dec-2012 19:03  2.7K  
    

    [TXT]

     FIXATION-MURALE-1022..> 14-Dec-2012 08:46  2.8K  
    

    [TXT]

     FIXATION-POUR-CAPOT-..> 14-Dec-2012 08:39  2.9K  
    

    [TXT]

     FIXATION.html           13-Dec-2012 19:03  2.8K  
    

    [TXT]

     FLAP-WHEEL,-20X10MM-..> 14-Dec-2012 08:46  2.8K  
    

    [TXT]

     FLAP-WHEEL,-30X10MM-..> 14-Dec-2012 08:43  2.8K  
    

    [TXT]

     FLASQUE-D´EXTREMI..> 14-Dec-2012 08:50  3.0K  
    

    [TXT]

     FLIPCHART,-TRIPOD-10..> 14-Dec-2012 08:43  2.7K  
    

    [TXT]

     FLIPCHART-PADS,-80GS..> 14-Dec-2012 08:45  2.7K  
    

    [TXT]

     FLOAT-COMMUT-HORIZ-1..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     FLOAT-COMMUT-HORIZ.html 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     FLOW-COMMUTATEUR-15M..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     FLOW-COMMUTATEUR-15M..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     FLOW-COMMUTATEUR-BRA..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     FLOW-COMMUTATEUR-BRA..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     FLOW-COMMUTATEUR-BRA..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     FLOW-COMMUTATEUR-BRA..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     FOND-DE-LEGENDE-VERT..> 14-Dec-2012 08:43  2.8K  
    

    [TXT]

     FORET-1-4-HSS-100579..> 14-Dec-2012 08:56  2.9K  
    

    [TXT]

     FORET-1-4-HSS.html      13-Dec-2012 19:02  2.9K  
    

    [TXT]

     FORET-1-8-HSS-100571..> 14-Dec-2012 08:56  2.9K  
    

    [TXT]

     FORET-1-8-HSS.html      13-Dec-2012 19:02  2.9K  
    

    [TXT]

     FORET-1-16HSS-100567..> 14-Dec-2012 08:54  2.9K  
    

    [TXT]

     FORET-1-16HSS.html      13-Dec-2012 19:02  2.9K  
    

    [TXT]

     FORET-3-8-HSS-100587..> 14-Dec-2012 08:57  2.9K  
    

    [TXT]

     FORET-3-8-HSS.html      13-Dec-2012 19:03  2.9K  
    

    [TXT]

     FORET-3-16HSS-100575..> 14-Dec-2012 08:57  2.9K  
    

    [TXT]

     FORET-3-16HSS.html      13-Dec-2012 19:03  2.9K  
    

    [TXT]

     FORET-3-32-HSS-10056..> 14-Dec-2012 08:54  2.9K  
    

    [TXT]

     FORET-3-32-HSS.html     13-Dec-2012 19:02  2.9K  
    

    [TXT]

     FORET-5-16HSS-100583..> 14-Dec-2012 08:54  2.9K  
    

    [TXT]

     FORET-5-16HSS.html      13-Dec-2012 19:02  2.9K  
    

    [TXT]

     FORET-5-32-HSS-10057..> 14-Dec-2012 08:54  2.9K  
    

    [TXT]

     FORET-5-32-HSS.html     13-Dec-2012 19:02  2.9K  
    

    [TXT]

     FORET-5-64-HSS-10056..> 14-Dec-2012 08:54  2.9K  
    

    [TXT]

     FORET-5-64-HSS.html     13-Dec-2012 19:02  2.9K  
    

    [TXT]

     FORET-7-16HSS-100591..> 14-Dec-2012 08:54  2.9K  
    

    [TXT]

     FORET-7-16HSS.html      13-Dec-2012 19:02  2.9K  
    

    [TXT]

     FORET-7-64-HSS-10057..> 14-Dec-2012 08:57  2.9K  
    

    [TXT]

     FORET-7-64-HSS.html     13-Dec-2012 19:03  2.9K  
    

    [TXT]

     FORET-9-64-HSS-10057..> 14-Dec-2012 08:57  2.9K  
    

    [TXT]

     FORET-9-64-HSS.html     13-Dec-2012 19:03  2.9K  
    

    [TXT]

     FORET-11-32-HSS-1005..> 14-Dec-2012 08:54  2.9K  
    

    [TXT]

     FORET-11-32-HSS.html    13-Dec-2012 19:02  2.9K  
    

    [TXT]

     FORET-11-64-HSS-1005..> 14-Dec-2012 08:56  2.9K  
    

    [TXT]

     FORET-11-64-HSS.html    13-Dec-2012 19:02  2.9K  
    

    [TXT]

     FORET-A-ETAGES-4-20M..> 14-Dec-2012 08:39  2.9K  
    

    [TXT]

     FORET-A-ETAGES-6-18M..> 14-Dec-2012 08:44  2.9K  
    

    [TXT]

     FORET-A-ETAGES-20-30..> 14-Dec-2012 08:44  2.9K  
    

    [TXT]

     FORET-BRADRAD-8-38MM..> 14-Dec-2012 08:44  2.9K  
    

    [TXT]

     FORET-BRADRAD-10-20M..> 14-Dec-2012 08:46  2.9K  
    

    [TXT]

     FORET-CONIQUE-3MM-TI..> 14-Dec-2012 08:52  2.9K  
    

    [TXT]

     FORET-CONIQUE-3MM-TI..> 13-Dec-2012 19:01  2.9K  
    

    [TXT]

     FORET-DE-MACONNERIE-..> 14-Dec-2012 08:46  2.9K  
    

    [TXT]

     FORET-DE-MACONNERIE-..> 14-Dec-2012 08:45  2.9K  
    

    [TXT]

     FORET-DE-MACONNERIE-..> 14-Dec-2012 08:41  2.9K  
    

    [TXT]

     FORET-DE-MACONNERIE-..> 14-Dec-2012 08:40  2.9K  
    

    [TXT]

     FORET-HSS-0.8MM-1042..> 14-Dec-2012 08:42  2.9K  
    

    [TXT]

     FORET-HSS-1.5MM-1007..> 14-Dec-2012 08:49  2.9K  
    

    [TXT]

     FORET-HSS-1.6MM-1007..> 14-Dec-2012 08:56  2.9K  
    

    [TXT]

     FORET-HSS-1.6MM.html    13-Dec-2012 19:02  2.9K  
    

    [TXT]

     FORET-HSS-1.8MM-1007..> 14-Dec-2012 08:52  2.9K  
    

    [TXT]

     FORET-HSS-1.8MM.html    13-Dec-2012 19:01  2.9K  
    

    [TXT]

     FORET-HSS-1MM-100716..> 14-Dec-2012 08:49  2.9K  
    

    [TXT]

     FORET-HSS-2.0MM-1007..> 14-Dec-2012 08:52  2.9K  
    

    [TXT]

     FORET-HSS-2.0MM.html    13-Dec-2012 19:01  2.9K  
    

    [TXT]

     FORET-HSS-2.05MM-100..> 14-Dec-2012 08:49  2.9K  
    

    [TXT]

     FORET-HSS-2.3MM-1007..> 14-Dec-2012 08:52  2.9K  
    

    [TXT]

     FORET-HSS-2.3MM.html    13-Dec-2012 19:01  2.9K  
    

    [TXT]

     FORET-HSS-2.9MM-1007..> 14-Dec-2012 08:52  2.9K  
    

    [TXT]

     FORET-HSS-2.9MM.html    13-Dec-2012 19:01  2.9K  
    

    [TXT]

     FORET-HSS-3.3MM-1007..> 14-Dec-2012 08:55  2.9K  
    

    [TXT]

     FORET-HSS-3.3MM.html    13-Dec-2012 19:02  2.9K  
    

    [TXT]

     FORET-HSS-3.5MM-1007..> 14-Dec-2012 08:56  2.9K  
    

    [TXT]

     FORET-HSS-3.5MM.html    13-Dec-2012 19:02  2.9K  
    

    [TXT]

     FORET-HSS-3MM-100725..> 14-Dec-2012 08:49  2.9K  
    

    [TXT]

     FORET-HSS-4.2MM-1007..> 14-Dec-2012 08:52  2.9K  
    

    [TXT]

     FORET-HSS-4.2MM.html    13-Dec-2012 19:01  2.9K  
    

    [TXT]

     FORET-HSS-4.5MM-1007..> 14-Dec-2012 08:49  2.9K  
    

    [TXT]

     FORET-HSS-5.1MM-1007..> 14-Dec-2012 08:49  2.9K  
    

    [TXT]

     FORET-HSS-5MM-100731..> 14-Dec-2012 08:56  2.9K  
    

    [TXT]

     FORET-HSS-5MM.html      13-Dec-2012 19:02  2.9K  
    

    [TXT]

     FORET-HSS-6.5MM-1007..> 14-Dec-2012 08:49  2.9K  
    

    [TXT]

     FORET-HSS-6.8MM-1007..> 14-Dec-2012 08:55  2.9K  
    

    [TXT]

     FORET-HSS-6.8MM.html    13-Dec-2012 19:02  2.9K  
    

    [TXT]

     FORET-HSS-6MM-100733..> 14-Dec-2012 08:52  2.9K  
    

    [TXT]

     FORET-HSS-6MM.html      13-Dec-2012 19:01  2.9K  
    

    [TXT]

     FORET-HSS-7.5MM-1007..> 14-Dec-2012 08:56  2.9K  
    

    [TXT]

     FORET-HSS-7.5MM.html    13-Dec-2012 19:02  2.9K  
    

    [TXT]

     FORET-HSS-7MM-100736..> 14-Dec-2012 08:55  2.9K  
    

    [TXT]

     FORET-HSS-7MM.html      13-Dec-2012 19:02  2.9K  
    

    [TXT]

     FORET-HSS-8.5MM-1007..> 14-Dec-2012 08:56  2.9K  
    

    [TXT]

     FORET-HSS-8.5MM.html    13-Dec-2012 19:02  2.9K  
    

    [TXT]

     FORET-HSS-8MM-100739..> 14-Dec-2012 08:52  2.9K  
    

    [TXT]

     FORET-HSS-8MM.html      13-Dec-2012 19:01  2.9K  
    

    [TXT]

     FORET-HSS-9.5MM-1007..> 14-Dec-2012 08:49  2.9K  
    

    [TXT]

     FORET-HSS-9MM-100741..> 14-Dec-2012 08:49  2.9K  
    

    [TXT]

     FORET-HSS-10.2MM-100..> 14-Dec-2012 08:52  2.9K  
    

    [TXT]

     FORET-HSS-10.2MM.html   13-Dec-2012 19:01  2.9K  
    

    [TXT]

     FORET-HSS-10.5MM-105..> 14-Dec-2012 08:41  2.9K  
    

    [TXT]

     FORET-HSS-10M-100743..> 14-Dec-2012 08:56  2.9K  
    

    [TXT]

     FORET-HSS-10M.html      13-Dec-2012 19:02  2.9K  
    

    [TXT]

     FORET-HSS-11.0MM-105..> 14-Dec-2012 08:45  2.9K  
    

    [TXT]

     FORET-HSS-11.5MM-105..> 14-Dec-2012 08:47  2.9K  
    

    [TXT]

     FORET-HSS-12.0MM-105..> 14-Dec-2012 08:41  2.9K  
    

    [TXT]

     FORET-HSS-12.5MM-105..> 14-Dec-2012 08:41  2.9K  
    

    [TXT]

     FORET-HSS-13.0MM-105..> 14-Dec-2012 08:41  2.9K  
    

    [TXT]

     FORET-HSS-JEU-DE-13-..> 14-Dec-2012 08:52  2.8K  
    

    [TXT]

     FORET-HSS-JEU-DE-13-..> 13-Dec-2012 19:01  2.8K  
    

    [TXT]

     FORET-HSS-JEU-DE-19-..> 14-Dec-2012 08:52  2.9K  
    

    [TXT]

     FORET-HSS-JEU-DE-19...> 13-Dec-2012 19:01  2.9K  
    

    [TXT]

     FORET-HSS-JEU-DE-25-..> 14-Dec-2012 08:52  2.9K  
    

    [TXT]

     FORET-HSS-JEU-DE-25...> 13-Dec-2012 19:01  2.8K  
    

    [TXT]

     FORET.htm               05-Jan-2013 15:10  3.6M  
    

    [TXT]

     FOURCHE-TEST-45-DEG-..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     FRAISE-CONIQUE-10067..> 14-Dec-2012 08:54  2.8K  
    

    [TXT]

     FRAISE-CONIQUE-10067..> 14-Dec-2012 08:52  2.8K  
    

    [TXT]

     FRAISE-CONIQUE-10421..> 14-Dec-2012 08:46  2.8K  
    

    [TXT]

     FRAISE-CONIQUE-MALE-..> 14-Dec-2012 08:45  2.8K  
    

    [TXT]

     FRAISE-CONIQUE.html     13-Dec-2012 19:01  2.8K  
    

    [TXT]

     FREIN-D´ECROU-BNC..> 14-Dec-2012 08:44  2.8K  
    

    [TXT]

     FRESNEL-LENTILLE-POU..> 14-Dec-2012 08:56  3.0K  
    

    [TXT]

     FRESNEL-LENTILLE-POU..> 13-Dec-2012 19:02  3.0K  
    

    [TXT]

     FUSIBLE-1A-FLUKE-106..> 14-Dec-2012 08:44  2.8K  
    

    [TXT]

     FUSIBLE-630MA-FLUKE-..> 14-Dec-2012 08:45  2.8K  
    

    [TXT]

     FUSIBLE.htm             05-Jan-2013 15:15  3.8M  
    

    [TXT]

     GAINE-ISOLANTE-1MM-N..> 14-Dec-2012 08:44  3.0K  
    

    [TXT]

     GAINE-ISOLANTE-1MM-R..> 14-Dec-2012 08:46  3.0K  
    

    [TXT]

     GAINE-ISOLANTE-2MM-B..> 14-Dec-2012 08:46  3.0K  
    

    [TXT]

     GAINE-ISOLANTE-2MM-N..> 14-Dec-2012 08:46  3.0K  
    

    [TXT]

     GAINE-ISOLANTE-2MM-R..> 14-Dec-2012 08:46  3.0K  
    

    [TXT]

     GAINE-ISOLANTE-3MM-B..> 14-Dec-2012 08:44  3.0K  
    

    [TXT]

     GAINE-ISOLANTE-3MM-G..> 14-Dec-2012 08:44  3.0K  
    

    [TXT]

     GAINE-ISOLANTE-3MM-M..> 14-Dec-2012 08:44  3.0K  
    

    [TXT]

     GAINE-ISOLANTE-3MM-N..> 14-Dec-2012 08:46  3.0K  
    

    [TXT]

     GAINE-ISOLANTE-3MM-R..> 14-Dec-2012 08:44  3.0K  
    

    [TXT]

     GAINE-ISOLANTE-4MM-B..> 14-Dec-2012 08:44  3.0K  
    

    [TXT]

     GAINE-ISOLANTE-4MM-G..> 14-Dec-2012 08:44  3.0K  
    

    [TXT]

     GAINE-ISOLANTE-4MM-G..> 14-Dec-2012 08:44  3.0K  
    

    [TXT]

     GAINE-ISOLANTE-4MM-N..> 14-Dec-2012 08:44  3.0K  
    

    [TXT]

     GAINE-ISOLANTE-4MM-R..> 14-Dec-2012 08:44  3.0K  
    

    [TXT]

     GAINE-ISOLANTE-6MM-B..> 14-Dec-2012 08:44  3.0K  
    

    [TXT]

     GAINE-ISOLANTE-6MM-G..> 14-Dec-2012 08:44  3.0K  
    

    [TXT]

     GAINE-ISOLANTE-6MM-G..> 14-Dec-2012 08:46  3.0K  
    

    [TXT]

     GAINE-ISOLANTE-6MM-N..> 14-Dec-2012 08:46  3.0K  
    

    [TXT]

     GAINE-ISOLANTE-7MM-N..> 14-Dec-2012 08:44  3.0K  
    

    [TXT]

     GAINE-ISOLANTE-8MM-N..> 14-Dec-2012 08:44  3.0K  
    

    [   ]

     GAINE-THERMO-NOIRE-3    14-Dec-2012 08:52    0   
    

    [TXT]

     GAINE-THERMO-NOIRE-3..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     GAINE-THERMO-NOIRE-3..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     GAINE-THERMO-NOIRE-3..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     GAINE-THERMO-NOIRE-3..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     GAINE-THERMO-NOIRE-3..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     GAINE-THERMO-NOIRE-3..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     GAINE-THERMO-NOIRE-3..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     GAINE-THERMO-NOIRE-3..> 14-Dec-2012 08:45  3.2K  
    

    [   ]

     GAINE-THERMO.-2         14-Dec-2012 08:52    0   
    

    [TXT]

     GAINE-THERMO.-2-1-BL..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     GAINE-THERMO.-2-1-BL..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     GAINE-THERMO.-2-1-BL..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     GAINE-THERMO.-2-1-BL..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     GAINE-THERMO.-2-1-BL..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     GAINE-THERMO.-2-1-BL..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     GAINE-THERMO.-2-1-BL..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     GAINE-THERMO.-2-1-BL..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     GAINE-THERMO.-2-1-BL..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     GAINE-THERMO.-2-1-BL..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     GAINE-THERMO.-2-1-BL..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     GAINE-THERMO.-2-1-BL..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     GAINE-THERMO.-2-1-CL..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     GAINE-THERMO.-2-1-CL..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     GAINE-THERMO.-2-1-CL..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     GAINE-THERMO.-2-1-CL..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     GAINE-THERMO.-2-1-CL..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     GAINE-THERMO.-2-1-CL..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     GAINE-THERMO.-2-1-CL..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     GAINE-THERMO.-2-1-JA..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     GAINE-THERMO.-2-1-JA..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     GAINE-THERMO.-2-1-JA..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     GAINE-THERMO.-2-1-JA..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     GAINE-THERMO.-2-1-JA..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     GAINE-THERMO.-2-1-JA..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     GAINE-THERMO.-2-1-JA..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     GAINE-THERMO.-2-1-JA..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     GAINE-THERMO.-2-1-JA..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     GAINE-THERMO.-2-1-MA..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     GAINE-THERMO.-2-1-MA..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     GAINE-THERMO.-2-1-MA..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     GAINE-THERMO.-2-1-MA..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     GAINE-THERMO.-2-1-MA..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     GAINE-THERMO.-2-1-MA..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     GAINE-THERMO.-2-1-NO..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     GAINE-THERMO.-2-1-NO..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     GAINE-THERMO.-2-1-NO..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     GAINE-THERMO.-2-1-NO..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     GAINE-THERMO.-2-1-NO..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     GAINE-THERMO.-2-1-NO..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     GAINE-THERMO.-2-1-NO..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     GAINE-THERMO.-2-1-RO..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     GAINE-THERMO.-2-1-RO..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     GAINE-THERMO.-2-1-RO..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     GAINE-THERMO.-2-1-RO..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     GAINE-THERMO.-2-1-RO..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     GAINE-THERMO.-2-1-RO..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     GAINE-THERMO.-2-1-RO..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     GAINE-THERMO.-2-1-RO..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     GAINE-THERMO.-2-1-VE..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     GAINE-THERMO.-2-1-VE..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     GAINE-THERMO.-2-1-VE..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     GAINE-THERMO.-2-1-VE..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     GAINE-THERMO.-2-1-VE..> 14-Dec-2012 08:50  3.2K  
    

    [   ]

     GAINE-THERMO.-VERT-J..> 14-Dec-2012 08:52    0   
    

    [TXT]

     GAINE-THERMO.-VERT-J..> 14-Dec-2012 08:50  3.2K  
    

    [   ]

     GAINE-THERMO.E-2        14-Dec-2012 08:55    0   
    

    [TXT]

     GAINE.htm               05-Jan-2013 15:19  3.3M  
    

    [TXT]

     GEAR-KNOB,-FLASHING,..> 14-Dec-2012 08:45  2.7K  
    

    [TXT]

     GLUE-GUN,-EURO-PLUG,..> 14-Dec-2012 08:46  2.9K  
    

    [TXT]

     GLUE-STICK,-SPARE,-7..> 14-Dec-2012 08:43  2.8K  
    

    [TXT]

     GUIDE-DE-SERTISSAGE-..> 14-Dec-2012 08:44  2.8K  
    

    [TXT]

     GUIDE-DE-SERTISSAGE-..> 14-Dec-2012 08:44  2.8K  
    

    [TXT]

     GUIDE-POUR-BROCHE-AU..> 14-Dec-2012 08:40  2.9K  
    

    [TXT]

     Galettes-Farnell.htm    12-Apr-2013 18:42  1.3M  
    

    [TXT]

     HASP,-89MM-1058002.html 14-Dec-2012 08:40  2.7K  
    

    [TXT]

     HASP,-153MM-1058004...> 14-Dec-2012 08:46  2.7K  
    

    [TXT]

     HASP,-FOR-ROUND-PADL..> 14-Dec-2012 08:44  2.8K  
    

    [TXT]

     HASP,-WITH-HINGE,-20..> 14-Dec-2012 08:40  2.7K  
    

    [TXT]

     HAUT-PARLEUR-50MM-8-..> 14-Dec-2012 08:43  3.1K  
    

    [TXT]

     HAUT-PARLEUR-66MM-8-..> 14-Dec-2012 08:46  3.1K  
    

    [TXT]

     HAUT-PARLEUR-85MM-8-..> 14-Dec-2012 08:43  3.1K  
    

    [TXT]

     HAUT-PARLEUR-ANTI-VA..> 14-Dec-2012 08:46  2.8K  
    

    [TXT]

     HAUT-PARLEUR-BLANC-1..> 14-Dec-2012 08:46  3.0K  
    

    [TXT]

     HEAD-TORCH,-RECHARGE..> 14-Dec-2012 08:53  2.8K  
    

    [TXT]

     HEAD-TORCH,-RECHARGE..> 13-Dec-2012 19:01  2.8K  
    

    [TXT]

     HEADSET,-Y-TRAINING-..> 14-Dec-2012 08:40  2.7K  
    

    [TXT]

     HORLOGE-TEMPS-REEL-1..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     HYGROMETER,-THERMO,-..> 14-Dec-2012 08:56  3.0K  
    

    [TXT]

     HYGROMETER,-THERMO,-..> 13-Dec-2012 19:03  3.0K  
    

    [TXT]

     IC,-8BIT-FLASH-MCU,-..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     IC,-8BIT-FLASH-MCU,-..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     IC,-8BIT-FLASH-MCU,-..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     IC-8-BIT-CMOS-MCU-10..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     IC-8-BIT-EEPROM-MCU-..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     IC-8-BIT-MCU-OTP-108..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     IC-8-BIT-MCU-OTP-108..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     IC-CMOS-OP-AMP-10842..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     IC-CMOS-SCC-8MHZ-108..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     IC-CMS-8-BIT-CMOS-MC..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     IC-CMS-8-BIT-MCU-108..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     IC-CMS-8-BIT-MCU-108..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     IC-CMS-CMOS-SCC-8MHZ..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     IC-CMS-COUNTER-TIMER..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     IC-COMMS-CONTROLLER-..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     IC-CPU-(Z80B)-108187..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     IC-DART-Z80B-1081863..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     IC-PIO-Z80---8MHZ-10..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     IC-SIO-O-Z80-6MHZ-10..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     IC-SM-SMPS-20W-SMART..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     IDENTI-TAIL-TPE-BRN-..> 14-Dec-2012 08:45  2.8K  
    

    [TXT]

     IDENTI-TAIL-TPE-GRY-..> 14-Dec-2012 08:45  2.8K  
    

    [TXT]

     INDICATEUR-CHARGE-BA..> 14-Dec-2012 08:45  3.0K  
    

    [TXT]

     INDICATEUR-CHARGE-BA..> 14-Dec-2012 08:45  3.0K  
    

    [TXT]

     INDICATEUR-CHARGE-BA..> 14-Dec-2012 08:49  3.0K  
    

    [TXT]

     INDICATEUR-CHARGE-BA..> 14-Dec-2012 08:49  3.0K  
    

    [TXT]

     INDICATEUR-CHARGE-BA..> 14-Dec-2012 08:48  3.0K  
    

    [TXT]

     INDICATEUR-CORPS-CAR..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     INDICATEUR-CORPS-RON..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     INDICATEUR-DE-TENSIO..> 14-Dec-2012 08:45  3.0K  
    

    [TXT]

     INDICATEUR-DE-TENSIO..> 14-Dec-2012 08:48  3.0K  
    

    [TXT]

     INDICATEUR-DIN48-10A..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     INDICATEUR-DIN48-25A..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     INDICATEUR-DIN48-300..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     INDICATEUR-DIN72-5A-..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     INDICATEUR-DIN72-5A-..> 14-Dec-2012 08:45  3.1K  
    

    [TXT]

     INDICATEUR-DIN72-10A..> 14-Dec-2012 08:50  3.1K  
    

    [TXT]

     INDICATEUR-DIN72-10A..> 14-Dec-2012 08:45  3.1K  
    

    [TXT]

     INDICATEUR-DIN72-10V..> 14-Dec-2012 08:50  3.1K  
    

    [TXT]

     INDICATEUR-DIN72-30A..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     INDICATEUR-DIN72-40V..> 14-Dec-2012 08:48  3.1K  
    

    [TXT]

     INDICATEUR-DIN72-45-..> 14-Dec-2012 08:48  3.1K  
    

    [TXT]

     INDICATEUR-DIN72-50A..> 14-Dec-2012 08:50  3.1K  
    

    [TXT]

     INDICATEUR-DIN72-50A..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     INDICATEUR-DIN72-60V..> 14-Dec-2012 08:50  3.1K  
    

    [TXT]

     INDICATEUR-DIN72-150..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     INDICATEUR-DIN72-150..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     INDICATEUR-DIN72-300..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     INDICATEUR-DIN72-500..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     INDICATEUR-DIN72-SUR..> 14-Dec-2012 08:48  3.1K  
    

    [TXT]

     INDICATEUR-DIN72-SUR..> 14-Dec-2012 08:50  3.1K  
    

    [TXT]

     INDICATEUR-DIN72-SUR..> 14-Dec-2012 08:45  3.1K  
    

    [TXT]

     INDICATEUR-METAL-DIA..> 14-Dec-2012 08:39  3.0K  
    

    [TXT]

     INDICATEUR-PRO-DIN72..> 14-Dec-2012 08:50  3.1K  
    

    [TXT]

     INDICATEUR-PRO-DIN72..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     INDUCTANCE-0.01MH-10..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     INDUCTANCE-0.015MH-1..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     INDUCTANCE-0.022MH-1..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     INDUCTANCE-0.033MH-1..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     INDUCTANCE-0.047MH-1..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     INDUCTANCE-0.068MH-1..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     INDUCTANCE-0.1MH-107..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     INDUCTANCE-0.15MH-10..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     INDUCTANCE-0.33MH-10..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     INDUCTANCE-0.47MH-10..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     INDUCTANCE-0.68MH-10..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     INDUCTANCE-1.0MH-1.6..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     INDUCTANCE-1.0MH-107..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     INDUCTANCE-4.7MH-107..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     INDUCTANCE-10MH-1077..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     INDUCTANCE-15MH-1077..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     INDUCTANCE-22MH-1077..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     INDUCTANCE-22UH-11A-..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     INDUCTANCE-33MH-1077..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     INDUCTANCE-47MH-1077..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     INDUCTANCE-47UH-8.5A..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     INDUCTANCE-68MH-1077..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     INDUCTANCE-68UH-6.2A..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     INDUCTANCE-100UH-5.4..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     INDUCTANCE-100UH-7.8..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     INDUCTANCE-150UH-4.0..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     INDUCTANCE-220UH-3.5..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     INDUCTANCE-220UH-5.5..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     INDUCTANCE-300H-3.0A..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     INDUCTANCE-330UH-2.8..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     INDUCTANCE-330UH-4.5..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     INDUCTANCE-470UH-2.3..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     INDUCTANCE-470UH-4.0..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     INDUCTANCE-680UH-2.0..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     INDUCTANCE-2200UH-0...> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     INDUCTANCE.htm          05-Jan-2013 15:30  4.2M  
    

    [TXT]

     INDUCTOR.htm            05-Jan-2013 16:07  3.6M  
    

    [TXT]

     INLET,-240V,-WALL-MO..> 14-Dec-2012 08:49  2.9K  
    

    [TXT]

     INLET,-415V,-WALL-MO..> 14-Dec-2012 08:49  2.9K  
    

    [TXT]

     INLET,-415V,-WALL-MO..> 14-Dec-2012 08:48  2.9K  
    

    [TXT]

     INS-TAPE-50MM-X-33M-..> 14-Dec-2012 08:49  2.9K  
    

    [TXT]

     INTERFACE-BUS-CAN-CM..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     INTERFACE-DE-LIGNE-P..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     INTERRUPTEUR-A-PEDAL..> 14-Dec-2012 08:46  2.9K  
    

    [TXT]

     INTERRUPTEUR-ON-OFF-..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     INTERRUPTEUR-ON-OFF-..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     INTERRUPTEUR-ON-OFF-..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     INTERRUPTEUR-ON-OFF-..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     INTERRUPTEUR-POUSSOI..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     INTERRUPTEUR-REED-10..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     INTERRUPTEUR-REED-10..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     INTERRUPTEUR-REED-10..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     INTERRUPTEUR-REED-10..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     INTERRUPTEUR-REED-20..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     INTERRUPTEUR-REED-20..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     INTERRUPTEUR-SELECTE..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     INTERRUPTEUR-SPDT-A-..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     INTERRUPTEUR-SPDT-A-..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     INTERRUPTEUR-SPDT-A-..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     INTERRUPTEUR-SPDT-A-..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     INTERRUPTEUR-SPNO-10..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     INTERRUPTEUR-SPNO-10..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     INTERRUPTEUR-SPNO-CH..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     INTERRUPTEUR-SPNO-RO..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     INTERRUPTEUR-SPNO-VE..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     INTERRUPTEUR-THERMIQ..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     INTERRUPTEUR-THERMIQ..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     INTERRUPTEUR-THERMIQ..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     INTERRUPTEUR-THERMIQ..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     INTERRUPTEUR-THERMIQ..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     INTERRUPTEUR-THERMIQ..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     INTERRUPTEUR-THERMIQ..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     INTERRUPTEUR-THERMIQ..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     INTERRUPTEUR-THERMIQ..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     INTERRUPTEUR-THERMIQ..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     INTERRUPTEUR-THERMIQ..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     INTERRUPTEUR-THERMIQ..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     INTERRUPTEUR-THERMIQ..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     INTERRUPTEUR-THERMIQ..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     INTERRUPTEUR-THERMIQ..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     INTERRUPTEUR-THERMIQ..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     INTERRUPTEUR-THERMIQ..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     INTERRUPTEUR-THERMIQ..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     INTERRUPTEUR-THERMIQ..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     INTERRUPTEUR-THERMIQ..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     INTERRUPTEUR-THERMIQ..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     INTERRUPTEUR-THERMIQ..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     ISOLATEUR-NUMERIQUE-..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     ISOLATEUR-NUMERIQUE-..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     ISOLATEUR-NUMERIQUE-..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     ISOLATEUR-NUMERIQUE-..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     ISOLATEUR-NUMERIQUE-..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     ISOLATEUR-NUMERIQUE-..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     ISOPROPANOL-1LTR-106..> 14-Dec-2012 08:39  2.8K  
    

    [TXT]

     JEU-DE-CALES-1.5-A-2..> 14-Dec-2012 08:42  2.9K  
    

    [TXT]

     JEU-DE-FORETS-TUNGST..> 14-Dec-2012 08:46  3.0K  
    

    [TXT]

     JEU-DE-FORETS-TUNGST..> 14-Dec-2012 08:46  3.0K  
    

    [TXT]

     JEU-DE-FORETS-TUNGST..> 14-Dec-2012 08:43  3.0K  
    

    [TXT]

     JEU-DE-FORETS-TUNGST..> 14-Dec-2012 08:43  3.0K  
    

    [TXT]

     JEU-DE-FORETS-TUNGST..> 14-Dec-2012 08:43  3.0K  
    

    [TXT]

     JEU-DE-PINCES-105412..> 14-Dec-2012 08:41  2.8K  
    

    [TXT]

     KEY-CHAIN-RECORDER-1..> 14-Dec-2012 08:47  2.7K  
    

    [TXT]

     KEYBOARD,-COMPACT,-C..> 14-Dec-2012 08:43  2.9K  
    

    [TXT]

     KIT-ADAPTATEUR-DE-FE..> 14-Dec-2012 08:50  2.9K  
    

    [TXT]

     KIT-COSSES-PLASTI-GR..> 14-Dec-2012 08:47  2.8K  
    

    [TXT]

     KIT-CPC5-SERRE-CABLE..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     KIT-CPC6-LARGE-ENTRE..> 14-Dec-2012 08:45  3.1K  
    

    [TXT]

     KIT-D´EVALUATION-..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     KIT-DE-BUSES-NZKT-1-..> 14-Dec-2012 08:48  2.8K  
    

    [TXT]

     KIT-DE-BUSES-NZKT-2-..> 14-Dec-2012 08:45  2.8K  
    

    [TXT]

     KIT-DE-CONDENSATEUR-..> 14-Dec-2012 08:52  2.9K  
    

    [TXT]

     KIT-DE-CONDENSATEUR-..> 13-Dec-2012 19:01  2.9K  
    

    [TXT]

     KIT-DE-CONNECTEURS-P..> 14-Dec-2012 08:54  2.8K  
    

    [TXT]

     KIT-DE-CONNECTEURS-P..> 14-Dec-2012 08:56  2.8K  
    

    [TXT]

     KIT-DE-CONNECTEURS-P..> 14-Dec-2012 08:56  2.8K  
    

    [TXT]

     KIT-DE-CONNECTEURS-P..> 13-Dec-2012 19:02  2.8K  
    

    [TXT]

     KIT-DE-DEVELOPPEMENT..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     KIT-DE-FIXATION-SERI..> 14-Dec-2012 08:48  2.8K  
    

    [TXT]

     KIT-DE-FIXATION-SERI..> 14-Dec-2012 08:45  2.8K  
    

    [TXT]

     KIT-DE-FIXATION-SERI..> 14-Dec-2012 08:48  2.8K  
    

    [TXT]

     KIT-DE-FIXATION-SERI..> 14-Dec-2012 08:50  2.8K  
    

    [TXT]

     KIT-DE-RADCCORDEMENT..> 14-Dec-2012 08:56  3.1K  
    

    [TXT]

     KIT-DE-RADCCORDEMENT..> 14-Dec-2012 08:54  3.0K  
    

    [TXT]

     KIT-DE-RADCCORDEMENT..> 13-Dec-2012 19:02  3.0K  
    

    [TXT]

     KIT-DE-TEST-2MM-1011..> 14-Dec-2012 08:53  3.0K  
    

    [TXT]

     KIT-DE-TEST-2MM.html    13-Dec-2012 19:02  3.0K  
    

    [TXT]

     KIT-DE-TEST-DE-SECUR..> 14-Dec-2012 08:47  3.1K  
    

    [TXT]

     KIT-DE-TEST-DE-SECUR..> 14-Dec-2012 08:54  3.0K  
    

    [TXT]

     KIT-DE-TEST-DE-SECUR..> 13-Dec-2012 19:02  3.0K  
    

    [TXT]

     KIT-DE-TEST-MICRO-10..> 14-Dec-2012 08:47  3.0K  
    

    [TXT]

     KIT-EPOXY-1015688.html  14-Dec-2012 08:49  2.8K  
    

    [TXT]

     KIT-MOTEUR-3-PH-24V-..> 14-Dec-2012 08:42  3.0K  
    

    [TXT]

     KIT-SOUDAGE-106601.html 14-Dec-2012 08:46  2.8K  
    

    [TXT]

     KIT.htm                 05-Jan-2013 16:07  3.0M  
    

    [TXT]

     LAME-DE-SCIE-105788...> 14-Dec-2012 08:44  2.9K  
    

    [TXT]

     LAME-DE-SCIE-PQ10-10..> 14-Dec-2012 08:56  2.9K  
    

    [TXT]

     LAME-DE-SCIE-PQ10.html  13-Dec-2012 19:03  2.9K  
    

    [TXT]

     LAME-DE-SCIE-SAUTEUS..> 14-Dec-2012 08:41  3.0K  
    

    [TXT]

     LAME-DE-SCIE-SAUTEUS..> 14-Dec-2012 08:45  3.0K  
    

    [TXT]

     LAME-DE-SCIE-SAUTEUS..> 14-Dec-2012 08:41  3.0K  
    

    [TXT]

     LAME-DE-SCIE-SAUTEUS..> 14-Dec-2012 08:47  3.0K  
    

    [TXT]

     LAME-DE-SCIE-SAUTEUS..> 14-Dec-2012 08:45  3.0K  
    

    [TXT]

     LAME-POUR-SCIE-A-MET..> 14-Dec-2012 08:52  3.0K  
    

    [TXT]

     LAME-POUR-SCIE-A-MET..> 13-Dec-2012 19:01  3.0K  
    

    [TXT]

     LAME-REVERSIBLE-2.0N..> 14-Dec-2012 08:41  2.9K  
    

    [TXT]

     LAME-REVERSIBLE-4.0H..> 14-Dec-2012 08:39  2.9K  
    

    [TXT]

     LAMPE-LOUPE-+-LENTIL..> 14-Dec-2012 08:41  2.9K  
    

    [TXT]

     LAMPE-LOUPE-9W-ESD-S..> 14-Dec-2012 08:46  2.9K  
    

    [TXT]

     LAMPE-TUBE-18W-AWDCE..> 14-Dec-2012 08:45  3.0K  
    

    [TXT]

     LAMPE-TUBE-ETANCHE-R..> 14-Dec-2012 08:46  2.9K  
    

    [TXT]

     LAMPE-UNIVERSELLE-36..> 14-Dec-2012 08:46  2.9K  
    

    [TXT]

     LAMPHOLDER,-BC,-PERP..> 14-Dec-2012 08:42  3.0K  
    

    [TXT]

     LAMPHOLDER,-PENDANT,..> 14-Dec-2012 08:42  2.9K  
    

    [TXT]

     LAMPHOLDER,-PENDANT-..> 14-Dec-2012 08:42  2.9K  
    

    [TXT]

     LEAD,-EXTENSION,-6-4..> 14-Dec-2012 08:39  3.0K  
    

    [TXT]

     LED--5MM-ROUGE-HE-10..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     LED--5MM-YELL.-10455..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     LED-1.8MM-JAUNE-1045..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     LED-1.8MM-ROUGE-1045..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     LED-1.8MM-ROUGE-HE-1..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     LED-1.8MM-VERT-10454..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     LED-3MM-12V-ROUGE-HE..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     LED-3MM-AMBRE-100313..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     LED-3MM-AMBRE.html      13-Dec-2012 19:03  3.2K  
    

    [TXT]

     LED-3MM-BLEU-1003308..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-3MM-BLEU.html       13-Dec-2012 19:03  3.2K  
    

    [TXT]

     LED-3MM-JAUNE-50-DEG..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-3MM-JAUNE-50-DEG..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     LED-3MM-JAUNE-100319..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     LED-3MM-JAUNE-100320..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-3MM-JAUNE-100320..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-3MM-JAUNE-104546..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     LED-3MM-JAUNE-104547..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     LED-3MM-JAUNE-104550..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     LED-3MM-JAUNE.html      13-Dec-2012 19:03  3.2K  
    

    [TXT]

     LED-3MM-ORANGE-10033..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-3MM-ORANGE-10454..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     LED-3MM-ORANGE.html     13-Dec-2012 19:03  3.2K  
    

    [TXT]

     LED-3MM-R-BLANC-25DE..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     LED-3MM-R-BLANC-60DE..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     LED-3MM-R-BLEU-15DEG..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     LED-3MM-R-ROUGE-34DE..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     LED-3MM-R-UV-30DEG-1..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     LED-3MM-ROUGE-50DEG-..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     LED-3MM-ROUGE-50DEG...> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     LED-3MM-ROUGE-100313..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-3MM-ROUGE-100320..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-3MM-ROUGE-100320..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     LED-3MM-ROUGE-100320..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-3MM-ROUGE-100321..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-3MM-ROUGE-104537..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     LED-3MM-ROUGE-104547..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     LED-3MM-ROUGE-104547..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     LED-3MM-ROUGE-HE-100..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-3MM-ROUGE-HE-100..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-3MM-ROUGE-HE-100..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     LED-3MM-ROUGE-HE-100..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-3MM-ROUGE-HE-104..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     LED-3MM-ROUGE-HE-104..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     LED-3MM-ROUGE-HE-104..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     LED-3MM-ROUGE-HE-104..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     LED-3MM-ROUGE-HE-104..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     LED-3MM-ROUGE-HE-104..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     LED-3MM-ROUGE-HE.html   13-Dec-2012 19:02  3.2K  
    

    [TXT]

     LED-3MM-ROUGE.html      13-Dec-2012 19:03  3.2K  
    

    [TXT]

     LED-3MM-VERT-2-10032..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-3MM-VERT-2.html     13-Dec-2012 19:03  3.2K  
    

    [TXT]

     LED-3MM-VERT-50-DEG-..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-3MM-VERT-50-DEG...> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     LED-3MM-VERT-1003199..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     LED-3MM-VERT-1003204..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-3MM-VERT-1003375..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-3MM-VERT-1003391..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-3MM-VERT-1045459..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     LED-3MM-VERT-1045460..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     LED-3MM-VERT-1045466..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     LED-3MM-VERT-1045469..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     LED-3MM-VERT-1045505..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     LED-3MM-VERT.html       13-Dec-2012 19:03  3.2K  
    

    [TXT]

     LED-5MM-AMBRE-100313..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-5MM-AMBRE-100314..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-5MM-AMBRE-100314..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-5MM-AMBRE-100314..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     LED-5MM-AMBRE-100316..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-5MM-AMBRE-100316..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-5MM-AMBRE.html      13-Dec-2012 19:03  3.2K  
    

    [TXT]

     LED-5MM-BLEU-1003309..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-5MM-BLEU.html       13-Dec-2012 19:03  3.2K  
    

    [TXT]

     LED-5MM-BLUE-1045418..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     LED-5MM-JAUNE-5V-100..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-5MM-JAUNE-5V.html   13-Dec-2012 19:03  3.2K  
    

    [TXT]

     LED-5MM-JAUNE-50DEG-..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     LED-5MM-JAUNE-50DEG...> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     LED-5MM-JAUNE-90DEG-..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-5MM-JAUNE-90DEG...> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     LED-5MM-JAUNE-100321..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-5MM-JAUNE-100321..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-5MM-JAUNE-100322..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-5MM-JAUNE-100323..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     LED-5MM-JAUNE-100341..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-5MM-JAUNE-100342..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-5MM-JAUNE-104547..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     LED-5MM-JAUNE-104548..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     LED-5MM-JAUNE-104551..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     LED-5MM-JAUNE.html      13-Dec-2012 19:02  3.2K  
    

    [TXT]

     LED-5MM-ORANGE-10032..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     LED-5MM-ORANGE-10034..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     LED-5MM-ORANGE-10034..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-5MM-ORANGE.html     13-Dec-2012 19:02  3.2K  
    

    [TXT]

     LED-5MM-OVALE-AMBRE-..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-5MM-OVALE-AMBRE...> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     LED-5MM-OVALE-ROUGE-..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-5MM-OVALE-ROUGE...> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     LED-5MM-R-BLANC-50DE..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     LED-5MM-R-BLEU-45DEG..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     LED-5MM-R-ROUGE-20DE..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     LED-5MM-R-UV-30DEG-1..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     LED-5MM-ROUGE-50DEG-..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     LED-5MM-ROUGE-50DEG...> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     LED-5MM-ROUGE-90DEG-..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-5MM-ROUGE-90DEG...> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     LED-5MM-ROUGE-100313..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     LED-5MM-ROUGE-100315..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-5MM-ROUGE-100315..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     LED-5MM-ROUGE-100317..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     LED-5MM-ROUGE-100317..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-5MM-ROUGE-100322..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-5MM-ROUGE-100322..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-5MM-ROUGE-100322..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-5MM-ROUGE-100323..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-5MM-ROUGE-100323..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-5MM-ROUGE-100323..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-5MM-ROUGE-100331..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-5MM-ROUGE-100332..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-5MM-ROUGE-100332..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     LED-5MM-ROUGE-100332..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-5MM-ROUGE-104537..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     LED-5MM-ROUGE-104548..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     LED-5MM-ROUGE-104548..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     LED-5MM-ROUGE-HE-2-1..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-5MM-ROUGE-HE-2.html 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     LED-5MM-ROUGE-HE-5V-..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-5MM-ROUGE-HE-5V...> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     LED-5MM-ROUGE-HE-12V..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-5MM-ROUGE-HE-12V..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     LED-5MM-ROUGE-HE-100..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-5MM-ROUGE-HE-100..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-5MM-ROUGE-HE-100..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-5MM-ROUGE-HE-100..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-5MM-ROUGE-HE-100..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     LED-5MM-ROUGE-HE-100..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-5MM-ROUGE-HE-104..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     LED-5MM-ROUGE-HE-104..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     LED-5MM-ROUGE-HE-104..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     LED-5MM-ROUGE-HE-104..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     LED-5MM-ROUGE-HE-104..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     LED-5MM-ROUGE-HE-104..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     LED-5MM-ROUGE-HE-104..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     LED-5MM-ROUGE-HE-VER..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-5MM-ROUGE-HE-VER..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     LED-5MM-ROUGE-HE.html   13-Dec-2012 19:02  3.2K  
    

    [TXT]

     LED-5MM-ROUGE.html      13-Dec-2012 19:02  3.2K  
    

    [TXT]

     LED-5MM-TRICOLOR-104..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     LED-5MM-VERT-5V-1003..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-5MM-VERT-5V.html    13-Dec-2012 19:03  3.2K  
    

    [TXT]

     LED-5MM-VERT-50DEG-1..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-5MM-VERT-50DEG.html 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     LED-5MM-VERT-90DEG-1..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-5MM-VERT-90DEG.html 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     LED-5MM-VERT-1003214..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     LED-5MM-VERT-1003218..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-5MM-VERT-1003226..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-5MM-VERT-1003234..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-5MM-VERT-1003420..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     LED-5MM-VERT-1003421..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-5MM-VERT-1045476..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     LED-5MM-VERT-1045482..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     LED-5MM-VERT-1045483..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     LED-5MM-VERT-1045509..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     LED-5MM-VERT.html       13-Dec-2012 19:02  3.2K  
    

    [TXT]

     LED-CMS-BLANC-105837..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     LED-CMS-BLEU-120DEG-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     LED-CMS-BOITIER-0603..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     LED-CMS-BOITIER-0603..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     LED-CMS-BOITIER-0603..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     LED-CMS-BOITIER-0603..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     LED-CMS-BOITIER-0603..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     LED-CMS-BOITIER-0603..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     LED-CMS-BOITIER-0603..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     LED-CMS-BOITIER-PLCC..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     LED-CMS-BOITIER-PLCC..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     LED-CMS-BOITIER-PLCC..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     LED-CMS-BOITIER-PLCC..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     LED-CMS-BOITIER-PLCC..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     LED-CMS-BOITIER-PLCC..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     LED-CMS-BOITIER-PLCC..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     LED-CMS-BOITIER-PLCC..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     LED-CMS-BOITIER-PLCC..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     LED-CMS-BOITIER-PLCC..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     LED-CMS-BOITIER-PLCC..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     LED-CMS-BOITIER-PLCC..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     LED-CMS-BOITIER-PLCC..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     LED-CMS-BOITIER-PLCC..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     LED-CMS-BOITIER-PLCC..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     LED-CMS-BOITIER-PLCC..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     LED-CMS-BOITIER-PLCC..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     LED-CMS-BOITIER-PLCC..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     LED-CMS-BOITIER-PLCC..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     LED-CMS-BOITIER-PLCC..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     LED-CMS-BOITIER-PLCC..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     LED-CMS-BOITIER-PLCC..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     LED-CMS-JAUNE-100335..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-CMS-JAUNE.html      13-Dec-2012 19:03  3.2K  
    

    [TXT]

     LED-CMS-ORANGE-10583..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     LED-CMS-ROUGE-100335..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-CMS-ROUGE-HE-100..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     LED-CMS-ROUGE-HE-105..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     LED-CMS-ROUGE-HE.html   13-Dec-2012 19:02  3.2K  
    

    [TXT]

     LED-CMS-ROUGE-JAUNE-..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     LED-CMS-ROUGE-JAUNE-..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     LED-CMS-ROUGE.html      13-Dec-2012 19:03  3.2K  
    

    [TXT]

     LED-CMS-VERT-1003359..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-CMS-VERT.html       13-Dec-2012 19:03  3.2K  
    

    [TXT]

     LED-RECTANGULAIRE-H...> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-RECTANGULAIRE-H...> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     LED-RECTANGULAIRE-JA..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-RECTANGULAIRE-JA..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-RECTANGULAIRE-JA..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     LED-RECTANGULAIRE-RO..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     LED-RECTANGULAIRE-RO..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     LED-RECTANGULAIRE-RO..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     LED-RECTANGULAIRE-RO..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     LED-RECTANGULAIRE-RO..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     LED-RECTANGULAIRE-VE..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     LED-RECTANGULAIRE-VE..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     LED-RECTANGULAIRE-VE..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-RECTANGULAIRE-VE..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     LED-SUBMINIATURE--RO..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-SUBMINIATURE--RO..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-SUBMINIATURE--RO..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     LED-SUBMINIATURE-AMB..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-SUBMINIATURE-AMB..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     LED-SUBMINIATURE-JAU..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-SUBMINIATURE-JAU..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-SUBMINIATURE-JAU..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     LED-SUBMINIATURE-JAU..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     LED-SUBMINIATURE-ROU..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-SUBMINIATURE-ROU..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-SUBMINIATURE-ROU..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-SUBMINIATURE-ROU..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-SUBMINIATURE-ROU..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-SUBMINIATURE-ROU..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     LED-SUBMINIATURE-ROU..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     LED-SUBMINIATURE-ROU..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     LED-SUBMINIATURE-ROU..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     LED-SUBMINIATURE-VER..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-SUBMINIATURE-VER..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-SUBMINIATURE-VER..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     LED-SUBMINIATURE.VER..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     LED-SUBMINIATURE.VER..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     LED-TO-46-UV-100DEG-..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     LED.htm                 05-Jan-2013 16:07  3.6M  
    

    [TXT]

     LEGENDE-JEU-B-102830..> 14-Dec-2012 08:46  2.8K  
    

    [TXT]

     LENTILLE-AMBRE-10823..> 14-Dec-2012 08:39  2.9K  
    

    [TXT]

     LENTILLE-BLEUE-10823..> 14-Dec-2012 08:41  2.9K  
    

    [TXT]

     LENTILLE-CARREE-AMBR..> 14-Dec-2012 08:43  2.9K  
    

    [TXT]

     LENTILLE-ROUGE-10823..> 14-Dec-2012 08:41  2.9K  
    

    [TXT]

     LENTILLE-ROUGE-10823..> 14-Dec-2012 08:41  2.9K  
    

    [TXT]

     LENTILLE-ROUGE-DIA.-..> 14-Dec-2012 08:43  2.9K  
    

    [TXT]

     LENTILLE-TRANSPARENT..> 14-Dec-2012 08:41  2.9K  
    

    [TXT]

     LENTILLE-TRANSPARENT..> 14-Dec-2012 08:43  2.9K  
    

    [TXT]

     LENTILLE-TRANSPARENT..> 14-Dec-2012 08:41  2.9K  
    

    [TXT]

     LENTILLE-VERTE-10823..> 14-Dec-2012 08:43  2.9K  
    

    [TXT]

     LENTILLE-VERTE-10823..> 14-Dec-2012 08:43  2.9K  
    

    [TXT]

     LENTILLE-VERTE-10823..> 14-Dec-2012 08:39  2.9K  
    

    [TXT]

     LEVIER-DE-COMMUTATEU..> 14-Dec-2012 08:48  2.8K  
    

    [TXT]

     LIMIT-SWITCH,-EX-PRO..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     LINE-CORD,-6-4WAY,-B..> 14-Dec-2012 08:46  3.0K  
    

    [TXT]

     LINE-CORD,-6-6WAY,-B..> 14-Dec-2012 08:46  3.0K  
    

    [TXT]

     LINE-CORD,-8-8WAY,-B..> 14-Dec-2012 08:44  3.0K  
    

    [TXT]

     LOADED-DISPENSER,-CO..> 14-Dec-2012 08:37  3.0K  
    

    [TXT]

     LOCALISATEUR-DE-CABL..> 14-Dec-2012 08:47  3.0K  
    

    [TXT]

     LOGIC.htm               05-Jan-2013 16:06  4.4M  
    

    [TXT]

     LUMINAIRE,-3-ARM,-IP..> 14-Dec-2012 08:36  2.9K  
    

    [TXT]

     Liste-farnell.html      14-Dec-2012 08:58  842K  
    

    [TXT]

     MACHINE-VICE,-MULTI-..> 14-Dec-2012 08:39  2.9K  
    

    [TXT]

     MACHINE-VICE,-MULTI-..> 14-Dec-2012 08:43  2.9K  
    

    [TXT]

     MACHINE-VICE,-STEEL,..> 14-Dec-2012 08:46  2.9K  
    

    [TXT]

     MACHINE-VICE-1075579..> 14-Dec-2012 08:46  2.9K  
    

    [TXT]

     MACHOIRE-D´ETAU-1..> 14-Dec-2012 08:46  2.9K  
    

    [TXT]

     MAGNETISEUR-DE-TOURN..> 14-Dec-2012 08:41  2.9K  
    

    [TXT]

     MAGNIFIER,-LUMINAIRE..> 14-Dec-2012 08:41  2.9K  
    

    [TXT]

     MAGNIFIER,-LUMINAIRE..> 14-Dec-2012 08:46  2.9K  
    

    [TXT]

     MAILLET-NYLON-106554..> 14-Dec-2012 08:39  2.8K  
    

    [TXT]

     MAILLET-NYLON-106555..> 14-Dec-2012 08:39  2.8K  
    

    [TXT]

     MAINS-DISTRIBUTION,-..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     MAINS-LEAD,-25M,-IP4..> 14-Dec-2012 08:39  3.1K  
    

    [TXT]

     MAINS-SOCKET,-1GANG-..> 14-Dec-2012 08:38  3.0K  
    

    [TXT]

     MAINS-SOCKET,-CIRCUL..> 14-Dec-2012 08:42  2.9K  
    

    [TXT]

     MAINS-SOCKET-&-MOUNT..> 14-Dec-2012 08:42  3.0K  
    

    [TXT]

     MANCHON-AUTO-SOUDANT..> 14-Dec-2012 08:41  2.8K  
    

    [TXT]

     MANCHON-POUR-CONNECT..> 14-Dec-2012 08:45  2.9K  
    

    [TXT]

     MANCHON-POUR-CONNECT..> 14-Dec-2012 08:47  2.9K  
    

    [TXT]

     MANCHON-POUR-CONNECT..> 14-Dec-2012 08:45  2.9K  
    

    [TXT]

     MANCHON-SCELLEMENT-1..> 14-Dec-2012 08:41  2.8K  
    

    [TXT]

     MANCHONS-EN-PLASTIQU..> 14-Dec-2012 08:41  2.8K  
    

    [TXT]

     MANCHONS-EN-PLASTIQU..> 14-Dec-2012 08:39  2.8K  
    

    [TXT]

     MATRICE-M2.5-HSS-105..> 14-Dec-2012 08:44  2.8K  
    

    [TXT]

     MATRICE-M5-HSS-10566..> 14-Dec-2012 08:47  2.8K  
    

    [TXT]

     MCU.htm                 05-Jan-2013 16:06  3.7M  
    

    [TXT]

     MEMOIRE-FLASH-CMS-BO..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     MEMOIRE-FLASH-CMS-TO..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     MEMOIRE-FLASH-SERIE-..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     MEMOIRE-SRAM-4MB-512..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     MEMOIRE.htm             05-Jan-2013 16:04  4.1M  
    

    [TXT]

     METRAL-FEMELLE-30V-1..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     MICRO-8-BITS-32K-FLA..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     MICRO-8-BITS-8051-FL..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     MICRO-8-BITS-8051-FL..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     MICRO-8-BITS-8051-FL..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     MICRO-8-BITS-8051-FL..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     MICRO-8-BITS-8051-FL..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     MICRO-8-BITS-FLASH-8..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     MICRO-COMPOUND-TABLE..> 14-Dec-2012 08:39  2.8K  
    

    [TXT]

     MICRO-MILLER,-EURO-P..> 14-Dec-2012 08:46  2.9K  
    

    [TXT]

     MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     MICROCONTROLEUR-8-BI..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     MICROCONTROLEUR-8BIT..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     MICROCONTROLEUR-32BI..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     MICROCONTROLEUR-CMOS..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     MICROCONTROLEUR-CMOS..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     MICROCONTROLEUR-CMOS..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     MICROCONTROLEUR-CMOS..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     MICROCONTROLEUR-CMOS..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     MICROCONTROLEUR-CMOS..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     MICROCONTROLEUR-CMOS..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     MICROCONTROLEUR-CMOS..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     MICROCONTROLEUR-CMOS..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     MICROCONTROLEUR-CMOS..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     MICROCONTROLEUR-CMOS..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     MICROCONTROLEUR-CMOS..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     MICROCONTROLEUR-CMOS..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     MICROCONTROLEUR-CMOS..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     MICROCONTROLEUR-CMOS..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     MICROCONTROLEUR-CMS-..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     MICROCONTROLEUR-CMS-..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     MICROCONTROLEUR-CMS-..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     MICROCONTROLEUR-CMS-..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     MICROCONTROLEUR-CMS-..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     MICROCONTROLEUR-CMS-..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     MICROCONTROLEUR-FLAS..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     MICROCONTROLEUR-FLAS..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     MICROCONTROLEUR-Z80-..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     MICROCONTROLEUR-Z80-..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     MICROCONTROLEUR.htm     05-Jan-2013 16:35  4.1M  
    

    [TXT]

     MICROMATCH.-4-VOIES...> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     MICROMATCH.-4-VOIES...> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     MICROMATCH.-6-VOIES...> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     MICROMATCH.-6-VOIES...> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     MICROMATCH.-8-VOIES...> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     MICROMATCH.-8-VOIES...> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     MICROMATCH.-10-VOIES..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     MICROMATCH.-10-VOIES..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     MICROMATCH.-10-VOIES..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     MICROMATCH.-12-VOIES..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     MICROMATCH.-14-VOIES..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     MICROMATCH.-14-VOIES..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     MICROMATCH.-16-VOIES..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     MICROMATCH.-16-VOIES..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     MICROMATCH.-16-VOIES..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     MICROMATCH.-18-VOIES..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     MICROMATCH.-18-VOIES..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     MICROMATCH.-20-VOIES..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     MICROMETRE-106718.html  14-Dec-2012 08:39  3.0K  
    

    [TXT]

     MICROPHONE,-DISCRETE..> 14-Dec-2012 08:48  3.1K  
    

    [TXT]

     MICRORUPTEUR-103368...> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     MICRORUPTEUR-103443...> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     MICRORUPTEUR-103444...> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     MICRORUPTEUR-103445...> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     MILLER,-TUNGSTEN-CAR..> 14-Dec-2012 08:39  3.0K  
    

    [TXT]

     MILLER,-TUNGSTEN-CAR..> 14-Dec-2012 08:39  3.0K  
    

    [TXT]

     MILLER,-TUNGSTEN-CAR..> 14-Dec-2012 08:39  3.0K  
    

    [TXT]

     MILLER,-TUNGSTEN-CAR..> 14-Dec-2012 08:46  2.9K  
    

    [TXT]

     MILLING-BIT-SET,-TUN..> 14-Dec-2012 08:46  2.9K  
    

    [TXT]

     MILLING-BIT-SET,-TUN..> 14-Dec-2012 08:43  2.9K  
    

    [TXT]

     MILLING-DRILL-SET,-T..> 14-Dec-2012 08:43  3.0K  
    

    [TXT]

     MILLING-DRILL-SET,-T..> 14-Dec-2012 08:39  3.0K  
    

    [TXT]

     MILLING-DRILLING-MAC..> 14-Dec-2012 08:43  3.1K  
    

    [TXT]

     MILLING-SET,-TUNGSTE..> 14-Dec-2012 08:39  2.9K  
    

    [TXT]

     MILLING-SET,-TUNGSTE..> 14-Dec-2012 08:43  2.9K  
    

    [TXT]

     MODEL-BUILDING-ENGRA..> 14-Dec-2012 08:43  3.1K  
    

    [TXT]

     MODELLERS-SET,-13PC-..> 14-Dec-2012 08:39  3.0K  
    

    [TXT]

     MODULE-A-LED-1003245..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     MODULE-A-LED-1003255..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     MODULE-A-LED-JAUNE-1..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     MODULE-A-LED-JAUNE-1..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     MODULE-A-LED-JAUNE-1..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     MODULE-A-LED-JAUNE-1..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     MODULE-A-LED-JAUNE.html 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     MODULE-A-LED-ROUGE-H..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     MODULE-A-LED-ROUGE-H..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     MODULE-A-LED-ROUGE-H..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     MODULE-A-LED-ROUGE-H..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     MODULE-A-LED-VERT-10..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     MODULE-A-LED-VERT-10..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     MODULE-A-LED-VERT-10..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     MODULE-A-LED-VERT-10..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     MODULE-A-LED-VERT-10..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     MODULE-A-LED-VERT.html  13-Dec-2012 19:02  3.2K  
    

    [TXT]

     MODULE-A-LED.html       13-Dec-2012 19:03  3.2K  
    

    [TXT]

     MODULE-DE-PUISSANCE-..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     MODULE-DE-PUISSANCE-..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     MODULE-DE-PUISSANCE-..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     MODULE-DRIVER-DE-PUI..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     MODULE-DRIVER-DE-PUI..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     MODULE-HORLOGE-0.4-3..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     MODULE-HORLOGE-0.4-3..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     MODULE-HORLOGE-0.56-..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     MODULE-HORLOGE-0.56-..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     MODULE-HORLOGE-0.56-..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     MODULE-HORLOGE-0.56-..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     MODULE-HORLOGE-0.56-..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     MODULE-HORLOGE-0.56-..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     MODULE-HORLOGE-0.56-..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     MODULE-HORLOGE-0.56-..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     MODULE-HORLOGE-0.56-..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     MODULE-HORLOGE-14-SE..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     MODULE-HORLOGE-14-SE..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     MODULE-HORLOGE-14-SE..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     MODULE-HORLOGE-14-SE..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     MODULE-LCD-COULEUR-T..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     MODULE-LCD-MONO-STN-..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     MODULE-MULTIMODE-AVE..> 14-Dec-2012 08:46  2.8K  
    

    [TXT]

     MODULE-RELAIS-12VCC-..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     MODULE-RELAIS-24VCC-..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     MODULE-RELAIS-24VCC-..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     MODULE-SCR-DIODE-38A..> 14-Dec-2012 08:44  3.1K  
    

    [TXT]

     MODULE-SMART-POWER-1..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     MODULE-THYRISTOR-58A..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     MODULE-THYRISTOR-58A..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     MODULE-THYRISTOR-82A..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     MODULE-THYRISTOR-95A..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     MODULE-TIMER-MULTIFO..> 14-Dec-2012 08:46  2.9K  
    

    [TXT]

     MOLETTE-FENDUE-BLEU-..> 14-Dec-2012 08:41  2.8K  
    

    [TXT]

     MOLETTE-FENDUE-NOIR-..> 14-Dec-2012 08:39  2.8K  
    

    [TXT]

     MOLETTE-FENDUE-ROUGE..> 14-Dec-2012 08:42  2.8K  
    

    [TXT]

     MOLETTE-FENDUE-VERTE..> 14-Dec-2012 08:42  2.8K  
    

    [TXT]

     MOTEUR-PAS-A-PAS-1.8..> 14-Dec-2012 08:53  3.0K  
    

    [TXT]

     MOTEUR-PAS-A-PAS-1.8..> 13-Dec-2012 19:02  3.0K  
    

    [TXT]

     MOTEUR-PAS-A-PAS-1.8..> 14-Dec-2012 08:53  3.1K  
    

    [TXT]

     MOTEUR-PAS-A-PAS-1.8..> 13-Dec-2012 19:02  3.1K  
    

    [TXT]

     MOTEUR-PAS-A-PAS-57M..> 14-Dec-2012 08:53  3.0K  
    

    [TXT]

     MOTEUR-PAS-A-PAS-57M..> 13-Dec-2012 19:02  3.0K  
    

    [TXT]

     MOTEUR-PAS-A-PAS-PAN..> 14-Dec-2012 08:53  3.0K  
    

    [TXT]

     MOTEUR-PAS-A-PAS-PAN..> 13-Dec-2012 19:02  3.0K  
    

    [TXT]

     MOTEUR-PAS-A-PAS-PAN..> 14-Dec-2012 08:47  3.0K  
    

    [TXT]

     MOTEUR-PAS-A-PAS-PAN..> 14-Dec-2012 08:54  3.0K  
    

    [TXT]

     MOTEUR-PAS-A-PAS-PAN..> 14-Dec-2012 08:54  3.0K  
    

    [TXT]

     MOTEUR-PAS-A-PAS-PAN..> 14-Dec-2012 08:53  3.0K  
    

    [TXT]

     MOTEUR-PAS-A-PAS-PAN..> 13-Dec-2012 19:02  3.0K  
    

    [TXT]

     MOTEUR-PAS-A-PAS-PAN..> 14-Dec-2012 08:50  3.0K  
    

    [TXT]

     MOUNTING-BOX,-16MM,-..> 14-Dec-2012 08:43  3.0K  
    

    [TXT]

     MOUNTING-BOX,-25MM,-..> 14-Dec-2012 08:43  3.1K  
    

    [TXT]

     MOUNTING-BOX,-25MM,-..> 14-Dec-2012 08:45  3.0K  
    

    [TXT]

     MOUNTING-BOX,-35MM,-..> 14-Dec-2012 08:45  3.1K  
    

    [TXT]

     MOUNTING-BOX,-35MM,-..> 14-Dec-2012 08:43  3.1K  
    

    [TXT]

     MOUNTING-BOX,-47MM,-..> 14-Dec-2012 08:43  3.1K  
    

    [TXT]

     MOUNTING-BOX,-DRY-LI..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     MP3-PLAYER,-128MB,-R..> 14-Dec-2012 08:48  3.0K  
    

    [   ]

     MULITPLEXEUR-CMS-RAP..> 14-Dec-2012 08:52    0   
    

    [TXT]

     MULITPLEXEUR-CMS-RAP..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     MULTIMETRE-NUMERIQUE..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     MULTIMETRE-NUMERIQUE..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     MULTIPLEXEUR-2-CANAU..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     MULTIPLEXEUR-8-CANAU..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     MULTIPLEXEUR-8-CANAU..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     MULTIPLEXEUR-8-CANAU..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     MULTIPLEXEUR-8-CANAU..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     MULTIPLEXEUR-8-CANAU..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     MULTIPLEXEUR-8-CANAU..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     MULTIPLEXEUR-16-CANA..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     MULTIPLEXEUR-CMS-4-C..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     MULTIPLEXEUR-CMS-4-C..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     MULTIPLEXEUR-CMS-4-C..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     MULTIPLEXEUR-CMS-8-C..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     MULTIPLEXEUR-CMS-DOU..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     MULTIPRISE-EURO-X2-1..> 14-Dec-2012 08:41  3.1K  
    

    [TXT]

     MULTIPRISE-EURO-X2-1..> 14-Dec-2012 08:41  3.1K  
    

    [TXT]

     MUX-8CH-SP-CMS-SOIC1..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     N-CHANNEL-MOSFET,-60..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     NIPPER,-DIAGONAL-CUT..> 14-Dec-2012 08:43  3.0K  
    

    [TXT]

     NIPPER,-DIAGONAL-CUT..> 14-Dec-2012 08:48  3.0K  
    

    [TXT]

     NIPPER,-DIAGONAL-CUT..> 14-Dec-2012 08:46  3.0K  
    

    [TXT]

     NIPPER,-H-L-DIAGONAL..> 14-Dec-2012 08:46  3.1K  
    

    [TXT]

     NIPPER,-H-L-DIAGONAL..> 14-Dec-2012 08:46  3.1K  
    

    [TXT]

     OPTOCOUPLER,-LOGIC-G..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-CMS-2.0..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-CMS-2.0..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-CMS-20M..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-CMS-102..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-CMS-102..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-CMS-102..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-CMS-104..> 14-Dec-2012 08:46  3.1K  
    

    [TXT]

     OPTOCOUPLEUR-CMS-104..> 14-Dec-2012 08:46  3.1K  
    

    [TXT]

     OPTOCOUPLEUR-CMS-104..> 14-Dec-2012 08:48  3.1K  
    

    [TXT]

     OPTOCOUPLEUR-CMS-AC-..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-CMS-DOU..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-CMS-DOU..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-CMS-DOU..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-CMS-DOU..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-CMS-DOU..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-CMS-SOR..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-CMS-SOR..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-CMS-SOR..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-CMS-SOR..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-CMS-SOR..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-CMS-SOR..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-CMS-SOR..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-CMS-SOR..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-CMS-SOR..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-CMS-SOR..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-CMS-SOR..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-CMS-SOR..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-CMS-SOR..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-CMS-SOR..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-CMS-SOR..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-CMS-SOR..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-CMS-SOR..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-CMS-SOR..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-CMS-SOR..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-CMS-TRI..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-CMS-TRI..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-DOUBLE-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-DOUBLE-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-DOUBLE-..> 14-Dec-2012 08:47  3.1K  
    

    [TXT]

     OPTOCOUPLEUR-DOUBLE-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-DOUBLE-..> 14-Dec-2012 08:44  3.1K  
    

    [TXT]

     OPTOCOUPLEUR-DOUBLE-..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-DOUBLE-..> 14-Dec-2012 08:44  3.1K  
    

    [TXT]

     OPTOCOUPLEUR-DOUBLE-..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-DOUBLE-..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-DRIVER-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-DRIVER-..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-DRIVER-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-DRIVER-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-DRIVER-..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-DRIVER-..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-DRIVER-..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-DRIVER-..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-DRIVER-..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-DRIVER-..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-DRIVER-..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-DRIVER-..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-DRIVER-..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-DRIVER-..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-DRIVER-..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-ENTREE-..> 14-Dec-2012 08:48  3.1K  
    

    [TXT]

     OPTOCOUPLEUR-H-V-SOR..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-QUAD-10..> 14-Dec-2012 08:46  3.1K  
    

    [TXT]

     OPTOCOUPLEUR-QUAD-SO..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:48  3.1K  
    

    [TXT]

     OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:48  3.1K  
    

    [TXT]

     OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:48  3.1K  
    

    [TXT]

     OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:48  3.1K  
    

    [TXT]

     OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:44  3.1K  
    

    [TXT]

     OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:44  3.1K  
    

    [TXT]

     OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:44  3.1K  
    

    [TXT]

     OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:47  3.0K  
    

    [TXT]

     OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:49  3.0K  
    

    [TXT]

     OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:47  3.0K  
    

    [TXT]

     OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:47  3.1K  
    

    [TXT]

     OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:47  3.0K  
    

    [TXT]

     OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:48  3.0K  
    

    [TXT]

     OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:46  3.1K  
    

    [TXT]

     OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-SORTIE-..> 14-Dec-2012 08:46  3.1K  
    

    [TXT]

     OPTOCOUPLEUR-TRIGGER..> 14-Dec-2012 08:48  3.1K  
    

    [TXT]

     OPTOCOUPLEUR-TRIGGER..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     OPTOCOUPLEUR-TRIGGER..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     OPTOCOUPLEUR-TRIGGER..> 14-Dec-2012 08:48  3.1K  
    

    [TXT]

     OPTOCOUPLEUR-TRIGGER..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-TRIGGER..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-TRIGGER..> 14-Dec-2012 08:47  3.1K  
    

    [TXT]

     OPTOCOUPLEUR-TRIGGER..> 14-Dec-2012 08:47  3.1K  
    

    [TXT]

     OPTOCOUPLEUR-TRIGGER..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-TRIGGER..> 14-Dec-2012 08:44  3.1K  
    

    [TXT]

     OPTOCOUPLEUR-TRIGGER..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-Z-X-DRI..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-Z-X-DRI..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-Z-X-DRI..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     OPTOCOUPLEUR-Z-X-DRI..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     OSCILLOSCOPE-TYPE-ST..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     OSCILLOSCOPE-TYPE-ST..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     OUTIL-D´EXTRACTIO..> 14-Dec-2012 08:36  2.8K  
    

    [TXT]

     OUTIL-D´INSERTION..> 14-Dec-2012 08:36  2.7K  
    

    [TXT]

     OUTIL-INSTALLATION-S..> 14-Dec-2012 08:45  2.8K  
    

    [TXT]

     PADLOCK,-BRASS,-40MM..> 14-Dec-2012 08:40  2.9K  
    

    [TXT]

     PADLOCK,-BRASS,-60MM..> 14-Dec-2012 08:44  2.9K  
    

    [TXT]

     PADLOCK,-BRASS,-70MM..> 14-Dec-2012 08:40  2.9K  
    

    [TXT]

     PADLOCK,-BRASS-L-SHA..> 14-Dec-2012 08:46  2.9K  
    

    [TXT]

     PADLOCK,-COMBINATION..> 14-Dec-2012 08:46  2.9K  
    

    [TXT]

     PADLOCK,-HIGH-SECURI..> 14-Dec-2012 08:44  3.0K  
    

    [TXT]

     PADLOCK,-HIGH-SECURI..> 14-Dec-2012 08:44  2.9K  
    

    [TXT]

     PANNE-106602.html       14-Dec-2012 08:39  2.9K  
    

    [TXT]

     PANNE-106603.html       14-Dec-2012 08:46  2.9K  
    

    [TXT]

     PANNE-106604.html       14-Dec-2012 08:44  2.9K  
    

    [TXT]

     PANNE-107793.html       14-Dec-2012 08:45  2.9K  
    

    [TXT]

     PANNE-107794.html       14-Dec-2012 08:42  2.9K  
    

    [TXT]

     PANNE-107795.html       14-Dec-2012 08:43  2.9K  
    

    [TXT]

     PANNE-109155.html       14-Dec-2012 08:38  2.9K  
    

    [TXT]

     PANNE-DE-FER-108518...> 14-Dec-2012 08:39  3.0K  
    

    [TXT]

     PAPER-ROLL,-1PLY,-37..> 14-Dec-2012 08:50  2.7K  
    

    [TXT]

     PAPER-ROLL,-1PLY,-44..> 14-Dec-2012 08:53  2.7K  
    

    [TXT]

     PAPER-ROLL,-1PLY,-44..> 13-Dec-2012 19:01  2.7K  
    

    [TXT]

     PAPER-ROLL,-THERMAL,..> 14-Dec-2012 08:47  2.7K  
    

    [TXT]

     PAPER-ROLL,-THERMAL,..> 14-Dec-2012 08:47  2.7K  
    

    [TXT]

     PATE-DE-REFROIDISSEM..> 14-Dec-2012 08:45  3.0K  
    

    [TXT]

     PATTE-SUPPORT-PQ50-1..> 14-Dec-2012 08:46  2.8K  
    

    [TXT]

     PAVE-NUMERIQUE-12-TO..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     PAVE-NUMERIQUE-12-TO..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     PHOTODIODE-1045425.html 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     PHOTODIODE-1045427.html 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     PHOTODIODE-FILTRE-IR..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     PHOTOTRANSISTOR-T1-1..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     PHOTOTRANSISTOR-T1-1..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     PHOTOTRANSISTOR-T1-1..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     PHOTOTRANSISTOR-T1.3..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     PHOTOTRANSISTOR-T1.3..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     PHOTOTRANSISTOR-T3-4..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     PICOT-DE-POLARISATIO..> 14-Dec-2012 08:47  2.8K  
    

    [TXT]

     PIED-MAGNETIQUE-1051..> 14-Dec-2012 08:41  2.8K  
    

    [TXT]

     PIEZO-BUZZER,-12VDC,..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     PIEZO-BUZZER,-12VDC,..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     PIEZO-BUZZER,-12VDC,..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     PIEZO-BUZZER,-12VDC,..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     PIEZO-BUZZER,-12VDC,..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     PIEZO-TRANSDUCER,-5V..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     PIEZO-TRANSDUCER,-9V..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     PIEZO-TRANSDUCER,-15..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     PILE-ALCALINE-ULTRA+..> 14-Dec-2012 08:57  3.1K  
    

    [TXT]

     PILE-ALCALINE-ULTRA+..> 13-Dec-2012 19:03  3.1K  
    

    [TXT]

     PILE-ALCALINE-ULTRA+..> 14-Dec-2012 08:57  3.1K  
    

    [TXT]

     PILE-ALCALINE-ULTRA+..> 13-Dec-2012 19:03  3.1K  
    

    [TXT]

     PILE-ALCALINE-ULTRA+..> 14-Dec-2012 08:57  3.1K  
    

    [TXT]

     PILE-ALCALINE-ULTRA+..> 13-Dec-2012 19:03  3.1K  
    

    [TXT]

     PILE-ALCALINE-ULTRA+..> 14-Dec-2012 08:57  3.1K  
    

    [TXT]

     PILE-ALCALINE-ULTRA+..> 13-Dec-2012 19:03  3.1K  
    

    [TXT]

     PILES-CARBONE-ZINC-3..> 14-Dec-2012 08:48  3.1K  
    

    [TXT]

     PILES-CARBONE-ZINC-9..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     PILES-CARBONE-ZINC-A..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     PILES-CARBONE-ZINC-A..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     PILES-CARBONE-ZINC-C..> 14-Dec-2012 08:44  3.1K  
    

    [TXT]

     PILES-CARBONE-ZINC-D..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     PINCE-120MM-1014382...> 14-Dec-2012 08:45  2.9K  
    

    [TXT]

     PINCE-140MM-1014381...> 14-Dec-2012 08:50  2.9K  
    

    [TXT]

     PINCE-A-DENUDER-16MM..> 14-Dec-2012 08:40  2.9K  
    

    [TXT]

     PINCE-A-DENUDER-1072..> 14-Dec-2012 08:46  2.8K  
    

    [TXT]

     PINCE-A-SERTIR-10583..> 14-Dec-2012 08:44  2.8K  
    

    [TXT]

     PINCE-A-SERTIR-10599..> 14-Dec-2012 08:44  2.7K  
    

    [TXT]

     PINCE-A-SERTIR-10632..> 14-Dec-2012 08:46  2.7K  
    

    [TXT]

     PINCE-A-SERTIR-10632..> 14-Dec-2012 08:44  2.7K  
    

    [TXT]

     PINCE-ANTISTATIQUE-1..> 14-Dec-2012 08:45  3.0K  
    

    [TXT]

     PINCE-ANTISTATIQUE-1..> 14-Dec-2012 08:45  2.9K  
    

    [TXT]

     PINCE-ANTISTATIQUE-1..> 14-Dec-2012 08:49  3.0K  
    

    [TXT]

     PINCE-ANTISTATIQUE-1..> 14-Dec-2012 08:49  3.0K  
    

    [TXT]

     PINCE-ANTISTATIQUE-1..> 14-Dec-2012 08:50  3.0K  
    

    [TXT]

     PINCE-ANTISTATIQUE-1..> 14-Dec-2012 08:49  2.9K  
    

    [TXT]

     PINCE-ANTISTATIQUE-1..> 14-Dec-2012 08:50  3.0K  
    

    [TXT]

     PINCE-BRUCELLE-110MM..> 14-Dec-2012 08:50  2.9K  
    

    [TXT]

     PINCE-BRUCELLE-120MM..> 14-Dec-2012 08:45  2.9K  
    

    [TXT]

     PINCE-BRUCELLE-120MM..> 14-Dec-2012 08:50  2.9K  
    

    [TXT]

     PINCE-BRUCELLE-120MM..> 14-Dec-2012 08:49  2.9K  
    

    [TXT]

     PINCE-BRUCELLE-120MM..> 14-Dec-2012 08:45  2.9K  
    

    [TXT]

     PINCE-BRUCELLE-125MM..> 14-Dec-2012 08:45  2.9K  
    

    [TXT]

     PINCE-BRUCELLE-125MM..> 14-Dec-2012 08:49  2.9K  
    

    [TXT]

     PINCE-BRUCELLE-ERGON..> 14-Dec-2012 08:50  2.9K  
    

    [TXT]

     PINCE-BRUCELLE-ERGON..> 14-Dec-2012 08:50  2.9K  
    

    [TXT]

     PINCE-BRUCELLE-ERGON..> 14-Dec-2012 08:50  2.9K  
    

    [TXT]

     PINCE-BRUCELLE-ERGON..> 14-Dec-2012 08:50  2.9K  
    

    [TXT]

     PINCE-BRUCELLE-ERGON..> 14-Dec-2012 08:45  2.9K  
    

    [TXT]

     PINCE-BRUCELLE-ERGON..> 14-Dec-2012 08:50  2.9K  
    

    [TXT]

     PINCE-BRUCELLE-ERGON..> 14-Dec-2012 08:50  2.9K  
    

    [TXT]

     PINCE-BRUCELLE-PTFE-..> 14-Dec-2012 08:50  2.9K  
    

    [TXT]

     PINCE-BRUCELLE-REVER..> 14-Dec-2012 08:50  2.9K  
    

    [TXT]

     PINCE-BRUCELLE-REVER..> 14-Dec-2012 08:49  2.9K  
    

    [TXT]

     PINCE-COUPANTE-10871..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     PINCE-CROCODILE-4MM-..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     PINCE-DE-TEST-2MM-NO..> 14-Dec-2012 08:50  3.0K  
    

    [TXT]

     PINCE-DE-TEST-2MM-RE..> 14-Dec-2012 08:47  3.0K  
    

    [TXT]

     PINCE-DE-TEST-4MM-10..> 14-Dec-2012 08:54  3.1K  
    

    [TXT]

     PINCE-DE-TEST-4MM.html  13-Dec-2012 19:02  3.1K  
    

    [TXT]

     PINCE-MULTIPRISE-105..> 14-Dec-2012 08:46  2.9K  
    

    [TXT]

     PINCE-MULTIPRISE-105..> 14-Dec-2012 08:44  2.9K  
    

    [TXT]

     PINCE-MULTIPRISE-108..> 14-Dec-2012 08:42  2.8K  
    

    [TXT]

     PINCE-PLATE-165MM-IS..> 14-Dec-2012 08:40  2.9K  
    

    [TXT]

     PINCEAU-109150.html     14-Dec-2012 08:38  2.8K  
    

    [TXT]

     PIR-AUTODIALER-&-ALA..> 14-Dec-2012 08:47  2.7K  
    

    [TXT]

     PIR-HAUTE-LIGHT-IMMU..> 14-Dec-2012 08:54  3.1K  
    

    [TXT]

     PIR-HAUTE-LIGHT-IMMU..> 13-Dec-2012 19:02  3.1K  
    

    [TXT]

     PISTOLET-A-DESSOUDER..> 14-Dec-2012 08:54  2.8K  
    

    [TXT]

     PISTOLET-A-DESSOUDER..> 14-Dec-2012 08:57  2.8K  
    

    [TXT]

     PISTOLET-A-DESSOUDER..> 13-Dec-2012 19:02  2.8K  
    

    [TXT]

     PISTOLET-APPLICATEUR..> 14-Dec-2012 08:38  2.7K  
    

    [TXT]

     PLAQUETTE-DE-FIXATIO..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     PLAQUETTE-DE-FIXATIO..> 14-Dec-2012 08:45  3.1K  
    

    [TXT]

     PLATINE-CHASSIS-1004..> 14-Dec-2012 08:57  2.9K  
    

    [TXT]

     PLATINE-CHASSIS-1004..> 14-Dec-2012 08:57  2.9K  
    

    [TXT]

     PLATINE-CHASSIS-1004..> 14-Dec-2012 08:56  2.9K  
    

    [TXT]

     PLATINE-CHASSIS-1004..> 14-Dec-2012 08:56  2.9K  
    

    [TXT]

     PLATINE-CHASSIS.html    13-Dec-2012 19:02  2.9K  
    

    [TXT]

     PLIER,-WATER-PUMP,-1..> 14-Dec-2012 08:48  2.9K  
    

    [TXT]

     PLUG,-6MM,-PANEL-108..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     PLUG,-SAFETY,-13A,-W..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     PLUG,-TOUGHPLUG,-13A..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     PLUG,-TOUGHPLUG,-13A..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     PLUG-MAINS,-SWITCHED..> 14-Dec-2012 08:39  3.1K  
    

    [TXT]

     POIGNÉES-(PAIRE)..> 14-Dec-2012 08:49  2.8K  
    

    [TXT]

     POIGNÉES-(PAIRE)..> 14-Dec-2012 08:45  2.8K  
    

    [TXT]

     POIGNÉES-(PAIRE)..> 14-Dec-2012 08:50  2.9K  
    

    [TXT]

     POIGNÉES-(PAIRE)..> 14-Dec-2012 08:49  2.9K  
    

    [TXT]

     POIGNÉES-(PAIRE)..> 14-Dec-2012 08:49  2.9K  
    

    [TXT]

     POIGNÉES-(PAIRE)..> 14-Dec-2012 08:45  2.9K  
    

    [TXT]

     POIGNÉES-(PAIRE)..> 14-Dec-2012 08:49  2.9K  
    

    [TXT]

     POIGNEE-BI-MATIERE-U..> 14-Dec-2012 08:55  3.0K  
    

    [TXT]

     POIGNEE-BI-MATIERE-U..> 13-Dec-2012 19:02  3.0K  
    

    [TXT]

     POIGNEE-DE-CABLE-101..> 14-Dec-2012 08:48  3.0K  
    

    [TXT]

     POIGNEE-DE-LIME-75MM..> 14-Dec-2012 08:41  3.0K  
    

    [TXT]

     POIGNEE-DE-LIME-100M..> 14-Dec-2012 08:45  3.0K  
    

    [TXT]

     POIGNEE-DE-LIME-125M..> 14-Dec-2012 08:41  3.0K  
    

    [TXT]

     POIGNEES-(PAIRE),-PE..> 14-Dec-2012 08:49  2.9K  
    

    [TXT]

     POIGNEES-(PAIRE),-PE..> 14-Dec-2012 08:50  2.9K  
    

    [TXT]

     POIGNEES-(PAIRE),-PE..> 14-Dec-2012 08:50  2.9K  
    

    [TXT]

     POLISHING-SET,-10PC-..> 14-Dec-2012 08:43  2.9K  
    

    [TXT]

     POMPE-A-DESSOUDER-10..> 14-Dec-2012 08:40  2.8K  
    

    [TXT]

     PONT-REDRESSEUR-4A-4..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     PONT-REDRESSEUR-8A-1..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     PONT-REDRESSEUR-8A-2..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     PONT-REDRESSEUR-8A-6..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     PONT-REDRESSEUR-8A-8..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     PONT-REDRESSEUR-25A-..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     PONT-REDRESSEUR-25A-..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     PONT-REDRESSSEUR-40A..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     PONT-REDRESSSEUR-40A..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     PORTE-FUSIBLE-5X20MM..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     PORTE-FUSIBLE-FPG1-I..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     POWER-FACTOR-CORRECT..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     PRECISION-REFERENCE-..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     PRISE-DE-MISE-A-LA-T..> 14-Dec-2012 08:36  2.9K  
    

    [TXT]

     PRISE-DE-MISE-A-LA-T..> 14-Dec-2012 08:39  2.9K  
    

    [TXT]

     PRISE-FEMELLE-SMA-DR..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     PRISE-MURALE-16A-240..> 14-Dec-2012 08:45  3.0K  
    

    [TXT]

     PRISE-MURALE-ROUGE-4..> 14-Dec-2012 08:45  3.0K  
    

    [TXT]

     PRISE-MURALE-ROUGE-4..> 14-Dec-2012 08:48  2.9K  
    

    [TXT]

     PROBE,-OSCILLOSCOPE-..> 14-Dec-2012 08:47  2.8K  
    

    [TXT]

     PROCESSEUR-UNIVERSEL..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     PROFILE-ALUMINIUM-10..> 14-Dec-2012 08:56  3.1K  
    

    [TXT]

     PROFILE-ALUMINIUM.html  13-Dec-2012 19:03  3.1K  
    

    [TXT]

     PROLONGATEUR-650DEG-..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     PROLONGATEUR-LIBRE-3..> 14-Dec-2012 08:45  3.0K  
    

    [TXT]

     PROLONGATEUR-LIBRE-B..> 14-Dec-2012 08:49  3.0K  
    

    [TXT]

     PROLONGATEUR-LIBRE-B..> 14-Dec-2012 08:45  2.9K  
    

    [TXT]

     PROLONGATEUR-LIBRE-R..> 14-Dec-2012 08:50  3.0K  
    

    [TXT]

     PROLONGATEUR-LIBRE-R..> 14-Dec-2012 08:48  3.0K  
    

    [TXT]

     PROLONGATEUR-SOLISTR..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     PSU,-30W,-5V-1085163..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     PSU,-100W,-5V-108517..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     PSU,-SW-MODE,-5V,-30..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     PSU,-SW-MODE,-24V,-6..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     PUSHPINS,-QTY200-107..> 14-Dec-2012 08:37  2.7K  
    

    [TXT]

     QUAD-AMPLI-OP-LARGE-..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     QUARTZ-MINIATURE-40K..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     QUARTZ-MINIATURE-40K..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     RACCORD-2-BRAS-10663..> 14-Dec-2012 08:39  2.8K  
    

    [TXT]

     RACCORD-3-BRAS-ANGLE..> 14-Dec-2012 08:39  2.8K  
    

    [TXT]

     RACCORD-SERRE-CABLE-..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     RACCORD-SERRE-CABLE-..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     RACCORD-SERRE-CABLE-..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     RACCORD-SERRE-CABLE-..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     RACCORDS-TELSPLICE-3..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     RAIL-DE-SOUTIEN-150W..> 14-Dec-2012 08:46  2.9K  
    

    [TXT]

     RAIL-DE-SOUTIEN-300W..> 14-Dec-2012 08:43  2.9K  
    

    [TXT]

     RAIL-DIN-103727.html    14-Dec-2012 08:48  2.9K  
    

    [TXT]

     RECEPTEUR-AUDIO-NUME..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     RECEPTEUR-DE-LIGNE-1..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     RECEPTEUR-DE-LIGNE-1..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     RECEPTEUR-DE-LIGNE-D..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     RECEPTEUR-ULTRASONIC..> 14-Dec-2012 08:52  3.1K  
    

    [TXT]

     RECEPTEUR-ULTRASONIC..> 13-Dec-2012 19:01  3.1K  
    

    [TXT]

     RECEPTEUR-ULTRASONIC..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     RECEPTEUR-ULTRASONIC..> 14-Dec-2012 08:55  3.1K  
    

    [TXT]

     RECEPTEUR-ULTRASONIC..> 13-Dec-2012 19:02  3.1K  
    

    [TXT]

     RECHARGE-REPERE-DE-C..> 14-Dec-2012 08:39  3.0K  
    

    [TXT]

     REF-DE-TENSION-CMS-P..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     REFERENCE-DE-TENSION..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     REFERENCE-DE-TENSION..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     REFERENCE-DE-TENSION..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     REFERENCE-DE-TENSION..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     REFERENCE-DE-TENSION..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     REFERENCE-DE-TENSION..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     REFERENCE-DE-TENSION..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     REFERENCE-DE-TENSION..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     REFERENCE-DE-TENSION..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     REFERENCE-DE-TENSION..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     REFERENCE-DE-TENSION..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     REFERENCE-DE-TENSION..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     REFERENCE-DE-TENSION..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     REFERENCE-DE-TENSION..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     REFERENCE-DE-TENSION..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     REFERENCE-DE-TENSION..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     REFERENCE-DE-TENSION..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     REFERENCE-DE-TENSION..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     REFERENCE-DE-TENSION..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     REFERENCE-DE-TENSION..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     REFERENCE-DE-TENSION..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     REFERENCE-DE-TENSION..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     REFERENCE-DE-TENSION..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     REFERENCE-DE-TENSION..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     REFERENCE-DE-TENSION..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     REFERENCE-DE-TENSION..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     REFERENCE-DE-TENSION..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     REFERENCE-DE-TENSION..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     REFERENCE-DE-TENSION..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     REFERENCE-DE-TENSION..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     REFERENCE-DE-TENSION..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     REFERENCE-DE-TENSION..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     REFERENCE-DE-TENSION..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     REFERENCE-DE-TENSION..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     REFERENCE-DE-TENSION..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     REFERENCE-DE-TENSION..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     REG-TENSION-AJUS-+2-..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     REG-TENSION-LDO-1.5A..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     REGLET-ACIER-109164...> 14-Dec-2012 08:40  2.9K  
    

    [TXT]

     REGULATEUR-+3.3V-CMS..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     REGULATEUR-+5.0V-78L..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     REGULATEUR-+5.0V-78M..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     REGULATEUR-+5.0V-CMS..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     REGULATEUR-+12V-7812..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     REGULATEUR-+15V-7815..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     REGULATEUR-+15V-7815..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     REGULATEUR--6.0V-790..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     REGULATEUR--8.0V-790..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     REGULATEUR--15V-7915..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     REGULATEUR-0.8A-LDO-..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     REGULATEUR-0.8A-LDO-..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     REGULATEUR-0.8A-LDO...> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     REGULATEUR-1A-POSITI..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     REGULATEUR-1A-POSITI..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     REGULATEUR-500MA-108..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     REGULATEUR-500MA-108..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     REGULATEUR-500MA-108..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     REGULATEUR-500MA-IPA..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     REGULATEUR-1077136.html 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     REGULATEUR-A-DECOUPA..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     REGULATEUR-A-DECOUPA..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     REGULATEUR-A-DECOUPA..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     REGULATEUR-A-DECOUPA..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     REGULATEUR-A-DECOUPA..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     REGULATEUR-AJUSTABLE..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     REGULATEUR-AJUSTABLE..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     REGULATEUR-AJUSTABLE..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     REGULATEUR-AJUSTABLE..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     REGULATEUR-AJUSTABLE..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     REGULATEUR-AJUSTABLE..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     REGULATEUR-AJUSTABLE..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     REGULATEUR-AJUSTABLE..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     REGULATEUR-AJUSTABLE..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     REGULATEUR-AJUSTABLE..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     REGULATEUR-AJUSTABLE..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     REGULATEUR-AJUSTABLE..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     REGULATEUR-AJUSTABLE..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     REGULATEUR-AJUSTABLE..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     REGULATEUR-AJUSTABLE..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     REGULATEUR-AJUSTABLE..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     REGULATEUR-AJUSTABLE..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     REGULATEUR-AJUSTABLE..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     REGULATEUR-AJUSTABLE..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     REGULATEUR-AJUSTABLE..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     REGULATEUR-AJUSTABLE..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     REGULATEUR-AJUSTABLE..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     REGULATEUR-AJUSTABLE..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     REGULATEUR-AJUSTABLE..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     REGULATEUR-AJUSTABLE..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     REGULATEUR-AJUSTABLE..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     REGULATEUR-AJUSTABLE..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     REGULATEUR-AJUSTABLE..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     REGULATEUR-BOOST-BUC..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     REGULATEUR-BOOST-BUC..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     REGULATEUR-BOOST-BUC..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     REGULATEUR-BOOST-BUC..> 14-Dec-2012 08:46  3.1K  
    

    [TXT]

     REGULATEUR-BUCK-80V-..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     REGULATEUR-BUCK-80V-..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     REGULATEUR-BUCK-1077..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     REGULATEUR-CMS-0.8A-..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     REGULATEUR-CMS-1.5A-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     REGULATEUR-CMS-1A-LD..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     REGULATEUR-CMS-1A-LD..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     REGULATEUR-CMS-1A-LD..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     REGULATEUR-CMS-1A-LD..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     REGULATEUR-CMS-1A-LD..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     REGULATEUR-CMS-1A-LD..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     REGULATEUR-CMS-3A-LD..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     REGULATEUR-CMS-3A-LD..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     REGULATEUR-CMS-150MA..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     REGULATEUR-CMS-150MA..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     REGULATEUR-CMS-150MA..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     REGULATEUR-CMS-150MA..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     REGULATEUR-CMS-500MA..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     REGULATEUR-CMS-500MA..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     REGULATEUR-CMS-10082..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     REGULATEUR-CMS-10871..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     REGULATEUR-CMS-10871..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     REGULATEUR-CMS-10871..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     REGULATEUR-CMS-10871..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     REGULATEUR-CMS-10871..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     REGULATEUR-CMS-AJUST..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     REGULATEUR-CMS-AJUST..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     REGULATEUR-CMS-AJUST..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     REGULATEUR-CMS-BOOST..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     REGULATEUR-CMS-BOOST..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     REGULATEUR-CMS-BUCK-..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     REGULATEUR-CMS-BUCK-..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     REGULATEUR-CMS-LDO-+..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     REGULATEUR-CMS-LDO-+..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     REGULATEUR-CMS-LDO-1..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     REGULATEUR-CMS-LDO-1..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     REGULATEUR-CMS-LDO-1..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     REGULATEUR-CMS-LDO-1..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     REGULATEUR-CMS-LDO-1..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     REGULATEUR-CMS-LDO-1..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     REGULATEUR-CMS-LDO-1..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     REGULATEUR-CMS-LDO-1..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     REGULATEUR-CMS-LDO-1..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     REGULATEUR-CMS-LDO-1..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     REGULATEUR-CMS-LDO-1..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     REGULATEUR-CMS-LDO-1..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     REGULATEUR-CMS-LDO-1..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     REGULATEUR-CMS-LDO-1..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     REGULATEUR-CMS-LDO-1..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     REGULATEUR-CMS-LDO-1..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     REGULATEUR-CMS-LDO-1..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     REGULATEUR-CMS-LDO-1..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     REGULATEUR-CMS-LDO-1..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     REGULATEUR-CMS-LDO-1..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     REGULATEUR-CMS-LDO-1..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     REGULATEUR-CMS-LDO-1..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     REGULATEUR-CMS-LDO-1..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     REGULATEUR-CMS-LDO-1..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     REGULATEUR-CMS-LDO-A..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     REGULATEUR-CMS-LDO.html 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     REGULATEUR-CMS-POSIT..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     REGULATEUR-CMS-PWR-S..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     REGULATEUR-LDO+8.5V-..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     REGULATEUR-LDO-+1.8V..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     REGULATEUR-LDO-+1.8V..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     REGULATEUR-LDO-+3.3V..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     REGULATEUR-LDO-+3.3V..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     REGULATEUR-LDO-+3.3V..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     REGULATEUR-LDO-10871..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     REGULATEUR-LDO-10871..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     REGULATEUR-LDO-CMS-1..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     REGULATEUR-LDO-CMS-1..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     REGULATEUR-LDO-CMS-1..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     REGULATEUR-LDO-CMS-1..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     REGULATEUR-LDO-CMS-1..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     REGULATEUR-LDO-CMS-2..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     REGULATEUR-LDO-CMS-2..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     REGULATEUR-LDO-CMS-2..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     REGULATEUR-LDO-CMS-3..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     REGULATEUR-LDO-CMS-3..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     REGULATEUR-LDO-CMS-3..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     REGULATEUR-LDO-CMS-5..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     REGULATEUR-LDO-CMS-5..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     REGULATEUR-NEGATIF-1..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     REGULATEUR-NEGATIF-1..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     RELAIS-4PCO-12VCA-10..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     RELAIS-4PCO-24VCC-10..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     RELAIS-4PCO-110VCA-1..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     RELAIS-4PCO-230VCA-1..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     RELAIS-8B.-DPCO-24V-..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     RELAIS-8B.-DPCO-230V..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     RELAIS-8B.-DPCO-1086..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     RELAIS-8B.-DPCO-1086..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     RELAIS-11-BROCHES-3P..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     RELAIS-11-BROCHES-3P..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     RELAIS-11-BROCHES-3P..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     RELAIS-11-BROCHES-10..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     RELAIS-14-BROCHES-4P..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     RELAIS-14-BROCHES-4P..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     RELAIS-14-BROCHES-4P..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     RELAIS-BATTERY-VOLTA..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     RELAIS-BATTERY-VOLTA..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     RELAIS-DPCO-12VCC-10..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     RELAIS-DPCO-12VCC.html  13-Dec-2012 19:01  3.2K  
    

    [TXT]

     RELAIS-DPCO-24VCA-CC..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     RELAIS-DPCO-24VCC-10..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     RELAIS-DPCO-24VCC-10..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     RELAIS-DPCO-230VCA-1..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     RELAIS-DPCO-LATCHING..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     RELAIS-DPCO-LATCHING..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     RELAIS-DPCO-LATCHING..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     RELAIS-DPCO-LATCHING..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     RELAIS-DPCO-LATCHING..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     RELAIS-DPCO-LATCHING..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     RELAIS-DPCO-LATCHING..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     RELAIS-DPNO-12VCC-10..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     RELAIS-DPNO-24VCC-10..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     RELAIS-MONTAGE-A-BRI..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     RELAIS-MONTAGE-A-BRI..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     RELAIS-MONTAGE-A-BRI..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     RELAIS-MULTIFUNCTION..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     RELAIS-MULTIFUNCTION..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     RELAIS-MULTIFUNCTION..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     RELAIS-MULTIFUNCTION..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     RELAIS-REED-HAUTE-TE..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     RELAIS-REED-HAUTE-TE..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     RELAIS-REED-HAUTE-TE..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     RELAIS-REED-MONTAGE-..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     RELAIS-REED-MONTAGE-..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     RELAIS-SPCO-12VCC-10..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     RELAIS-SPCO-12VCC.html  13-Dec-2012 19:02  3.2K  
    

    [TXT]

     RELAIS-SPCO-24VCA-CC..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     RELAIS-SPCO-24VCA-CC..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     RELAIS-SPCO-24VCC-10..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     RELAIS-SPCO-24VCC-10..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     RELAIS-SPCO-24VCC.html  13-Dec-2012 19:01  3.2K  
    

    [TXT]

     RELAIS-SPCO-230VCA-1..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     RELAIS-SPNO-12VCC-10..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     RELAIS-SPNO-24VCA-10..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     RELAIS-SPNO-24VCC-10..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     RELAIS-SPNO-230VCA-1..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     RELAIS-STATIQUE-1045..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     RELAIS-STATIQUE-1045..> 14-Dec-2012 08:46  3.1K  
    

    [TXT]

     RELAIS-STATIQUE-CMS-..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     RELAIS-STATIQUE-CMS-..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     REPASSEUR-DE-FILETAG..> 14-Dec-2012 08:46  2.8K  
    

    [TXT]

     REPASSEUR-DE-FILETAG..> 14-Dec-2012 08:44  2.8K  
    

    [TXT]

     REPERE-POUR-BORNE-10..> 14-Dec-2012 08:45  3.1K  
    

    [TXT]

     REPERE-POUR-BORNE-PQ..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     RESEAU-DE-DARLINGTON..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     RESEAU-DE-DARLINGTON..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     RESEAU-DE-RESISTANCE..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESEAU-DE-RESISTANCE..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     RESEAU-DE-RESISTANCE..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     RESEAU-DE-RESISTANCE..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESEAU-DE-RESISTANCE..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     RESEAU-DE-RESISTANCE..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     RESEAU-DE-RESISTANCE..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESEAU-DE-RESISTANCE..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESEAU-DE-RESISTANCE..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESEAU-DE-RESISTANCE..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESEAU-DE-RESISTANCE..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESEAU-DE-RESISTANCE..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESEAU-DE-RESISTANCE..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESEAU-DE-RESISTANCE..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESEAU-DE-RESISTANCE..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESEAU-DE-RESISTANCE..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     RESEAU-DE-RESISTANCE..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     RESEAU-DE-RESISTANCE..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     RESEAU-DE-RESISTANCE..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     RESEAU-DE-RESISTANCE..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     RESEAU-DE-RESISTANCE..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     RESEAU-DE-RESISTANCE..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     RESEAU-DE-RESISTANCE..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     RESEAU-DE-RESISTANCE..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     RESEAU-DE-RESISTANCE..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     RESEAU-DE-RESISTANCE..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     RESEAU-DE-RESISTANCE..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     RESEAU-DE-RESISTANCE..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     RESEAU-DE-RESISTANCE..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     RESEAU-DE-RESISTANCE..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     RESEAU-DE-RESISTANCE..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     RESEAU-DE-RESISTANCE..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     RESEAU-DE-TRANSISTOR..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     RESEAU-DE-TRANSISTOR..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     RESEAU-DE-TRANSISTOR..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     RESEAU-DE-TRANSISTOR..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     RESEAU-DE-TRANSISTOR..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     RESEAU-DE-TRANSISTOR..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     RESEAU-DE-TRANSISTOR..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     RESEAU-DE-TRANSISTOR..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     RESEAUX-DE-DARLINGTO..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     RESEAUX-DE-LED-10032..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     RESEAUX-DE-LED-JAUNE..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     RESEAUX-DE-LED-JAUNE..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     RESEAUX-DE-LED-MULTI..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     RESEAUX-DE-LED-MULTI..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     RESEAUX-DE-LED-MULTI..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     RESEAUX-DE-LED-ROUGE..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     RESEAUX-DE-LED-ROUGE..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     RESEAUX-DE-LED-VERT-..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     RESEAUX-DE-LED-VERT...> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     RESEAUX-DE-LED.html     13-Dec-2012 19:03  3.2K  
    

    [TXT]

     RESINE-D´ENCAPSUL..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESINE-D´ENCAPSUL..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     RESINE-D´ENCAPSUL..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     RESINE-D´ENCAPSUL..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     RESINE-D´ENCAPSUL..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     RESINE-EPOXY-HT-TEMP..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1%-1K02-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-1K07-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-1K1-108..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-1K3-108..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-1K4-108..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-1K13-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-1K18-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-1K21-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-1K27-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-1K37-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-1K43-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-1K47-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-1K54-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-1K62-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-1K65-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-1K69-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-1K74-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-1K82-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-1K96-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-1M0-108..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-2K0-108..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-2K05-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-2K1-108..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-2K21-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-2K37-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-2K43-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-2K49-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-2K67-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-2K87-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-3K01-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-3K4-108..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-3K16-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-3K32-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-3K57-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-3K65-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-3K74-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-3K83-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-3K92-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-4K02-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-4K22-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-4K42-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-4K53-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-4K75-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-4K99-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-5K9-108..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-5K11-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-5K23-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-5K62-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-6K04-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-6K49-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-6K81-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-7K15-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-7K32-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-7K68-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-7K87-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-8K06-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-8K25-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-8K45-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-9K31-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-9K53-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-10K-108..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-10K2-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-10K5-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-10R-108..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-10R2-10..> 14-Dec-2012 08:52  3.1K  
    

    [TXT]

     RESIST.-0.1%-10R5-10..> 14-Dec-2012 08:52  3.1K  
    

    [TXT]

     RESIST.-0.1%-11K-108..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-11K3-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-11K5-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-11R-108..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-12K4-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-12K7-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-12R1-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-13K-108..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-13K3-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-13K7-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-13R-108..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-13R3-10..> 14-Dec-2012 08:52  3.1K  
    

    [TXT]

     RESIST.-0.1%-14K-108..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-14K3-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-14R-108..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-15K-108..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-15K4-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-15R-108..> 14-Dec-2012 08:52  3.1K  
    

    [TXT]

     RESIST.-0.1%-16K2-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-16K5-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-16K9-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-16R2-10..> 14-Dec-2012 08:52  3.1K  
    

    [TXT]

     RESIST.-0.1%-17K4-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-19K1-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-19K6-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-19R1-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-20K-108..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-20K5-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-21K-108..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-21K5-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-22R1-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-23K7-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-23R7-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-24K9-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-26K1-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-27K4-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-27R4-10..> 14-Dec-2012 08:52  3.1K  
    

    [TXT]

     RESIST.-0.1%-28K-108..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-28R-108..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-28R7-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-29R4-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-30K1-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-30K9-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-30R1-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-30R9-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-31K6-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-31R6-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-32K4-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-33R2-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-34K8-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-34R-108..> 14-Dec-2012 08:52  3.1K  
    

    [TXT]

     RESIST.-0.1%-35K7-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-36K5-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-37K4-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-38K3-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-38R3-10..> 14-Dec-2012 08:52  3.1K  
    

    [TXT]

     RESIST.-0.1%-39K2-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-39R2-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-40R2-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-42K2-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-42R2-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-44K2-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-45K3-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-45R3-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-46K4-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-47K5-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-49K9-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-49R9-10..> 14-Dec-2012 08:52  3.1K  
    

    [TXT]

     RESIST.-0.1%-51K1-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-51R1-10..> 14-Dec-2012 08:52  3.1K  
    

    [TXT]

     RESIST.-0.1%-52K3-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-52R3-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-53K6-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-53R6-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-57K6-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-59R-108..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-60R4-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-61K9-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-61R9-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-63R4-10..> 14-Dec-2012 08:52  3.1K  
    

    [TXT]

     RESIST.-0.1%-64R9-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-66K5-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-66R5-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-71K5-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-71R5-10..> 14-Dec-2012 08:52  3.1K  
    

    [TXT]

     RESIST.-0.1%-73K2-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-75K-108..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-75R-108..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-76R8-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-78K7-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-78R7-10..> 14-Dec-2012 08:52  3.1K  
    

    [TXT]

     RESIST.-0.1%-80K6-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-80R6-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-82R5-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-86K6-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-88R7-10..> 14-Dec-2012 08:52  3.1K  
    

    [TXT]

     RESIST.-0.1%-90K9-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-93R1-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-95R3-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-100K-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-102K-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-102R-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-105K-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-107K-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-110K-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-110R-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-113R-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-115K-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-115R-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-118R-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-121K-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-121R-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-127K-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-130K-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-130R-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-137K-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-137R-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-143R-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-147K-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-150K-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-154R-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-162K-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-162R-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-165K-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-169K-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-174K-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-182K-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-182R-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-191R-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-196K-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-196R-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-200K-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-200R-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-210R-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-215R-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-221K-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-221R-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-226K-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-226R-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-232R-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-237K-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-243K-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-243R-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-249K-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-261K-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-267R-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-274K-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-280K-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-280R-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-301K-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-309K-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-309R-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-332R-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-340K-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-340R-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-348K-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-357R-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-374K-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-383R-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-402K-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-422R-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-432K-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-464K-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-499R-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-511K-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-562K-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-562R-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-576K-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-576R-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-590K-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-604R-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-619K-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-619R-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-634R-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-649K-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-649R-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-665K-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-665R-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-681R-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-698R-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-715R-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-787R-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-806R-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-825K-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-825R-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-887K-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-909K-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-953K-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1%-976R-10..> 14-Dec-2012 08:51  3.1K  
    

    [TXT]

     RESIST.-0.1--1K02-10..> 14-Dec-2012 08:41  3.1K  
    

    [TXT]

     RESIST.-0.1--1K07-10..> 14-Dec-2012 08:41  3.1K  
    

    [TXT]

     RESIST.-0.1--1K1-108..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--1K3-108..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--1K4-108..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     RESIST.-0.1--1K13-10..> 14-Dec-2012 08:41  3.1K  
    

    [TXT]

     RESIST.-0.1--1K18-10..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     RESIST.-0.1--1K21-10..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     RESIST.-0.1--1K27-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--1K37-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--1K43-10..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     RESIST.-0.1--1K47-10..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     RESIST.-0.1--1K54-10..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     RESIST.-0.1--1K62-10..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     RESIST.-0.1--1K65-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--1K69-10..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     RESIST.-0.1--1K74-10..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     RESIST.-0.1--1K82-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--1K96-10..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     RESIST.-0.1--1M0-108..> 14-Dec-2012 08:37  3.1K  
    

    [TXT]

     RESIST.-0.1--2K0-108..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--2K05-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--2K1-108..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--2K21-10..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     RESIST.-0.1--2K37-10..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     RESIST.-0.1--2K43-10..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     RESIST.-0.1--2K49-10..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     RESIST.-0.1--2K67-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--2K87-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--3K01-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--3K4-108..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--3K16-10..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     RESIST.-0.1--3K32-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--3K57-10..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     RESIST.-0.1--3K65-10..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     RESIST.-0.1--3K74-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--3K83-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--3K92-10..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     RESIST.-0.1--4K02-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--4K22-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--4K42-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--4K53-10..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     RESIST.-0.1--4K75-10..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     RESIST.-0.1--4K99-10..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     RESIST.-0.1--5K9-108..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--5K11-10..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     RESIST.-0.1--5K23-10..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     RESIST.-0.1--5K62-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--6K04-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--6K49-10..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     RESIST.-0.1--6K81-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--7K15-10..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     RESIST.-0.1--7K32-10..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     RESIST.-0.1--7K68-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--7K87-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--8K06-10..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     RESIST.-0.1--8K25-10..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     RESIST.-0.1--8K45-10..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     RESIST.-0.1--9K31-10..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     RESIST.-0.1--9K53-10..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     RESIST.-0.1--10K-108..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     RESIST.-0.1--10K2-10..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     RESIST.-0.1--10K5-10..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     RESIST.-0.1--10R-108..> 14-Dec-2012 08:41  3.1K  
    

    [TXT]

     RESIST.-0.1--10R2-10..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     RESIST.-0.1--10R5-10..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     RESIST.-0.1--11K-108..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     RESIST.-0.1--11K3-10..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     RESIST.-0.1--11K5-10..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     RESIST.-0.1--11R-108..> 14-Dec-2012 08:41  3.1K  
    

    [TXT]

     RESIST.-0.1--12K4-10..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     RESIST.-0.1--12K7-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--12R1-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--13K-108..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     RESIST.-0.1--13K3-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--13K7-10..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     RESIST.-0.1--13R-108..> 14-Dec-2012 08:41  3.1K  
    

    [TXT]

     RESIST.-0.1--13R3-10..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     RESIST.-0.1--14K-108..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     RESIST.-0.1--14K3-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--14R-108..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--15K-108..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     RESIST.-0.1--15K4-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--15R-108..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     RESIST.-0.1--16K2-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--16K5-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--16K9-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--16R2-10..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     RESIST.-0.1--17K4-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--19K1-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--19K6-10..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     RESIST.-0.1--19R1-10..> 14-Dec-2012 08:41  3.1K  
    

    [TXT]

     RESIST.-0.1--20K-108..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     RESIST.-0.1--20K5-10..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     RESIST.-0.1--21K-108..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     RESIST.-0.1--21K5-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--22R1-10..> 14-Dec-2012 08:41  3.1K  
    

    [TXT]

     RESIST.-0.1--23K7-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--23R7-10..> 14-Dec-2012 08:41  3.1K  
    

    [TXT]

     RESIST.-0.1--24K9-10..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     RESIST.-0.1--26K1-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--27K4-10..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     RESIST.-0.1--27R4-10..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     RESIST.-0.1--28K-108..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--28R-108..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--28R7-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--29R4-10..> 14-Dec-2012 08:41  3.1K  
    

    [TXT]

     RESIST.-0.1--30K1-10..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     RESIST.-0.1--30K9-10..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     RESIST.-0.1--30R1-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--30R9-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--31K6-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--31R6-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--32K4-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--33R2-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--34K8-10..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     RESIST.-0.1--34R-108..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     RESIST.-0.1--35K7-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--36K5-10..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     RESIST.-0.1--37K4-10..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     RESIST.-0.1--38K3-10..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     RESIST.-0.1--38R3-10..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     RESIST.-0.1--39K2-10..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     RESIST.-0.1--39R2-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--40R2-10..> 14-Dec-2012 08:41  3.1K  
    

    [TXT]

     RESIST.-0.1--42K2-10..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     RESIST.-0.1--42R2-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--44K2-10..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     RESIST.-0.1--45K3-10..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     RESIST.-0.1--45R3-10..> 14-Dec-2012 08:41  3.1K  
    

    [TXT]

     RESIST.-0.1--46K4-10..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     RESIST.-0.1--47K5-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--49K9-10..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     RESIST.-0.1--49R9-10..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     RESIST.-0.1--51K1-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--51R1-10..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     RESIST.-0.1--52K3-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--52R3-10..> 14-Dec-2012 08:41  3.1K  
    

    [TXT]

     RESIST.-0.1--53K6-10..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     RESIST.-0.1--53R6-10..> 14-Dec-2012 08:41  3.1K  
    

    [TXT]

     RESIST.-0.1--57K6-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--59R-108..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--60R4-10..> 14-Dec-2012 08:41  3.1K  
    

    [TXT]

     RESIST.-0.1--61K9-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--61R9-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--63R4-10..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     RESIST.-0.1--64R9-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--66K5-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--66R5-10..> 14-Dec-2012 08:41  3.1K  
    

    [TXT]

     RESIST.-0.1--71K5-10..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     RESIST.-0.1--71R5-10..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     RESIST.-0.1--73K2-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--75K-108..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     RESIST.-0.1--75R-108..> 14-Dec-2012 08:41  3.1K  
    

    [TXT]

     RESIST.-0.1--76R8-10..> 14-Dec-2012 08:41  3.1K  
    

    [TXT]

     RESIST.-0.1--78K7-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--78R7-10..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     RESIST.-0.1--80K6-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--80R6-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--82R5-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--86K6-10..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     RESIST.-0.1--88R7-10..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     RESIST.-0.1--90K9-10..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     RESIST.-0.1--93R1-10..> 14-Dec-2012 08:41  3.1K  
    

    [TXT]

     RESIST.-0.1--95R3-10..> 14-Dec-2012 08:41  3.1K  
    

    [TXT]

     RESIST.-0.1--100K-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--102K-10..> 14-Dec-2012 08:37  3.1K  
    

    [TXT]

     RESIST.-0.1--102R-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--105K-10..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     RESIST.-0.1--107K-10..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     RESIST.-0.1--110K-10..> 14-Dec-2012 08:37  3.1K  
    

    [TXT]

     RESIST.-0.1--110R-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--113R-10..> 14-Dec-2012 08:41  3.1K  
    

    [TXT]

     RESIST.-0.1--115K-10..> 14-Dec-2012 08:37  3.1K  
    

    [TXT]

     RESIST.-0.1--115R-10..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     RESIST.-0.1--118R-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--121K-10..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     RESIST.-0.1--121R-10..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     RESIST.-0.1--127K-10..> 14-Dec-2012 08:37  3.1K  
    

    [TXT]

     RESIST.-0.1--130K-10..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     RESIST.-0.1--130R-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--137K-10..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     RESIST.-0.1--137R-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--143R-10..> 14-Dec-2012 08:41  3.1K  
    

    [TXT]

     RESIST.-0.1--147K-10..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     RESIST.-0.1--150K-10..> 14-Dec-2012 08:37  3.1K  
    

    [TXT]

     RESIST.-0.1--154R-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--162K-10..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     RESIST.-0.1--162R-10..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     RESIST.-0.1--165K-10..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     RESIST.-0.1--169K-10..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     RESIST.-0.1--174K-10..> 14-Dec-2012 08:37  3.1K  
    

    [TXT]

     RESIST.-0.1--182K-10..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     RESIST.-0.1--182R-10..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     RESIST.-0.1--191R-10..> 14-Dec-2012 08:41  3.1K  
    

    [TXT]

     RESIST.-0.1--196K-10..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     RESIST.-0.1--196R-10..> 14-Dec-2012 08:41  3.1K  
    

    [TXT]

     RESIST.-0.1--200K-10..> 14-Dec-2012 08:37  3.1K  
    

    [TXT]

     RESIST.-0.1--200R-10..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     RESIST.-0.1--210R-10..> 14-Dec-2012 08:41  3.1K  
    

    [TXT]

     RESIST.-0.1--215R-10..> 14-Dec-2012 08:41  3.1K  
    

    [TXT]

     RESIST.-0.1--221K-10..> 14-Dec-2012 08:37  3.1K  
    

    [TXT]

     RESIST.-0.1--221R-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--226K-10..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     RESIST.-0.1--226R-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--232R-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--237K-10..> 14-Dec-2012 08:37  3.1K  
    

    [TXT]

     RESIST.-0.1--243K-10..> 14-Dec-2012 08:37  3.1K  
    

    [TXT]

     RESIST.-0.1--243R-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--249K-10..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     RESIST.-0.1--261K-10..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     RESIST.-0.1--267R-10..> 14-Dec-2012 08:41  3.1K  
    

    [TXT]

     RESIST.-0.1--274K-10..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     RESIST.-0.1--280K-10..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     RESIST.-0.1--280R-10..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     RESIST.-0.1--301K-10..> 14-Dec-2012 08:37  3.1K  
    

    [TXT]

     RESIST.-0.1--309K-10..> 14-Dec-2012 08:37  3.1K  
    

    [TXT]

     RESIST.-0.1--309R-10..> 14-Dec-2012 08:41  3.1K  
    

    [TXT]

     RESIST.-0.1--332R-10..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     RESIST.-0.1--340K-10..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     RESIST.-0.1--340R-10..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     RESIST.-0.1--348K-10..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     RESIST.-0.1--357R-10..> 14-Dec-2012 08:41  3.1K  
    

    [TXT]

     RESIST.-0.1--374K-10..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     RESIST.-0.1--383R-10..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     RESIST.-0.1--402K-10..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     RESIST.-0.1--422R-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--432K-10..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     RESIST.-0.1--464K-10..> 14-Dec-2012 08:37  3.1K  
    

    [TXT]

     RESIST.-0.1--499R-10..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     RESIST.-0.1--511K-10..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     RESIST.-0.1--562K-10..> 14-Dec-2012 08:37  3.1K  
    

    [TXT]

     RESIST.-0.1--562R-10..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     RESIST.-0.1--576K-10..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     RESIST.-0.1--576R-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--590K-10..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     RESIST.-0.1--604R-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--619K-10..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     RESIST.-0.1--619R-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--634R-10..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     RESIST.-0.1--649K-10..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     RESIST.-0.1--649R-10..> 14-Dec-2012 08:41  3.1K  
    

    [TXT]

     RESIST.-0.1--665K-10..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     RESIST.-0.1--665R-10..> 14-Dec-2012 08:41  3.1K  
    

    [TXT]

     RESIST.-0.1--681R-10..> 14-Dec-2012 08:41  3.1K  
    

    [TXT]

     RESIST.-0.1--698R-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--715R-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--787R-10..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     RESIST.-0.1--806R-10..> 14-Dec-2012 08:41  3.1K  
    

    [TXT]

     RESIST.-0.1--825K-10..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     RESIST.-0.1--825R-10..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     RESIST.-0.1--887K-10..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     RESIST.-0.1--909K-10..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     RESIST.-0.1--953K-10..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     RESIST.-0.1--976R-10..> 14-Dec-2012 08:41  3.1K  
    

    [TXT]

     RESISTANCE-0.5W-1%-1..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1%-1..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1%-2..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1%-2..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1%-3..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1%-3..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1%-3..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1%-3..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1%-4..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1%-5..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1%-6..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1%-6..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1%-8..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1%-9..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1%-1..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1%-1..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1%-2..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1%-2..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1%-3..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1%-3..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1%-3..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1%-4..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1%-5..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1%-6..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1%-7..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1%-8..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1%-9..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1%-9..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1%-1..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1%-1..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1%-2..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1%-2..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1%-3..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1%-3..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1%-3..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1%-6..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1%-6..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1%-9..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1--1..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1--1..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1--2..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1--2..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1--3..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1--3..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1--3..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1--3..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1--4..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1--5..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1--6..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1--6..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1--8..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1--9..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1--1..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1--1..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1--2..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1--2..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1--3..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1--3..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1--3..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1--4..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1--5..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1--6..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1--7..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1--8..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1--9..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1--9..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1--1..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1--1..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1--2..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1--2..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1--3..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1--3..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1--3..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1--6..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1--6..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     RESISTANCE-0.5W-1--9..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     RESISTANCE-0805-1K-1..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     RESISTANCE-0805-1M-1..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     RESISTANCE-0805-3K3-..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     RESISTANCE-0805-6K8-..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     RESISTANCE-0805-47R-..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     RESISTANCE-0805-220K..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     RESISTANCE-0805-470K..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     RESISTANCE-0805-470R..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     RESISTANCE-2W-5%-1K2..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     RESISTANCE-2W-5%-1K5..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-2W-5%-1R0..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-2W-5%-2K2..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     RESISTANCE-2W-5%-2R2..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-2W-5%-2R7..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-2W-5%-3K9..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-2W-5%-3R3..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-2W-5%-3R9..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-2W-5%-4K7..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-2W-5%-5R6..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-2W-5%-6R8..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-2W-5%-8K2..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-2W-5%-8R2..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-2W-5%-10K..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-2W-5%-10R..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-2W-5%-12K..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-2W-5%-12R..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-2W-5%-15R..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-2W-5%-18K..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-2W-5%-18R..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-2W-5%-22K..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-2W-5%-22R..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-2W-5%-27K..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-2W-5%-27R..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-2W-5%-33R..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-2W-5%-47R..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-2W-5%-68K..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     RESISTANCE-2W-5%-68R..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-2W-5%-82R..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-2W-5%-100..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     RESISTANCE-2W-5%-100..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-2W-5%-120..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-2W-5%-180..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-2W-5%-220..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-2W-5%-470..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-2W-5%-820..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-2W-5%-R12..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-2W-5%-R18..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-2W-5%-R33..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-2W-5%-R39..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-2W-5%-R56..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-2W-5%-R68..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-2W-5%-R82..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-2W-5--1K2..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     RESISTANCE-2W-5--1K5..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     RESISTANCE-2W-5--1R0..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     RESISTANCE-2W-5--2K2..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     RESISTANCE-2W-5--2R2..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     RESISTANCE-2W-5--2R7..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     RESISTANCE-2W-5--3K9..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     RESISTANCE-2W-5--3R3..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     RESISTANCE-2W-5--3R9..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     RESISTANCE-2W-5--4K7..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     RESISTANCE-2W-5--5R6..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     RESISTANCE-2W-5--6R8..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     RESISTANCE-2W-5--8K2..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     RESISTANCE-2W-5--8R2..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     RESISTANCE-2W-5--10K..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     RESISTANCE-2W-5--10R..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     RESISTANCE-2W-5--12K..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     RESISTANCE-2W-5--12R..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     RESISTANCE-2W-5--15R..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     RESISTANCE-2W-5--18K..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     RESISTANCE-2W-5--18R..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     RESISTANCE-2W-5--22K..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     RESISTANCE-2W-5--22R..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     RESISTANCE-2W-5--27K..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     RESISTANCE-2W-5--27R..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     RESISTANCE-2W-5--33R..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     RESISTANCE-2W-5--47R..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     RESISTANCE-2W-5--68K..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     RESISTANCE-2W-5--68R..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     RESISTANCE-2W-5--82R..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     RESISTANCE-2W-5--100..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     RESISTANCE-2W-5--100..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     RESISTANCE-2W-5--120..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     RESISTANCE-2W-5--180..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     RESISTANCE-2W-5--220..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     RESISTANCE-2W-5--470..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     RESISTANCE-2W-5--820..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     RESISTANCE-2W-5--R12..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     RESISTANCE-2W-5--R18..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     RESISTANCE-2W-5--R33..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     RESISTANCE-2W-5--R39..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     RESISTANCE-2W-5--R56..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     RESISTANCE-2W-5--R68..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     RESISTANCE-2W-5--R82..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     RESISTANCE-3W-5%-1K0..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-3W-5%-1R0..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-3W-5%-1R5..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-3W-5%-1R8..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-3W-5%-2K2..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     RESISTANCE-3W-5%-2R7..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-3W-5%-3K3..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-3W-5%-3R3..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-3W-5%-3R9..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     RESISTANCE-3W-5%-4R7..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     RESISTANCE-3W-5%-8R2..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-3W-5%-10K..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-3W-5%-10R..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     RESISTANCE-3W-5%-12K..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-3W-5%-15K..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-3W-5%-15R..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-3W-5%-18R..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-3W-5%-22R..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-3W-5%-33R..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-3W-5%-56K..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     RESISTANCE-3W-5%-56R..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-3W-5%-100..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-3W-5%-100..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-3W-5%-120..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     RESISTANCE-3W-5%-150..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-3W-5%-150..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-3W-5%-180..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     RESISTANCE-3W-5%-270..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-3W-5%-390..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-3W-5%-680..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-3W-5%-820..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     RESISTANCE-3W-5%-R18..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-3W-5%-R27..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-3W-5%-R39..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-3W-5%-R47..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-3W-5%-R68..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-3W-5%-R82..> 14-Dec-2012 08:51  3.2K  
    

    [TXT]

     RESISTANCE-3W-5--1K0..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     RESISTANCE-3W-5--1R0..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     RESISTANCE-3W-5--1R5..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     RESISTANCE-3W-5--1R8..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     RESISTANCE-3W-5--2K2..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     RESISTANCE-3W-5--2R7..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     RESISTANCE-3W-5--3K3..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     RESISTANCE-3W-5--3R3..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     RESISTANCE-3W-5--3R9..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     RESISTANCE-3W-5--4R7..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     RESISTANCE-3W-5--8R2..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     RESISTANCE-3W-5--10K..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     RESISTANCE-3W-5--10R..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     RESISTANCE-3W-5--12K..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     RESISTANCE-3W-5--15K..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     RESISTANCE-3W-5--15R..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     RESISTANCE-3W-5--18R..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     RESISTANCE-3W-5--22R..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     RESISTANCE-3W-5--33R..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     RESISTANCE-3W-5--56K..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     RESISTANCE-3W-5--56R..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     RESISTANCE-3W-5--100..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     RESISTANCE-3W-5--100..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     RESISTANCE-3W-5--120..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     RESISTANCE-3W-5--150..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     RESISTANCE-3W-5--150..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     RESISTANCE-3W-5--180..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     RESISTANCE-3W-5--270..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     RESISTANCE-3W-5--390..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     RESISTANCE-3W-5--680..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     RESISTANCE-3W-5--820..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     RESISTANCE-3W-5--R18..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     RESISTANCE-3W-5--R27..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     RESISTANCE-3W-5--R39..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     RESISTANCE-3W-5--R47..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     RESISTANCE-3W-5--R68..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     RESISTANCE-3W-5--R82..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     RESISTANCE-1206-0R00..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     RESISTANCE-1206-0R01..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     RESISTANCE-1206-0R02..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     RESISTANCE-2010-0R01..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     RESISTANCE-2010-0R07..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     RESISTANCE-2010-0R5-..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     RESISTANCE-2512-0R00..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     RESISTANCE-2512-0R01..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     RESISTANCE-2512-0R02..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     RHEOSTAT-BOUTON-1050..> 14-Dec-2012 08:47  2.9K  
    

    [TXT]

     RHEOSTAT-PLAQUE-NUME..> 14-Dec-2012 08:47  2.8K  
    

    [TXT]

     RONDELLE-LAITON-N-P-..> 14-Dec-2012 08:47  3.0K  
    

    [TXT]

     RONDELLE.-NEOPRENE.-..> 14-Dec-2012 08:54  2.8K  
    

    [TXT]

     RONDELLE.-NEOPRENE.-..> 13-Dec-2012 19:02  2.8K  
    

    [TXT]

     RONDELLE.-NYLON.-PIS..> 14-Dec-2012 08:56  2.8K  
    

    [TXT]

     RONDELLE.-NYLON.-PIS..> 13-Dec-2012 19:02  2.8K  
    

    [TXT]

     ROULEAU-PAPIER-57X44..> 14-Dec-2012 08:53  2.7K  
    

    [TXT]

     ROULEAU-PAPIER-57X44..> 13-Dec-2012 19:01  2.7K  
    

    [TXT]

     SANDING-CAP,-8MM,-10..> 14-Dec-2012 08:39  2.9K  
    

    [TXT]

     SANDING-CAP,-8MM,-SH..> 14-Dec-2012 08:43  2.9K  
    

    [TXT]

     SANDING-DISC,-18MM,-..> 14-Dec-2012 08:43  2.8K  
    

    [TXT]

     SANDING-DISC,-SHAFT,..> 14-Dec-2012 08:46  2.8K  
    

    [TXT]

     SANDING-DRUM,-10MM,-..> 14-Dec-2012 08:46  2.9K  
    

    [TXT]

     SANDING-DRUM,-10MM,-..> 14-Dec-2012 08:43  2.9K  
    

    [TXT]

     SCIE-ISOLEE-1000V-10..> 14-Dec-2012 08:36  2.8K  
    

    [TXT]

     SCREW,-ROUND,-2BAX3-..> 14-Dec-2012 08:47  3.0K  
    

    [TXT]

     SCREW,-ROUND,-2BAX3-..> 14-Dec-2012 08:53  3.0K  
    

    [TXT]

     SCREW,-ROUND,-2BAX3-..> 13-Dec-2012 19:02  3.0K  
    

    [TXT]

     SCREW,-ROUND,-4BAX1-..> 14-Dec-2012 08:47  3.0K  
    

    [TXT]

     SCREW,-ROUND,-4BAX3-..> 14-Dec-2012 08:47  3.0K  
    

    [TXT]

     SCREW,-ROUND,-4BAX3-..> 14-Dec-2012 08:53  3.0K  
    

    [TXT]

     SCREW,-ROUND,-4BAX3-..> 13-Dec-2012 19:02  3.0K  
    

    [TXT]

     SCSI-2-50VOIES-CAPOT..> 14-Dec-2012 08:37  3.1K  
    

    [TXT]

     SCSI-2-68VOIES-CAPOT..> 14-Dec-2012 08:37  3.1K  
    

    [TXT]

     SEAL,-HINGED-COVER,-..> 14-Dec-2012 08:56  2.8K  
    

    [TXT]

     SEAL,-HINGED-COVER,-..> 13-Dec-2012 19:03  2.8K  
    

    [TXT]

     SELLE-POUR-FILS-1014..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     SELLE-POUR-FILS-1014..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     SELLE-POUR-RESEAU-DE..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     SEPARATEUR-PQ48-1007..> 14-Dec-2012 08:50  2.8K  
    

    [TXT]

     SERINGUE-10ML-105979..> 14-Dec-2012 08:46  2.8K  
    

    [TXT]

     SERINGUE-35ML-105980..> 14-Dec-2012 08:46  2.8K  
    

    [TXT]

     SERRE-CABLE-CPC2-TAI..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     SERRE-CABLE-TAILLE-1..> 14-Dec-2012 08:45  3.1K  
    

    [TXT]

     SERRE-CABLE-TAILLE-2..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     SERRE-CABLE-USAGE-EX..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     SERRE-CABLE-USAGE-EX..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     SERVICE-CONNECTOR-BO..> 14-Dec-2012 08:45  2.8K  
    

    [TXT]

     SERVISOL-200002000-G..> 04-Jan-2013 17:29  2.3M  
    

    [TXT]

     SHAFT,-FLEXIBLE-1075..> 14-Dec-2012 08:43  2.9K  
    

    [TXT]

     SHIELDED-GANG-JACK-4..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     SHUNT-60MV-60A-10159..> 14-Dec-2012 08:45  3.1K  
    

    [TXT]

     SHUNT-60MV-100A-1015..> 14-Dec-2012 08:45  3.1K  
    

    [TXT]

     SHUNT-60MV-200A-1015..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     SHUNT-60MV-600A-1015..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     SIBA-160016-5A-FUSIB..> 04-Jan-2013 17:29  2.3M  
    

    [TXT]

     SILICONE-310ML-10890..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     SLEEVES,-6MM-PLUG,-P..> 14-Dec-2012 08:41  2.9K  
    

    [TXT]

     SMB-PRISE-DROITE-A-E..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     SMB-PRISE-MONTAGE-AV..> 14-Dec-2012 08:45  3.0K  
    

    [TXT]

     SOCKET,-4MM,-PRESS-F..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     SOCKET,-4MM,-PRESS-F..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     SOCKET,-4MM,-SHROUDE..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     SOCKET,-4MM,-TEST,-B..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     SOCKET,-4MM,-TEST,-B..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     SOCKET,-4MM,-TEST,-Y..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     SOCKET,-4MM,-TEST,-Y..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     SOCKET,-10MM,-IN-LIN..> 14-Dec-2012 08:36  3.1K  
    

    [TXT]

     SOCKET,-16MM,-IN-LIN..> 14-Dec-2012 08:39  3.1K  
    

    [TXT]

     SOCKET,-110V,-WALL-M..> 14-Dec-2012 08:49  3.0K  
    

    [TXT]

     SOCKET,-240V,-WALL-M..> 14-Dec-2012 08:48  2.9K  
    

    [TXT]

     SOCKET,-240V,-WALL-M..> 14-Dec-2012 08:50  2.9K  
    

    [TXT]

     SOCKET,-415V,-WALL-M..> 14-Dec-2012 08:49  3.0K  
    

    [TXT]

     SOCKET,-415V,-WALL-M..> 14-Dec-2012 08:50  2.9K  
    

    [TXT]

     SOCKET,-415V,-WALL-M..> 14-Dec-2012 08:50  2.9K  
    

    [TXT]

     SOCKET,-EXTENSION,-I..> 14-Dec-2012 08:53  2.8K  
    

    [TXT]

     SOCKET,-EXTENSION,-I..> 13-Dec-2012 19:01  2.8K  
    

    [TXT]

     SOCKET,-INTERLOCKED,..> 14-Dec-2012 08:48  2.9K  
    

    [TXT]

     SOCKET,-INTERLOCKED,..> 14-Dec-2012 08:48  2.9K  
    

    [TXT]

     SOCKET,-INTERLOCKED-..> 14-Dec-2012 08:49  2.9K  
    

    [TXT]

     SOCKET,-INTERLOCKED-..> 14-Dec-2012 08:48  2.9K  
    

    [TXT]

     SOCKET,-INTERLOCKED-..> 14-Dec-2012 08:50  2.9K  
    

    [TXT]

     SOCKET,-MIXED,-PK5-1..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     SOCKET,-T-C-K-STD-PA..> 14-Dec-2012 08:54  2.9K  
    

    [TXT]

     SOCKET,-T-C-K-STD-PA..> 13-Dec-2012 19:02  2.9K  
    

    [TXT]

     SOCKET,-T-C-MINI-CU-..> 14-Dec-2012 08:48  2.9K  
    

    [TXT]

     SOCKET,-T-C-T-STANDA..> 14-Dec-2012 08:54  2.9K  
    

    [TXT]

     SOCKET,-T-C-T-STANDA..> 13-Dec-2012 19:02  2.9K  
    

    [TXT]

     SOCKET,-WEATHERPROOF..> 14-Dec-2012 08:39  2.8K  
    

    [TXT]

     SOCLE-DE-TABLE-10510..> 14-Dec-2012 08:45  2.8K  
    

    [TXT]

     SONAR-RANGING-MODULE..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     SONAR-RANGING-MODULE..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     SONDE-D´IMMERSION..> 14-Dec-2012 08:42  2.9K  
    

    [TXT]

     SONDE-DE-SURFACE-NTC..> 14-Dec-2012 08:42  2.9K  
    

    [TXT]

     SONDE-DE-TEST-NOIR-1..> 14-Dec-2012 08:53  3.0K  
    

    [TXT]

     SONDE-DE-TEST-NOIR-1..> 14-Dec-2012 08:50  3.0K  
    

    [TXT]

     SONDE-DE-TEST-NOIR.html 13-Dec-2012 19:02  3.0K  
    

    [TXT]

     SONDE-DE-TESTROUGE-1..> 14-Dec-2012 08:47  3.0K  
    

    [TXT]

     SOUDURE-SANS-PLOMB-0..> 14-Dec-2012 08:45  3.1K  
    

    [TXT]

     SOUDURE-SANS-PLOMB-0..> 14-Dec-2012 08:48  3.1K  
    

    [TXT]

     SOUDURE-SANS-PLOMB-0..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     SOUDURE-SANS-PLOMB-0..> 14-Dec-2012 08:48  3.1K  
    

    [TXT]

     SOUDURE-SANS-PLOMB-0..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     SOUDURE-SANS-PLOMB-0..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     SOUDURE-SANS-PLOMB-0..> 14-Dec-2012 08:45  3.1K  
    

    [TXT]

     SOUDURE-SANS-PLOMB-0..> 14-Dec-2012 08:48  3.1K  
    

    [TXT]

     SOUDURE-SANS-PLOMB-0..> 14-Dec-2012 08:48  3.1K  
    

    [TXT]

     SOUDURE-SANS-PLOMB-0..> 14-Dec-2012 08:48  3.1K  
    

    [TXT]

     SOUDURE-SANS-PLOMB-0..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     SOUDURE-SANS-PLOMB-0..> 14-Dec-2012 08:45  3.1K  
    

    [TXT]

     SOUDURE-SANS-PLOMB-1..> 14-Dec-2012 08:50  3.1K  
    

    [TXT]

     SOUDURE-SANS-PLOMB-1..> 14-Dec-2012 08:45  3.1K  
    

    [TXT]

     SOUDURE-SANS-PLOMB-1..> 14-Dec-2012 08:45  3.1K  
    

    [TXT]

     SOUDURE-SANS-PLOMB-1..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     SOUDURE-SANS-PLOMB-1..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     SOUDURE-SANS-PLOMB-1..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     SOUDURE-SANS-PLOMB-1..> 14-Dec-2012 08:48  3.1K  
    

    [TXT]

     SOUDURE-SANS-PLOMB-1..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     SOUDURE-SANS-PLOMB-1..> 14-Dec-2012 08:50  3.1K  
    

    [TXT]

     SOUDURE-SANS-PLOMB-1..> 14-Dec-2012 08:48  3.1K  
    

    [TXT]

     SOUDURE-SANS-PLOMB-1..> 14-Dec-2012 08:50  3.1K  
    

    [TXT]

     SOUDURE-SANS-PLOMB-1..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     SOUDURE-SANS-PLOMB-1..> 14-Dec-2012 08:45  3.1K  
    

    [TXT]

     SOUDURE-SANS-PLOMB-1..> 14-Dec-2012 08:48  3.1K  
    

    [TXT]

     SOUDURE-SANS-PLOMB-1..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     SOUDURE-SANS-PLOMB-1..> 14-Dec-2012 08:45  3.1K  
    

    [TXT]

     SOUND-LEVEL-METER-10..> 14-Dec-2012 08:56  3.0K  
    

    [TXT]

     SOUND-LEVEL-METER.html  13-Dec-2012 19:03  3.0K  
    

    [TXT]

     SPARE-SANDING-BELT,-..> 14-Dec-2012 08:46  2.8K  
    

    [TXT]

     SPARE-TOOL-ARBORS,-2..> 14-Dec-2012 08:39  2.9K  
    

    [TXT]

     SPEAKER,-BLACK,-(PAI..> 14-Dec-2012 08:48  3.0K  
    

    [TXT]

     SPEAKER,-PIEZO-DRIVE..> 14-Dec-2012 08:54  3.0K  
    

    [TXT]

     SPEAKER,-PIEZO-DRIVE..> 13-Dec-2012 19:02  3.0K  
    

    [TXT]

     STARTER-TUBE-FLUO-70..> 14-Dec-2012 08:44  3.0K  
    

    [TXT]

     STARTER-TUBE-FLUO-JU..> 14-Dec-2012 08:44  3.0K  
    

    [TXT]

     STARTER-TUBE-FLUO-JU..> 14-Dec-2012 08:41  3.1K  
    

    [TXT]

     STATION-DE-SOUDAGE-2..> 14-Dec-2012 08:44  3.1K  
    

    [TXT]

     STATION-DE-SOUDAGE-2..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     SUB-D-90-DEGRES-COUD..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     SUB-D-AMPLIMITE-1098..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     SUB-D-AMPLIMITE-1098..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     SUB-D-AMPLIMITE-1098..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     SUB-D-BOITIER-FEMELL..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     SUB-D-FEMELLE-9P-107..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     SUB-D-FEMELLE-9P-107..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     SUB-D-FEMELLE-9P-107..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     SUB-D-FEMELLE-9P-107..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     SUB-D-FEMELLE-9P-107..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     SUB-D-FEMELLE-9P-107..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     SUB-D-FEMELLE-9P-107..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     SUB-D-FEMELLE-9P-109..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     SUB-D-FEMELLE-9P-CI-..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     SUB-D-FEMELLE-9P-PQ5..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     SUB-D-FEMELLE-9V-107..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     SUB-D-FEMELLE-15P-10..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     SUB-D-FEMELLE-15P-10..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     SUB-D-FEMELLE-15P-10..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     SUB-D-FEMELLE-15P-10..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     SUB-D-FEMELLE-15P-10..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     SUB-D-FEMELLE-15P-10..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     SUB-D-FEMELLE-15P-10..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     SUB-D-FEMELLE-15P-10..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     SUB-D-FEMELLE-15P-10..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     SUB-D-FEMELLE-15P-PQ..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     SUB-D-FEMELLE-15V-10..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     SUB-D-FEMELLE-25P-10..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     SUB-D-FEMELLE-25P-10..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     SUB-D-FEMELLE-25P-10..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     SUB-D-FEMELLE-25P-10..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     SUB-D-FEMELLE-25P-10..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     SUB-D-FEMELLE-25P-10..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     SUB-D-FEMELLE-25P-10..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     SUB-D-FEMELLE-25P-10..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     SUB-D-FEMELLE-25P-10..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     SUB-D-FEMELLE-25P-PQ..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     SUB-D-FEMELLE-25V-10..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     SUB-D-FEMELLE-37P-10..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     SUB-D-FEMELLE-37P-10..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     SUB-D-FEMELLE-37P-10..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     SUB-D-FEMELLE-37P-10..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     SUB-D-FEMELLE-37P-10..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     SUB-D-FEMELLE-37P-10..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     SUB-D-FEMELLE-37P-10..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     SUB-D-FEMELLE-37V-10..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     SUB-D-FEMELLE-68P-SC..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     SUB-D-FEMELLE-A-SOUD..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     SUB-D-FEMELLE-A-SOUD..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     SUB-D-FEMELLE-A-SOUD..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     SUB-D-FEMELLE-A-SOUD..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     SUB-D-FEMELLE-AUTODE..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     SUB-D-FEMELLE-AUTODE..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     SUB-D-FEMELLE-CI-9-P..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     SUB-D-FEMELLE-CI-15-..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     SUB-D-FEMELLE-CI-90D..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     SUB-D-FEMELLE-CI-90D..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     SUB-D-FEMELLE-DE-PUI..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     SUB-D-FEMELLE-DE-PUI..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     SUB-D-FEMELLE-PUISSA..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     SUB-D-HD-FEMELLE-15P..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     SUB-D-HD-FEMELLE-15P..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     SUB-D-HD-FEMELLE-26P..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     SUB-D-HD-FEMELLE-26P..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     SUB-D-HD-FEMELLE-44P..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     SUB-D-HD-MALE-15P-10..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     SUB-D-HD-MALE-15P-10..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     SUB-D-HD-MALE-15P-10..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     SUB-D-HD-MALE-26P-10..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     SUB-D-HD-MALE-26P-10..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     SUB-D-HD-MALE-26P-10..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     SUB-D-HD-MALE-44P-10..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     SUB-D-MALE-9P-107179..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     SUB-D-MALE-9P-107180..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     SUB-D-MALE-9P-107523..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     SUB-D-MALE-9P-107524..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     SUB-D-MALE-9P-107525..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     SUB-D-MALE-9P-107526..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     SUB-D-MALE-9P-107528..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     SUB-D-MALE-9P-109685..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     SUB-D-MALE-9P-PQ5-10..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     SUB-D-MALE-9V-107527..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     SUB-D-MALE-15P-10718..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     SUB-D-MALE-15P-10752..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     SUB-D-MALE-15P-10752..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     SUB-D-MALE-15P-10752..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     SUB-D-MALE-15P-10752..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     SUB-D-MALE-15P-10752..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     SUB-D-MALE-15P-10752..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     SUB-D-MALE-15P-10752..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     SUB-D-MALE-15P-PQ5-1..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     SUB-D-MALE-15V-10752..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     SUB-D-MALE-25P-10718..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     SUB-D-MALE-25P-10751..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     SUB-D-MALE-25P-10752..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     SUB-D-MALE-25P-10752..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     SUB-D-MALE-25P-10752..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     SUB-D-MALE-25P-10752..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     SUB-D-MALE-25P-10752..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     SUB-D-MALE-25P-10752..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     SUB-D-MALE-25P-10753..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     SUB-D-MALE-25P-10968..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     SUB-D-MALE-25P-CI-90..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     SUB-D-MALE-25P-PQ5-1..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     SUB-D-MALE-25V-10752..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     SUB-D-MALE-37P-10718..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     SUB-D-MALE-37P-10752..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     SUB-D-MALE-37P-10752..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     SUB-D-MALE-37P-10752..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     SUB-D-MALE-37P-10752..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     SUB-D-MALE-37P-10968..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     SUB-D-MALE-37P-CI-90..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     SUB-D-MALE-37V-10752..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     SUB-D-MALE-50P-10751..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     SUB-D-MALE-A-SOUDER-..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     SUB-D-MALE-AUTODENUD..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     SUB-D-MALE-AUTODENUD..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     SUB-D-MALE-CI-9-P-10..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     SUB-D-MALE-CI-15-P-1..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     SUB-D-MALE-CI-25-P-1..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     SUB-D-MALE-CI-R-A-15..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     SUB-D-MALE-DE-PUISSA..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     SUPPORT-108613.html     14-Dec-2012 08:41  2.8K  
    

    [TXT]

     SUPPORT-ADHESIF-POUR..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     SUPPORT-ADHESIF-POUR..> 14-Dec-2012 08:48  3.1K  
    

    [TXT]

     SUPPORT-ADHESIF-POUR..> 14-Dec-2012 08:45  3.1K  
    

    [TXT]

     SUPPORT-ADHESIF-POUR..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     SUPPORT-ADHESIF-POUR..> 14-Dec-2012 08:48  3.1K  
    

    [TXT]

     SUPPORT-ADHESIF-POUR..> 14-Dec-2012 08:50  3.1K  
    

    [TXT]

     SUPPORT-ADHESIF-POUR..> 14-Dec-2012 08:48  3.1K  
    

    [TXT]

     SUPPORT-CI-DIL-6-VOI..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     SUPPORT-CI-DIL-6VOIE..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     SUPPORT-CI-DIL-7.62M..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     SUPPORT-CI-DIL-7.62M..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     SUPPORT-CI-DIL-7.62M..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     SUPPORT-CI-DIL-7.62M..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     SUPPORT-CI-DIL-7.62M..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     SUPPORT-CI-DIL-7.62M..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     SUPPORT-CI-DIL-8-VOI..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     SUPPORT-CI-DIL-8-VOI..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     SUPPORT-CI-DIL-8VOIE..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     SUPPORT-CI-DIL-10.16..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     SUPPORT-CI-DIL-14-VO..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     SUPPORT-CI-DIL-14-VO..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     SUPPORT-CI-DIL-14-VO..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     SUPPORT-CI-DIL-14VOI..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     SUPPORT-CI-DIL-15.24..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     SUPPORT-CI-DIL-15.24..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     SUPPORT-CI-DIL-15.24..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     SUPPORT-CI-DIL-15.24..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     SUPPORT-CI-DIL-16-VO..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     SUPPORT-CI-DIL-16-VO..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     SUPPORT-CI-DIL-16-VO..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     SUPPORT-CI-DIL-16VOI..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     SUPPORT-CI-DIL-18-VO..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     SUPPORT-CI-DIL-18-VO..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     SUPPORT-CI-DIL-18-VO..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     SUPPORT-CI-DIL-18VOI..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     SUPPORT-CI-DIL-20-VO..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     SUPPORT-CI-DIL-20-VO..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     SUPPORT-CI-DIL-22-VO..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     SUPPORT-CI-DIL-22VOI..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     SUPPORT-CI-DIL-22VOI..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     SUPPORT-CI-DIL-24-VO..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     SUPPORT-CI-DIL-24-VO..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     SUPPORT-CI-DIL-24-VO..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     SUPPORT-CI-DIL-24VOI..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     SUPPORT-CI-DIL-24VOI..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     SUPPORT-CI-DIL-28-VO..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     SUPPORT-CI-DIL-28-VO..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     SUPPORT-CI-DIL-28-VO..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     SUPPORT-CI-DIL-28VOI..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     SUPPORT-CI-DIL-28VOI..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     SUPPORT-CI-DIL-32-VO..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     SUPPORT-CI-DIL-32-VO..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     SUPPORT-CI-DIL-32-VO..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     SUPPORT-CI-DIL-32VOI..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     SUPPORT-CI-DIL-40-VO..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     SUPPORT-CI-DIL-40-VO..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     SUPPORT-CI-DIL-40-VO..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     SUPPORT-CI-DIL-40VOI..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     SUPPORT-CI-DIL-48-VO..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     SUPPORT-CI-DIL-10230..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     SUPPORT-CI-DIL-10230..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     SUPPORT-CI-DIL-CMS-7..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     SUPPORT-CI-DIL-CMS-1..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     SUPPORT-CI-DIMM-144-..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     SUPPORT-CI-DIMM-144-..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     SUPPORT-CI-PLCC-20-V..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     SUPPORT-CI-PLCC-32-V..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     SUPPORT-CI-QIL-64-VO..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     SUPPORT-CI-SANS-SOUD..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     SUPPORT-CI-SANS-SOUD..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     SUPPORT-CI-SANS-SOUD..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     SUPPORT-CI-SHRINK-DI..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     SUPPORT-CI-WIREWRAP-..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     SUPPORT-CI-WIREWRAP-..> 14-Dec-2012 08:46  3.1K  
    

    [TXT]

     SUPPORT-CI-WIREWRAP-..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     SUPPORT-CI-WIREWRAP-..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     SUPPORT-CI-WIREWRAP-..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     SUPPORT-CI-WIREWRAP-..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     SUPPORT-CI-WIREWRAP-..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     SUPPORT-CI-WIREWRAP-..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     SUPPORT-CI-ZIF-TSSOP..> 14-Dec-2012 08:37  3.1K  
    

    [TXT]

     SUPPORT-D´ESPACEM..> 14-Dec-2012 08:45  3.1K  
    

    [TXT]

     SUPPORT-DE-PILE-2X9V..> 14-Dec-2012 08:50  2.9K  
    

    [TXT]

     SUPPORT-DE-PILE-4XAA..> 14-Dec-2012 08:50  2.9K  
    

    [TXT]

     SUPPORT-PLCC-68-VOIE..> 14-Dec-2012 08:46  3.1K  
    

    [TXT]

     SUPPORT-PLCC-84-VOIE..> 14-Dec-2012 08:43  3.1K  
    

    [TXT]

     SUPPORT-PLCC-CMS-44V..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     SUPPORT-PLCC-ZIF-44-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     SUPPORT-PLCC-ZIF-68-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     SUPPORT-PLCC-ZIF-84-..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     SUPPORT-POUR-RELAIS-..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     SUPPORT-POUR-TUBE-FL..> 14-Dec-2012 08:41  3.0K  
    

    [TXT]

     SUPPORT-RELAIS-14B-1..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     SUPPORT-RELAIS-DPCO-..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     SUPPORT-SIL-1-RANGE-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     SUPPORT-SIL-1-RANGE-..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     SUPPORT-SIL-20-VOIES..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     SUPPORT-SIL-20-VOIES..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     SUPPORT-SIL-32-VOIES..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     SUPPORT-SIL-32-VOIES..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     SUPPORT-TRANSISTOR-T..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     SWITCH,-PULL-CORD,-I..> 14-Dec-2012 08:43  3.1K  
    

    [TXT]

     SYNTHETISEUR-CMS-AGI..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     SYSTEME-DE-RETENUE-D..> 14-Dec-2012 08:49  3.0K  
    

    [TXT]

     T-NUT-SET,-FOR-VICES..> 14-Dec-2012 08:39  2.8K  
    

    [TXT]

     TAPE,-2-SIDED,-50MMX..> 14-Dec-2012 08:45  3.0K  
    

    [TXT]

     TAPE,-INSUL,-50MMX33..> 14-Dec-2012 08:50  3.0K  
    

    [TXT]

     TAPE,-INSUL,-50MMX33..> 14-Dec-2012 08:50  3.0K  
    

    [TXT]

     TARAUD-2BA-HSS-10564..> 14-Dec-2012 08:44  2.9K  
    

    [TXT]

     TARAUD-105623.html      14-Dec-2012 08:45  3.0K  
    

    [TXT]

     TARAUD-105624.html      14-Dec-2012 08:44  3.0K  
    

    [TXT]

     TARAUD-105625.html      14-Dec-2012 08:40  3.0K  
    

    [TXT]

     TARAUD-105626.html      14-Dec-2012 08:45  3.0K  
    

    [TXT]

     TARAUD-105627.html      14-Dec-2012 08:47  3.0K  
    

    [TXT]

     TARAUD-105628.html      14-Dec-2012 08:40  3.0K  
    

    [TXT]

     TARAUD-105629.html      14-Dec-2012 08:40  3.0K  
    

    [TXT]

     TARAUD-FINISSEUR-4BA..> 14-Dec-2012 08:47  3.0K  
    

    [TXT]

     TARAUD-M2-HSS-105634..> 14-Dec-2012 08:47  3.0K  
    

    [TXT]

     TARAUD-M2.5-HSS-1056..> 14-Dec-2012 08:44  3.0K  
    

    [TXT]

     TARAUD-M3-105967.html   14-Dec-2012 08:44  2.8K  
    

    [TXT]

     TARAUD-M3-HSS-105636..> 14-Dec-2012 08:40  3.0K  
    

    [TXT]

     TARAUD-M3.5-HSS-1056..> 14-Dec-2012 08:40  3.0K  
    

    [TXT]

     TARAUD-M4-HSS-105638..> 14-Dec-2012 08:47  3.0K  
    

    [TXT]

     TARAUD-M5-HSS-105639..> 14-Dec-2012 08:40  3.0K  
    

    [TXT]

     TARAUD-M6-HSS-105640..> 14-Dec-2012 08:45  3.0K  
    

    [TXT]

     TARAUD-M8-HSS-105642..> 14-Dec-2012 08:45  3.0K  
    

    [TXT]

     TEL-EXTENSION-SKT-SC..> 14-Dec-2012 08:53  2.8K  
    

    [TXT]

     TEL-EXTENSION-SKT-SC..> 13-Dec-2012 19:01  2.8K  
    

    [TXT]

     TEL-EXTENSION-SKT-SC..> 14-Dec-2012 08:53  2.8K  
    

    [TXT]

     TEL-EXTENSION-SKT-SC..> 13-Dec-2012 19:02  2.8K  
    

    [TXT]

     TELEPHONE-EXT-LEAD-W..> 14-Dec-2012 08:53  2.8K  
    

    [TXT]

     TELEPHONE-EXT-LEAD-W..> 13-Dec-2012 19:02  2.8K  
    

    [TXT]

     TEMPERATURE-CONTROLE..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     TEMPERATURE-CONTROLE..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     TEMPORISATEUR-104026..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     TEMPORISATEUR-104036..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     TEMPORISATEUR-104037..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     TEMPORISATEUR-104038..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     TEMPORISATEUR-104039..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     TEMPORISATEUR-104042..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     TEMPORISATEUR-104044..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     TEMPORISATEUR-104049..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     TEMPORISATEUR-104630..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     TEMPORISATEUR-104631..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     TEMPORISATEUR-104632..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     TEMPORISATEUR-104633..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     TEMPORISATEUR-104662..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     TEMPORISATEUR-104664..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     TEMPORISATEUR-104666..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     TEMPORISATEUR-104674..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     TEMPORISATEUR-104677..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     TEMPORISATEUR-105976..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     TERMINAISON-FIBRE-OP..> 14-Dec-2012 08:45  3.1K  
    

    [TXT]

     TEST-High-Tech-Commu..> 14-Dec-2012 08:50  630   
    

    [TXT]

     TEST2.html              14-Dec-2012 08:50  2.0K  
    

    [TXT]

     TEST3.html              14-Dec-2012 08:50  8.0K  
    

    [TXT]

     TESTEUR-D´ISOLATI..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     TESTEUR-D´ISOLATI..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     TESTEUR-DE-ROTATION-..> 14-Dec-2012 08:49  3.0K  
    

    [TXT]

     TESTEUR-DE-TENSION-1..> 14-Dec-2012 08:57  2.9K  
    

    [TXT]

     TESTEUR-DE-TENSION-1..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     TESTEUR-DE-TENSION.html 13-Dec-2012 19:03  2.9K  
    

    [TXT]

     TESTEUR-ELECTRIQUE-1..> 14-Dec-2012 08:39  3.0K  
    

    [TXT]

     TESTEUR-ELECTRIQUE-1..> 14-Dec-2012 08:39  3.0K  
    

    [TXT]

     TETINE-CAOUTCHOUC-10..> 14-Dec-2012 08:45  3.0K  
    

    [TXT]

     THERMISTANCE-LINEAIR..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     THERMISTANCE-LINEAIR..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     THERMOMETRE-1082992...> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     THERMOMETRE-1083012...> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     THERMOMETRE-NUMERIQU..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     THERMOSTAT-30C---15C..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     THERMOSTAT-35C-50C-1..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     THERMOSTAT-40C---25C..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     THERMOSTAT-45C--60C-..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     THERMOSTAT-65C-80C-1..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     THERMOSTAT-70C---55C..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     THERMOSTAT-80C---65C..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     THERMOSTAT-80C-100C-..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     THERMOSTAT-100C-120C..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     THERMOSTAT-110C--90C..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     THERMOSTAT-115C-140C..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     THERMOSTAT-120C-98C-..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     THERMOSTAT-130C-110C..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     THYRISTOR-0.8A-400V-..> 14-Dec-2012 08:36  3.1K  
    

    [TXT]

     THYRISTOR-0.8A-600V-..> 14-Dec-2012 08:38  3.1K  
    

    [TXT]

     THYRISTOR-7.5A-500V-..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     THYRISTOR-7.5A-800V-..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     THYRISTOR-13A-400V-T..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     THYRISTOR-13A-600V-T..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     THYRISTOR-13A-800V-T..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     THYRISTOR-19A-800V-1..> 14-Dec-2012 08:44  3.1K  
    

    [TXT]

     THYRISTOR-19A-1200V-..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     THYRISTOR-19A-1200V-..> 14-Dec-2012 08:44  3.1K  
    

    [TXT]

     THYRISTOR-26A-1200V-..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     THYRISTOR-31A-1200V-..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     THYRISTOR-32A-800V-T..> 14-Dec-2012 08:44  3.1K  
    

    [TXT]

     THYRISTOR-32A-1200V-..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     THYRISTOR-48A-1200V-..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     THYRISTOR-48A-1600V-..> 14-Dec-2012 08:36  3.1K  
    

    [TXT]

     THYRISTOR-50A-1600V-..> 14-Dec-2012 08:36  3.1K  
    

    [TXT]

     THYRISTOR-100A-1200V..> 14-Dec-2012 08:42  3.0K  
    

    [TXT]

     THYRISTOR-MODULE-3-P..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     TIMER-COMPTEUR-10181..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     TIMER-DOUBLE-1094320..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     TIP,-DESOLDER-1.0MM-..> 14-Dec-2012 08:43  2.8K  
    

    [TXT]

     TIP,-DESOLDERING,-1...> 14-Dec-2012 08:45  2.8K  
    

    [TXT]

     TIP,-SOLDERING,-PB-F..> 14-Dec-2012 08:47  2.8K  
    

    [TXT]

     TIROIR-ROUGE-POUR-BO..> 14-Dec-2012 08:39  3.1K  
    

    [TXT]

     TONECALLER-106861.html  14-Dec-2012 08:39  3.0K  
    

    [TXT]

     TOOL-KIT-1082291.html   14-Dec-2012 08:41  2.7K  
    

    [TXT]

     TORQUE-DRIVER-DIAL-S..> 14-Dec-2012 08:42  3.0K  
    

    [TXT]

     TOURNEVIS-75XN01-100..> 14-Dec-2012 08:38  3.0K  
    

    [TXT]

     TOURNEVIS-100X3MM-10..> 14-Dec-2012 08:40  3.0K  
    

    [TXT]

     TOURNEVIS-152X5MM-10..> 14-Dec-2012 08:36  3.0K  
    

    [TXT]

     TOURNEVIS-203X5MM-10..> 14-Dec-2012 08:42  3.0K  
    

    [TXT]

     TOURNEVIS-108702.html   14-Dec-2012 08:38  3.0K  
    

    [TXT]

     TOURNEVIS-108703.html   14-Dec-2012 08:41  3.0K  
    

    [TXT]

     TOURNEVIS-108705.html   14-Dec-2012 08:41  2.9K  
    

    [TXT]

     TOURNEVIS-A-CLE-EMMA..> 14-Dec-2012 08:37  2.9K  
    

    [TXT]

     TOURNEVIS-A-CLE-EMMA..> 14-Dec-2012 08:37  2.9K  
    

    [TXT]

     TOURNEVIS-A-CLE-EMMA..> 14-Dec-2012 08:37  2.9K  
    

    [TXT]

     TOURNEVIS-DE-TEST-VD..> 14-Dec-2012 08:37  3.0K  
    

    [TXT]

     TOURNEVIS-LONGUE-POR..> 14-Dec-2012 08:41  3.0K  
    

    [TXT]

     TOURNEVIS-LONGUE-POR..> 14-Dec-2012 08:38  3.0K  
    

    [TXT]

     TOURNEVIS-TORX-T8-10..> 14-Dec-2012 08:40  2.8K  
    

    [TXT]

     TOURNEVIS-TORX-T10-1..> 14-Dec-2012 08:42  2.8K  
    

    [TXT]

     TOURNEVIS-TORX-T15-1..> 14-Dec-2012 08:42  2.8K  
    

    [TXT]

     TOURNEVIS-TORX-T20-1..> 14-Dec-2012 08:37  2.8K  
    

    [TXT]

     TRACKLIGHT,-COUPLER-..> 14-Dec-2012 08:41  2.8K  
    

    [TXT]

     TRACKLIGHT,-FLEXIBLE..> 14-Dec-2012 08:39  2.8K  
    

    [TXT]

     TRACKLIGHT,-LIVE-END..> 14-Dec-2012 08:41  2.8K  
    

    [TXT]

     TRACKLIGHT,-TRACK-12..> 14-Dec-2012 08:41  2.8K  
    

    [TXT]

     TRANCEIVER-DE-BUS-4-..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     TRANCEIVER-RS232-101..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     TRANCEIVER-RS232-107..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     TRANSCEIVER-CMS-1079..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     TRANSCEIVER-CMS-RS-4..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     TRANSCEIVER-DE-BUS-4..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     TRANSCEIVER-DE-BUS-8..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     TRANSCEIVER-DE-BUS-C..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     TRANSCEIVER-DE-BUS-D..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     TRANSCEIVER-DE-BUS-S..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     TRANSCEIVER-DE-BUS-S..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     TRANSCEIVER-DOUBLE-R..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     TRANSCEIVER-RS-485-4..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     TRANSCEIVER-RS-485-4..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     TRANSDUCER-DE-COURAN..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     TRANSDUCER-DE-COURAN..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     TRANSDUCER-DE-COURAN..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     TRANSDUCER-DE-COURAN..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     TRANSDUCER-DE-COURAN..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     TRANSDUCER-DE-COURAN..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     TRANSDUCER-DE-COURAN..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     TRANSDUCER-DE-COURAN..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     TRANSDUCER-DE-COURAN..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     TRANSDUCER-DE-COURAN..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     TRANSDUCER-DE-COURAN..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     TRANSDUCER-DE-COURAN..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     TRANSDUCER-DE-COURAN..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     TRANSDUCER-DE-COURAN..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     TRANSDUCER-DE-COURAN..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     TRANSDUCER-DE-COURAN..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     TRANSDUCTEUR-CMS-107..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     TRANSFORMATEUR-240V-..> 14-Dec-2012 08:36  2.9K  
    

    [TXT]

     TRANSFORMATEUR-415V-..> 14-Dec-2012 08:42  2.9K  
    

    [TXT]

     TRANSFORMATEUR-D´..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     TRANSFORMATEUR-D´..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     TRANSFORMATEUR-D´..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     TRANSFORMATEUR-D´..> 14-Dec-2012 08:38  3.2K  
    

    [   ]

     TRANSFORMATEUR-DE-CO..> 14-Dec-2012 08:52    0   
    

    [TXT]

     TRANSFORMATEUR-DE-CO..> 14-Dec-2012 08:49  3.2K  
    

    [   ]

     TRANSFORMATEUR-DE-CO..> 14-Dec-2012 08:52    0   
    

    [TXT]

     TRANSFORMATEUR-DE-CO..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     TRANSFORMATEUR-PULSE..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     TRANSFORMATEUR-PULSE..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     TRANSFORMATEUR-PULSE..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     TRANSFORMATEUR-PULSE..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     TRANSFORMATEUR-VARIA..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     TRANSFORMATEUR-VARIA..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     TRANSFORMATEUR-VARIA..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     TRANSFORMATEUR-VARIA..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     TRANSISTOR-DARLINGTO..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     TRANSISTOR-DARLINGTO..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     TRANSISTOR-DARLINGTO..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     TRANSISTOR-DARLINGTO..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     TRANSISTOR-DARLINGTO..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     TRANSISTOR-DARLINGTO..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     TRANSISTOR-DOUBLE-NP..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     TRANSISTOR-DOUBLE-SO..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     TRANSISTOR-FAST-IGBT..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     TRANSISTOR-IGBT-1057..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     TRANSISTOR-IGBT-BOIT..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     TRANSISTOR-IGBT-BOIT..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     TRANSISTOR-IGBT-BOIT..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     TRANSISTOR-IGBT-BOIT..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     TRANSISTOR-IGBT-CANA..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     TRANSISTOR-IGBT-CANA..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     TRANSISTOR-IGBT-CANA..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     TRANSISTOR-IGBT-CANA..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     TRANSISTOR-IGBT-D2-P..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     TRANSISTOR-IGBT-D2-P..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     TRANSISTOR-IGBT-NPT-..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     TRANSISTOR-IGBT-NPT-..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     TRANSISTOR-IGBT-TO-2..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     TRANSISTOR-IGBT-TO-2..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     TRANSISTOR-IGBT-TO-2..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     TRANSISTOR-IGBT-TO-2..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     TRANSISTOR-IGBT-TO-2..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     TRANSISTOR-JFET-CANA..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     TRANSISTOR-JFET-CANA..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     TRANSISTOR-JFET-N-SO..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     TRANSISTOR-JFET-N-SO..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-CA..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-CA..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-CA..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-CA..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-CA..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-CA..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-CA..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-CA..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-CO..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-CO..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-CO..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-CO..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-CO..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-CO..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-CO..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-DI..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-DO..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-DO..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-DO..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-DO..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-DO..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-DO..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-DO..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-DO..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-DO..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-DO..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-DO..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-DO..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-DR..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-DR..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-DR..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-MO..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-N-..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-P-..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-P-..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-P-..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-P-..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-P-..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-P-..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-P-..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-P-..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-P-..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-P-..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-P-..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-RF..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     TRANSISTOR-MOSFET-RF..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-RF..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-SM..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     TRANSISTOR-MOSFET-SM..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     TRANSISTOR-N-IGBT-TO..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-80V-1..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-100V-..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-400V-..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-400V-..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-450V-..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-700V-..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-1500V..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-BOITI..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-BOITI..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-BOITI..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-BOITI..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-BOITI..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-BOITI..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-BOITI..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-BOITI..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-BOITI..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-BOITI..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-BOITI..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-BOITI..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-BOITI..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-BOITI..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-BOITI..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-BOITI..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-BOITI..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-BOITI..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-BOITI..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-BOITI..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-BOITI..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-BOITI..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-BOITI..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-BOITI..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-BOITI..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-BOITI..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-BOITI..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-DARLI..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-DARLI..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-DOUBL..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-PNP-S..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-RF-BO..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-RF-BO..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-RF-BO..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-RF-BO..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-RF-BO..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-RF-BO..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-RF-BO..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-RF-BO..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-RF-BO..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-RF-BO..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-RF-BO..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-RF-BO..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-RF-BO..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-RF-SO..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-RF-SO..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-RF-SO..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-SOT-2..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-SOT-2..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-SOT-2..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-SOT-2..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-SOT-2..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-SOT-2..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-SOT-2..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-SOT-2..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-SOT-3..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-SOT-3..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-SOT-2..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-SOT-2..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-SOT-2..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-TO-92..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-TO-92..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-TO-92..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-TO-12..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-TO-21..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-TO-22..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-TO-22..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-TO-22..> 14-Dec-2012 08:42  3.1K  
    

    [TXT]

     TRANSISTOR-NPN-TO-22..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     TRANSISTOR-NPN-TO-22..> 14-Dec-2012 08:37  3.1K  
    

    [TXT]

     TRANSISTOR-NPN-TO-22..> 14-Dec-2012 08:37  3.1K  
    

    [TXT]

     TRANSISTOR-NPN-TO-22..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-TO-22..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-TO-22..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-TO-22..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-TO-22..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     TRANSISTOR-NPN-TO-24..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     TRANSISTOR-PNP-45V-8..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     TRANSISTOR-PNP-60V-3..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     TRANSISTOR-PNP-60V-5..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     TRANSISTOR-PNP-80V-1..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     TRANSISTOR-PNP-400V-..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     TRANSISTOR-PNP-BOITI..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     TRANSISTOR-PNP-BOITI..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     TRANSISTOR-PNP-BOITI..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     TRANSISTOR-PNP-BOITI..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     TRANSISTOR-PNP-BOITI..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     TRANSISTOR-PNP-BOITI..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     TRANSISTOR-PNP-BOITI..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     TRANSISTOR-PNP-BOITI..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     TRANSISTOR-PNP-BOITI..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     TRANSISTOR-PNP-BOITI..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     TRANSISTOR-PNP-BOITI..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     TRANSISTOR-PNP-BOITI..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     TRANSISTOR-PNP-BOITI..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     TRANSISTOR-PNP-BOITI..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     TRANSISTOR-PNP-BOITI..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     TRANSISTOR-PNP-BOITI..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     TRANSISTOR-PNP-BOITI..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     TRANSISTOR-PNP-BOITI..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     TRANSISTOR-PNP-BOITI..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     TRANSISTOR-PNP-BOITI..> 14-Dec-2012 08:36  3.2K  
    

    [TXT]

     TRANSISTOR-PNP-BOITI..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     TRANSISTOR-PNP-BOITI..> 14-Dec-2012 08:48  3.2K  
    

    [TXT]

     TRANSISTOR-PNP-BOITI..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     TRANSISTOR-PNP-BOITI..> 14-Dec-2012 08:49  3.2K  
    

    [TXT]

     TRANSISTOR-PNP-D-PAK..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     TRANSISTOR-PNP-DARLI..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     TRANSISTOR-PNP-DOUBL..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     TRANSISTOR-PNP-SOT-2..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     TRANSISTOR-PNP-SOT-3..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     TRANSISTOR-PNP-SOT-2..> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     TRANSISTOR-PNP-SOT-2..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     TRANSISTOR-PNP-SOT-2..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     TRANSISTOR-PNP-SOT-2..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     TRANSISTOR-PNP-TO-22..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     TRANSISTOR-PNP-TO-22..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     TRANSISTOR-PNP-TO-22..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     TRANSISTOR-PNP-TO-22..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     TRANSISTOR-PNP-TO-22..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     TRANSISTOR-RF-SOT-32..> 14-Dec-2012 08:37  3.2K  
    

    [TXT]

     TRANSISTOR-RF-SOT-32..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     TRANSISTOR-RF-TSFP3-..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     TRANSLATEUR-DE-TENSI..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     TRANSLATEUR-DE-TENSI..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     TRANSLATEUR-I2C-&-SM..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     TRANSLATOR-4CH-BI-DI..> 14-Dec-2012 08:45  3.2K  
    

    [TXT]

     TRANSLATOR-8CH-BI-DI..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     TRANSMETEUR-DE-COURA..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     TRANSMETTEUR-CMS-4-2..> 14-Dec-2012 08:38  3.2K  
    

    [TXT]

     TRESSE-DE-MASSE-250M..> 14-Dec-2012 08:41  3.1K  
    

    [TXT]

     TRESSE-DE-MASSE-400M..> 14-Dec-2012 08:40  3.1K  
    

    [TXT]

     TRIAC-1A-600V-SOT-22..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     TRIAC-4A-600V-TO-220..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     TRIAC-6A-600V-BOITIE..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     TRIAC-6A-600V-BOITIE..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     TRIAC-6A-600V-BOITIE..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     TRIAC-8A-600V-BOITIE..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     TRIAC-8A-600V-BOITIE..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     TRIAC-8A-600V-BOITIE..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     TRIAC-8A-600V-BOITIE..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     TRIAC-8A-600V-BOITIE..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     TRIAC-8A-600V-TO-220..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     TRIAC-10A-600V-BOITI..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     TRIAC-10A-600V-BOITI..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     TRIAC-12A-600V-BOITI..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     TRIAC-12A-600V-BOITI..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     TRIAC-12A-600V-BOITI..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     TRIAC-12A-600V-BOITI..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     TRIAC-12A-600V-BOITI..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     TRIAC-12A-600V-TO-22..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     TRIAC-12A-700V-BOITI..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     TRIAC-12A-700V-BOITI..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     TRIAC-12A-800V-TO-22..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     TRIAC-16A-600V-BOITI..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     TRIAC-16A-600V-TO-22..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     TRIAC-16A-800V-BOITI..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     TRIAC-16A-800V-BOITI..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     TRIAC-16A-800V-TO-22..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     TRIAC-20A-600V-BOITI..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     TRIAC-24A-600V-BOITI..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     TRIAC-24A-600V-BOITI..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     TRIAC-25A-600V-BOITI..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     TRIAC-25A-600V-BOITI..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     TRIAC-25A-600V-TO-22..> 14-Dec-2012 08:42  3.2K  
    

    [TXT]

     TRIAC-25A-700V-BOITI..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     TRIAC-40A-600V-BOITI..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     TRIAC-40A-700V-BOITI..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     TRIAC-40A-800V-BOITI..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     TRIMMER-1K-108236.html  14-Dec-2012 08:39  3.2K  
    

    [TXT]

     TRIMMER-2K-108237.html  14-Dec-2012 08:39  3.2K  
    

    [TXT]

     TRIMMER-5K-108249.html  14-Dec-2012 08:43  3.2K  
    

    [TXT]

     TRIMMER-10K-108250.html 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     TRIMMER-20K-108251.html 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     TRIMMER-50K-108252.html 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     TRIMMER-100K-108242...> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     TRIMMER-500K-108243...> 14-Dec-2012 08:43  3.2K  
    

    [TXT]

     TRIMMER-500R-108235...> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     TRIMMER-CMS-1K-10713..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     TRIMMER-CMS-2K-10713..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     TRIMMER-CMS-5K-10713..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     TRIMMER-CMS-10K-1071..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     TRIMMER-CMS-20K-1071..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     TRIMMER-CMS-50K-1071..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     TROUSSE-A-OUTILS-105..> 14-Dec-2012 08:46  2.8K  
    

    [TXT]

     TROUSSE-A-OUTILS-105..> 14-Dec-2012 08:45  2.8K  
    

    [TXT]

     TROUSSE-A-OUTILS-105..> 14-Dec-2012 08:41  2.8K  
    

    [TXT]

     TUBE-10CM-106650.html   14-Dec-2012 08:46  2.8K  
    

    [TXT]

     TUBE-30CM-106653.html   14-Dec-2012 08:39  2.8K  
    

    [TXT]

     TUBE-100CM-106658.html  14-Dec-2012 08:46  2.8K  
    

    [TXT]

     TUBE-150CM-106659.html  14-Dec-2012 08:46  2.8K  
    

    [TXT]

     TUBE-200CM-106660.html  14-Dec-2012 08:39  2.8K  
    

    [TXT]

     TUBE-A-BRIDES-400MM-..> 14-Dec-2012 08:39  2.9K  
    

    [TXT]

     TUBE-A-BRIDES-2000MM..> 14-Dec-2012 08:39  2.9K  
    

    [TXT]

     TUBE-FILTRE-DXV-80-(..> 14-Dec-2012 08:44  2.8K  
    

    [TXT]

     TUBE-PVC-NOIR-107279..> 14-Dec-2012 08:43  3.0K  
    

    [TXT]

     TUBULAR-LIGHT,-CFL,-..> 14-Dec-2012 08:36  3.0K  
    

    [TXT]

     TUBULAR-LIGHT,-T8,-I..> 14-Dec-2012 08:44  3.0K  
    

    [TXT]

     TWEETER-PIEZO-100459..> 14-Dec-2012 08:56  3.1K  
    

    [TXT]

     TWEETER-PIEZO.html      13-Dec-2012 19:03  3.1K  
    

    [TXT]

     TWIST-DRILL-SET,-HSS..> 14-Dec-2012 08:43  2.8K  
    

    [TXT]

     UART-AVEC-FIFO-16-OC..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     UART-QUADRUPLE-AVEC-..> 14-Dec-2012 08:39  3.2K  
    

    [TXT]

     ULTRASONIC-RXR-25KHZ..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     ULTRASONIC-RXR-25KHZ..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     ULTRASONIC-RXR-32.8K..> 14-Dec-2012 08:55  3.1K  
    

    [TXT]

     ULTRASONIC-RXR-32.8K..> 13-Dec-2012 19:02  3.1K  
    

    [TXT]

     ULTRASONIC-RXR-40KHZ..> 14-Dec-2012 08:55  3.1K  
    

    [TXT]

     ULTRASONIC-RXR-40KHZ..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     ULTRASONIC-RXR-40KHZ..> 13-Dec-2012 19:02  3.1K  
    

    [TXT]

     ULTRASONIC-RXR-40KHZ..> 14-Dec-2012 08:55  3.1K  
    

    [TXT]

     ULTRASONIC-RXR-40KHZ..> 13-Dec-2012 19:02  3.1K  
    

    [TXT]

     ULTRASONIC-RXR-40KHZ..> 14-Dec-2012 08:55  3.1K  
    

    [TXT]

     ULTRASONIC-RXR-40KHZ..> 14-Dec-2012 08:55  3.1K  
    

    [TXT]

     ULTRASONIC-RXR-40KHZ..> 13-Dec-2012 19:02  3.1K  
    

    [TXT]

     ULTRASONIC-RXR-40KHZ..> 13-Dec-2012 19:02  3.1K  
    

    [TXT]

     ULTRASONIC-TX-RX-MOD..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     ULTRASONIC-TXR-25KHZ..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     ULTRASONIC-TXR-25KHZ..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     ULTRASONIC-TXR-32.8K..> 14-Dec-2012 08:52  3.1K  
    

    [TXT]

     ULTRASONIC-TXR-32.8K..> 13-Dec-2012 19:01  3.1K  
    

    [TXT]

     ULTRASONIC-TXR-40KHZ..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     ULTRASONIC-TXR-40KHZ..> 14-Dec-2012 08:49  3.1K  
    

    [TXT]

     ULTRASONIC-TXR-40KHZ..> 14-Dec-2012 08:55  3.1K  
    

    [TXT]

     ULTRASONIC-TXR-40KHZ..> 13-Dec-2012 19:02  3.1K  
    

    [TXT]

     ULTRASONIC-TXR-40KHZ..> 14-Dec-2012 08:56  3.1K  
    

    [TXT]

     ULTRASONIC-TXR-40KHZ..> 13-Dec-2012 19:02  3.1K  
    

    [TXT]

     ULTRASONIC-TXR-77KHZ..> 14-Dec-2012 08:55  3.1K  
    

    [TXT]

     ULTRASONIC-TXR-77KHZ..> 13-Dec-2012 19:02  3.1K  
    

    [TXT]

     ULTRASONIC-TXR-235KH..> 14-Dec-2012 08:55  3.1K  
    

    [TXT]

     ULTRASONIC-TXR-235KH..> 13-Dec-2012 19:02  3.1K  
    

    [TXT]

     UNIVERSAL-HOLDER,-FO..> 14-Dec-2012 08:39  2.8K  
    

    [TXT]

     VACUUM,-CLEANER,-MIN..> 14-Dec-2012 08:47  2.8K  
    

    [TXT]

     VALISE-A-OUTILS-1054..> 14-Dec-2012 08:41  3.0K  
    

    [TXT]

     VALISE-A-OUTILS-1092..> 14-Dec-2012 08:40  3.0K  
    

    [TXT]

     VARISTANCE-0.3J-11VA..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     VARISTANCE-0.3J-11VA..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-0.4J-4VAC..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     VARISTANCE-0.4J-14VA..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     VARISTANCE-0.4J-14VA..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-0.5J-17VA..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     VARISTANCE-0.5J-17VA..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-0.6J-20VA..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     VARISTANCE-0.6J-20VA..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-0.7J-25VA..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     VARISTANCE-0.7J-25VA..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-0.8J-4VAC..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     VARISTANCE-0.8J-10VA..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     VARISTANCE-0.8J-11VA..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     VARISTANCE-0.8J-11VA..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-0.9J-14VA..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     VARISTANCE-0.9J-14VA..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     VARISTANCE-0.9J-14VA..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     VARISTANCE-0.9J-30VA..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     VARISTANCE-0.9J-30VA..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-1.0J-17VA..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     VARISTANCE-1.1J-17VA..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     VARISTANCE-1.1J-17VA..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-1.1J-35VA..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     VARISTANCE-1.1J-35VA..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-1.2J-20VA..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     VARISTANCE-1.3J-20VA..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     VARISTANCE-1.3J-20VA..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-1.3J-40VA..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     VARISTANCE-1.3J-40VA..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-1.5J-25VA..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     VARISTANCE-1.6J-25VA..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     VARISTANCE-1.6J-25VA..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     VARISTANCE-1.7J-11VA..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     VARISTANCE-1.7J-11VA..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-1.8J-30VA..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     VARISTANCE-1.8J-50VA..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     VARISTANCE-1.8J-50VA..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-2.0J-14VA..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     VARISTANCE-2.0J-14VA..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-2.0J-30VA..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     VARISTANCE-2.0J-30VA..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     VARISTANCE-2.3J-35VA..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     VARISTANCE-2.5J-17VA..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     VARISTANCE-2.5J-17VA..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-2.5J-35VA..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     VARISTANCE-2.5J-35VA..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-2.5J-75VA..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     VARISTANCE-2.5J-75VA..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-3.0J-40VA..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     VARISTANCE-3.0J-40VA..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     VARISTANCE-3.0J-40VA..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-3.1J-20VA..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     VARISTANCE-3.1J-20VA..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     VARISTANCE-3.2J-11VA..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     VARISTANCE-3.2J-11VA..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-3.4J-95VA..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     VARISTANCE-3.4J-95VA..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     VARISTANCE-3.4J-115V..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     VARISTANCE-3.4J-115V..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-3.5J-10VA..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     VARISTANCE-3.7J-25VA..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     VARISTANCE-3.7J-25VA..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     VARISTANCE-4.0J-14VA..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     VARISTANCE-4.0J-14VA..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     VARISTANCE-4.0J-14VA..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     VARISTANCE-4.0J-50VA..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     VARISTANCE-4.2J-50VA..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     VARISTANCE-4.2J-50VA..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-4.2J-130V..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     VARISTANCE-4.2J-130V..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-4.4J-30VA..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     VARISTANCE-4.4J-30VA..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-4.8J-60VA..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     VARISTANCE-4.8J-60VA..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-4.9J-150V..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     VARISTANCE-4.9J-150V..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-5.0J-17VA..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     VARISTANCE-5.0J-60VA..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     VARISTANCE-5.4J-35VA..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     VARISTANCE-5.4J-35VA..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-5.6J-175V..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     VARISTANCE-5.6J-175V..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     VARISTANCE-5.9J-75VA..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     VARISTANCE-5.9J-75VA..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     VARISTANCE-6.0J-20VA..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     VARISTANCE-6.0J-20VA..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     VARISTANCE-6.0J-20VA..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     VARISTANCE-6.0J-75VA..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     VARISTANCE-7.0J-25VA..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     VARISTANCE-7.0J-25VA..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-7.2J-25VA..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     VARISTANCE-7.2J-230V..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     VARISTANCE-7.2J-230V..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     VARISTANCE-8.2J-250V..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     VARISTANCE-8.2J-250V..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-8.4J-50VA..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     VARISTANCE-8.4J-50VA..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     VARISTANCE-8.4J-115V..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     VARISTANCE-8.4J-115V..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     VARISTANCE-8.6J-275V..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     VARISTANCE-8.6J-275V..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-9.0J-30VA..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     VARISTANCE-9.0J-30VA..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     VARISTANCE-9.5J-130V..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     VARISTANCE-9.5J-130V..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-9.6J-300V..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     VARISTANCE-9.6J-300V..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-10.0J-11V..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     VARISTANCE-10.0J-11V..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-10.0J-35V..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     VARISTANCE-10.0J-35V..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     VARISTANCE-10.0J-35V..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-10.0J-115..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     VARISTANCE-11.0J-130..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     VARISTANCE-12.0J-14V..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     VARISTANCE-12.0J-14V..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-13.0J-40V..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     VARISTANCE-13.0J-40V..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     VARISTANCE-13.0J-40V..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-13.0J-150..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     VARISTANCE-13.0J-175..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     VARISTANCE-13.0J-175..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-13.5J-385..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     VARISTANCE-13.5J-385..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-14.0J-17V..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     VARISTANCE-14.0J-17V..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     VARISTANCE-14.0J-420..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     VARISTANCE-14.0J-420..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     VARISTANCE-15.0J-50V..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     VARISTANCE-15.0J-50V..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-15.0J-95V..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     VARISTANCE-15.0J-95V..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-17.0J-60V..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     VARISTANCE-17.0J-60V..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     VARISTANCE-17.0J-230..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     VARISTANCE-17.0J-230..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-18.0J-20V..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     VARISTANCE-18.0J-20V..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-18.0J-115..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     VARISTANCE-18.0J-115..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-18.0J-460..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     VARISTANCE-18.0J-460..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     VARISTANCE-19.0J-130..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     VARISTANCE-19.0J-130..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-19.0J-250..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     VARISTANCE-19.0J-250..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-20.0J-60V..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     VARISTANCE-20.0J-75V..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     VARISTANCE-20.0J-75V..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     VARISTANCE-20.0J-130..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     VARISTANCE-20.0J-230..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     VARISTANCE-21.0J-250..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     VARISTANCE-21.0J-250..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     VARISTANCE-21.0J-275..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     VARISTANCE-21.0J-275..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     VARISTANCE-22.0J-75V..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     VARISTANCE-22.0J-140..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     VARISTANCE-22.0J-140..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-23.0J-275..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     VARISTANCE-23.0J-275..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     VARISTANCE-23.0J-300..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     VARISTANCE-23.0J-300..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-24.0J-150..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     VARISTANCE-24.0J-150..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-25.0J-95V..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     VARISTANCE-25.0J-95V..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     VARISTANCE-25.0J-150..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     VARISTANCE-26.0J-25V..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     VARISTANCE-26.0J-25V..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-26.0J-30V..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     VARISTANCE-26.0J-30V..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-27.0J-50V..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     VARISTANCE-27.0J-50V..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-28.0J-175..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     VARISTANCE-28.0J-175..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     VARISTANCE-30.0J-95V..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     VARISTANCE-30.0J-115..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     VARISTANCE-30.0J-115..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     VARISTANCE-32.0J-420..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     VARISTANCE-32.0J-420..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     VARISTANCE-32.0J-460..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     VARISTANCE-32.0J-460..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-33.0J-35V..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     VARISTANCE-33.0J-35V..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     VARISTANCE-33.0J-60V..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     VARISTANCE-33.0J-60V..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     VARISTANCE-34.0J-130..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     VARISTANCE-34.0J-130..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-35.0J-115..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     VARISTANCE-36.0J-140..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     VARISTANCE-36.0J-140..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-36.0J-230..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     VARISTANCE-36.0J-230..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-37.0J-40V..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     VARISTANCE-37.0J-40V..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-38.0J-130..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     VARISTANCE-38.0J-250..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     VARISTANCE-38.0J-250..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-40.0J-75V..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     VARISTANCE-40.0J-75V..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-40.0J-250..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     VARISTANCE-40.0J-385..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     VARISTANCE-40.0J-385..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     VARISTANCE-43.0J-275..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     VARISTANCE-43.0J-275..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-45.0J-150..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     VARISTANCE-45.0J-275..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     VARISTANCE-45.0J-420..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     VARISTANCE-45.0J-420..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     VARISTANCE-45.0J-420..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-46.0J-175..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     VARISTANCE-46.0J-175..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-47.0J-300..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     VARISTANCE-47.0J-300..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-50.0J-95V..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     VARISTANCE-50.0J-95V..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-50.0J-320..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     VARISTANCE-50.0J-320..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     VARISTANCE-50.0J-460..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     VARISTANCE-50.0J-460..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-55.0J-175..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     VARISTANCE-60.0J-115..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     VARISTANCE-60.0J-115..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     VARISTANCE-60.0J-230..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     VARISTANCE-60.0J-230..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-65.0J-250..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     VARISTANCE-65.0J-250..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-70.0J-130..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     VARISTANCE-70.0J-130..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     VARISTANCE-70.0J-230..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     VARISTANCE-71.0J-275..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     VARISTANCE-71.0J-275..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     VARISTANCE-72.0J-250..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     VARISTANCE-74.0J-130..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     VARISTANCE-74.0J-130..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-75.0J-275..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     VARISTANCE-76.0J-300..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     VARISTANCE-76.0J-300..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     VARISTANCE-78.0J-140..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     VARISTANCE-78.0J-140..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-80.0J-150..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     VARISTANCE-80.0J-385..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     VARISTANCE-80.0J-385..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     VARISTANCE-84.0J-320..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     VARISTANCE-84.0J-320..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     VARISTANCE-85.0J-150..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     VARISTANCE-85.0J-150..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     VARISTANCE-90.0J-320..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     VARISTANCE-90.0J-420..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     VARISTANCE-90.0J-420..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     VARISTANCE-90.0J-420..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     VARISTANCE-98.0J-175..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     VARISTANCE-98.0J-175..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     VARISTANCE-100J-14VA..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     VARISTANCE-100J-460V..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     VARISTANCE-100J-460V..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-105J-480V..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     VARISTANCE-110J-510V..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     VARISTANCE-120J-575V..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     VARISTANCE-130J-230V..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     VARISTANCE-130J-230V..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-130J-250V..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     VARISTANCE-130J-250V..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     VARISTANCE-140J-250V..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     VARISTANCE-140J-250V..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     VARISTANCE-140J-275V..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     VARISTANCE-140J-275V..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     VARISTANCE-140J-660V..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     VARISTANCE-150J-21VA..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     VARISTANCE-150J-275V..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     VARISTANCE-150J-275V..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     VARISTANCE-150J-385V..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     VARISTANCE-150J-385V..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-151J-275V..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     VARISTANCE-151J-275V..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     VARISTANCE-160J-320V..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     VARISTANCE-160J-420V..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     VARISTANCE-173J-300V..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     VARISTANCE-173J-300V..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-175J-420V..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     VARISTANCE-175J-420V..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-180J-480V..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     VARISTANCE-184J-320V..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     VARISTANCE-184J-320V..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-185J-320V..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     VARISTANCE-185J-320V..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-190J-510V..> 14-Dec-2012 08:57  3.2K  
    

    [TXT]

     VARISTANCE-190J-510V..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-195J-460V..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     VARISTANCE-195J-460V..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-215J-275V..> 14-Dec-2012 08:56  3.2K  
    

    [TXT]

     VARISTANCE-215J-275V..> 13-Dec-2012 19:03  3.2K  
    

    [TXT]

     VARISTANCE-220J-575V..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     VARISTANCE-230J-625V..> 14-Dec-2012 08:54  3.2K  
    

    [TXT]

     VARISTANCE-230J-625V..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     VARISTANCE-235J-300V..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     VARISTANCE-235J-300V..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     VARISTANCE-255J-320V..> 14-Dec-2012 08:55  3.2K  
    

    [TXT]

     VARISTANCE-255J-320V..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     VARISTANCE-360J-1000..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     VARISTANCE-808J-30VA..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     VARISTANCE-1210-18VA..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     VARISTANCE-1210-26VA..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     VARISTANCE-BOITIER-0..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     VARISTANCE-BOITIER-0..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     VARISTANCE-BOITIER-0..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     VARISTANCE-BOITIER-0..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     VARISTANCE-BOITIER-0..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     VARISTANCE-BOITIER-0..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     VARISTANCE-BOITIER-0..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     VARISTANCE-BOITIER-1..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     VARISTANCE-BOITIER-1..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     VARISTANCE-BOITIER-1..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     VARISTANCE-BOITIER-1..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     VARISTANCE-BOITIER-1..> 14-Dec-2012 08:46  3.2K  
    

    [TXT]

     VARISTANCE-BOITIER-1..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     VARISTANCE-BOITIER-1..> 14-Dec-2012 08:44  3.2K  
    

    [TXT]

     VARISTANCE-BOITIER-1..> 14-Dec-2012 08:40  3.2K  
    

    [TXT]

     VELCRO-BOB5M-107424...> 14-Dec-2012 08:46  3.0K  
    

    [TXT]

     VELCRO-BOB5M-107425...> 14-Dec-2012 08:46  3.0K  
    

    [TXT]

     VENTILATEUR-40MM-5VC..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     VENTILATEUR-40MM-5VC..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     VENTILATEUR-40MM-12V..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     VENTILATEUR-40MM-24V..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     VENTILATEUR-40MM-24V..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     VENTILATEUR-45MM-12V..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     VENTILATEUR-45MM-12V..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     VENTILATEUR-50MM-5VC..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     VENTILATEUR-50MM-5VC..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     VENTILATEUR-50MM-12V..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     VENTILATEUR-51MM-12V..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     VENTILATEUR-51MM-12V..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     VENTILATEUR-60MM-12V..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     VENTILATEUR-60MM-12V..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     VENTILATEUR-60MM-12V..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     VENTILATEUR-60MM-12V..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     VENTILATEUR-60MM-24V..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     VENTILATEUR-60MM-24V..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     VENTILATEUR-60MM-24V..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     VENTILATEUR-60MM-24V..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     VENTILATEUR-60MM-24V..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     VENTILATEUR-60MM-115..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     VENTILATEUR-60MM-115..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     VENTILATEUR-75MM-12V..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     VENTILATEUR-75MM-12V..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     VENTILATEUR-80MM-12V..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     VENTILATEUR-80MM-12V..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     VENTILATEUR-80MM-12V..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     VENTILATEUR-80MM-12V..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     VENTILATEUR-80MM-24V..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     VENTILATEUR-80MM-24V..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     VENTILATEUR-92MM-12V..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     VENTILATEUR-92MM-12V..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     VENTILATEUR-92MM-12V..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     VENTILATEUR-92MM-24V..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     VENTILATEUR-95MM-12V..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     VENTILATEUR-95MM-12V..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     VENTILATEUR-95MM-12V..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     VENTILATEUR-95MM-24V..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     VENTILATEUR-119MM-12..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     VENTILATEUR-119MM-12..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     VENTILATEUR-119MM-24..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     VENTILATEUR-120MM-24..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     VENTILATEUR-150MM-23..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     VENTILATEUR-150MM-23..> 13-Dec-2012 19:02  3.1K  
    

    [TXT]

     VENTILATEUR-AIR-CHAU..> 14-Dec-2012 08:53  3.0K  
    

    [TXT]

     VENTILATEUR-AIR-CHAU..> 13-Dec-2012 19:01  3.0K  
    

    [TXT]

     VENTILATEUR-AXIAL-10..> 14-Dec-2012 08:47  3.1K  
    

    [TXT]

     VENTILATEUR-AXIAL-10..> 14-Dec-2012 08:50  3.1K  
    

    [TXT]

     VENTILATEUR-AXIAL-10..> 14-Dec-2012 08:50  3.1K  
    

    [TXT]

     VENTILATEUR-AXIAL-10..> 14-Dec-2012 08:53  3.1K  
    

    [TXT]

     VENTILATEUR-AXIAL-10..> 14-Dec-2012 08:50  3.1K  
    

    [TXT]

     VENTILATEUR-AXIAL.html  13-Dec-2012 19:02  3.1K  
    

    [TXT]

     VENTILATEUR-DBLE-ASP..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     VENTILATEUR-DBLE-ASP..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     VENTILATEUR-DBLE-ASP..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     VENTILATEUR-DBLE-ASP..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     VENTILATEUR-DBLE-ASP..> 13-Dec-2012 19:02  3.2K  
    

    [TXT]

     VENTILATEUR-DBLE-ASP..> 14-Dec-2012 08:47  3.2K  
    

    [TXT]

     VENTILATEUR-FILTRE-I..> 14-Dec-2012 08:41  3.2K  
    

    [TXT]

     VENTILATEUR-POUR-CPU..> 14-Dec-2012 08:52  3.2K  
    

    [TXT]

     VENTILATEUR-POUR-CPU..> 13-Dec-2012 19:01  3.2K  
    

    [TXT]

     VENTILATEUR-RADIAL-1..> 14-Dec-2012 08:53  3.1K  
    

    [TXT]

     VENTILATEUR-RADIAL.html 13-Dec-2012 19:02  3.1K  
    

    [TXT]

     VENTILATEUR-SIMPLE-A..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     VENTILATEUR-SIMPLE-A..> 14-Dec-2012 08:50  3.2K  
    

    [TXT]

     VENTILATEUR-SIMPLE-A..> 14-Dec-2012 08:53  3.2K  
    

    [TXT]

     VENTILATEUR-SIMPLE-A..> 13-Dec-2012 19:02  3.2K 

     

     

     

     

    Document Number: 319535-003US Intel® Atom™ Processor Z5xx∆ Series Datasheet — For the Intel® Atom™ Processor Z560∆ , Z550∆ , Z540∆ , Z530∆ , Z520∆ , Z515∆ , Z510∆ , and Z500∆ on 45 nm Process Technology June 20102 Datasheet INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR. Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information. The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order. Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or by visiting Intel's Web Site. ∆ Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different processor families. See http://www.intel.com/products/processor_number for details. Intel® Virtualization Technology (Intel® VT) requires a computer system with an enabled Intel® processor, BIOS, virtual machine monitor (VMM) and, for some uses, certain platform software enabled for it. Functionality, performance or other benefits will vary depending on hardware and software configurations and may require a BIOS update. Software applications may not be compatible with all operating systems. Please check with your application vendor. Hyper-Threading Technology requires a computer system with a processor supporting Hyper-Threading Technology and HT Technology enabled chipset, BIOS and operating system. Performance will vary depending on the specific hardware and software you see. See http://www.intel.com/technology/hypertheading/ for more information including details on which processor supports HT Technology. Intel®, Intel® AtomTM , Intel® Centrino®, Enhanced Intel SpeedStep® Technology, Intel® Virtualization Technology (Intel® VT), Intel® Thermal Monitor, Intel® Streaming SIMD Extensions 2 and 3 (Intel® SSE2 and Intel® SSE3), Intel® Burst Performance Technology (Intel® BPT), Intel® Hyper-Threading Technology (Intel® HT Technology), and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries. *Other names and brands may be claimed as the property of others. Copyright © 2007–2010 Intel Corporation. All rights reserved.Datasheet 3 Contents 1 Introduction...................................................................................................... 7 1.1 Abstract................................................................................................. 7 1.2 Major Features ....................................................................................... 7 1.3 Terminology........................................................................................... 9 1.4 References............................................................................................11 2 Low Power Features..........................................................................................13 2.1 Clock Control and Low-Power States ........................................................13 2.1.1 Package/Core Low-Power State Descriptions................................15 2.2 Dynamic Cache Sizing ............................................................................22 2.3 Enhanced Intel SpeedStep® Technology...................................................23 2.4 Enhanced Low-Power States....................................................................24 2.5 FSB Low Power Enhancements.................................................................25 2.5.1 CMOS Front Side Bus ................................................................25 2.6 Intel® Burst Performance Technology (Intel® BPT) ..................................26 3 Electrical Specifications .....................................................................................27 3.1 FSB, GTLREF, and CMREF........................................................................27 3.2 Power and Ground Pins...........................................................................27 3.3 Decoupling Guidelines ............................................................................28 3.3.1 V CC Decoupling .........................................................................28 3.3.2 FSB AGTL+ Decoupling..............................................................28 3.4 FSB Clock (BCLK[1:0]) and Processor Clocking..........................................28 3.5 Voltage Identification and Power Sequencing.............................................28 3.6 Catastrophic Thermal Protection..............................................................31 3.7 Reserved and Unused Pins ......................................................................31 3.8 FSB Frequency Select Signals (BSEL[2:0]) ................................................31 3.9 FSB Signal Groups .................................................................................31 3.10 CMOS Asynchronous Signals ...................................................................33 3.11 Maximum Ratings ..................................................................................33 3.12 Processor DC Specifications.....................................................................34 3.13 AGTL+ FSB Specifications .......................................................................45 4 Package Mechanical Specifications and Pin Information..........................................47 4.1 Package Mechanical Specifications ...........................................................47 4.1.1 Processor Package Weight.........................................................47 4.2 Processor Pinout Assignment...................................................................49 4.3 Signal Description..................................................................................56 5 Thermal Specifications and Design Considerations ................................................65 5.1 Thermal Specifications............................................................................68 5.1.1 Thermal Diode .........................................................................68 5.1.2 Intel® Thermal Monitor.............................................................70 5.1.3 Digital Thermal Sensor..............................................................724 Datasheet 5.1.4 Out of Specification Detection ....................................................72 5.1.5 PROCHOT# Signal Pin ...............................................................72 Figures Figure 1. Thread Low-Power States.....................................................................14 Figure 2. Package Low-Power States...................................................................14 Figure 3. Deep Power Down Technology Entry Sequence .......................................20 Figure 4. Deep Power Down Technology Exit Sequence..........................................20 Figure 5. Exit Latency Table...............................................................................21 Figure 6. Active Vcc and Icc Loadline.....................................................................40 Figure 7. Deeper Sleep VCC and ICC Loadline.........................................................41 Figure 8. Package Mechanical Drawing ................................................................48 Figure 9. Pinout Diagram (Top View, Left Side).....................................................49 Figure 10. Pinout Diagram (Top View, Right Side).................................................50 Tables Table 1. References ..........................................................................................11 Table 2. Coordination of Thread Low-Power States at the Package/Core Level..........15 Table 3. Voltage Identification Definition .............................................................29 Table 4. BSEL[2:0] Encoding for BCLK Frequency .................................................31 Table 5. FSB Pin Groups ....................................................................................32 Table 6. Processor Absolute Maximum Ratings .....................................................34 Table 7. Voltage and Current Specifications for the Intel® Atom™ Processor Z560, Z550, Z540, Z530, Z520, and Z510 .......................................................35 Table 8. Voltage and Current Specifications for the Intel® Atom™ Processor Z500 ...37 Table 9. Voltage and Current Specifications for the Intel® Atom™ Processor Z515 ...38 Table 10. FSB Differential BCLK Specifications......................................................42 Table 11. AGTL+/CMOS Signal Group DC Specifications.........................................43 Table 12. Legacy CMOS Signal Group DC Specifications.........................................44 Table 13. Open Drain Signal Group DC Specifications............................................44 Table 14. Pinout Arranged by Signal Name ..........................................................51 Table 15. Signal Description...............................................................................56 Table 16. Power Specifications for Intel® Atom™ Processors Z560, Z550, Z540, Z530, Z520, and Z510 ........................................................................66 Table 17. Power Specifications for Intel® Atom™ Processors Z515 and Z500............67 Table 18. Thermal Diode Interface......................................................................69 Table 19. Thermal Diode Parameters Using Transistor Model..................................69Datasheet 5 Revision History Document Number Revision Number Description Revision Date 319535 001 • Initial release April 2008 319535 002 • Updated information about Intel® Atom processors Z515 and Z550. • Added Intel® Atom processor Z550 specifications to Table 7 • Changed VccBoot value to VccLFM in Table 7 and Table 8. • Added new Table 9, Voltage and Current Specifications for Intel ® Atom processor Z515. • Removed EMTTM references as it is not a supported feature. March 2009 319535 003 • Added Z560 information • Defeatured and removed mention of C6 Split VTT June 2010 §6 Datasheet This page intentionally left blank.Introduction Datasheet 7 1 Introduction The Intel® Atom™ processor Z5xx series is built on a new 45-nanometer Hi-k low power micro-architecture and 45 nm process technology—the first generation of lowpower IA-32 micro-architecture specially designed for the new class of Mobile Internet Devices (MIDs). The Intel Atom processor Z5xx series supports the Intel® System Controller Hub (Intel® SCH), a single-chip component designed for low-power operation. 1.1 Abstract This document contains electrical, mechanical, and thermal specifications for Intel Atom processors Z560, Z550, Z540, Z530, Z520, Z515, Z510, and Z500. Note: In this document, Intel Atom processor Z5xx series refers to the Intel Atom processors Z560, Z550, Z540, Z530, Z520, Z515, Z510, and Z500. Note: In this document, the Intel Atom processor Z5xx series is referred to as “processor”. The Intel® System Controller Hub (Intel® SCH) is referred to as the “Intel® SCH”. 1.2 Major Features The following list provides some of the key features on this processor: • New single-core processor for mobile devices offering enhanced performance • On die, primary 32-kB instructions cache and 24-kB write-back data cache • 100-MHz and 133-MHz Source-Synchronous front side bus (FSB)  100 MHz: Intel Atom processor Z515, Z510, and Z500  133 MHz: Intel Atom processor Z560, Z550, Z540, Z530, and Z520. • Supports Hyper-Threading Technology 2-threads • On die 512-kB, 8-way L2 cache • Support for IA 32-bit architecture • Intel® Virtualization Technology (Intel® VT) • Intel® Streaming SIMD Extensions 2 and 3 (Intel® SSE2 and Intel® SSE3) and Supplemental Streaming SIMD Extensions 3 (SSSE3) support • Supports new CMOS FSB signaling for reduced power • Micro-FCBGA8 packaging technologies • Thermal management support using TM1 and TM2 • On die Digital Thermal Sensor (DTS) for thermal management support using Thermal Monitor (TM1 and TM2) • FSB Lane Reversal for flexible routing • Supports C0/C1(e)/C2(e)/C4(e) power states • Intel Deep Power Down Technology (C6) • L2 Dynamic Cache Sizing • Advanced power management features including Enhanced Intel SpeedStep® TechnologyIntroduction 8 Datasheet • Execute Disable Bit support for enhanced security • Intel® Burst Performance Technology (Intel® BPT) (Intel Atom processor Z515 only)Introduction Datasheet 9 1.3 Terminology Term Definition # A “#” symbol after a signal name refers to an active low signal, indicating a signal is in the active state when driven to a low level. For example, when RESET# is low, a reset has been requested. Conversely, when NMI is high, a non-maskable interrupt has occurred. In the case of signals where the name does not imply an active state but describes part of a binary sequence (such as address or data), the “#” symbol implies that the signal is inverted. For example, D[3:0] = “HLHL” refers to a hex ‘A’, and D[3:0]# = “LHLH” also refers to a hex “A” (H= High logic level, L= Low logic level). Front Side Bus (FSB) Refers to the interface between the processor and system core logic (also known as the Intel® SCH chipset components). AGTL+ Advanced Gunning Transceiver Logic is used to refer to Assisted GTL+ signaling technology on some Intel processors. Intel® Burst Performance Technology (Intel® BPT) Enables on-demand performance, without impacting or raising MID thermal design point. BFM Burst Frequency Mode CMOS Complementary Metal-Oxide Semiconductor Storage Conditions Refers to a non-operational state—the processor may be installed in a platform, in a tray, or loose. Processors may be sealed in packaging or exposed to free air. Under these conditions, processor landings should not be connected to any supply voltages, or have any I/Os biased, or receive any clocks. Upon exposure to “free air” (that is, unsealed packaging or a device removed from packaging material) the processor must be handled in accordance with moisture sensitivity labeling (MSL) as indicated on the packaging material. Enhanced Intel SpeedStep® Technology Technology that provides power management capabilities to low power devices. Processor Core Processor core die with integrated L1 and L2 cache. All AC timing and signal integrity specifications are at the pads of the processor core. Intel Virtualization Technology Processor virtualization which when used in conjunction with Virtual Machine Monitor software enables multiple, robust independent software environments inside a single platform. TDP Thermal Design Power V CC The processor core power supply. VR Voltage Regulator VSS The processor ground V CCHFM V CC at Highest Frequency Mode (HFM) V CCLFM V CC at Lowest Frequency Mode (LFM)Introduction 10 Datasheet Term Definition V CC, BOOT Default VCC Voltage for Initial Power Up V CCP AGTL+ Termination Voltage V CCPC6 AGTL+ Termination Voltage V CCA PLL Supply voltage V CCDPPWDN V CC at Deep Power Down Technology (C6) V CCDPRSLP V CC at Deeper Sleep (C4) V CCF Fuse Power Supply I CCDES I CCDES for Intel Atom processors Z5xx Series Recommended Design Target power delivery (Estimated) I CC I CC for Intel Atom processors Z5xx Series is the number that can be use as a reflection on a battery life estimates I AH, I CC Auto-Halt I SGNT I CC Stop-Grant I DSLP I CC Deep Sleep dICC/dt V CC Power Supply Current Slew Rate at Processor Package Pin (Estimated) I CCA I CC for VCCA Supply P AH Auto Halt Power P SGNT Stop Grant Power P DPRSLP Deeper Sleep Power P DC6 Deep Power Down Technology (C6). TJ Junction Temperature Introduction Datasheet 11 1.4 References Material and concepts available in the following documents may be beneficial when reading this document. Table 1. References Document Document Number Intel® System Controller Hub (Intel® SCH) Datasheet http://www.intel.com/desi gn/chipsets/embedded/S CHUS15W/techdocs.htm Intel® Atom™ Processor Z5xx Series Specification Update http://www.intel.com/desi gn/chipsets/embedded/S CHUS15W/techdocs.htm Intel® 64 and IA-32 Architectures Software Developer's Manuals Volume 1: Basic Architecture http://www.intel.com/pro ducts/processor/ manuals/index.htm Volume 2A: Instruction Set Reference, A-M Volume 2B: Instruction Set Reference, N-Z Volume 3A: System Programming Guide Volume 3B: System Programming Guide AP-485, Intel® Processor Identification and CPUID Instruction Application Note http://www.intel.com/desi gn/processor/applnots/24 1618.htm §Introduction 12 Datasheet This page intentionally left blank.Low Power Features Datasheet 13 2 Low Power Features 2.1 Clock Control and Low-Power States The processor supports low power states at the thread level and the core/package level. Thread states (TCx) loosely correspond to ACPI processor power states (Cx). A thread may independently enter the TC1/AutoHALT, TC1/MWAIT, TC2, TC4, or TC6 low power states, but this does not always cause a power state transition. Only when both threads request a low-power state (TCx) greater than the current processor state will a transition occur. The central power management logic ensures the entire processor enters the new common processor power state. For processor power states higher than C1, this would be done by initiating a P_LVLx (P_LVL2 and P_LVL3) I/O read to the chipset by both threads. Package states are states that require external intervention and typically map back to processor power states. Package states for the processor include Normal (C0, C1), Stop Grant and Stop Grant Snoop (C2), Deeper Sleep (C4), and Deep Power Down Technology (C6). The processor implements two software interfaces for requesting low power states: MWAIT instruction extensions with sub-state hints and P_LVLx reads to the ACPI P_BLK register block mapped in the processor’s I/O address space. The P_LVLx I/O reads are converted to equivalent MWAIT C-state requests inside the processor and do not directly result in I/O reads on the processor FSB. The monitor address does not need to be setup before using the P_LVLx I/O read interface. The sub-state hints used for each P_LVLx read can be configured in a software programmable MSR by BIOS. If a thread encounters a chipset break event while STPCLK# is asserted, then it asserts the PBE# output signal. Assertion of PBE# when STPCLK# is asserted indicates to system logic that individual threads should return to the C0 state and the processor should return to the Normal state. Figure 1 shows the thread low-power states. Figure 2 shows the package low-power states. Table 2 provides a mapping of thread low-power states to package low power states.Low Power Features 14 Datasheet Figure 1. Thread Low-Power States C2 † C0 Stop Grant Core state break P_LVL2 or MWAIT(C2) C1/ MWAIT Core state break MWAIT(C1) C1/Auto Halt Halt break HLT instruction C4 † /C6 Core State break P_LVL4 or P_LVL6 ø MWAIT(C4/C6) STPCLK# de-asserted STPCLK# asserted STPCLK# de-asserted STPCLK# asserted STPCLK# de-asserted STPCLK# asserted halt break = A20M# transition, INIT#, INTR, NMI, PREQ#, RESET#, SMI#, or APIC interrupt core state break = (halt break OR Monitor event) AND STPCLK# high (not asserted) † — STPCLK# assertion and de-assertion have no effect if a core is in C2 or C4. Ø — P_LVL6 read is issued once the L2 cache is reduced to zero. Figure 2. Package Low-Power States DPRSTP# de-asserted DPRSTP# asserted Snoop serviced Snoop occurs STPCLK# asserted STPCLK# de-asserted SLP# asserted SLP# de-asserted DPSLP# de-asserted DPSLP# asserted Stop Grant Snoop Normal Stop Grant Deep Sleep†† Deeper Sleep Sleep † †† † — Deeper Sleep includes the C4 and C6 states †† — Sleep and Deep Sleep are not states directly supported by the processor, but rather sub-states of Silverthorne’s C4/C6Low Power Features Datasheet 15 Table 2. Coordination of Thread Low-Power States at the Package/Core Level Thread 0 Thread 1 TC0 TC11 TC2 TC4/TC6 TC0 Normal (C0) Normal (C0) Normal (C0) Normal (C0) TC11 Normal (C0) AutoHalt (C1) AutoHalt (C1) AutoHalt (C1) TC2 Normal (C0) AutoHalt (C1) Stop-Grant (C2) Stop-Grant (C2) TC4/TC6 Normal (C0) AutoHalt (C1) Stop-Grant (C2) Deeper Sleep (C4)/Deep Power Down (C6) NOTE: AutoHalt or MWAIT/C1 To enter a package/core state, both threads must share a common low power state. If the threads are not in a common low power state, the package state will resolve to the highest common power C-state. 2.1.1 Package/Core Low-Power State Descriptions The following state descriptions assume that both threads are in a common low power state. For cases when only one thread is in a low power state no change in power state will occur. 2.1.1.1 Normal States (C0, C1) These are the normal operating states for the processor. The processor remains in the Normal state when the processor/core is in the C0, C1/AutoHALT, or C1/MWAIT states. C0 is the active execution state. 2.1.1.1.1 C1/AutoHalt Powerdown State C1/AutoHALT is a low-power state entered when one thread executes the HALT instruction while the other is in the TC1 or greater thread state. The processor will transition to the C0 state upon occurrence of SMI#, INIT#, LINT[1:0] (NMI, INTR), or FSB interrupt messages. RESET# will cause the processor to immediately initialize itself. A System Management Interrupt (SMI) handler will return execution to either Normal state or the AutoHALT Powerdown state. See the Intel® 64 and IA-32 Architectures Software Developer's Manuals, Volume 3A/3B: System Programmer's Guide for more information. The system can generate a STPCLK# while the processor is in the AutoHALT Powerdown state. When the system de-asserts the STPCLK# interrupt, the processor will return to the HALT state. While in AutoHALT Powerdown state, the processor will process bus snoops. The processor will enter an internal snoopable sub-state (not shown in Figure 1) to process the snoop and then return to the AutoHALT Powerdown state. Low Power Features 16 Datasheet 2.1.1.1.2 C1/MWAIT Powerdown State C1/MWAIT is a low-power state entered when one thread executes the MWAIT(C1) instruction while the other thread is in the TC1 or greater thread state. Processor behavior in the MWAIT state is identical to the AutoHALT state except that Monitor events can cause the processor to return to the C0 state. See the Intel® 64 and IA-32 Architectures Software Developer's Manuals, Volume 2A: Instruction Set Reference, AM and Volume 2B: Instruction Set Reference, N-Z, for more information. 2.1.1.2 C2 State Individual threads of the dual-threaded processor can enter the TC2 state by initiating a P_LVL2 I/O read to the P_BLK or an MWAIT(C2) instruction. Once both threads have C2 as a common state, the processor will transition to the C2 state—however, the processor will not issue a Stop-Grant Acknowledge special bus cycle unless the STPCLK# pin is also asserted by the chipset. While in the C2 state, the processor will process bus snoops. The processor will enter a snoopable sub-state described the following section (and shown in Figure 1), to process the snoop and then return to the C2 state. 2.1.1.2.1 Stop-Grant State When the STPCLK# pin is asserted, each thread of the processors enters the StopGrant state within 1384 bus clocks after the response phase of the processor-issued Stop-Grant Acknowledge special bus cycle. When the STPCLK# pin is de-asserted, the core returns to its previous low-power state. Since the AGTL+ signal pins receive power from the FSB, these pins should not be driven (allowing the level to return to VCCP) for minimum power drawn by the termination resistors in this state. In addition, all other input pins on the FSB should be driven to the inactive state. RESET# causes the processor to immediately initialize itself, but the processor will stay in Stop-Grant state. When RESET# is asserted by the system, the STPCLK#, SLP#, DPSLP#, and DPRSTP# pins must be de-asserted prior to RESET# de-assertion. When re-entering the Stop-Grant state from the Sleep state, STPCLK# should be deasserted after the de-assertion of SLP#. While in Stop-Grant state, the processor will service snoops and latch interrupts delivered on the FSB. The processor will latch SMI#, INIT#, and LINT[1:0] interrupts and will service only one of each upon return to the Normal state. The PBE# signal may be driven when the processor is in Stop-Grant state. The PBE# signal will be asserted if there is any pending interrupt or Monitor event latched within the processor. Pending interrupts that are blocked by the EFLAGS.IF bit being clear will still cause assertion of PBE#. Assertion of PBE# indicates to system logic that the entire processor should return to the Normal state. A transition to the Stop-Grant Snoop state occurs when the processor detects a snoop on the FSB (see Section 2.1.1.2.2). A transition to the Sleep state (see Section 2.1.1.3.1) occurs with the assertion of the SLP# signal.Low Power Features Datasheet 17 2.1.1.2.2 Stop-Grant Snoop State The processor responds to snoop or interrupt transactions on the FSB while in StopGrant state by entering the Stop-Grant Snoop state. The processor will stay in this state until the snoop on the FSB has been serviced (whether by the processor or another agent on the FSB) or the interrupt has been latched. The processor returns to the Stop-Grant state once the snoop has been serviced or the interrupt has been latched. 2.1.1.3 C4 State Individual threads of the processor can enter the C4 state by initiating a P_LVL4 I/O read to the P_BLK or an MWAIT(C4) instruction. Attempts to request C3 will also covert to C4 requests. If both processor threads are in C4, the central power management logic will request that the entire processor enter the Deeper Sleep package low-power state using the sequence through the Sleep and Deep Sleep states all described in the following sections. To enable the package level Intel Enhanced Deeper Sleep state, Dynamic Cache Sizing and Intel Enhanced Deeper Sleep state fields must be configured in the PMG_CST_CONFIG_CONTROL MSR. Refer to Section 2.1.1.3.3 for further details on Intel Enhanced Deeper Sleep state. 2.1.1.3.1 Sleep State The Sleep state is a low-power state in which the processor maintains its context, maintains the phase-locked loop (PLL), and stops all internal clocks. The Sleep state is entered through assertion of the SLP# signal while in the Stop-Grant state and is only a transition state for Intel Atom processor Z5xx series. The SLP# pin should only be asserted when the processor is in the Stop-Grant state. SLP# assertion while the processor is not in the Stop-Grant state is out of specification and may result in unapproved operation. In the Sleep state, the processor is incapable of responding to snoop transactions or latching interrupt signals. No transitions or assertions of signals (with the exception of SLP#, DPSLP#, or RESET#) are allowed on the FSB while the processor is in Sleep state. Snoop events that occur while in Sleep state or during a transition into or out of Sleep state will cause unpredictable behavior. Any transition on an input signal before the processor has returned to the Stop-Grant state will result in unpredictable behavior. If RESET# is driven active while the processor is in the Sleep state, and held active as specified in the RESET# pin specification, then the processor will reset itself, ignoring the transition through Stop-Grant state. If RESET# is driven active while the processor is in the Sleep state, the SLP# and STPCLK# signals should be de-asserted immediately after RESET# is asserted to ensure the processor correctly executes the Reset sequence. While in the Sleep state, the processor is capable of entering an even lower power state, the Deep Sleep state, by asserting the DPSLP# pin (see Section 2.1.1.3.2). While the processor is in the Sleep state, the SLP# pin must be de-asserted if another asynchronous FSB event occurs. Low Power Features 18 Datasheet 2.1.1.3.2 Deep Sleep State The Deep Sleep state is entered through assertion of the DPSLP# pin while in the Sleep state and is also only a transition state for the Intel Atom processor Z5xx series. BCLK may be stopped during the Deep Sleep state for additional platform level power savings. As an example, BCLK stop/restart timings on appropriate chipset-based platforms with the CK540 clock chip are as follows: • Deep Sleep entry: the system clock chip may stop/tristate BCLK within 2 BCLKs of DPSLP# assertion. It is permissible to leave BCLK running during Deep Sleep. • Deep Sleep exit: the system clock chip must start toggling BCLK within 10 BCLK periods within DPSLP# de-assertion. To re-enter the Sleep state, the DPSLP# pin must be de-asserted. BCLK can be restarted after DPSLP# de-assertion as described above. A period of 15 microseconds (to allow for PLL stabilization) must occur before the processor can be considered to be in the Sleep state. Once in the Sleep state, the SLP# pin must be de-asserted to re-enter the Stop-Grant state. While in Deep Sleep state, the processor is incapable of responding to snoop transactions or latching interrupt signals. No transitions of signals are allowed on the FSB while the processor is in Deep Sleep state. When the processor is in Deep Sleep state, it will not respond to interrupts or snoop transactions. Any transition on an input signal before the processor has returned to Stop-Grant state will result in unpredictable behavior. 2.1.1.3.3 Deeper Sleep State The Deeper Sleep state is similar to the Deep Sleep state, but further reduces core voltage levels. One of the potential lower core voltage levels is achieved by entering the base Deeper Sleep state. The Deeper Sleep state is entered through assertion of the DPRSTP# pin while in the Deep Sleep state. The following lower core voltage level is achieved by entering the Intel Enhanced Deeper Sleep state which is a sub-state of Deeper Sleep state. Intel Enhanced Deeper Sleep state is entered through assertion of the DPRSTP# pin while in the Deep Sleep only when the L2 cache has been completely shut down. Refer to Section 2.1.1.3.4 for further details on reducing the L2 cache and entering Intel Enhanced Deeper Sleep state. In response to entering Deeper Sleep, the processor drives the VID code corresponding to the Deeper Sleep core voltage on the VID[6:0] pins. Exit from Deeper Sleep or Intel Enhanced Deeper Sleep state is initiated by DPRSTP# de-assertion when the core requests a package state other than C4 or the core requests a processor performance state other than the lowest operating point. Low Power Features Datasheet 19 2.1.1.3.4 Intel® Atom™ Processor Z5xx Series C5 As mentioned previously in this document, each C-state has latency and transitory power costs associated with entering/exiting idle states. When the processor is interrupted, it must awake to service requests. If these requests occur at a high frequency, it is possible that more power will be consumed entering/exiting the states than will be saved. To alleviate this concern, the Intel Atom processor Z5xx series implements a new state called “Intel Atom processor Z5xx series C5”. The Intel Atom processor Z5xx series C5 is not exposed to software. The only way to enter the C5 state is using a hardware promotion of C4 (with the cache ways shrunk to zero). When the processor is in C4, the chipset assumes the processor has data in its cache. Often, the processor has fully flushed its cache. To avoid waking up the processor to service snoops when there is no data in its caches, the processor will automatically promote C4 requests to C5 (when the cache is flushed). The chipset treats C5 as a non-snoopable state. Therefore, all snoops will be completed from the I/O DMA masters without waking up the processor. While similar, the Intel Atom processor Z5xx series C5 differs from the Core 2 Duo T5000/T7000 C5 implementation. In the Intel Atom processor Z5xx series C5, the VCC will not be powered below the retention of caches voltage— there is no need to initialize the processor’s caches on a C5 exit, and C5 is not architecturally enumerated to software. This state is the same as the Intel Atom processor Z5xx series C5 state. 2.1.1.4 C6 State C6 is a new low power state being introduced on the Intel Atom processor Z5xx series. C6 behavior is the same as Intel Enhanced Deeper Sleep with the addition of an on-die SRAM. This memory saves the processor state allowing the processor to lower its main core voltage closer to 0 V. It is important to note that VCC cannot be lower while only 1 (one) thread is in C6 state. The processor threads can enter the C6 state by initiating a P_LVL6 I/O read to the P_BLK or an MWAIT(C6) instruction. To enter C6, the processor’s caches must be flushed. The primary method to enter C6 used by newer operating systems (that support MWAIT) will be through the MWAIT instruction. When the thread enters C6, it saves the processor state that is relevant to the processor context in an on-die SRAM that resides on a separate power plane VCCP (I/O power supply). This allows the core VCC to be lowered to any arbitrary voltage including 0 V. The microcode performs the save and restore of the processor state on entry and exit from C6 respectively.Low Power Features 20 Datasheet 2.1.1.4.1 Intel® Deep Power Down Technology State (Package C6 State) When both threads have entered the C6 state and the L2 cache has been shrunk down to zero ways, the processor will enter the Package Deep Power Down Technology state. To do so, the processor saves its architectural states in the on-die SRAM that resides in the VCCP domain. At this point, the core VCC will be dropped to the lowest core voltage (closer to 0.3 V). The processor is now in an extremely low-power state. While in this state, the processor does not need to be snooped as all the caches were flushed before entering the C6 state. The Deep Power Down Technology exit sequence is triggered by the chipset when it detects a break event. It de-asserts the DPRSTP#, DPSLP#, SLP#, and STPCLK# pins to return to C0. At DPSLP# de-assertion, the core VCC ramps up to the LFM value and the processor starts up its internal PLLs. At SLP# de-assertion the processor is reset and the architectural state is read back into the threads from an on-die SRAM. Refer to Figure 3 and Figure 4 for Deep Power Down Technology entry sequence and exit sequences. Figure 3. Deep Power Down Technology Entry Sequence Thread 1 TC0 Thread 0 DPSLP# assert DPRSTP# assert SLP# assert STPCLK# assert State Save Level 6 I/O Read State Save MWAIT C6 or Level 6 I/O Read MWAIT C6 or Level 6 I/O Read TC1 TC6 TC6 Package C6 L2 Shrink NOTE: Deep Power Down Technology is referred to as C6 in the above figure. Figure 4. Deep Power Down Technology Exit Sequence DPRST# deassert Package C6 H/W Reset Ucode reset and state restore (TC1) TC0 DPSL# deassert SLP# deassert STPCLK# deassert TC0 Ucode reset and state restore (TC0) Low Power Features Datasheet 21 Figure 5 shows the relative exit latencies of the package sleep states discussed above. Note: Figure 5 uses pre-silicon estimates. Silicon based data will be provided in a future revision of this document. Figure 5. Exit Latency Table Latency (µs) C0 (HFM) C0 (LFM) C1 Both threads halted Most clocks off C1E C1 plus frequency and VID at LFM C2 Similar to C1 but Intel® SCH blocks interrupts C4 C2 plus PLLs off; VID = cache retention Vcc Some L2 cache off C6 C2 plus PLLs off; VID = C6 powerdown Vcc L2 cache off Power (W) 0 0.1 1 10 100 0 TDPLow Power Features 22 Datasheet 2.2 Dynamic Cache Sizing Dynamic Cache Sizing allows the processor to flush and disable a programmable number of L2 cache ways upon each Deeper Sleep entry under the following conditions: • The C0 timer that tracks continuous residency in the Normal package state has not expired. This timer is cleared during the first entry into Deeper Sleep to allow consecutive Deeper Sleep entries to shrink the L2 cache as needed. • The FSB speed to processor core speed ratio is below the predefined L2 shrink threshold. The number of L2 cache ways disabled upon each Deeper Sleep entry is configured in the BBL_CR_CTL3 MSR. The C0 timer is referenced through the CLOCK_CORE_CST_CONTROL_STT MSR. The shrink threshold under which the L2 cache size is reduced is configured in the PMG_CST_CONFIG_CONTROL MSR. If the FSB speed to processor core speed ratio is above the predefined L2 shrink threshold, then L2 cache expansion will be requested. If the ratio is zero, then the ratio will not be taken into account for Dynamic Cache Sizing decisions. Upon STPCLK# de-assertion, the core exiting Intel Enhanced Deeper Sleep state or C6 will expand the L2 cache to two ways and invalidate previously disabled cache ways. If the L2 cache reduction conditions stated above still exist when the core returns to C4 then package enters Intel Enhanced Deeper Sleep state or C6, then the L2 will be shrunk to zero again. If the core requests a processor performance state resulting in a higher ratio than the predefined L2 shrink threshold, the C0 timer expires, and then the whole L2 will be expanded upon the next interrupt event. In addition, the processor supports Full Shrink on L2 cache. When the MWAIT C6 instruction is executed with a hint=0x2 in ECX[3:0], the micro code will shrink all the active ways of the L2 cache in one step. This ensures that the package enters C6 immediately when it is in TC6 instead of iterating until the cache is reduced to zero. The operating system (OS) is expected to use this hint when it wants to enter the lowest power state and can tolerate the longer entry latency. L2 cache shrink prevention may be enabled as needed on occasion through an MWAIT(C4) sub-state field. If shrink prevention is enabled, the processor does not enter Intel Deeper Sleep state or C6 since the L2 cache remains valid and in full size.Low Power Features Datasheet 23 2.3 Enhanced Intel SpeedStep® Technology The processor features Enhanced Intel SpeedStep® Technology. The following are the key features of Enhanced Intel SpeedStep® Technology: • Multiple voltage and frequency operating points providing optimal performance at the lowest power. • Voltage and frequency selection is software controlled by writing to processor MSRs:  If the target frequency is higher than the current frequency, VCC is ramped up in steps by placing new values on the VID pins and the PLL then locks to the new frequency.  If the target frequency is lower than the current frequency, the PLL locks to the new frequency and the VCC is changed through the VID pin mechanism.  Software transitions are accepted at any time. If a previous transition is in progress, the new transition is deferred until the previous transition completes. • The processor controls voltage ramp rates internally to ensure glitch free transitions. • Low transition latency and a large number of transitions are possible per second:  Processor core (including L2 cache) is unavailable for up to 10 µs during the frequency transition. — The bus protocol (BNR# mechanism) is used to block snooping. • Improved Intel Thermal Monitor mode:  When the on-die thermal sensor indicates that the die temperature is too high, the processor can automatically perform a transition to a lower frequency and voltage specified in a software programmable MSR.  The processor waits for a fixed time period. If the die temperature is down to acceptable levels, an up transition to the previous frequency and voltage point occurs.  An interrupt is generated for the up and down Intel Thermal Monitor transitions enabling better system level thermal management. • Enhanced thermal management features:  Digital Thermal Sensor and Out of Specification detection  Intel Thermal Monitor 1 (TM1) in addition to Intel Thermal Monitor 2 (TM2) in case of unsuccessful TM2 transition.Low Power Features 24 Datasheet 2.4 Enhanced Low-Power States Enhanced low-power states (C1E, C2E, and C4E) optimize for power by forcibly reducing the performance state of the processor when it enters a package low-power state. Instead of directly transitioning into the package low-power state, the enhanced package low-power state first reduces the performance state of the processor by performing an Enhanced Intel SpeedStep Technology transition down to the lowest operating point. Upon receiving a break event from the package low-power state, control will be returned to software while an Enhanced Intel SpeedStep Technology transition up to the initial operating point occurs. The advantage of this feature is that it significantly reduces leakage while in the Stop-Grant and Deeper Sleep states. Note: Long-term reliability cannot be assured unless all the Enhanced Low-Power States are enabled. The processor implements two software interfaces for requesting enhanced package low-power states: MWAIT instruction extensions with sub-state hints and using BIOS by configuring IA32_MISC_ENABLES MSR bits to automatically promote package lowpower states to enhanced package low-power states. Caution: Enhanced Stop-Grant and Enhanced Deeper Sleep must be enabled using the BIOS for the processor to remain within specification. Not complying with this guideline may affect the long-term reliability of the processor. Enhanced Intel SpeedStep® Technology transitions are multi-step processes that require clocked control. These transitions cannot occur when the processor is in the Sleep or Deep Sleep package low-power states since processor clocks are not active in these states. Enhanced Deeper Sleep is an exception to this rule when the Hard C4E configuration is enabled in the IA32_MISC_ENABLES MSR. This Enhanced Deeper Sleep state configuration will lower core voltage to the Deeper Sleep level while in Deeper Sleep and, upon exit, will automatically transition to the lowest operating voltage and frequency to reduce snoop service latency. The transition to the lowest operating point or back to the original software requested point may not be instantaneous. Furthermore, upon very frequent transitions between active and idle states, the transitions may lag behind the idle state entry resulting in the processor either executing for a longer time at the lowest operating point or running idle at a high operating point. Observations and analyses show this behavior should not significantly impact total power savings or performance score while providing power benefits in most other cases. Low Power Features Datasheet 25 2.5 FSB Low Power Enhancements The processor incorporates FSB low power enhancements: • BPRI# control for address and control input buffers • Dynamic Bus Parking • Dynamic On Die Termination disabling • Low VCCP (I/O termination voltage) • CMOS Front Side Bus The processor incorporates the DPWR# signal that controls the data bus input buffers on the processor. The DPWR# signal disables the buffers when not used and activates them only when data bus activity occurs, resulting in significant power savings with no performance impact. BPRI# control also allows the processor address and control input buffers to be turned off when the BPRI# signal is inactive. Dynamic Bus Parking allows a reciprocal power reduction in chipset address and control input buffers when the processor de-asserts its BR0# pin. The On-Die Termination on the processor FSB buffers is disabled when the signals are driven low, resulting in additional power savings. The low I/O termination voltage is on a dedicated voltage plane independent of the core voltage, enabling low I/O switching power at all times. 2.5.1 CMOS Front Side Bus The processor has a hybrid signaling mode—where data and address busses run in CMOS mode and strobe signals operate in GTL mode. The reason to use GTL on strobe signals is to improve signal integrity. The implementation of a CMOS bus offers substantial power savings when compared with the traditional AGTL+ bus. Low Power Features 26 Datasheet 2.6 Intel® Burst Performance Technology (Intel® BPT) The processor supports ACPI Performance States (P-States). The P-state referred to as P0 will be a request for Intel® Burst Performance Technology (Intel® BPT). Intel BPT opportunistically, and automatically, allows the processor to run faster than the marked frequency if the part is operating within the thermal design limits of the platform. Intel BPT mode provides more performance on demand without impacting or raising MID thermals. Intel BPT can be enabled or disabled by BIOS. §Electrical Specifications Datasheet 27 3 Electrical Specifications This chapter contains signal group descriptions, absolute maximum ratings, voltage identification, and power sequencing. The chapter also includes DC specifications. 3.1 FSB, GTLREF, and CMREF The processor supports two kinds of signalling protocol: Complementary Metal Oxide Semiconductor (CMOS), and Advanced Gunning Transceiver Logic (AGTL+). The “CMOS FSB” terminology used in this document refers to a hybrid signaling mode, where data and address busses run in CMOS mode and strobe signals operate in GTL mode. The reason to use GTL on strobe signals is to improve signal integrity. The termination voltage level for the processor CMOS and AGTL+ signals is V CCP = 1.05 V (nominal). Due to speed improvements to data and address bus, signal integrity and platform design methods have become more critical than with previous processor families. The CMOS data and address busses require a reference voltage (CMREF) that is used by the receivers to determine if a signal is a logical 0 or a logical 1. CMREF is only applicable to data and address signals—not to the sideband signals listed in Table 5. CMREF must be generated on the system board. In CMOS mode, there is no receiverside termination to I/O voltage (VCCP). The AGTL+ inputs, including the sideband signals listed in Table 5, require a reference voltage (GTLREF) that is used by the receivers to determine if a signal is a logical 0 or a logical 1. GTLREF must be generated on the system board. Termination resistors are provided on the processor silicon and are terminated to its I/O voltage (VCCP). The appropriate chipset will also provide on-die termination, thus eliminating the need to terminate the bus on the system board for most AGTL+ signals. The CMOS bus depends on reflected wave switching and the AGTL+ bus depends on incident wave switching. Timing calculations for CMOS and AGTL+ signals are based on flight time as opposed to capacitive deratings. Analog signal simulation of the FSB, including trace lengths, is highly recommended when designing a system. 3.2 Power and Ground Pins For clean, on-chip power distribution, the processor will have a large number of VCC (power) and VSS (ground) inputs. All power pins must be connected to VCC power planes while all VSS pins must be connected to system ground planes. Use of multiple power and ground planes is recommended to reduce I*R drop. The processor VCC pins must be supplied by the voltage determined by the VID (Voltage ID) pins.Electrical Specifications 28 Datasheet 3.3 Decoupling Guidelines Due to its large number of transistors and high internal clock speeds, the processor is capable of generating large average current swings between low and full power states. This may cause voltages on power planes to sag below their minimum values if bulk decoupling is not adequate. Larger bulk storage, such as electrolytic capacitors, supplies current during longer lasting changes in current demand by the component (such as, coming out of an idle condition). Similarly, they act as storage well for current when entering an idle condition from a running condition. Care must be taken in the board design to ensure that the voltage provided to the processor remains within the specifications listed in Table 7, Table 7, and Table 7. Failure to do so can result in timing violations or reduced lifetime of the component. 3.3.1 VCC Decoupling V CC regulator solutions need to provide bulk capacitance with a low Effective Series Resistance (ESR) and keep a low interconnect resistance from the regulator to the socket. Bulk decoupling for the large current swings when the part is powering on or entering/exiting low-power states must be provided by the voltage regulator solution. 3.3.2 FSB AGTL+ Decoupling The processor integrates signal termination on the die. Decoupling must also be provided by the system motherboard for proper AGTL+ bus operation. 3.4 FSB Clock (BCLK[1:0]) and Processor Clocking BCLK[1:0] directly controls the FSB interface speed as well as the core frequency of the processor. As in previous generation processors, the processor core frequency is a multiple of the BCLK[1:0] frequency. The processor bus ratio multiplier will be set at its default ratio at manufacturing. The processor uses a differential clocking implementation. 3.5 Voltage Identification and Power Sequencing The processor uses seven voltage identification pins (VID[6:0]) to support automatic selection of power supply voltages. The VID pins for the processor are CMOS outputs driven by the processor VID circuitry. Table 3 specifies the voltage level corresponding to the state of VID[6:0]. A “1” (one) in this refers to a high-voltage level and a “0” (zero) refers to low-voltage level. Power source characteristics must be stable whenever the supply to the voltage regulator is stable. Electrical Specifications Datasheet 29 Table 3. Voltage Identification Definition VID6 VID5 VID4 VID3 VID2 VID1 VID0 VCC (V) 0 0 1 1 0 0 0 1.2000 0 0 1 1 0 0 1 1.1875 0 0 1 1 0 1 0 1.1750 0 0 1 1 0 1 1 1.1625 0 0 1 1 1 0 0 1.1500 0 0 1 1 1 0 1 1.1375 0 0 1 1 1 1 0 1.1250 0 0 1 1 1 1 1 1.1125 0 1 0 0 0 0 0 1.1000 0 1 0 0 0 0 1 1.0875 0 1 0 0 0 1 0 1.0750 0 1 0 0 0 1 1 1.0625 0 1 0 0 1 0 0 1.0500 0 1 0 0 1 0 1 1.0375 0 1 0 0 1 1 0 1.0250 0 1 0 0 1 1 1 1.0125 0 1 0 1 0 0 0 1.0000 0 1 0 1 0 0 1 0.9875 0 1 0 1 0 1 0 0.9750 0 1 0 1 0 1 1 0.9625 0 1 0 1 1 0 0 0.9500 0 1 0 1 1 0 1 0.9375 0 1 0 1 1 1 0 0.9250 0 1 0 1 1 1 1 0.9125 0 1 1 0 0 0 0 0.9000 0 1 1 0 0 0 1 0.8875 0 1 1 0 0 1 0 0.8750 0 1 1 0 0 1 1 0.8625 0 1 1 0 1 0 0 0.8500 0 1 1 0 1 0 1 0.8375 0 1 1 0 1 1 0 0.8250 0 1 1 0 1 1 1 0.8125 0 1 1 1 0 0 0 0.8000 0 1 1 1 0 0 1 0.7875 0 1 1 1 0 1 0 0.7750 0 1 1 1 0 1 1 0.7625 0 1 1 1 1 0 0 0.7500 0 1 1 1 1 0 1 0.7375Electrical Specifications 30 Datasheet VID6 VID5 VID4 VID3 VID2 VID1 VID0 VCC (V) 0 1 1 1 1 1 0 0.7250 0 1 1 1 1 1 1 0.7125 1 0 0 0 0 0 0 0.7000 1 0 0 0 0 0 1 0.6875 1 0 0 0 0 1 0 0.6750 1 0 0 0 0 1 1 0.6625 1 0 0 0 1 0 0 0.6500 1 0 0 0 1 0 1 0.6375 1 0 0 0 1 1 0 0.6250 1 0 0 0 1 1 1 0.6125 1 0 0 1 0 0 0 0.6000 1 0 0 1 0 0 1 0.5875 1 0 0 1 0 1 0 0.5750 1 0 0 1 0 1 1 0.5625 1 0 0 1 1 0 0 0.5500 1 0 0 1 1 0 1 0.5375 1 0 0 1 1 1 0 0.5250 1 0 0 1 1 1 1 0.5125 1 0 1 0 0 0 0 0.5000 1 0 1 0 0 0 1 0.4875 1 0 1 0 0 1 0 0.4750 1 0 1 0 0 1 1 0.4625 1 0 1 0 1 0 0 0.4500 1 0 1 0 1 0 1 0.4375 1 0 1 0 1 1 0 0.4250 1 0 1 0 1 1 1 0.4125 1 0 1 1 0 0 0 0.4000 1 0 1 1 0 0 1 0.3875 1 0 1 1 0 1 0 0.3750 1 0 1 1 0 1 1 0.3625 1 0 1 1 1 0 0 0.3500 1 0 1 1 1 0 1 0.3375 1 0 1 1 1 1 0 0.3250 1 0 1 1 1 1 1 0.3125 1 1 0 0 0 0 0 0.3000Electrical Specifications Datasheet 31 3.6 Catastrophic Thermal Protection The processor supports the THERMTRIP# signal for catastrophic thermal protection. An external thermal sensor should also be used to protect the processor and the system against excessive temperatures. Even with the activation of THERMTRIP#, which halts all processor internal clocks and activity, leakage current can be high enough such that the processor cannot be protected in all conditions without the removal of power to the processor. If the external thermal sensor detects a catastrophic processor temperature of 120°C (maximum), or if the THERMTRIP# signal is asserted, the VCC supply to the processor must be turned off within 500 ms to prevent permanent silicon damage due to thermal runaway of the processor. THERMTRIP# functionality is not ensured if the PWRGOOD signal is not asserted. 3.7 Reserved and Unused Pins RSVD[3:0] must be tied directly to VCCP (1.05 V)—non C6 rail to ensure proper operation of the processor. All other RSVD signals can be left as No Connect. Connection of these pins to VCC, VSS, or to any other signal (including each other) can result in component malfunction or incompatibility with future processors. See Section 4.2 for a pin listing of the processor and the location of all RSVD pins. For reliable operation, always connect unused inputs or bidirectional signals to an appropriate signal level. Unused active low AGTL+ inputs may be left as no connects if AGTL+ termination is provided on the processor silicon. Unused active high inputs should be connected through a resistor to ground (VSS). Unused outputs can be left unconnected. 3.8 FSB Frequency Select Signals (BSEL[2:0]) The BSEL[2:0] signals are used to select the frequency of the processor input clock (BCLK[1:0]). These signals should be connected to the clock chip and the appropriate chipset on the platform. The BSEL encoding for BCLK[1:0] is shown in Table 4. Table 4. BSEL[2:0] Encoding for BCLK Frequency BSEL[2] BSEL[1] BSEL[0] BCLK Frequency L L H 133 MHz H L H 100 MHz NOTE: All other bus selections reserved. 3.9 FSB Signal Groups To simplify the following discussion, the FSB signals have been combined into groups by buffer type. AGTL+ input signals have differential input buffers, which use GTLREF as a reference level. In this document, the term “AGTL+ Input” refers to the AGTL+ input group as well as the AGTL+ I/O group when receiving. Similarly, “AGTL+ Output” refers to the AGTL+ output group as well as the AGTL+ I/O group when driving. Electrical Specifications 32 Datasheet Implementation of a source synchronous data bus determines the need to specify two sets of timing parameters. One set is for common clock signals which are dependent upon the rising edge of BCLK0 (ADS#, HIT#, HITM#, and so on.) and the second set is for the source synchronous signals which are relative to their respective strobe lines (data and address) as well as the rising edge of BCLK0. Asynchronous signals are still present (A20M#, IGNNE#, and so on.) and can become active at any time during the clock cycle. Table 5 identifies which signals are common clock, source synchronous, and asynchronous. Table 5. FSB Pin Groups Signal Group Type Signals1 AGTL+ Common Clock Input Synchronous to BCLK[1:0] BPRI#, DEFER#, PREQ#4, RESET#, RS[2:0]#, TRDY#, DPWR# AGTL+ Common Clock I/O Synchronous to BCLK[1:0] ADS#, BNR#, BPM[3:0]#, BR0#, DBSY#, DRDY#, HIT#, HITM#, LOCK#, PRDY# CMOS Source Synchronous I/O Synchronous to assoc. strobe Signals Associated Strobe REQ[4:0]#, A[16:3]# ADSTB0# A[31:17]# ADSTB1# D[15:0]# DSTBP0#, DSTBN0# D[31:16]# DSTBP1#, DSTBN1# D[47:32]# DSTBP2#, DSTBN2# D[63:48]# DSTBP3#, DSTBN3# Strobes always use AGTL signaling—data pins are CMOS only. AGTL+ Strobes Synchronous to BCLK[1:0] ADSTB[1:0]#, DSTBP[3:0]#, DSTBN[3:0]# CMOS Input Asynchronous DPRSTP#, DPSLP#, IGNNE#, INIT#, LINT0/INTR, LINT1/ NMI, PWRGOOD, SMI#, SLP#, STPCLK# Open Drain Output Asynchronous FERR#, THERMTRIP#, IERR# Open Drain I/O Asynchronous PROCHOT#3 CMOS Output Asynchronous VID[6:0], BSEL[2:0] CMOS Input Synchronous to TCK TCK, TDI, TMS, TRST# Open Drain Output Synchronous to TCK TDO FSB Clock Clock BCLK[1:0] Power/Other COMP[3:0], HFPLL, CMREF, GTLREF, /DCLK, /ADK, THERMDA, THERMDC, VCC, VCCA, VCCP, VCC_SENSE, VSS, VSS_SENSE, VCCFUSE, VCCPC6 NOTES: 1. Refer to Chapter 4 for signal descriptions and termination requirements. 2. In processor systems where there is no debug port implemented on the system board, these signals are used to support a debug port interposer. In systems with the debug port implemented on the system board, these signals are no connects. 3. PROCHOT# signal type is open drain output and CMOS input. 4. On die termination differs from other AGTL+ signals. Electrical Specifications Datasheet 33 3.10 CMOS Asynchronous Signals CMOS input signals are shown in Table 5. Legacy output FERR#, IERR#, and other non- AGTL+ signals (THERMTRIP# and PROCHOT#) use Open Drain output buffers. These signals do not have setup or hold time specifications in relation to BCLK[1:0]. However, all of the CMOS signals are required to be asserted for more than 5 BCLKs for the processor to recognize them. See Section 3.12 for the DC specifications for the CMOS signal groups. 3.11 Maximum Ratings Table 6 specifies absolute maximum and minimum ratings. Within functional operation limits, functionality and long-term reliability can be expected. At conditions outside functional operation condition limits, but within absolute maximum and minimum ratings, neither functionality nor long term reliability can be expected. If a device is returned to conditions within functional operation limits after having been subjected to conditions outside these limits, but within the absolute maximum and minimum ratings, the device may be functional, but with its lifetime degraded depending on exposure to conditions exceeding the functional operation condition limits. At conditions exceeding absolute maximum and minimum ratings, neither functionality nor long term reliability can be expected. Moreover, if a device is subjected to these conditions for any length of time then, when returned to conditions within the functional operating condition limits, it will either not function or its reliability will be severely degraded. Although the processor contains protective circuitry to resist damage from static electric discharge, precautions should always be taken to avoid high static voltages or electric fields.Electrical Specifications 34 Datasheet Table 6. Processor Absolute Maximum Ratings Symbol Parameter Min. Max. Unit Notes1 T STORAGE Processor Storage Temperature -40 85 °C 2, 3, 4 V CC, VCCP, VCCPC6 Any Processor Supply Voltage with Respect to VSS -0.3 1.10 V 5 VCCA PLL power supply -0.3 1.575 V VinAGTL+ AGTL+ Buffer DC Input Voltage with Respect to VSS -0.1 1.10 V VinAsynch_CMOS CMOS Buffer DC Input Voltage with Respect to VSS -0.1 1.10 V NOTES: 1. For functional operation, all processor electrical, signal quality, mechanical and thermal specifications must be satisfied. 2. Storage temperature is applicable to storage conditions only. In this scenario, the processor must not receive a clock, and no lands can be connected to a voltage bias. Storage within these limits will not affect the long term reliability of the device. For functional operation, refer to the processor case temperature specifications. 3. This rating applies to the processor and does not include any tray or packaging. 4. Failure to adhere to this specification can affect the long term reliability of the processor. 5. The VCC maximum supported by the process is 1.2 V but the parameter can change (burn in voltage is higher). 3.12 Processor DC Specifications The processor DC specifications in this section are defined at the processor core (pads) unless noted otherwise. See Chapter 4 for the pin signal definitions and signal pin assignments. Most of the signals on the FSB are in the AGTL+ signal group. The DC specifications for these signals are listed in Table 11. DC specifications for the CMOS group are listed in Table 12. Table 11 through Table 13 list the DC specifications for the processor and are valid only while meeting specifications for junction temperature, clock frequency, and input voltages. The Highest Frequency Mode (HFM) and Lowest Frequency Mode (LFM) refer to the highest and lowest core operating frequencies supported on the processor. Active mode load line specifications apply in all states except in the Deep Sleep and Deeper Sleep states. VCC,BOOT is the default voltage driven by the voltage regulator at power up in order to set the VID values. Unless specified otherwise, all specifications for the processor are at TJ = 90 °C. Care should be taken to read all notes associated with each parameter.Electrical Specifications Datasheet 35 Table 7. Voltage and Current Specifications for the Intel® Atom™ Processor Z560, Z550, Z540, Z530, Z520, and Z510 Symbol Parameter Min. Typ. Max. Unit Notes11 FSB Frequency BCLK Frequency 100.00 — 133.35 MHz V CCHFM V CC @ Highest Frequency Mode (HFM) AVID — 1.10 V 1, 2, 10 V CCLFM V CC @ Lowest Frequency Mode (LFM) 0.8 — AVID V 1, 2 V CC, BOOT Default VCC Voltage for Initial Power Up — V CCLFM — V 2, 6 V CCP AGTL+ Termination Voltage 1.00 1.05 1.15 V 12, 14 V CCPC6 AGTL+ Termination Voltage 1.00 1.05 1.15 V 12, 14 V CCA PLL Supply voltage 1.425 1.5 1.575 V V CCDPPWDN V CC @ Deep Power Down Technology (C6) 0.30 0.35 0.40 V 13 V CCDPRSLP V CC @ Deeper Sleep (C4) 0.75 — 1.0 V 1, 2 V CCF Fuse Power Supply 1.00 1.05 1.10 V I CCDES I CC for Processors Recommended Design Target (Estimated) for Z540, Z550, Z560 — — 4.0 A I CCDES I CC for Processors Recommended Design Target (Estimated) for Z530, Z520, Z510 — — 3.5 A I CC Processor Number Core Frequency/Voltage — — — — — Z560 HFM: 2.13 GHz LFM: 0.80 GHz — — 3.5 1.5 A 3, 4 Z550 HFM: 2.0 GHz LFM: 0.80 GHz — — 3.5 1.5 A 3, 4 Z540 HFM: 1.86 GHz LFM: 0.80 GHz — — 3.2 1.5 A 3, 4 Z530 Z520 Z510 HFM: 1.60 GHz LFM: 0.80 GHz HFM: 1.33 GHz LFM: 0.80 GHz HFM: 1.10 GHz LFM: 0.60 GHz — — 2.50 1.25 2.50 1.25 2.50 1.25 A 3, 4 I AH, I SGNT I CC Auto-Halt and Stop-Grant HFM: 1.1 – 2.0 GHz @ 1.10 Volts LFM: 0.6 – 0.8 GHz @ 0.85 Volts — — — — 2.0 1.3 A 3, 4 I DPRSLP I CC Deeper Sleep (C4) — — 0.2 A At 50° C 3, 4 dICC/dt V CC Power Supply Current Slew Rate at Processor Package Pin (Estimated) — — 2.5 A/µs 5, 7Electrical Specifications 36 Datasheet Symbol Parameter Min. Typ. Max. Unit Notes11 I CCA I CC for VCCA Supply — — 130 mA I CCP+ ICCPC6 I CCP + ICCPC6 before VCC Stable — — 2.5 A 8 I CCP+ ICCPC6 I CCP + ICCPC6 after VCC Stable — — 1.5 A 9 NOTES: 1. Each processor is programmed with a maximum valid voltage identification value (VID), which is set at manufacturing and cannot be altered. Individual maximum VID values are calibrated during manufacturing such that two processors at the same frequency may have different settings within the VID range. Note that this differs from the VID employed by the processor during a power management event (Thermal Monitor 2, Enhanced Intel SpeedStep technology, or Enhanced Halt State). Typical AVID range is 0.75 V to 1.1 V. 2. The voltage specifications are assumed to be measured across VCC_SENSE and VSS_SENSE pins at the socket with a 100-MHz bandwidth oscilloscope, 1.5-pF maximum probe capacitance, and 1-MΩ minimum impedance. The maximum length of ground wire on the probe should be less than 5 mm. Ensure external noise from the system is not coupled in the scope probe. 3. Specified at 90°C TJ . 4. Specified at the nominal VCC. 5. Measured at the bulk capacitors on the motherboard. 6. V CC,BOOT tolerance is shown in Figure 6 and Figure 7. 7. Based on simulations and averaged over the duration of any change in current. Specified by design/characterization at nominal VCC. Not 100% tested. 8. This is a power-up peak current specification, which is applicable when VCCP is high and V CC_CORE is low. 9. This is a steady-state ICC current specification, which is applicable when both VCCP and V CC_CORE are high. 10. The VCC maximum supported by the process is 1.1 V but the parameter can change (burn in voltage is higher). 11. Unless otherwise noted, all specifications in this table are based on estimates and simulations or empirical data. These specifications will be updated with characterized data from silicon measurements at a later date. 12. V CCP may be turned off during C6 power state— V CCPC6 must always be powered on to 1.05 V -5/+10% on all power states. 13. The VCC power supply needs to be set to 0.3V during C6 power state. 14. V CCP (voltage rail which is turned off in C6, with SPLIT VTT Enabled) should ramp to 1.05 V while exiting C6 (Deep Power Down Technology State) at least 5µs before V CC_CORE ramps to LFM VID. In addition, V CCPC6 rail should remain at 1.05 -5/+10% during V CCP ramp coming out of C6.Electrical Specifications Datasheet 37 Table 8. Voltage and Current Specifications for the Intel® Atom™ Processor Z500 Symbol Parameter Min. Typ. Max. Unit Notes11 FSB Frequency BCLK Frequency — 100.0 -— MHz V CCHFM V CC @ Highest Frequency Mode (HFM) AVID — 0.85 V 1, 2, 10 V CCLFM V CC @ Lowest Frequency Mode (LFM) 0.75 — AVID V 1, 2 V CC,BOOT Default VCC Voltage for Initial Power Up — V CCLFM — V 2, 6 V CCP AGTL+ Termination Voltage 1.00 1.05 1.15 V 12, 14 V CCPC6 AGTL+ Termination Voltage 1.00 1.05 1.15 V 12, 14 V CCA PLL Supply Voltage 1.425 1.5 1.575 V V CCDPPWDN V CC at Deep Power Down Technology (C6) 0.30 0.35 0.40 V 13 V CCDPRSLP V CC at Deeper Sleep (C4) 0.75 — 0.85 V 1, 2 I CCDES I CC for Processors Recommended Design Target (Estimated) — — 2.0 A I CC Processor Number Core Frequency/Voltage — — — — — Z500 HFM: 0.8 GHz LFM: 0.6 GHz — — 0.8 0.6 A 3, 4 I AH, I SGNT HFM: 0.8 GHz @ 0.85 Volts LFM: 0.6 GHz @ 0.75 Volts — — 0.7 0.5 A 3, 4 I DPRSLP I CC Deeper Sleep (C4) — — 0.11 A At 50°C 3, 4 dICC/dt V CC Power Supply Current Slew Rate at Processor Package Pin (Estimated) — — 2.5 A/µs 5, 7 I CCA I CC for VCCA Supply — — 130 mA I CCP+ ICCPC6 I CCP + ICCPC6 before VCC Stable — — 2.5 A 8 I CCP+ ICCPC6 I CCP + ICCPC6 after VCC Stable — — 1.5 A 9 NOTES: 1. Each processor is programmed with a maximum valid voltage identification value (VID), which is set at manufacturing and cannot be altered. Individual maximum VID values are calibrated during manufacturing such that two processors at the same frequency may have different settings within the VID range. Note that this differs from the VID employed by the processor during a power management event (Thermal Monitor 2, Enhanced Intel SpeedStep technology, or Enhanced Halt State). Typical AVID range is 0.75 V to 0.85 V. 2. The voltage specifications are assumed to be measured across VCC_SENSE and VSS_SENSE pins at socket with a 100-MHz bandwidth oscilloscope, 1.5-pF maximum probe capacitance, and 1-MΩ minimum impedance. The maximum length of ground wire on the probe should be less than 5 mm. Ensure external noise from the system is not coupled in the scope probe. 3. Specified at 90°C TJ . 4. Specified at the nominal VCC. 5. Measured at the bulk capacitors on the motherboard. Electrical Specifications 38 Datasheet 6. V CC,BOOT tolerance is shown in Figure 6 and Figure 7. 7. Based on simulations and averaged over the duration of any change in current. Specified by design/characterization at nominal VCC. Not 100% tested. 8. This is a power-up peak current specification, which is applicable when VCCP is high and V CC_CORE is low. 9. This is a steady-state ICC current specification, which is applicable when both VCCP and V CC_CORE are high. 10. The VCC maximum supported by the process is 1.1 V but the parameter can change (burn in voltage is higher). 11. Unless otherwise noted, all specifications in this table are based on estimates and simulations or empirical data. These specifications will be updated with characterized data from silicon measurements at a later date. 12. V CCP may be turned off during C6 power state—V CCPC6 must always be powered on to 1.05 V ±5% on all power states. 13. The VCC power supply needs to be set to 0.3 — 0.4 V during C6 power state. 14. V CCP (voltage rail which is turned off in C6, with SPLIT VTT Enabled) should ramp to 1.05 V while exiting C6 (Deep Power Down Technology State) at least 5 µs before V CC_CORE ramps to LFM VID. In addition, V CCPC6 rail should remain at 1.05 (-5/+10%) during V CCP ramp coming out of C6. Table 9. Voltage and Current Specifications for the Intel® Atom™ Processor Z515 Symbol Parameter Min. Typ. Max. Unit Notes11 FSB Frequency BCLK Frequency — 100.0 — MHz V CCBFM V @ Burst Frequency Mode (BFM) AVID — 1.1 V 1, 2, 10 V CCHFM V@ Highest Frequency Mode (HFM) AVID — 1.1 V 1, 2, 10 V CCLFM V @ Lowest Frequency Mode (LFM) 0.75 — AVID V 1, 2 V CCBOOT Default VCC Voltage for Initial Power Up — V CC LFM — V 2, 6 V CCP AGTL+ Termination Voltage 1.00 1.05 1.15 V 12, 14 V CCPC6 AGTL+ Termination Voltage 1.00 1.05 1.15 V 12, 14 V CCA PLL Supply Voltage 1.425 1.5 1.575 V V CCDPPWDN V @ Deep Power Down Technology (C6) 0.30 0.35 0.40 V 13 V CCPRSLP V@ Deeper Sleep (C4) 0.75 — 0.85 V 1, 2 I CCDES I for Processors Recommended Design Target (Estimated) — — 2.0 A I CC Processor Number Core Frequency/Voltage — — — — — Z515 BFM: 1.2 GHz HFM: 0.8 GHz LFM: 0.6 GHz — — 2.5 0.8 0.6 A 3, 4, 15 I AH, I SGNT BFM: 1.2 GHz @ AVID Volts HFM: 0.8 GHz @ AVID Volts LFM: 0.6 GHz @ AVID Volts — — 0.9 0.7 0.5 A 3, 4 I DPRSLP I CC Deeper Sleep (C4) — — 0.11 A @ 50°C 3, 4Electrical Specifications Datasheet 39 Symbol Parameter Min. Typ. Max. Unit Notes11 dICC/dt VPower Supply Current Slew Rate @ Processor Package Pin (Estimated) — — 2.5 A/µs 5, 7 I CCA I CCA for V Supply — — 130 mA I CCP+ ICCPC6 I CCP+ ICCPC6 before VStable — — 2.5 A 8 I CCP+ ICCPC6 I CCP+ ICCPC6 after VStable — — 1.5 A 9 NOTES: 1. Each processor is programmed with a maximum valid voltage identification value (VID), which is set at manufacturing and cannot be altered. Individual maximum VID values are calibrated during manufacturing such that two processors at the same frequency may have different settings within the VID range. Note that this differs from the VID employed by the processor during a power management event (Thermal Monitor 2, Enhanced Intel SpeedStep technology, or Enhanced Halt State). Typical AVID range is 0.75 V to 0.85 V. 2. The voltage specifications are assumed to be measured across VCC_SENSE and VSS_SENSE pins at socket with a 100-MHz bandwidth oscilloscope, 1.5-pF maximum probe capacitance, and 1-MΩ minimum impedance. The maximum length of ground wire on the probe should be less than 5 mm. Ensure external noise from the system is not coupled in the scope probe. 3. Specified at 90°C TJ . 4. Specified at the nominal VCC. 5. Measured at the bulk capacitors on the motherboard. 6. V CC,BOOT tolerance is shown in Figure 6 and Figure 7. 7. Based on simulations and averaged over the duration of any change in current. Specified by design/characterization at nominal VCC. Not 100% tested. 8. This is a power-up peak current specification, which is applicable when VCCP is high and V CC_CORE is low. 9. This is a steady-state ICC current specification, which is applicable when both VCCP and V CC_CORE are high. 10. The VCC maximum supported by the process is 1.1 V but the parameter can change (burn in voltage is higher). 11. Unless otherwise noted, all specifications in this table are based on estimates and simulations or empirical data. These specifications will be updated with characterized data from silicon measurements at a later date. 12. V CCP and V CCPC6 must always be powered on to 1.05 V ±5% on all power states. 13. The VCC power supply needs to be set to 0.3 to 0.4 V during C6 power state. 14. The Intel Atom processor Z515 enables Intel® Burst Performance Technology (Intel® BPT).Electrical Specifications 40 Datasheet Figure 6. Active Vcc and Icc Loadline 10 mV = Ripple Slope = -5.7 mV/A at package VCC_SENSE, VSS_SENSE pins. Differential Remote Sense required. V CC (V) I CC (A) V CC, DC Min[HFM][LFM] V CC Min[HFM][LFM] ±VCC nom*1.5 % = VR ST Pt Error 1/ V CC Nom[HFM][LFM] V CC Max[HFM][LFM] V CC, DC Max[HFM][LFM] I CC max[HFM][LFM] Note 1/ V CC Set Point Error Tolerance is per below: Tolerance -------------------------------- ±1.5% ±11.5 mV V CC Active Mode VID Code Range ---------------------------------------- V CC > 0.7500 V (VID 0111100) V CC ≤ 0.7500 V (VID 0111100) 0Electrical Specifications Datasheet 41 Figure 7. Deeper Sleep VCC and ICC Loadline 10 mV = Ripple for PSI# Asserted Slope = -5.7 mV/A at package VCC_SENSE, VSS_SENSE pins. Differential Remote Sense required. V CC_CORE (V) I CC_CORE (A) V CC_CORE, DC Min (Deeper Sleep) V CC_CORE Min (Deeper Sleep) ±VCC_CORE Tolerance = VR ST Pt Error 1/ V CC_CORE Nom (Deeper Sleep) V CC_CORE Max (Deeper Sleep) V CC_CORE, DC Max (Deeper Sleep) I CC_CORE Max (Deeper Sleep) Note 1/ Deeper Sleep VCC_CORE Set Point Error Tolerance is per below: Tolerance – PSI# Ripple -------------------------------- ± [(VID*1.5%) – 3 mV] ± (11.5 mV) – 3 mV] ± (25 mV) – 3 mV] V CC_CORE VID Voltage Range ---------------------------------------- V CC_CORE > 0.7500 V 0.7500 V ≤ VCC_CORE ≤ 0.5000 V 0.5000 V < V CC_CORE ≤ 0.4125 V 0Electrical Specifications 42 Datasheet Table 10. FSB Differential BCLK Specifications Symbol Parameter Min. Typ. Max. Unit Figure Notes1 VIH Input High Voltage — — 1.15 V 7, 8 VIL Input Low Voltage — — -0.3 V 7, 8 V CROSS Crossing Voltage 0.3 — 0.55 V 2, 7, 9 ∆V CROSS Range of Crossing Points — — 140 mV 2, 7, 5 VSWING Differential Output Swing 300 — — mV 6 I LI Input Leakage Current -5 — +5 µA 3 Cpad Pad Capacitance 1.2 1.45 2.0 pF 4 NOTES: 1. Unless otherwise noted, all specifications in this table apply to all processor frequencies. 2. Crossing Voltage is defined as absolute voltage where rising edge of BCLK0 is equal to the falling edge of BCLK1. 3. For Vin between 0 V and VIH. 4. Cpad includes die capacitance only. No package parasitics are included. 5. ∆V CROSSis defined as the total variation of all crossing voltages as defined in note 2. 6. Measurement taken from differential waveform. 7. Measurement taken from single-ended waveform. 8. “Steady state” voltage, not including Overshoots or Undershoots. 9. Only applies to the differential rising edge (BCLK0 rising and BCLK1 falling).Electrical Specifications Datasheet 43 Table 11. AGTL+/CMOS Signal Group DC Specifications Symbol Parameter Min. Typ. Max. Unit Notes1 V CCP I/O Voltage 1.00 1.05 1.10 V 12 V CCPC6 I/O Voltage for C6 1.00 1.05 1.10 V 12 GTLREF GTL Reference Voltage — 2/3 VCCP — V 6 CMREF CMOS Reference Voltage — 1/2 VCCP — V 6 R COMP Compensation Resistor 27.23 27.5 27.78 Ω 10 R ODT Termination Resistor — 55 — Ω 11 VIH Input High Voltage GTLREF+0.10 or CMREF+0.10 V CCP V CCP+0.10 V 3, 6 VIL Input Low Voltage -0.10 0 GTLREF–0.10 or CMREF–0.10 V 2, 4 V OH Output High Voltage V CCP–0.10 V CCP V CCP V 6 RTT Termination Resistance 46 [SS] 46 [CC] 55 61 [SS] 64 [CC] Ω 7, 13 R ON (GTL mode) GTL Buffer on Resistance 21 25 29 Ω 5 R ON (CMOS mode) CMOS Buffer on Resistance 42 [SS] 42 [CC] 50 55 [SS] 58 [CC] Ω 5, 13 I LI Input Leakage Current — — ±100 µA 8 Cpad Pad Capacitance 1.8 2.1 2.75 pF 9 NOTES: 1. Unless otherwise noted, all specifications in this table apply to all processor frequencies. 2. VIL is defined as the maximum voltage level at a receiving agent that will be interpreted as a logical low value. 3. VIH is defined as the minimum voltage level at a receiving agent that will be interpreted as a logical high value. 4. VIH and VOH may experience excursions above VCCP. However, input signal drivers must comply with the signal quality specifications. 5. This is the pull-down driver resistance. Measured at 0.31*VCCP. RON (minimum) = 0.4*RTT, RON (typical) = 0.455*RTT, RON (maximum) = 0.51*RTT. RTT typical value of 55 Ω is used for RON typical/minimum/maximum calculations. 6. GTLREF and CMREF should be generated from VCCP with a 1% tolerance resistor divider. The VCCP referred to in these specifications is the instantaneous VCCP. 7. RTT is the on-die termination resistance measured at VOL of the AGTL+ output driver. Measured at 0.31*VCCP. RTT is connected to VCCP on die. 8. Specified with on die RTT and RON are turned off. Vin between 0 and VCCP. 9. Cpad includes die capacitance only. No package parasitics are included. 10. There is an external resistor on the comp0 and comp2 pins. 11. On die termination resistance, measured at 0.33*VCCP. 12. V CCP=VCCPC6 during normal operation. When in C6 state, VCCP=0 V while V CCPC6=1.05 V. 13. SS: source synchronous pins such as quad-pumped data bus and double-pumped address bus which require a clock strobe. CC: Common clock pins.Electrical Specifications 44 Datasheet Table 12. Legacy CMOS Signal Group DC Specifications Symbol Parameter Min. Typ. Max. Unit Notes1 V CCP I/O Voltage 1.00 1.05 1.10 V 8 V CCPC6 I/O Voltage for C6 1.00 1.05 1.10 V 8 VIH Input High Voltage 0.7*VCCP V CCP VCCP+0.1 V 2 VIL Input Low Voltage CMOS -0.10 0.00 0.3*VCCP V 2 V OH Output High Voltage 0.9*VCCP V CCP V CCP+0.1 V 2 V OL Output Low Voltage -0.10 0 0.1*VCCP V 2 I OH Output High Current 1.5 — 4.1 mA 4 I OL Output Low Current 1.5 — 4.1 mA 3 I LI Input Leakage Current — — ± 100 µA 5 Cpad1 Pad Capacitance 1.6 2.1 2.55 pF 6 Cpad2 Pad Capacitance for CMOS Input 0.95 1.2 1.45 7 NOTES: 1. Unless otherwise noted, all specifications in this table apply to all processor frequencies. 2. The VCCP referred to in these specifications refers to instantaneous VCCP. 3. Measured at 0.1*VCCP. 4. Measured at 0.9*V CCP. 5. For Vin between 0V and VCCP. Measured when the driver is tri-stated. 6. Cpad1 includes die capacitance only for DPRSTP#, DPSLP#, PWRGOOD. No package parasitics are included. 7. Cpad2 includes die capacitance for all other CMOS input signals. No package parasitics are included. 8. V CCPC6 = VCCP during normal operation and a specific tolerance may be added for this later. Table 13. Open Drain Signal Group DC Specifications Symbol Parameter Min. Typ. Max. Unit Notes1 V OH Output High Voltage V CCP-–5% V CCP V CCP+5% V 3 V OL Output Low Voltage 0 — 0.20 V I OL Output Low Current 16 — 50 mA 2 I LO Output Leakage Current — — ±200 µA 4 Cpad Pad Capacitance 1.9 2.2 2.45 pF 5 NOTES: 1. Unless otherwise noted, all specifications in this table apply to all processor frequencies. 2. Measured at 0.2 V. 3. V OH is determined by value of the external pull-up resistor to VCCP. 4. For Vin between 0 V and VOH. 5. Cpad includes die capacitance only. No package parasitics are included.Electrical Specifications Datasheet 45 3.13 AGTL+ FSB Specifications Termination resistors are not required for most AGTL+ signals, as these are integrated into the processor silicon. Valid high and low levels are determined by the input buffers which compare a signal’s voltage with a reference voltage called GTLREF (known as VREF in previous documentation). Table 11 lists the GTLREF and CMREF specifications. The AGTL+ and CMOS reference voltages (GTLREF and CMREF) should be generated on the system board using high precision voltage divider circuits. It is important that the system board impedance is held to the specified tolerance, and that the intrinsic trace capacitance for the AGTL+ signal group traces is known and well- controlled. §Electrical Specifications 46 Datasheet This page intentionally left blank.Package Mechanical Specifications and Pin Information Datasheet 47 4 Package Mechanical Specifications and Pin Information This chapter describes the package specifications, pinout assignments, and signal descriptions. 4.1 Package Mechanical Specifications The processor will be available in 512 KB, 441 pins in FCBGA8 package. The package dimensions are shown in Figure 8. 4.1.1 Processor Package Weight The Intel Atom processor Z5xx series package weight is 0.475 g. Package Mechanical Specifications and Pin Information 48 Datasheet Figure 8. Package Mechanical DrawingPackage Mechanical Specifications and Pin Information Datasheet 49 4.2 Processor Pinout Assignment Figure 9 and Figure 10 are graphic representations of the processor pinout assignments. Table 14 lists the pinout by signal name. Figure 9. Pinout Diagram (Top View, Left Side) AJ AH AG AF AE AD AC AB AA Y W V U T 1 VSS/NCTF D[61]# DSTBN[3]# D[51]# VSS THERMTRIP# 1 2 VSS/NCTF D[60]# D[59]# D[62]# VCC VID[6] 2 3 VSS/NCTF D[54]# VSS VSS VSS VSS VSS 3 4 VSS/NCTF D[53]# D[57]# D[63]# DSTBP[3]# D[58]# THRMDC 4 5 D[48]# D[52]# VSS D[49]# DINV[3]# VSS THRMDA 5 6 D[50]# VSS D[56]# D[55]# VSS VSS VCC 6 7 D[45]# D[40]# D[33]# VCCP VSS VSS VSS 7 8 D[46]# VSS D[32]# VSS VCCP VCC VCC 8 9 D[36]# D[35]# VSS VCCP VSS VSS VSS 9 10 D[47]# VSS D[37]# VSS VCCP VCC VCC 10 11 DSTBN[2] # DSTBP[2] # VSS VCCP VSS VSS VSS 11 12 D[44]# VSS DINV[2]# VSS VCCP VCC VCC 12 13 D[42]# D[39]# COMP[1] VCCP VSS VSS VSS 13 14 D[43]# VSS COMP[0] VSS VCCP VCC VCC 14 15 D[34]# D[41]# RSVD VCCP VSS VSS VSS 15 16 D[38]# VSS RSVD VSS VCCP VCC VCC 16 17 D[27]# RSVD RSVD VCCP VSS VSS VSS 17 18 D[30]# VSS D[26]# VSS VCCP VCC VCC 18 19 D[24]# D[31]# D[28]# VCCP VSS VSS VSS 19 20 D[18]# VSS D[19]# VSS VCCP VCC VCC 20 21 DSTBP[1]# DSTBN[1] # VSS VCCP VSS VSS VSS 21 22 D[20]# VSS DINV[1]# VSS VCCP VCC VCC 22 23 D[23]# D[25]# VSS VCCP VSS VSS VSS 23 24 D[29]# VSS D[16]# D[17]# VSS VCC VCC 24 25 D[22]# D[21]# VSS D[14]# VSS VSS VSS 25 26 GTLREF VSS CMREF D[15]# D[6]# VCCP VCCP 26 27 D[1]# D[11]# D[12]# VSS D[0]# TEST3 VSS 27 28 VSS/NCTF D[13]# DINV[0]# D[9]# DSTBN[0]# DRDY# BSEL[2] 28 29 VSS/NCTF D[5]# VSS VSS VSS VSS VSS 29 30 VSS/NCTF D[4]# D[3]# DSTBP[0]# D[8]# TEST4 30 31 VSS/NCTF D[10]# D[7]# D[2]# DPWR# TEST2 31 AJ AH AG AF AE AD AC AB AA Y W V U TPackage Mechanical Specifications and Pin Information 50 Datasheet Figure 10. Pinout Diagram (Top View, Right Side) R P N M L K J H G F E D C B A 1 TMS TDO STPCLK# IERR# BPM[0]# VSS/NCTF 2 VID[5] TDI TCK SLP# DPRSTP# BPM[1]# VSS/NCT F 2 3 VSS VSS VSS VSS VSS BPM[3]# VSS/NCTF 3 4 VID[1] VID[2] VID[4] TRST# PWRGOOD PRDY# A[29]# VSS/NCTF 4 5 VID[0] RESET# VID[3] PROCHOT# BPM[2]# A[19]# A[17]# 5 6 VCC VCC VSS VSS DPSLP# RSVD VSS A[22]# 6 7 VSS VSS VSS VCCPC6 PREQ# RSVD A[26]# 7 8 VCC VCC VCC VCCPC6 VSS RSVD VSS A[28]# 8 9 VSS VSS VSS VCCPC6 VSS RSVD A[21]# 9 10 VCC VCC VCC VCCP VSS RSVD VSS A[25]# 10 11 VSS VSS VSS VCCP VSS ADSTB[1]# A[31]# 11 12 VCC VCC VCC VCCP VSS A[20]# VSS A[18]# 12 13 VSS VSS VSS VCCP VSS A[27]# A[23]# 13 14 VCC VCC VCC VCCP VSS A[24]# VSS A[30]# 14 15 VSS VSS VSS VCCP COMP[3] A[12]# A[16]# 15 16 VCC VCC VCC VCCP VSS COMP[2] VSS A[10]# 16 17 VSS VSS VSS VCCP VSS A[15]# A[7]# 17 18 VCC VCC VCC VCCP VSS A[11]# VSS A[8]# 18 19 VSS VSS VSS VCCP VSS ADSTB[0]# A[13]# 19 20 VCC VCC VCC VCCP VSS REQ[2]# VSS A[14]# 20 21 VSS VSS VSS VCCP VSS A[5]# REQ[4]# 21 22 VCC VCC VCC VCCP VSS A[3]# VSS A[4]# 22 23 VSS VSS VSS VCCP VSS REQ[1]# A[9]# 23 24 VCC VCC VCC VSS BPRI# A[6]# VSS REQ[3]# 24 25 VSS VSS VSS BNR# TRDY# LOCK# REQ[0]# 25 26 VCCP VCCP VCCP SMI# RSVD RS[2]# ADS# RSVD 26 27 VSS VCCPC6 RSVD IGNNE# VSS RS[0]# DEFER# 27 28 BCLK[1] VSS LINT1 FERR# RSVD RS[1]# BR0# VSS/NCTF 28 29 BCLK[0] VSS RSVD VSS HITM# DBSY# VSS/NCTF 29 30 BSEL[0] VCCA RSVD RSVD A20M# HIT# VSS/NCT F 30 31 TEST1 BSEL[1] VSS LINT0 INIT# VSS/NCTF 31 R P N M L K J H G F E D C B APackage Mechanical Specifications and Pin Information Datasheet 51 Table 14. Pinout Arranged by Signal Name Signal Name Ball # A[3]# E22 A[4]# A22 A[5]# D21 A[6]# E24 A[7]# B17 A[8]# A18 A[9]# B23 A[10]# A16 A[11]# E18 A[12]# D15 A[13]# B19 A[14]# A20 A[15]# D17 A[16]# B15 A[17]# B5 A[18]# A12 A[19]# D5 A[20]# E12 A[21]# B9 A[22]# A6 A[23]# B13 A[24]# E14 A[25]# A10 A[26]# B7 A[27]# D13 A[28]# A8 A[29]# C4 A[30]# A14 A[31]# B11 Signal Name Ball # A20M# G30 ADS# C26 ADSTB[0]# D19 ADSTB[1]# D11 BCLK[0] P29 BCLK[1] R28 BNR# H25 BPM[0]# F1 BPM[1]# E2 BPM[2]# F5 BPM[3]# D3 BPRI# G24 BR0# C28 RSVD G26 BSEL[0] R30 BSEL[1] M31 BSEL[2] U28 CMREF[1] AE26 COMP[0] AE14 COMP[1] AD13 COMP[2] E16 COMP[3] F15 D[0]# Y27 D[1]# AH27 D[2]# Y31 D[3]# AC30 D[4]# AE30 D[5]# AF29 D[6]# AA26 Signal Name Ball # D[7]# AB31 D[8]# W30 D[9]# AC28 D[10]# AD31 D[11]# AF27 D[12]# AD27 D[13]# AG28 D[14]# AB25 D[15]# AC26 D[16]# AE24 D[17]# AC24 D[18]# AJ20 D[19]# AE20 D[20]# AJ22 D[21]# AF25 D[22]# AH25 D[23]# AH23 D[24]# AH19 D[25]# AF23 D[26]# AE18 D[27]# AH17 D[28]# AD19 D[29]# AJ24 D[30]# AJ18 D[31]# AF19 D[32]# AE8 D[33]# AD7 D[34]# AH15 D[35]# AF9Package Mechanical Specifications and Pin Information 52 Datasheet Signal Name Ball # D[36]# AH9 D[37]# AE10 D[38]# AJ16 D[39]# AF13 D[40]# AF7 D[41]# AF15 D[42]# AH13 D[43]# AJ14 D[44]# AJ12 D[45]# AH7 D[46]# AJ8 D[47]# AJ10 D[48]# AH5 D[49]# AB5 D[50]# AJ6 D[51]# Y1 D[52]# AF5 D[53]# AG4 D[54]# AF3 D[55]# AC6 D[56]# AE6 D[57]# AE4 D[58]# W4 D[59]# AC2 D[60]# AE2 D[61]# AD1 D[62]# AA2 D[63]# AC4 DBSY# D29 DEFER# B27 DINV[0]# AE28 Signal Name Ball # DINV[1]# AE22 DINV[2]# AE12 DINV[3]# Y5 DPRSTP# G2 DPSLP# G6 DPWR# V31 DRDY# W28 DSTBN[0]# AA28 DSTBN[1]# AF21 DSTBN[2]# AH11 DSTBN[3]# AB1 DSTBP[0]# AA30 DSTBP[1]# AH21 DSTBP[2]# AF11 DSTBP[3]# AA4 FERR# J28 RSVD G28 GTLREF AJ26 HIT# E30 HITM# F29 IERR# H1 IGNNE# H27 INIT# F31 LINT0 H31 LINT1 L28 LOCK# D25 PRDY# E4 PREQ# F7 PROCHOT# H5 PWRGOOD G4 REQ[0]# B25 Signal Name Ball # REQ[1]# D23 REQ[2]# E20 REQ[3]# A24 REQ[4]# B21 RESET# M5 RS[0]# D27 RS[1]# E28 RS[2]# E26 RSVD K29 RSVD D9 RSVD D7 RSVD E8 RSVD E10 RSVD L30 RSVD J30 RSVD E6 RSVD AE16 RSVD AF17 RSVD AD15 RSVD AD17 RSVD A26 RSVD K27 SLP# J2 SMI# J26 STPCLK# K1 TCK L2 TDI N2 TDO M1 TEST1 P31 TEST2 T31 TEST3 V27Package Mechanical Specifications and Pin Information Datasheet 53 Signal Name Ball # TEST4 U30 THERMTRIP# T1 THRMDA T5 THRMDC U4 TMS P1 TRDY# F25 TRST# J4 VCC L8 VCC L10 VCC L12 VCC L14 VCC L16 VCC L18 VCC L20 VCC L22 VCC L24 VCC N6 VCC N8 VCC N10 VCC N12 VCC N14 VCC N16 VCC N18 VCC N20 VCC N22 VCC N24 VCC R6 VCC R8 VCC R10 VCC R12 VCC R14 Signal Name Ball # VCC R16 VCC R18 VCC R20 VCC R22 VCC R24 VCC U6 VCC U8 VCC U10 VCC U12 VCC U14 VCC U16 VCC U18 VCC U20 VCC U22 VCC U24 VCC W8 VCC W10 VCC W12 VCC W14 VCC W16 VCC W18 VCC W20 VCC W22 VCC W24 VCCA N30 VCCP AA8 VCCP AA10 VCCP AA12 VCCP AA16 VCCP AA18 VCCP AA20 Signal Name Ball # VCCP AA22 VCCP AB7 VCCP AB9 VCCP AB11 VCCP AB13 VCCP AB15 VCCP AB17 VCCP AB19 VCCP AB21 VCCP AB23 VCCP H11 VCCP H13 VCCP H15 VCCP H17 VCCP H19 VCCP H21 VCCP H23 VCCP J10 VCCP J12 VCCP J14 VCCP J18 VCCP J20 VCCP J22 VCCP L26 VCCP N26 VCCP R26 VCCP U26 VCCP W26 VCCP AA14 VCCP J16 VCCPC6 H7Package Mechanical Specifications and Pin Information 54 Datasheet Signal Name Ball # VCCPC6 H9 VCCPC6 J8 VCCPC6 M27 VCC_SENSE W2 VID[0] P5 VID[1] R4 VID[2] N4 VID[3] K5 VID[4] L4 VID[5] R2 VID[6] U2 VSS K31 VSS/NCTF A4 VSS/NCTF A28 VSS AA6 VSS AA24 VSS AB3 VSS AB27 VSS AB29 VSS AC8 VSS AC10 VSS AC12 VSS AC14 VSS AC16 VSS AC18 VSS AC20 VSS AC22 VSS AD3 VSS AD5 VSS AD9 VSS AD11 Signal Name Ball # VSS AD21 VSS AD23 VSS AD25 VSS AD29 VSS/NCTF AF1 VSS/NCTF AF31 VSS/NCTF AG2 VSS AG6 VSS AG8 VSS AG10 VSS AG12 VSS AG14 VSS AG16 VSS AG18 VSS AG20 VSS AG22 VSS AG24 VSS AG26 VSS/NCTF AG30 VSS/NCTF AH3 VSS/NCTF AH29 VSS/NCTF AJ4 VSS/NCTF AJ28 VSS/NCTF B3 VSS/NCTF B29 VSS/NCTF C2 VSS C6 VSS C8 VSS C10 VSS C12 VSS C14 Signal Name Ball # VSS C16 VSS C18 VSS C20 VSS C22 VSS C24 VSS/NCTF C30 VSS/NCTF D1 VSS/NCTF D31 VSS F3 VSS F9 VSS F11 VSS F13 VSS F17 VSS F19 VSS F21 VSS F23 VSS F27 VSS G8 VSS G10 VSS G12 VSS G14 VSS G16 VSS G18 VSS G20 VSS G22 VSS H3 VSS H29 VSS J6 VSS J24 VSS K3 VSS K7Package Mechanical Specifications and Pin Information Datasheet 55 Signal Name Ball # VSS K9 VSS K11 VSS K13 VSS K15 VSS K17 VSS K19 VSS K21 VSS K23 VSS K25 VSS L6 VSS M3 VSS M7 VSS M9 VSS M11 VSS M13 VSS M15 VSS M17 VSS M19 VSS M21 VSS M23 VSS M25 VSS M29 VSS N28 VSS P3 VSS P7 VSS P9 Signal Name Ball # VSS P11 VSS P13 VSS P15 VSS P17 VSS P19 VSS P21 VSS P23 VSS P25 VSS P27 VSS T3 VSS T7 VSS T9 VSS T11 VSS T13 VSS T15 VSS T17 VSS T19 VSS T21 VSS T23 VSS T25 VSS T27 VSS T29 VSS V3 VSS V5 VSS V7 VSS V9 Signal Name Ball # VSS V11 VSS V13 VSS V15 VSS V17 VSS V19 VSS V21 VSS V23 VSS V25 VSS V29 VSS W6 VSS Y3 VSS Y7 VSS Y9 VSS Y11 VSS Y13 VSS Y15 VSS Y17 VSS Y19 VSS Y21 VSS Y23 VSS Y25 VSS Y29 VSS_SENSE V156 Datasheet 4.3 Signal Description Table 15. Signal Description Signal Name Type Description A[31:3]# I/O A[31:3]# (Address) defines a 232 -byte physical memory address space. In subphase 1 (one) of the address phase, these pins transmit the address of a transaction. In sub-phase 2, these pins transmit transaction type information. These signals must connect the appropriate pins of both agents on the processor FSB. A[31:3]# are source synchronous signals and are latched into the receiving buffers by ADSTB[1:0]#. Address signals are used as straps which are sampled before RESET# is de-asserted. A20M# I If A20M# (Address-20 Mask) is asserted, the processor masks physical address bit 20 (A20#) before looking up a line in any internal cache and before driving a read/write transaction on the bus. Asserting A20M# emulates the 8086 processor's address wrap-around at the 1-MB boundary. Assertion of A20M# is only supported in real mode. A20M# is an asynchronous signal. However, to ensure recognition of this signal following an input/output write instruction, it must be valid along with the TRDY# assertion of the corresponding input/output Write bus transaction. ADS# I/O ADS# (Address Strobe) is asserted to indicate the validity of the transaction address on the A[31:3]# and REQ[4:0]# pins. All bus agents observe the ADS# activation to begin parity checking, protocol checking, address decode, internal loop, or deferred reply ID match operations associated with the new transaction. ADSTB[1:0]# I/O Address strobes are used to latch A[31:3]# and REQ[4:0]# on their rising and falling edges. Strobes are associated with signals as shown below. Signals Associated Strobe REQ[4:0]#, A[16:3]# ADSTB[0]# A[31:17]# ADSTB[1]# BCLK[1:0] I The differential pair BCLK (Bus Clock) determines the FSB frequency. All FSB agents must receive these signals to drive their outputs and latch their inputs. All external timing parameters are specified with respect to the rising edge of BCLK0 crossing VCROSS. BNR# I/O BNR# (Block Next Request) is used to assert a bus stall by any bus agent who is unable to accept new bus transactions. During a bus stall, the current bus owner cannot issue any new transactions.Package Mechanical Specifications and Pin Information Datasheet 57 Signal Name Type Description BPM[0]# O BPM[3:0]# (Breakpoint Monitor) are breakpoint and performance monitor signals. They are outputs from the processor which indicate the status of breakpoints and programmable counters used for monitoring processor performance. BPM[3:0]# should connect the appropriate pins of all FSB agents. This includes debug or performance monitoring tools. BPM[1]# I/O BPM[2]# O BPM[3]# I/O BPRI# I BPRI# (Bus Priority Request) is used to arbitrate for ownership of the FSB. It must connect the appropriate pins of both FSB agents. Observing BPRI# active (as asserted by the priority agent) causes the other agent to stop issuing new requests, unless such requests are part of an ongoing locked operation. The priority agent keeps BPRI# asserted until all of its requests are completed then releases the bus by de-asserting BPRI#. BR0# I/O BR0# is used by the processor to request the bus. The arbitration is done between the processor (Symmetric Agent) and Intel® SCH (High Priority Agent). BSEL[2:0] O BSEL[2:0] (Bus Select) are used to select the processor input clock frequency. Table 4 defines the possible combinations of the signals and the frequency associated with each combination. The required frequency is determined by the processor, chipset and clock synthesizer. All agents must operate at the same frequency. The processor operates at 400-MHz or 533-MHz system bus frequency100-MHz or 133-MHz BCLK frequency, respectively). COMP[3:0] PWR COMP[3:0] must be terminated on the system board using precision (1% tolerance) resistors. D[63:0]# I/O D[63:0]# (Data) are the data signals. These signals provide a 64-bit data path between the FSB agents, and must connect the appropriate pins on both agents. The data driver asserts DRDY# to indicate a valid data transfer. D[63:0]# are quad-pumped signals and will thus be driven four times in a common clock period. D[63:0]# are latched off the falling edge of both DSTBP[3:0]# and DSTBN[3:0]#. Each group of 16 data signals correspond to a pair of one DSTBP# and one DSTBN#. The following table shows the grouping of data signals to data strobes and DINV#. Quad-Pumped Signal Groups Data Group DSTBN#/DSTBP# DINV# D[15:0]# 0 0 D[31:16]# 1 1 D[47:32]# 2 2 D[63:48]# 3 3 Furthermore, the DINV# pins determine the polarity of the data signals. Each group of 16 data signals corresponds to one DINV# signal. When the DINV# signal is active, the corresponding data group is inverted and therefore sampled active high.58 Datasheet Signal Name Type Description DBSY# I/O DBSY# (Data Bus Busy) is asserted by the agent responsible for driving data on the FSB to indicate that the data bus is in use. The data bus is released after DBSY# is de-asserted. This signal must connect the appropriate pins on both FSB agents. DEFER# I DEFER# is asserted by an agent to indicate that a transaction cannot be guaranteed in-order completion. Assertion of DEFER# is normally the responsibility of the addressed memory or Input/Output agent. This signal must connect the appropriate pins of both FSB agents. DINV[3:0]# I DINV[3:0]# (Data Bus Inversion) are source synchronous and indicates the polarity of the D[63:0]# signals. The DINV[3:0]# signals are activated when the data on the data bus is inverted. The bus agent will invert the data bus signals if more than half the bits, within the covered group, would change level in the next cycle. DINV[3:0]# assignment to data bus signals is shown below. Bus Signal Data Bus Signals DINV[3]# D[63:48]# DINV[2]# D[47:32]# DINV[1]# D[31:16]# DINV[0]# D[15:0]# DPRSTP# I DPRSTP# when asserted on the platform causes the processor to transition from the Deep Sleep State to the Deeper Sleep state. In order to return to the Deep Sleep State, DPRSTP# must be de-asserted. DPRSTP# is driven by the SCH chipset. DPSLP# I DPSLP# when asserted on the platform causes the processor to transition from the Sleep State to the Deep Sleep state. In order to return to the Sleep State, DPSLP# must be de-asserted. DPSLP# is driven by the SCH chipset. DPWR# I DPWR# is a control signal from the Intel® SCH used to reduce power on the processor data bus input buffers. DRDY# I/O DRDY# (Data Ready) is asserted by the data driver on each data transfer, indicating valid data on the data bus. In a multicommon clock data transfer, DRDY# may be de-asserted to insert idle clocks. This signal must connect the appropriate pins of both FSB agents. DSTBN[3:0]# I/O Data strobe used to latch in D[63:0]#. Signals Associated Strobe D[15:0]# DINV[0]#, DSTBN[0]# D[31:16]# DINV[1]#, DSTBN[1]# D[47:32]# DINV[2]#, DSTBN[2]# D[63:48]# DINV[3]#, DSTBN[3]# DSTBP[3:0]# I/O Data strobe used to latch in D[63:0]#. Signals Associated Strobe D[15:0]# DINV[0]#, DSTBP[0]# D[31:16]# DINV[1]#, DSTBP[1]# D[47:32]# DINV[2]#, DSTBP[2]# D[63:48]# DINV[3]#, DSTBP[3]#Package Mechanical Specifications and Pin Information Datasheet 59 Signal Name Type Description FERR#/PBE# O FERR# (Floating-point Error) PBE# (Pending Break Event) is a multiplexed signal and its meaning is qualified with STPCLK#. When STPCLK# is not asserted, FERR#/PBE# indicates a floating point when the processor detects an unmasked floating-point error. FERR# is similar to the ERROR# signal on the Intel 387 coprocessor, and is included for compatibility with systems using MSDOS*- type floating-point error reporting. When STPCLK# is asserted, an assertion of FERR#/PBE# indicates that the processor has a pending break event waiting for service. The assertion of FERR#/PBE# indicates that the processor should be returned to the Normal state. When FERR#/PBE# is asserted, indicating a break event, it will remain asserted until STPCLK# is de-asserted. Assertion of PREQ# when STPCLK# is active will also cause an FERR# break event. For additional information on the pending break event functionality, including identification of support of the feature and enable/disable information, refer to Volume 3 of the Intel® 64 and IA-32 Architectures Software Developer's Manuals and the Intel® Processor Identification and CPUID Instruction Application Note. CMREF PWR CMREF determines the signal reference level for CMOS input pins. CMREF should be set at 1/2 VCCP. CMREF is used by the CMOS receivers to determine if a signal is a logical 0 or logical 1. If not using CMOS, then all CMREF and GTLREF should be provided with 2/3 VCCP. GTLREF PWR GTLREF determines the signal reference level for AGTL+ input pins. GTLREF should be set at 2/3 VCCP. GTLREF is used by the AGTL+ receivers to determine if a signal is a logical 0 or logical HIT# HITM# I/O HIT# (Snoop Hit) and HITM# (Hit Modified) convey transaction snoop operation results. Either FSB agent may assert both HIT# and HITM# together to indicate that it requires a snoop stall, which can be continued by reasserting HIT# and HITM# together. IERR# O IERR# (Internal Error) is asserted by a processor as the result of an internal error. Assertion of IERR# is usually accompanied by a SHUTDOWN transaction on the FSB. This transaction may optionally be converted to an external error signal (for example, NMI) by system core logic. The processor will keep IERR# asserted until the assertion of RESET# or INIT#. IGNNE# I IGNNE# (Ignore Numeric Error) is asserted to force the processor to ignore a numeric error and continue to execute noncontrol floating-point instructions. If IGNNE# is de-asserted, the processor generates an exception on a non-control floating-point instruction if a previous floating-point instruction caused an error. IGNNE# has no effect when the NE bit in control register 0 (CR0) is set. IGNNE# is an asynchronous signal. However, to ensure recognition of this signal following an Input/Output write instruction, it must be valid along with the TRDY# assertion of the corresponding Input/Output Write bus transaction.60 Datasheet Signal Name Type Description INIT# I INIT# (Initialization), when asserted, resets integer registers inside the processor without affecting its internal caches or floating-point registers. The processor then begins execution at the power-on Reset vector configured during power-on configuration. The processor continues to handle snoop requests during INIT# assertion. INIT# is an asynchronous signal. However, to ensure recognition of this signal following an Input/Output Write instruction, it must be valid along with the TRDY# assertion of the corresponding Input/Output Write bus transaction. INIT# must connect the appropriate pins of both FSB agents. If INIT# is sampled active on the active to inactive transition of RESET#, the processor reverses its FSB data and address signals internally to ease mother board layout for systems where the chipset is on the other side of the mother board. D[63:0] => D[0:63] A[31:3] => A[3:31] DINV[3:0]# is also reversed. LINT[1:0] I LINT[1:0] (Local APIC Interrupt) must connect the appropriate pins of all APIC Bus agents. When the APIC is disabled, the LINT0 signal becomes INTR, a maskable interrupt request signal, and LINT1 becomes NMI, a non-maskable interrupt. INTR and NMI are backward compatible with the signals of those names on the Pentium processor. Both signals are asynchronous. Both of these signals must be software configured using BIOS programming of the APIC register space to be used either as NMI/INTR or LINT[1:0]. Because the APIC is enabled by default after Reset, operation of these pins as LINT[1:0] is the default configuration. LOCK# I/O LOCK# indicates to the system that a transaction must occur automatically. This signal must connect the appropriate pins of both FSB agents. For a locked sequence of transactions, LOCK# is asserted from the beginning of the first transaction to the end of the last transaction. When the priority agent asserts BPRI# to arbitrate for ownership of the FSB, it will wait until it observes LOCK# deasserted. This enables symmetric agents to retain ownership of the FSB throughout the bus locked operation and ensure the automatic operation of the lock. PRDY# O The Probe Ready Signal used by debug tools to request debug operation of the processor. PREQ# I Probe Request Signal used by debug tools to request debug operation of the processor. PROCHOT# I/O, As an output, PROCHOT# (Processor Hot) will go active when the processor temperature monitoring sensor detects that the processor has reached its maximum safe operating temperature. This indicates that the processor Thermal Control Circuit (TCC) has been activated, if enabled. As an input, assertion of PROCHOT# by the system will activate the TCC, if enabled. The TCC will remain active until the system de-asserts PROCHOT#.Package Mechanical Specifications and Pin Information Datasheet 61 Signal Name Type Description PWRGOOD I PWRGOOD (Power Good) is a processor input. The processor requires this signal to be a clean indication that the clocks and power supplies are stable and within their specifications. “Clean” implies that the signal will remain low (capable of sinking leakage current), without glitches, from the time that the power supplies are turned on until they come within specification. The signal must then transition monotonically to a high state. PWRGOOD can be driven inactive at any time, but clocks and power must again be stable before a subsequent rising edge of PWRGOOD. The PWRGOOD signal must be supplied to the processor—it is used to protect internal circuits against voltage sequencing issues. It should be driven high throughout boundary scan operation. REQ[4:0]# I/O REQ[4:0]# (Request Command) must connect the appropriate pins of both FSB agents. They are asserted by the current bus owner to define the currently active transaction type. These signals are source synchronous to ADSTB[0]#. RESET# I Asserting the RESET# signal resets the processor to a known state and invalidates its internal caches without writing back any of their contents. For a power-on Reset, RESET# must stay active for at least two milliseconds after VCC and BCLK have reached their proper specifications. On observing active RESET#, both FSB agents will de-assert their outputs within two clocks. All processor straps must be valid within the specified setup time before RESET# is de-asserted. RS[2:0]# I RS[2:0]# (Response Status) are driven by the response agent (the agent responsible for completion of the current transaction), and must connect the appropriate pins of both FSB agents. RSVD Reserved RSVD[3:0] pins E10, E8, D7 and D9 must be tied directly to VCCP to ensure proper operation of the processor. All other RSVD signals can be left as No Connects. SLP# I SLP# (Sleep), when asserted in Stop-Grant state, causes the processor to enter the Sleep state. During Sleep state, the processor stops providing internal clock signals to all units, leaving only the Phase-Locked Loop (PLL) still operating. Processors in this state will not recognize snoops or interrupts. The processor will recognize only assertion of the RESET# signal, de-assertion of SLP#, and removal of the BCLK input while in Sleep state. If SLP# is de-asserted, the processor exits Sleep state and returns to Stop-Grant state, restarting its internal clock signals to the bus and processor core units. If DPSLP# is asserted while in the Sleep state, the processor will exit the Sleep state and transition to the Deep Sleep state. SMI# I SMI# (System Management Interrupt) is asserted asynchronously by system logic. On accepting a System Management Interrupt, the processor saves the current state and enters System Management Mode (SMM). An SMI Acknowledge transaction is issued, and the processor begins program execution from the SMM handler. If SMI# is asserted during the de-assertion of RESET# the processor will tri-state its outputs.62 Datasheet Signal Name Type Description STPCLK# I STPCLK# (Stop Clock), when asserted, causes the processor to enter a low power Stop-Grant state. The processor issues a StopGrant Acknowledge transaction, and stops providing internal clock signals to all processor core units except the FSB and APIC units. The processor continues to snoop bus transactions and service interrupts while in Stop-Grant state. When STPCLK# is de-asserted, the processor restarts its internal clock to all units and resumes execution. The assertion of STPCLK# has no effect on the bus clock—STPCLK# is an asynchronous input. TCK I TCK (Test Clock) provides the clock input for the processor Test Bus (also known as the Test Access Port). TDI I TDI (Test Data In) transfers serial test data into the processor. TDI provides the serial input needed for JTAG specification support. TDO O TDO (Test Data Out) transfers serial test data out of the processor. TDO provides the serial output needed for JTAG specification support. TEST[1:4] Test Signals. All TEST signals can be left as No Connects. THRMTRIP# O The processor protects itself from catastrophic overheating by use of an internal thermal sensor. This sensor is set well above the normal operating temperature to ensure that there are no false trips. The processor will stop all execution when the junction temperature exceeds approximately 120°C. This condition is signaled to the system by the THERMTRIP# (Thermal Trip) pin. THRMDA PWR Thermal Diode — Anode THRMDC PWR Thermal Diode — Cathode TMS I TMS (Test Mode Select) is a JTAG specification support signal used by debug tools. TRDY# I TRDY# (Target Ready) is asserted by the target to indicate that it is ready to receive a write or implicit writeback data transfer. TRDY# must connect the appropriate pins of both FSB agents. TRST# I TRST# (Test Reset) resets the Test Access Port (TAP) logic. TRST# must be driven low during power on Reset. VCCA PWR VCCA provides isolated power for the internal processor core PLLs. VCC PWR Processor core power supply VSS GND Processor core ground node. VSS/NCTF GND Non Critical to FunctionPackage Mechanical Specifications and Pin Information Datasheet 63 Signal Name Type Description VID[6:0] O VID[6:0] (Voltage ID) pins are used to support automatic selection of power supply voltages (VCC). Unlike some previous generations of processors, these are CMOS signals that are driven by the processor. The voltage supply for these pins must be valid before the VR can supply VCC to the processor. Conversely, the VR output must be disabled until the voltage supply for the VID pins becomes valid. The VID pins are needed to support the processor voltage specification variations. See Table 3 for definitions of these pins. The VR must supply the voltage that is requested by the pins, or disable itself. VCCP PWR Processor I/O Power Supply which needs to remain on in Deep Power Down Technology (C6) state. VCCPC6 PWR Processor I/O Power Supply which needs to remain on in Deep Power Down Technology (C6) state. VCC_SENSE O VCC_SENSE is an isolated low impedance connection to the processor core power (VCC). It can be used to sense or measure power near the silicon with little noise. VSS_SENSE O VSS_SENSE is an isolated low impedance connection to processor core VSS. It can be used to sense or measure ground near the silicon with little noise. §64 Datasheet This page intentionally left blank.Thermal Specifications and Design Considerations Datasheet 65 5 Thermal Specifications and Design Considerations The processor requires a thermal solution to maintain temperatures within operating limits as set forth in Section 5.1. Any attempt to operate the processor outside these operating limits may result in permanent damage to the processor and potentially other components in the system. As processor technology changes, thermal management becomes increasingly crucial when building computer systems. Maintaining the proper thermal environment is critical to reliable, long-term system operation. A complete thermal solution includes both component and system level thermal management features. Component level thermal solutions include active or passive heat spreaders or heat exchangers attached to the exposed processor die. The solution should make firm contact to the die while maintaining processor mechanical specifications such as pressure. A typical system level thermal solution may consist of a system fan used to evacuate or pull air through the system in conjunction with a multi-component heat spreader used to reduce the temperature of the processor and other components while maintaining as uniform a skin temperature as possible. Alternatively, the processor may be in a fan-less system, but would likely still use a multi-component heat spreader. Note: Trading thermal solutions also involves trading performance. To allow for the optimal operation and long-term reliability of Intel processor-based systems, the system/processor thermal solution should be designed such that the processor remains within the minimum and maximum junction temperature (TJ ) specifications at the corresponding thermal design power (TDP) value listed in Table 16 and Table 17. Thermal solutions not designed to provide this level of thermal capability may affect the long-term reliability of the processor and system. Refer to the Intel Centrino Atom Platform Thermal Application Note document for more details on processor and system level cooling approaches. The maximum junction temperature is defined by an activation of the processor Intel Thermal Monitor. Refer to Section 5.1.2 for more details. Analysis indicates that real applications are unlikely to cause the processor to consume the theoretical maximum power dissipation for sustained time periods. Intel recommends that complete thermal solution designs target the TDP indicated in Table 16 and Table 17. The Intel Thermal Monitor feature is designed to help protect the processor in the unlikely event that an application exceeds the TDP recommendation for a sustained period of time. For more details on the usage of this feature, refer to Section 5.1.2. In all cases the Intel Thermal Monitor feature must be enabled for the processor to remain within specification.66 Datasheet Table 16. Power Specifications for Intel® Atom™ Processors Z560, Z550, Z540, Z530, Z520, and Z510 Symbol Processor Number Core Frequency and Voltage Thermal Design Power Unit Notes TDP Z510 1.1 GHz and HFM VCC 0.6 GHZ and LFM VCC 2.0 W W @ 90°C 1, 4 Z520 1.33 GHz and HFM VCC 0.8 GHZ and LFM VCC 2.0 W 2.2 W with HT enabled W @ 90°C 1, 4, 6 Z530 1.60 GHz and HFM VCC 0.8 GHZ and LFM VCC 2.0 W 2.2 W with HT enabled W @ 90°C 1, 4, 6 Z540 1.86 GHz and HFM VCC 0.8 GHZ and LFM VCC 2.4 W 2.64 W with HT enabled W @ 90°C 1, 4, 6 Z550 2.00 GHz and HFM VCC 0.8 GHZ and LFM VCC 2.4 W 2.64 W with HT enabled W @ 90°C 1, 4, 6 Z560 2.13 GHz and HFM VCC 0.8 GHZ and LFM VCC 2.5 W 2.75 W with HT enabled W @ 90°C 1, 4, 6 Symbol Parameter Min. Typ. Max. Unit Notes P AH, P SGNT Auto Halt, Stop Grant Power @ HFM VCC @ LFM VCC — — 1.0 0.7 W W @ 70°C 2 P DPRSLP Deeper Sleep Power — — 0.5 W @ 50°C 2, 5 P DC6 Deep Power Down Technology (C6) — — 0.1 W @ 50°C 2 TJ Junction Temperature 0 — 90 °C 3, 4 NOTES: 1. The TDP specification should be used to design the processor thermal solution. The TDP is not the maximum theoretical power the processor can generate. 2. Not 100% tested. These power specifications are determined by characterization of the processor currents at higher temperatures and extrapolating the values for the temperature indicated. 3. As measured by the activation of the on-die Intel Thermal Monitor. The Intel Thermal Monitor’s automatic mode is used to indicate that the maximum TJ has been reached. Refer to Section 5.1 for more details. 4. The Intel Thermal Monitor automatic mode must be enabled for the processor to operate within specifications. 5. Deep Sleep state is mapped to Deeper Sleep State. 6. Intel Hyper-Threading Technology requires a computer system with an Intel processor supporting Hyper-Threading Technology and an HT Technology enabled chipset, BIOS and operating system. Hyper-threading technology is available on select Intel Atom™ processor components (Z520, Z530, Z540, Z550, and Z560). HT Technology can add 200 mW of power above TDP.Thermal Specifications and Design Considerations Datasheet 67 Table 17. Power Specifications for Intel® Atom™ Processors Z515 and Z500 Symbol Processor Number Core Frequency and Voltage Thermal Design Power Unit Notes TDP Z500/Z515 Z500/Z515 0.8 GHz and HFM VCC 0.6 GHz and LFM VCC 0.65 W @ 90°C 1, 4, 6, 7 Symbol Parameter Min. Typ. Max. Unit Notes P AH, P SGNT Auto Halt, Stop Grant Power @ HFM VCC @ LFM VCC — — — — 0.6 0.5 W W @ 70°C 2, 6, 7 P DPRSLP Deeper Sleep Power — — 0.3 W 2, 5 P DC6 Deep Power Down Technology (C6) — — 0.08 W 2 TJ Junction Temperature 0 — 90 °C 3, 4 NOTES: 1. The TDP specification should be used to design the processor thermal solution. The TDP is not the maximum theoretical power the processor can generate. 2. Not 100% tested. These power specifications are determined by characterization of the processor currents at higher temperatures and extrapolating the values for the temperature indicated. 3. As measured by the activation of the on-die Intel Thermal Monitor. The Intel Thermal Monitor’s automatic mode is used to indicate that the maximum TJ has been reached. Refer to Section 5.1 for more details. 4. The Intel Thermal Monitor automatic mode must be enabled for the processor to operate within specifications. 5. Deep Sleep state is mapped to Deeper Sleep State. 6. Intel Atom processor Z515 enables Intel® Burst Performance Technology. 7. Intel® HT Technology requires a computer system with an Intel processor supporting Hyper-Threading Technology and an Intel® HT Technology enabled chipset, BIOS, and operating system. The Intel Atom processor Z500 does not support Intel® HT Technology while the Intel Atom processor Z515 does support Intel® HT Technology. 68 Datasheet 5.1 Thermal Specifications The processor incorporates three methods of monitoring die temperature—Digital Thermal Sensor, Intel Thermal Monitor, and the Thermal Diode. The Intel Thermal Monitor (detailed in Section 5.1.2) must be used to determine when the maximum specified processor junction temperature has been reached. 5.1.1 Thermal Diode The processor incorporates an on-die PNP transistor whose base emitter junction is used as a thermal “diode”, with its collector shorted to ground. The thermal diode can be read by an off-die analog/digital converter (a thermal sensor) located on the motherboard or a stand-alone measurement kit. The thermal diode may be used to monitor the die temperature of the processor for thermal management or instrumentation purposes but is not a reliable indication that the maximum operating temperature of the processor has been reached. When using the thermal diode, a temperature offset value must be read from a processor MSR and applied. See Section 5.1.2 for more details. See Section 5.1.3 for thermal diode usage recommendation when the PROCHOT# signal is not asserted. The reading of the external thermal sensor (on the motherboard) connected to the processor thermal diode signals will not necessarily reflect the temperature of the hottest location on the die. This is due to inaccuracies in the external thermal sensor, on-die temperature gradients between the location of the thermal diode and the hottest location on the die, and time based variations in the die temperature measurement. Time based variations can occur when the sampling rate of the thermal diode (by the thermal sensor) is slower than the rate at which the TJ temperature can change. Offset between the thermal diode based temperature reading and the Intel Thermal Monitor reading may be characterized using the Intel Thermal Monitor’s Automatic mode activation of the thermal control circuit. This temperature offset must be taken into account when using the processor thermal diode to implement power management events. This offset is different than the diode TOFFSET value programmed into the processor Model Specific Register (MSR). Table 18. and Table 19 provide the diode interface and specifications. Transistor model parameters shown in Table 19 provide more accurate temperature measurements when the diode ideality factor is closer to the maximum or minimum limits. Contact your external sensor supplier for their recommendation. The thermal diode is separate from the Thermal Monitor’s thermal sensor and cannot be used to predict the behavior of the Thermal Monitor.Thermal Specifications and Design Considerations Datasheet 69 Table 18. Thermal Diode Interface Signal Name Pin/Ball Number Signal Description THERMDA T5 Thermal diode anode THERMDC U4 Thermal diode cathode Table 19. Thermal Diode Parameters Using Transistor Model Symbol Parameter Min. Typ. Max. Unit Note s IFW Forward Bias Current 5 — 200 µA 1 IE Emitter Current 5 — 200 µA 1 nQ Transistor Ideality 0.997 1.001 1.015 2, 3, 4 Beta 0.25 — 0.65 2, 3 RT Series Resistance 2.79 4.52 6.24 Ω 2, 5 NOTES: 1. Intel does not support or recommend operation of the thermal diode under reverse bias. 2. Characterized across a temperature range of 50–100 °C. 3. Not 100% tested. Specified by design characterization. 4. The ideality factor, nQ, represents the deviation from ideal transistor model behavior as exemplified by the equation for the collector current: I C = I S * (e qVBE/nQkT –1) Where IS = saturation current, q = electronic charge, VBE = voltage across the transistor base emitter junction (same nodes as VD), k = Boltzmann Constant, and T = absolute temperature (Kelvin). 5. The series resistance, RT, provided in the Diode Model Table (Table 19) can be used for more accurate readings as needed. When calculating a temperature based on the thermal diode measurements, a number of parameters must be either measured or assumed. Most devices measure the diode ideality and assume a series resistance and ideality trim value, although are capable of also measuring the series resistance. Calculating the temperature is then accomplished using the equation listed under Table 19. In most sensing devices, an expected value for the diode ideality is designed-in to the temperature calculation equation. If the designer of the temperature sensing device assumes a perfect diode, the ideality value (also called ntrim) will be 1.000. Given that most diodes are not perfect, the designers usually select an ntrim value that more closely matches the behavior of the diodes in the processor. If the processor diode ideality deviates from that of the ntrim, each calculated temperature will be offset by a fixed amount. This temperature offset can be calculated with the equation: Terror(nf) = Tmeasured * (1 – nactual/ntrim) Where Terror(nf) is the offset in degrees C, Tmeasured is in Kelvin, nactual is the measured ideality of the diode, and ntrim is the diode ideality assumed by the temperature sensing device.70 Datasheet 5.1.2 Intel® Thermal Monitor The Intel Thermal Monitor helps control the processor temperature by activating the TCC (Thermal Control Circuit) when the processor silicon reaches its maximum operating temperature. The temperature at which the Intel Thermal Monitor activates the TCC is not user configurable. Bus traffic is snooped in the normal manner and interrupt requests are latched (and serviced during the time that the clocks are on) while the TCC is active. With a properly designed and characterized thermal solution, it is anticipated that the TCC would only be activated for very short periods of time when running the most power intensive applications. The processor performance impact due to these brief periods of TCC activation is expected to be minor and hence not detectable. An underdesigned thermal solution that is not able to prevent excessive activation of the TCC in the anticipated ambient environment may cause a noticeable performance loss and may affect the long-term reliability of the processor. In addition, a thermal solution that is significantly under designed may not be capable of cooling the processor even when the TCC is active continuously. The Intel Thermal Monitor controls the processor temperature by modulating (starting and stopping) the processor core clocks or by initiating an Enhanced Intel SpeedStep Technology transition when the processor silicon reaches its maximum operating temperature. The Intel Thermal Monitor uses two modes to activate the TCC: automatic mode and on-demand mode. If both modes are activated, automatic mode takes precedence. There are two automatic modes called Intel Thermal Monitor 1 (TM1) and Intel Thermal Monitor 2 (TM2). These modes are selected by writing values to the MSRs of the processor. After automatic mode is enabled, the TCC will activate only when the internal die temperature reaches the maximum allowed value for operation. The Intel Thermal Monitor automatic mode must be enabled through BIOS for the processor to be operating within specifications. Intel recommends TM1 and TM2 be enabled on the processor. When TM1 is enabled and a high temperature situation exists, the clocks will be modulated by alternately turning the clocks off and on at a 50% duty cycle. Cycle times are processor speed dependent and will decrease linearly as processor core frequencies increase. Once the temperature has returned to a non-critical level, modulation ceases and TCC goes inactive. A small amount of hysteresis has been included to prevent rapid active/inactive transitions of the TCC when the processor temperature is near the trip point. The duty cycle is factory configured and cannot be modified. Also, automatic mode does not require any additional hardware, software drivers, or interrupt handling routines. Processor performance will be decreased by the same amount as the duty cycle when the TCC is active. When TM2 is enabled and a high temperature situation exists, the processor will perform an Enhanced Intel SpeedStep Technology transition to the LFM. When the processor temperature drops below the critical level, the processor will make an Enhanced Intel SpeedStep Technology transition to the last requested operating point. The Intel Thermal Monitor automatic mode must be enabled through BIOS for the processor to be operating within specifications. Intel recommends TM1 and TM2 be enabled on the processors. TM1 and TM2 can co-exist within the processor. If both TM1 and TM2 bits are enabled in the auto-throttle MSR, TM2 will take precedence over TM1. However, if Force TM1 Thermal Specifications and Design Considerations Datasheet 71 over TM2 is enabled in MSRs using BIOS and TM2 is not sufficient to cool the processor below the maximum operating temperature, then TM1 will also activate to help cool down the processor. If a processor load based Enhanced Intel SpeedStep Technology transition (through MSR write) is initiated when a TM2 period is active, there are two possible results: • If the processor load based Enhanced Intel SpeedStep Technology transition target frequency is higher than the TM2 transition based target frequency, the processor load-based transition will be deferred until the TM2 event has been completed. • If the processor load-based Enhanced Intel SpeedStep Technology transition target frequency is lower than the TM2 transition based target frequency, the processor will transition to the processor load-based Enhanced Intel SpeedStep Technology target frequency point. The TCC may also be activated using on-demand mode. If bit 4 of the ACPI Intel Thermal Monitor control register is written to a 1, the TCC will be activated immediately independent of the processor temperature. When using on-demand mode to activate the TCC, the duty cycle of the clock modulation is programmable using bits 3:1 of the same ACPI Intel Thermal Monitor control register. In automatic mode, the duty cycle is fixed at 50% on, 50% off, however in on-demand mode, the duty cycle can be programmed from 12.5% on/ 87.5% off, to 87.5% on/12.5% off in 12.5% increments. On-demand mode may be used at the same time automatic mode is enabled—however, if the system tries to enable the TCC using on-demand mode at the same time automatic mode is enabled and a high temperature condition exists, automatic mode will take precedence. An external signal, PROCHOT# (processor hot) is asserted when the processor detects that its temperature is above the thermal trip point. Bus snooping and interrupt latching are also active while the TCC is active. Besides the thermal sensor and thermal control circuit, the Intel Thermal Monitor also includes one ACPI register, one performance counter register, three MSR, and one I/O pin (PROCHOT#). All are available to monitor and control the state of the Intel Thermal Monitor feature. The Intel Thermal Monitor can be configured to generate an interrupt upon the assertion or de-assertion of PROCHOT#. PROCHOT# will not be asserted when the processor is in the Stop Grant, Sleep, Deep Sleep, and Deeper Sleep low power states—hence, the thermal diode reading must be used as a safeguard to maintain the processor junction temperature within maximum specification. If the platform thermal solution is not able to maintain the processor junction temperature within the maximum specification, the system must initiate an orderly shutdown to prevent damage. If the processor enters one of the above low power states with PROCHOT# already asserted, PROCHOT# will remain asserted until the processor exits the low power state and the processor junction temperature drops below the thermal trip point. If Intel Thermal Monitor automatic mode is disabled, the processor will operate out of specification. Regardless of enabling the automatic or on-demand modes, in the event of a catastrophic cooling failure, the processor will automatically shut down when the silicon has reached a temperature of approximately 120 °C. At this point the THERMTRIP# signal will go active. THERMTRIP# activation is independent of processor activity and does not generate any bus cycles. When THERMTRIP# is asserted, the processor core voltage must shut down within the time specified in Chapter 0.72 Datasheet 5.1.3 Digital Thermal Sensor The processor also contains an on die Digital Thermal Sensor (DTS) that is read using an MSR (no I/O interface). The processor has a unique digital thermal sensor that’s temperature is accessible using the processor MSRs. The DTS is the preferred method of reading the processor die temperature since it can be located much closer to the hottest portions of the die and can thus more accurately track the die temperature and potential activation of processor core clock modulation using the Thermal Monitor. The DTS is only valid while the processor is in the normal operating state (the Normal package level low power state). Unlike traditional thermal devices, the DTS outputs a temperature relative to the maximum supported operating temperature of the processor (TJ_max). It is the responsibility of software to convert the relative temperature to an absolute temperature. The temperature returned by the DTS will always be at or below TJ_max. Catastrophic temperature conditions are detectable using an Out Of Spec status bit. This bit is also part of the DTS MSR. When this bit is set, the processor is operating out of specification and immediate shutdown of the system should occur. The processor operation and code execution is not ensured once the activation of the “Out of Spec” status bit is set. The DTS-relative temperature readout corresponds to the Thermal Monitor (TM1/TM2) trigger point. When the DTS indicates maximum processor core temperature has been reached, the TM1 or TM2 hardware thermal control mechanism will activate. The DTS and TM1/TM2 temperature may not correspond to the thermal diode reading since the thermal diode is located in a separate portion of the die and thermal gradient from the core DTS. Additionally, the thermal gradient from DTS to thermal diode can vary substantially due to changes in processor power, mechanical and thermal attach, and software application. The system designer is required to use the DTS to ensure proper operation of the processor within its temperature operating specifications. Changes to the temperature can be detected using two programmable thresholds located in the processor MSRs. These thresholds have the capability of generating interrupts using the core's local APIC. Refer to the Intel® 64 and IA-32 Architectures Software Developer's Manuals for specific register and programming details. 5.1.4 Out of Specification Detection Overheat detection is performed by monitoring the processor temperature and temperature gradient. This feature is intended for graceful shut down before the THERMTRIP# is activated. If the processor’s TM1 or TM2 are triggered and the temperature remains high, an “Out Of Spec” status and sticky bit are latched in the status MSR register and generates thermal interrupt. 5.1.5 PROCHOT# Signal Pin An external signal, PROCHOT# (processor hot), is asserted when the processor die temperature has reached its maximum operating temperature. If TM1 or TM2 is enabled, then the TCC will be active when PROCHOT# is asserted. The processor can be configured to generate an interrupt upon the assertion or de-assertion of PROCHOT#. Refer to the Intel® 64 and IA-32 Architectures Software Developer's Manuals.Thermal Specifications and Design Considerations Datasheet 73 The processor implements a bidirectional PROCHOT# capability to allow system designs to protect various components from overheating situations. The PROCHOT# signal is bidirectional in that it can either signal when the processor has reached its maximum operating temperature or be driven from an external source to activate the TCC. The ability to activate the TCC using PROCHOT# can provide a means for thermal protection of system components. Only a single PROCHOT# pin exists at a package level of the processor. When the core's thermal sensor trips, the PROCHOT# signal is driven by the processor package. If only TM1 is enabled, PROCHOT# will be asserted and only the core that is above TCC temperature trip point will have its core clocks modulated. If TM2 is enabled and the core is above TCC temperature trip point, it will enter the lowest programmed TM2 performance state. It is important to note that Intel recommends both TM1 and TM2 to be enabled. When PROCHOT# is driven by an external agent, if only TM1 is enabled on the core, then the processor core will have the clocks modulated. If TM2 is enabled, then the processor core will enter the lowest programmed TM2 performance state. It should be noted that Force TM1 on TM2, enabled using BIOS, does not have any effect on external PROCHOT#. If PROCHOT# is driven by an external agent when TM1, TM2, and Force TM1 on TM2 are all enabled, then the processor will still apply only TM2. PROCHOT# may be used for thermal protection of voltage regulators (VR). System designers can create a circuit to monitor the VR temperature and activate the TCC when the temperature limit of the VR is reached. By asserting PROCHOT# (pulled-low) and activating the TCC, the VR will cool down as a result of reduced processor power consumption. Bidirectional PROCHOT# can allow VR thermal designs to target maximum sustained current instead of maximum current. Systems should still provide proper cooling for the VR and rely on bidirectional PROCHOT# only as a backup in case of system cooling failure. The system thermal design should allow the power delivery circuitry to operate within its temperature specification even while the processor is operating at its TDP. With a properly designed and characterized thermal solution, it is anticipated that bidirectional PROCHOT# would only be asserted for very short periods of time when running the most power intensive applications. An underdesigned thermal solution that is not able to prevent excessive assertion of PROCHOT# in the anticipated ambient environment may cause a noticeable performance loss. DATA SHEET Product specification Supersedes data of 1999 May 26 2001 Oct 10 DISCRETE SEMICONDUCTORS BAS16 High-speed diode book, halfpage M3D0882001 Oct 10 2 Philips Semiconductors Product specification High-speed diode BAS16 FEATURES • Small plastic SMD package • High switching speed: max. 4 ns • Continuous reverse voltage: max. 75 V • Repetitive peak reverse voltage: max. 85 V • Repetitive peak forward current: max. 500 mA. APPLICATIONS • High-speed switching in hybrid thick and thin-film circuits. DESCRIPTION The BAS16 is a high-speed switching diode fabricated in planar technology, and encapsulated in a small SOT23 plastic SMD package. MARKING Note 1. ∗ = p : Made in Hong Kong. ∗ = t : Made in Malaysia. ∗ = W : Made in China. PINNING TYPE NUMBER MARKING CODE(1) BAS16 A6∗ PIN DESCRIPTION 1 anode 2 not connected 3 cathode Fig.1 Simplified outline (SOT23) and symbol. handbook, halfpage 2 1 3 MAM185 2 n.c. 1 3 LIMITING VALUES In accordance with the Absolute Maximum Rating System (IEC 60134). Note 1. Device mounted on an FR4 printed-circuit board. SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT VRRM repetitive peak reverse voltage − 85 V VR continuous reverse voltage − 75 V IF continuous forward current see Fig.2; note 1 − 215 mA IFRM repetitive peak forward current − 500 mA IFSM non-repetitive peak forward current square wave; Tj = 25 °C prior to surge; see Fig.4 t = 1 µs − 4 A t = 1 ms − 1 A t = 1 s − 0.5 A Ptot total power dissipation Tamb = 25 °C; note 1 − 250 mW Tstg storage temperature −65 +150 °C Tj junction temperature − 150 °C2001 Oct 10 3 Philips Semiconductors Product specification High-speed diode BAS16 ELECTRICAL CHARACTERISTICS Tj = 25 °C unless otherwise specified. THERMAL CHARACTERISTICS Note 1. Device mounted on an FR4 printed-circuit board. SYMBOL PARAMETER CONDITIONS MAX. UNIT VF forward voltage see Fig.3 IF = 1 mA 715 mV IF = 10 mA 855 mV IF = 50 mA 1 V IF = 150 mA 1.25 V IR reverse current see Fig.5 VR = 25 V 30 nA VR = 75 V 1 µA VR = 25 V; Tj = 150 °C 30 µA VR = 75 V; Tj = 150 °C 50 µA Cd diode capacitance f = 1 MHz; VR = 0; see Fig.6 1.5 pF t rr reverse recovery time when switched from IF = 10 mA to IR = 10 mA; RL = 100 Ω; measured at IR = 1 mA; see Fig.7 4 ns Vfr forward recovery voltage when switched from IF = 10 mA; t r = 20 ns; see Fig.8 1.75 V SYMBOL PARAMETER CONDITIONS VALUE UNIT Rth j-tp thermal resistance from junction to tie-point 330 K/W Rth j-a thermal resistance from junction to ambient note 1 500 K/W2001 Oct 10 4 Philips Semiconductors Product specification High-speed diode BAS16 GRAPHICAL DATA Device mounted on an FR4 printed-circuit board. Fig.2 Maximum permissible continuous forward current as a function of ambient temperature. 0 50 100 200 250 0 200 MSA562 -1 150 150 100 50 I F (mA) T amb ( o C) (1) Tj = 150 °C; typical values. (2) Tj = 25 °C; typical values. (3) Tj = 25 °C; maximum values. Fig.3 Forward current as a function of forward voltage. handbook, halfpage 0 2 300 I F (mA) 0 100 200 MBG382 1 V F (V) (1) (3) (2) handbook, full pagewidth MBG704 10 t p (µs) 1 I FSM (A) 10 2 10 −1 10 4 10 2 10 3 10 1 Fig.4 Maximum permissible non-repetitive peak forward current as a function of pulse duration. Based on square wave currents. Tj = 25 °C prior to surge.2001 Oct 10 5 Philips Semiconductors Product specification High-speed diode BAS16 Fig.5 Reverse current as a function of junction temperature. 10 5 10 4 10 0 200 MGA884 100 T ( C) j o IR (nA) 10 3 10 2 75 V 25 V typ max V = 75 V R typ Fig.6 Diode capacitance as a function of reverse voltage; typical values. f = 1 MHz; Tj = 25 °C. handbook, halfpage 0 8 16 4 12 0.8 0.6 0 0.4 0.2 MBG446 V R (V) C d (pF)2001 Oct 10 6 Philips Semiconductors Product specification High-speed diode BAS16 handbook, full pagewidth t rr (1) I F t output signal t r t t p 10% 90% VR input signal V = V I x R R F S R = 50 S Ω I F D.U.T. R = 50 i Ω SAMPLING OSCILLOSCOPE MGA881 Fig.7 Reverse recovery voltage test circuit and waveforms. (1) IR = 1 mA. t r t t p 10% 90% I input signal R = 50 S Ω I R = 50 i Ω OSCILLOSCOPE 1 k Ω 450 Ω D.U.T. MGA882 Vfr t output signal V Fig.8 Forward recovery voltage test circuit and waveforms.2001 Oct 10 7 Philips Semiconductors Product specification High-speed diode BAS16 PACKAGE OUTLINE UNIT A1 max. bp c D E e 1 HE Lp Q w v REFERENCES OUTLINE VERSION EUROPEAN PROJECTION ISSUE DATE 97-02-28 99-09-13 IEC JEDEC EIAJ mm 0.1 0.48 0.38 0.15 0.09 3.0 2.8 1.4 1.2 0.95 e 1.9 2.5 2.1 0.55 0.45 0.2 0.1 DIMENSIONS (mm are the original dimensions) 0.45 0.15 SOT23 TO-236AB bp D e1 e A A1 Lp Q detail X HE E w M v M A B B A 0 1 2 mm scale A 1.1 0.9 c X 1 2 3 Plastic surface mounted package; 3 leads SOT232001 Oct 10 8 Philips Semiconductors Product specification High-speed diode BAS16 DATA SHEET STATUS Notes 1. Please consult the most recently issued data sheet before initiating or completing a design. 2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com. DATA SHEET STATUS(1) PRODUCT STATUS(2) DEFINITIONS Objective data Development This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice. Preliminary data Qualification This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product. Product data Production This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Changes will be communicated according to the Customer Product/Process Change Notification (CPCN) procedure SNW-SQ-650A. DEFINITIONS Short-form specification  The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook. Limiting values definition  Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability. Application information  Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification. DISCLAIMERS Life support applications  These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application. Right to make changes  Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.2001 Oct 10 9 Philips Semiconductors Product specification High-speed diode BAS16 NOTES2001 Oct 10 10 Philips Semiconductors Product specification High-speed diode BAS16 NOTES2001 Oct 10 11 Philips Semiconductors Product specification High-speed diode BAS16 NOTES© Koninklijke Philips Electronics N.V. 2001 SCA73 All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights. Philips Semiconductors – a worldwide company Contact information For additional information please visit http://www.semiconductors.philips.com. Fax: +31 40 27 24825 For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com. Printed in The Netherlands 613514/04/pp12 Date of release: 2001 Oct 10 Document order number: 9397 750 08757 © 2007 Microchip Technology Inc. DS70165E dsPIC33F Family Data Sheet High-Performance, 16-Bit Digital Signal ControllersDS70165E-page ii © 2007 Microchip Technology Inc. Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights. Trademarks The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Linear Active Thermistor, Mindi, MiWi, MPASM, MPLIB, MPLINK, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, rfPICDEM, Select Mode, Smart Serial, SmartTel, Total Endurance, UNI/O, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. All other trademarks mentioned herein are property of their respective companies. © 2007, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved. Printed on recycled paper. Note the following details of the code protection feature on Microchip devices: • Microchip products meet the specification contained in their particular Microchip Data Sheet. • Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. • There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. • Microchip is willing to work with the customer who is concerned about the integrity of their code. • Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.” Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act. Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona, Gresham, Oregon and Mountain View, California. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.© 2007 Microchip Technology Inc. Preliminary DS70165E-page 1 dsPIC33F Operating Range: • DC – 40 MIPS (40 MIPS @ 3.0-3.6V, -40°C to +85°C) • Industrial temperature range (-40°C to +85°C) High-Performance DSC CPU: • Modified Harvard architecture • C compiler optimized instruction set • 16-bit wide data path • 24-bit wide instructions • Linear program memory addressing up to 4M instruction words • Linear data memory addressing up to 64 Kbytes • 83 base instructions: mostly 1 word/1 cycle • Sixteen 16-bit General Purpose Registers • Two 40-bit accumulators: - With rounding and saturation options • Flexible and powerful addressing modes: - Indirect, Modulo and Bit-Reversed • Software stack • 16 x 16 fractional/integer multiply operations • 32/16 and 16/16 divide operations • Single-cycle multiply and accumulate: - Accumulator write back for DSP operations - Dual data fetch • Up to ±16-bit shifts for up to 40-bit data Direct Memory Access (DMA): • 8-channel hardware DMA: • 2 Kbytes dual ported DMA buffer area (DMA RAM) to store data transferred via DMA: - Allows data transfer between RAM and a peripheral while CPU is executing code (no cycle stealing) • Most peripherals support DMA Interrupt Controller: • 5-cycle latency • 118 interrupt vectors • Up to 67 available interrupt sources • Up to 5 external interrupts • 7 programmable priority levels • 5 processor exceptions Digital I/O: • Up to 85 programmable digital I/O pins • Wake-up/Interrupt-on-Change on up to 24 pins • Output pins can drive from 3.0V to 3.6V • All digital input pins are 5V tolerant • 4 mA sink on all I/O pins On-Chip Flash and SRAM: • Flash program memory, up to 256 Kbytes • Data SRAM, up to 30 Kbytes (includes 2 Kbytes of DMA RAM): System Management: • Flexible clock options: - External, crystal, resonator, internal RC - Fully integrated PLL - Extremely low jitter PLL • Power-up Timer • Oscillator Start-up Timer/Stabilizer • Watchdog Timer with its own RC oscillator • Fail-Safe Clock Monitor • Reset by multiple sources Power Management: • On-chip 2.5V voltage regulator • Switch between clock sources in real time • Idle, Sleep and Doze modes with fast wake-up Timers/Capture/Compare/PWM: • Timer/Counters, up to nine 16-bit timers: - Can pair up to make four 32-bit timers - 1 timer runs as Real-Time Clock with external 32.768 kHz oscillator - Programmable prescaler • Input Capture (up to 8 channels): - Capture on up, down or both edges - 16-bit capture input functions - 4-deep FIFO on each capture • Output Compare (up to 8 channels): - Single or Dual 16-Bit Compare mode - 16-bit Glitchless PWM mode High-Performance, 16-bit Digital Signal ControllersdsPIC33F DS70165E-page 2 Preliminary © 2007 Microchip Technology Inc. Communication Modules: • 3-wire SPI (up to 2 modules): - Framing supports I/O interface to simple codecs - Supports 8-bit and 16-bit data - Supports all serial clock formats and sampling modes • I 2 C™ (up to 2 modules): - Full Multi-Master Slave mode support - 7-bit and 10-bit addressing - Bus collision detection and arbitration - Integrated signal conditioning - Slave address masking • UART (up to 2 modules): - Interrupt on address bit detect - Interrupt on UART error - Wake-up on Start bit from Sleep mode - 4-character TX and RX FIFO buffers - LIN bus support - IrDA® encoding and decoding in hardware - High-Speed Baud mode - Hardware Flow Control with CTS and RTS • Data Converter Interface (DCI) module: - Codec interface - Supports I 2 S and AC’97 protocols - Up to 16-bit data words, up to 16 words per frame - 4-word deep TX and RX buffers • Enhanced CAN (ECAN™ module) 2.0B active (up to 2 modules): - Up to 8 transmit and up to 32 receive buffers - 16 receive filters and 3 masks - Loopback, Listen Only and Listen All Messages modes for diagnostics and bus monitoring - Wake-up on CAN message - Automatic processing of Remote Transmission Requests - FIFO mode using DMA - DeviceNet™ addressing support Motor Control Peripherals: • Motor Control PWM (up to 8 channels): - 4 duty cycle generators - Independent or Complementary mode - Programmable dead time and output polarity - Edge or center-aligned - Manual output override control - Up to 2 Fault inputs - Trigger for ADC conversions - PWM frequency for 16-bit resolution (@ 40 MIPS) = 1220 Hz for Edge-Aligned mode, 610 Hz for Center-Aligned mode - PWM frequency for 11-bit resolution (@ 40 MIPS) = 39.1 kHz for Edge-Aligned mode, 19.55 kHz for Center-Aligned mode • Quadrature Encoder Interface module: - Phase A, Phase B and index pulse input - 16-bit up/down position counter - Count direction status - Position Measurement (x2 and x4) mode - Programmable digital noise filters on inputs - Alternate 16-bit Timer/Counter mode - Interrupt on position counter rollover/underflow Analog-to-Digital Converters (ADCs): • Up to two ADC modules in a device • 10-bit, 1.1 Msps or 12-bit, 500 Ksps conversion: - 2, 4 or 8 simultaneous samples - Up to 32 input channels with auto-scanning - Conversion start can be manual or synchronized with 1 of 4 trigger sources - Conversion possible in Sleep mode - ±2 LSb max integral nonlinearity - ±1 LSb max differential nonlinearity CMOS Flash Technology: • Low-power, high-speed Flash technology • Fully static design • 3.3V (±10%) operating voltage • Industrial temperature • Low-power consumption Packaging: • 100-pin TQFP (14x14x1 mm and 12x12x1 mm) • 80-pin TQFP (12x12x1 mm) • 64-pin TQFP (10x10x1 mm) Note: See the device variant tables for exact peripheral features per device.© 2007 Microchip Technology Inc. Preliminary DS70165E-page 3 dsPIC33F dsPIC33F PRODUCT FAMILIES There are two device subfamilies within the dsPIC33F family of devices. They are the General Purpose Family and the Motor Control Family. The General Purpose Family is ideal for a wide variety of 16-bit MCU embedded applications. The variants with codec interfaces are well-suited for speech and audio processing applications. The Motor Control Family supports a variety of motor control applications, such as brushless DC motors, single and 3-phase induction motors and switched reluctance motors. These products are also well-suited for Uninterrupted Power Supply (UPS), inverters, Switched mode power supplies, power factor correction and also for controlling the power management module in servers, telecommunication equipment and other industrial equipment. The device names, pin counts, memory sizes and peripheral availability of each family are listed below, followed by their pinout diagrams. dsPIC33F General Purpose Family Variants Device Pins Program Flash Memory (Kbyte) RAM (Kbyte) (1) 16-bit Timer Input Capture Output Compare Std. PWM Codec Interface ADC UART SPI I 2 C™ Enhanced CAN I/O Pins (Max) (2) Packages dsPIC33FJ64GP206 64 64 8 9 8 8 1 1 ADC, 18 ch 2 2 1 0 53 PT dsPIC33FJ64GP306 64 64 16 9 8 8 1 1 ADC, 18 ch 2 2 2 0 53 PT dsPIC33FJ64GP310 100 64 16 9 8 8 1 1 ADC, 32 ch 2 2 2 0 85 PF, PT dsPIC33FJ64GP706 64 64 16 9 8 8 1 2 ADC, 18 ch 2 2 2 2 53 PT dsPIC33FJ64GP708 80 64 16 9 8 8 1 2 ADC, 24 ch 2 2 2 2 69 PT dsPIC33FJ64GP710 100 64 16 9 8 8 1 2 ADC, 32 ch 2 2 2 2 85 PF, PT dsPIC33FJ128GP206 64 128 8 9 8 8 1 1 ADC, 18 ch 2 2 1 0 53 PT dsPIC33FJ128GP306 64 128 16 9 8 8 1 1 ADC, 18 ch 2 2 2 0 53 PT dsPIC33FJ128GP310 100 128 16 9 8 8 1 1 ADC, 32 ch 2 2 2 0 85 PF, PT dsPIC33FJ128GP706 64 128 16 9 8 8 1 2 ADC, 18 ch 2 2 2 2 53 PT dsPIC33FJ128GP708 80 128 16 9 8 8 1 2 ADC, 24 ch 2 2 2 2 69 PT dsPIC33FJ128GP710 100 128 16 9 8 8 1 2 ADC, 32 ch 2 2 2 2 85 PF, PT dsPIC33FJ256GP506 64 256 16 9 8 8 1 1 ADC, 18 ch 2 2 2 1 53 PT dsPIC33FJ256GP510 100 256 16 9 8 8 1 1 ADC, 32 ch 2 2 2 1 85 PF, PT dsPIC33FJ256GP710 100 256 30 9 8 8 1 2 ADC, 32 ch 2 2 2 2 85 PF, PT Note 1: RAM size is inclusive of 2 Kbytes DMA RAM. 2: Maximum I/O pin count includes pins shared by the peripheral functions.dsPIC33F DS70165E-page 4 Preliminary © 2007 Microchip Technology Inc. Pin Diagrams 64-Pin TQFP 1 2 3 4 5 6 7 8 9 10 11 12 13 36 35 34 33 26 27 28 29 30 31 32 64 63 62 61 60 59 58 57 56 14 15 16 17 18 19 20 21 22 23 24 25 PGC2/EMUC2/SOSCO/T1CK/CN0/RC14 PGD2/EMUD2/SOSCI/T4CK/CN1/RC13 OC1/RD0 IC4/INT4/RD11 IC2/U1CTS/INT2/RD9 IC1/INT1/RD8 VSS OSC2/CLKO/RC15 OSC1/CLKIN/RC12 VDD SCL1/RG2 U1RTS/SCK1/INT0/RF6 U1RX/SDI1/RF2 U1TX/SDO1/RF3 COFS/RG15 AN16/T2CK/T7CK/RC1 AN17/T3CK/T6CK/RC2 SCK2/CN8/RG6 SDI2/CN9/RG7 SDO2/CN10/RG8 MCLR VSS VDD AN3/CN5/RB3 AN2/SS1/CN4/RB2 PGC3/EMUC3/AN1/VREF-/CN3/RB1 PGD3/EMUD3/AN0/VREF+/CN2/RB0 CSDO/RG13 CSDI/RG12 CSCK/RG14 V OC8/CN16/RD7 DDCORE RG0 RG1 RF1 OC3/RD2 OC2/RD1 PGC1/EMUC1/AN6/OCFA/RB6 PGD1/EMUD1/AN7/RB7 AVDD AVSS U2CTS/AN8/RB8 AN9/RB9 TMS/AN10/RB10 TDO/AN11/RB11 VSS VDD TCK/AN12/RB12 TDI/AN13/RB13 U2RTS/AN14/RB14 AN15/OCFB/CN12/RB15 U2RX U2TX/CN18/RF5 CN17/RF4 / SDA1/RG3 43 42 41 40 39 38 37 44 48 47 46 55 54 53 52 51 50 49 45 SS2/T5CK/CN11/RG9 AN5/IC8/CN7/RB5 AN4/IC7/CN6/RB4 IC3/INT3/RD10 VDD RF0 OC7/CN15/RD6 OC6/IC6/CN14/RD5 OC5/IC5/CN13/RD4 OC4/RD3 dsPIC33FJ64GP206 dsPIC33FJ128GP206© 2007 Microchip Technology Inc. Preliminary DS70165E-page 5 dsPIC33F Pin Diagrams (Continued) 64-Pin TQFP 1 2 3 4 5 6 7 8 9 10 11 12 13 36 35 34 33 26 27 28 29 30 31 32 64 63 62 61 60 59 58 57 56 14 15 16 17 18 19 20 21 22 23 24 25 PGC2/EMUC2/SOSCO/T1CK/CN0/RC14 PGD2/EMUD2/SOSCI/T4CK/CN1/RC13 OC1/RD0 IC4/INT4/RD11 IC2/U1CTS/INT2/RD9 IC1/INT1/RD8 VSS OSC2/CLKO/RC15 OSC1/CLKIN/RC12 VDD SCL1/RG2 U1RTS/SCK1/INT0/RF6 U1RX/SDI1/RF2 U1TX/SDO1/RF3 COFS/RG15 AN16/T2CK/T7CK/RC1 AN17/T3CK/T6CK/RC2 SCK2/CN8/RG6 SDI2/CN9/RG7 SDO2/CN10/RG8 MCLR VSS VDD AN3/CN5/RB3 AN2/SS1/CN4/RB2 PGC3/EMUC3/AN1/VREF-/CN3/RB1 PGD3/EMUD3/AN0/VREF+/CN2/RB0 CSDO/RG13 CSDI/RG12 CSCK/RG14 V OC8/CN16/RD7 DDCORE RG0 RG1 RF1 OC3/RD2 OC2/RD1 PGC1/EMUC1/AN6/OCFA/RB6 PGD1/EMUD1/AN7/RB7 AVDD AVSS U2CTS/AN8/RB8 AN9/RB9 TMS/AN10/RB10 TDO/AN11/RB11 VSS VDD TCK/AN12/RB12 TDI/AN13/RB13 U2RTS/AN14/RB14 AN15/OCFB/CN12/RB15 U2RX U2TX/SCL2/CN18/RF5 SDA2/CN17/RF4 / SDA1/RG3 43 42 41 40 39 38 37 44 48 47 46 55 54 53 52 51 50 49 45 SS2/T5CK/CN11/RG9 AN5/IC8/CN7/RB5 AN4/IC7/CN6/RB4 IC3/INT3/RD10 VDD RF0 OC7/CN15/RD6 OC6/IC6/CN14/RD5 OC5/IC5/CN13/RD4 OC4/RD3 dsPIC33FJ64GP306 dsPIC33FJ128GP306dsPIC33F DS70165E-page 6 Preliminary © 2007 Microchip Technology Inc. Pin Diagrams (Continued) 64-Pin TQFP 1 2 3 4 5 6 7 8 9 10 11 12 13 36 35 34 33 26 27 28 29 30 31 32 64 63 62 61 60 59 58 57 56 14 15 16 17 18 19 20 21 22 23 24 25 PGC2/EMUC2/SOSCO/T1CK/CN0/RC14 PGD2/EMUD2/SOSCI/T4CK/CN1/RC13 OC1/RD0 IC4/INT4/RD11 IC2/U1CTS/INT2/RD9 IC1/INT1/RD8 VSS OSC2/CLKO/RC15 OSC1/CLKIN/RC12 VDD SCL1/RG2 U1RTS/SCK1/INT0/RF6 U1RX/SDI1/RF2 U1TX/SDO1/RF3 COFS/RG15 AN16/T2CK/T7CK/RC1 AN17/T3CK/T6CK/RC2 SCK2/CN8/RG6 SDI2/CN9/RG7 SDO2/CN10/RG8 MCLR VSS VDD AN3/CN5/RB3 AN2/SS1/CN4/RB2 PGC3/EMUC3/AN1/VREF-/CN3/RB1 PGD3/EMUD3/AN0/VREF+/CN2/RB0 CSDO/RG13 CSDI/RG12 CSCK/RG14 V OC8/CN16/RD7 DDCORE RG0 RG1 C1TX/RF1 OC3/RD2 OC2/RD1 PGC1/EMUC1/AN6/OCFA/RB6 PGD1/EMUD1/AN7/RB7 AVDD AVSS U2CTS/AN8/RB8 AN9/RB9 TMS/AN10/RB10 TDO/AN11/RB11 VSS VDD TCK/AN12/RB12 TDI/AN13/RB13 U2RTS/AN14/RB14 AN15/OCFB/CN12/RB15 U2RX U2TX/SCL2/CN18/RF5 SDA2/CN17/RF4 / SDA1/RG3 43 42 41 40 39 38 37 44 48 47 46 55 54 53 52 51 50 49 45 SS2/T5CK/CN11/RG9 AN5/IC8/CN7/RB5 AN4/IC7/CN6/RB4 IC3/INT3/RD10 VDD C1RX/RF0 OC7/CN15/RD6 OC6/IC6/CN14/RD5 OC5/IC5/CN13/RD4 OC4/RD3 dsPIC33FJ256GP506© 2007 Microchip Technology Inc. Preliminary DS70165E-page 7 dsPIC33F Pin Diagrams (Continued) 64-Pin TQFP 1 2 3 4 5 6 7 8 9 10 11 12 13 36 35 34 33 26 27 28 29 30 31 32 64 63 62 61 60 59 58 57 56 14 15 16 17 18 19 20 21 22 23 24 25 PGC2/EMUC2/SOSCO/T1CK/CN0/RC14 PGD2/EMUD2/SOSCI/T4CK/CN1/RC13 OC1/RD0 IC4/INT4/RD11 IC2/U1CTS/INT2/RD9 IC1/INT1/RD8 VSS OSC2/CLKO/RC15 OSC1/CLKIN/RC12 VDD SCL1/RG2 U1RTS/SCK1/INT0/RF6 U1RX/SDI1/RF2 U1TX/SDO1/RF3 COFS/RG15 AN16/T2CK/T7CK/RC1 AN17/T3CK/T6CK/RC2 SCK2/CN8/RG6 SDI2/CN9/RG7 SDO2/CN10/RG8 MCLR VSS VDD AN3/CN5/RB3 AN2/SS1/CN4/RB2 PGC3/EMUC3/AN1/VREF-/CN3/RB1 PGD3/EMUD3/AN0/VREF+/CN2/RB0 CSDO/RG13 CSDI/RG12 CSCK/RG14 V OC8/CN16/RD7 DDCORE C2RX/RG0 C2TX/RG1 C1TX/RF1 OC3/RD2 OC2/RD1 PGC1/EMUC1/AN6/OCFA/RB6 PGD1/EMUD1/AN7/RB7 AVDD AVSS U2CTS/AN8/RB8 AN9/RB9 TMS/AN10/RB10 TDO/AN11/RB11 VSS VDD TCK/AN12/RB12 TDI/AN13/RB13 U2RTS/AN14/RB14 AN15/OCFB/CN12/RB15 U2RX U2TX/SCL2/CN18/RF5 SDA2/CN17/RF4 / SDA1/RG3 43 42 41 40 39 38 37 44 48 47 46 55 54 53 52 51 50 49 45 SS2/T5CK/CN11/RG9 AN5/IC8/CN7/RB5 AN4/IC7/CN6/RB4 IC3/INT3/RD10 VDD C1RX/RF0 OC7/CN15/RD6 OC6/IC6/CN14/RD5 OC5/IC5/CN13/RD4 OC4/RD3 dsPIC33FJ64GP706 dsPIC33FJ128GP706dsPIC33F DS70165E-page 8 Preliminary © 2007 Microchip Technology Inc. Pin Diagrams (Continued) 80-Pin TQFP 74 73 72 71 70 69 68 67 66 65 64 63 62 61 20 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 50 49 48 47 46 45 44 21 41 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 dsPIC33FJ64GP708 17 18 19 75 1 57 56 55 54 53 52 51 60 59 58 43 42 79 78 77 76 22 80 CSDO/RG13 CSDI/RG12 CSCK/RG14 AN23/CN23/RA7 AN22/CN22/RA6 C2RX/RG0 C2TX/RG1 C1TX/RF1 C1RX/RF0 OC8/CN16/RD7 OC6/CN14/RD5 IC5/RD12 OC4/RD3 OC3/RD2 OC2/RD1 OC1/RD0 IC4/RD11 IC2/RD9 IC1/RD8 IC3/RD10 VSS OSC1/CLKIN/RC12 VDD SCL1/RG2 U1RX/RF2 U1TX/RF3 PGC2/EMUC2/SOSCO/T1CK/CN0/RC14 PGD2/EMUD2/SOSCI/CN1/RC13 VREF+/RA10 VREF-/RA9 AVDD AVSS U2CTS/AN8/RB8 AN9/RB9 AN10/RB10 AN11/RB11 VDD U2RX/CN17/RF4 IC8/U1RTS/CN21/RD15 U2TX/CN18/RF5 PGC1/EMUC1/AN6/OCFA/RB6 PGD1/EMUD1/AN7/RB7 AN17/T3CK/T6CK/RC2 AN18/T4CK/T9CK/RC3 AN19/T5CK/T8CK/RC4 SCK2/CN8/RG6 SDI2/CN9/RG7 SDO2/CN10/RG8 MCLR SS2/CN11/RG9 AN4/CN6/RB4 AN3/CN5/RB3 AN2/SS1/CN4/RB2 PGC3/EMUC3/AN1/CN3/RB1 PGD3/EMUD3/AN0/CN2/RB0 VSS VDD COFS/RG15 AN16/T2CK/T7CK/RC1 TDO/AN21/INT2/RA13 TMS/AN20/INT1/RA12 TCK/AN12/RB12 TDI/AN13/RB13 U2RTS/AN14/RB14 AN15/OCFB/CN12/RB15 VDD VDDCORE OC5/CN13/RD4 IC6/CN19/RD13 SDA1/RG3 SDI1/RF7 SDO1/RF8 AN5/CN7/RB5 VSS OSC2/CLKO/RC15 OC7/CN15/RD6 SCK1/INT0/RF6 IC7/U1CTS/CN20/RD14 SDA2/INT4/RA3 SCL2/INT3/RA2 dsPIC33FJ128GP708© 2007 Microchip Technology Inc. Preliminary DS70165E-page 9 dsPIC33F Pin Diagrams (Continued) 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 20 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 65 64 63 62 61 60 59 26 56 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 17 18 19 21 22 95 1 77 76 72 71 70 69 68 67 66 75 74 73 58 57 24 23 25 99 98 97 96 27 46 47 48 49 50 55 54 53 52 51 AN28/RE4 AN27/RE3 AN26/RE2 CSDO/RG13 CSDI/RG12 CSCK/RG14 AN25/RE1 AN24/RE0 AN23/CN23/RA7 AN22/CN22/RA6 RG0 RF0 V OC6/CN14/RD5 OC5/CN13/RD4 IC6/CN19/RD13 IC5/RD12 OC4/RD3 OC3/RD2 OC2/RD1 DDCORE PGD2/EMUD2/SOSCI/CN1/RC13 OC1/RD0 IC3/RD10 IC2/RD9 IC1/RD8 IC4/RD11 SDA2/RA3 SCL2/RA2 OSC2/CLKO/RC15 OSC1/CLKIN/RC12 VDD SCL1/RG2 SCK1/INT0/RF6 SDI1/RF7 SDO1/RF8 SDA1/RG3 U1RX/RF2 U1TX/RF3 VSS PGC2/EMUC2/SOSCO/T1CK/CN0/RC14 VREF+/RA10 VREF-/RA9 AVDD AVSS AN8/RB8 AN9/RB9 AN10/RB10 AN11/RB11 VDD U2RTS/RF13 U2CTS/RF12 IC7/U1CTS/CN20/RD14 IC8/U1RTS/CN21/RD15 VDD VSS PGC1/EMUC1/AN6/OCFA/RB6 PGD1/EMUD1/AN7/RB7 U2RX/CN17/RF4 U2TX/CN18/RF5 AN29/RE5 AN30/RE6 AN31/RE7 AN16/T2CK/T7CK/RC1 AN17/T3CK/T6CK/RC2 AN18/T4CK/T9CK/RC3 AN19/T5CK/T8CK/RC4 SCK2/CN8/RG6 VDD TMS/RA0 AN20/INT1/RA12 AN21/INT2/RA13 AN5/CN7/RB5 AN4/CN6/RB4 AN3/CN5/RB3 AN2/SS1/CN4/RB2 SDI2/CN9/RG7 SDO2/CN10/RG8 PGC3/EMUC3/AN1/CN3/RB1 PGD3/EMUD3/AN0/CN2/RB0 COFS/RG15 VDD SS2/CN11/RG9 MCLR AN12/RB12 AN13/RB13 AN14/RB14 AN15/OCFB/CN12/RB15 RG1 RF1 OC8/CN16/RD7 OC7/CN15/RD6 TDO/RA5 INT4/RA15 INT3/RA14 VSS VSS VSS VDD TDI/RA4 TCK/RA1 100-Pin TQFP dsPIC33FJ64GP310 dsPIC33FJ128GP310 100dsPIC33F DS70165E-page 10 Preliminary © 2007 Microchip Technology Inc. Pin Diagrams (Continued) 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 20 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 65 64 63 62 61 60 59 26 56 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 17 18 19 21 22 95 1 77 76 72 71 70 69 68 67 66 75 74 73 58 57 24 23 25 99 98 97 96 27 46 47 48 49 50 55 54 53 52 51 AN28/RE4 AN27/RE3 AN26/RE2 CSDO/RG13 CSDI/RG12 CSCK/RG14 AN25/RE1 AN24/RE0 AN23/CN23/RA7 AN22/CN22/RA6 RG0 C1RX/RF0 V OC6/CN14/RD5 OC5/CN13/RD4 IC6/CN19/RD13 IC5/RD12 OC4/RD3 OC3/RD2 OC2/RD1 DDCORE PGD2/EMUD2/SOSCI/CN1/RC13 OC1/RD0 IC3/RD10 IC2/RD9 IC1/RD8 IC4/RD11 SDA2/RA3 SCL2/RA2 OSC2/CLKO/RC15 OSC1/CLKIN/RC12 VDD SCL1/RG2 SCK1/INT0/RF6 SDI1/RF7 SDO1/RF8 SDA1/RG3 U1RX/RF2 U1TX/RF3 VSS PGC2/EMUC2/SOSCO/T1CK/CN0/RC14 VREF+/RA10 VREF-/RA9 AVDD AVSS AN8/RB8 AN9/RB9 AN10/RB10 AN11/RB11 VDD U2RTS/RF13 U2CTS/RF12 IC7/U1CTS/CN20/RD14 IC8/U1RTS/CN21/RD15 VDD VSS PGC1/EMUC1/AN6/OCFA/RB6 PGD1/EMUD1/AN7/RB7 U2RX/CN17/RF4 U2TX/CN18/RF5 AN29/RE5 AN30/RE6 AN31/RE7 AN16/T2CK/T7CK/RC1 AN17/T3CK/T6CK/RC2 AN18/T4CK/T9CK/RC3 AN19/T5CK/T8CK/RC4 SCK2/CN8/RG6 VDD TMS/RA0 AN20/INT1/RA12 AN21/INT2/RA13 AN5/CN7/RB5 AN4/CN6/RB4 AN3/CN5/RB3 AN2/SS1/CN4/RB2 SDI2/CN9/RG7 SDO2/CN10/RG8 PGC3/EMUC3/AN1/CN3/RB1 PGD3/EMUD3/AN0/CN2/RB0 COFS/RG15 VDD SS2/CN11/RG9 MCLR AN12/RB12 AN13/RB13 AN14/RB14 AN15/OCFB/CN12/RB15 RG1 C1TX/RF1 OC8/CN16/RD7 OC7/CN15/RD6 TDO/RA5 INT4/RA15 INT3/RA14 VSS VSS VSS VDD TDI/RA4 TCK/RA1 100-Pin TQFP dsPIC33FJ256GP510 100© 2007 Microchip Technology Inc. Preliminary DS70165E-page 11 dsPIC33F Pin Diagrams (Continued) 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 20 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 65 64 63 62 61 60 59 26 56 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 17 18 19 21 22 95 1 77 76 72 71 70 69 68 67 66 75 74 73 58 57 24 23 25 99 98 97 96 27 46 47 48 49 50 55 54 53 52 51 AN28/RE4 AN27/RE3 AN26/RE2 CSDO/RG13 CSDI/RG12 CSCK/RG14 AN25/RE1 AN24/RE0 AN23/CN23/RA7 AN22/CN22/RA6 C2RX/RG0 C1RX/RF0 V OC6/CN14/RD5 OC5/CN13/RD4 IC6/CN19/RD13 IC5/RD12 OC4/RD3 OC3/RD2 OC2/RD1 DDCORE PGD2/EMUD2/SOSCI/CN1/RC13 OC1/RD0 IC3/RD10 IC2/RD9 IC1/RD8 IC4/RD11 SDA2/RA3 SCL2/RA2 OSC2/CLKO/RC15 OSC1/CLKIN/RC12 VDD SCL1/RG2 SCK1/INT0/RF6 SDI1/RF7 SDO1/RF8 SDA1/RG3 U1RX/RF2 U1TX/RF3 VSS PGC2/EMUC2/SOSCO/T1CK/CN0/RC14 VREF+/RA10 VREF-/RA9 AVDD AVSS AN8/RB8 AN9/RB9 AN10/RB10 AN11/RB11 VDD U2RTS/RF13 U2CTS/RF12 IC7/U1CTS/CN20/RD14 IC8/U1RTS/CN21/RD15 VDD VSS PGC1/EMUC1/AN6/OCFA/RB6 PGD1/EMUD1/AN7/RB7 U2RX/CN17/RF4 U2TX/CN18/RF5 AN29/RE5 AN30/RE6 AN31/RE7 AN16/T2CK/T7CK/RC1 AN17/T3CK/T6CK/RC2 AN18/T4CK/T9CK/RC3 AN19/T5CK/T8CK/RC4 SCK2/CN8/RG6 VDD TMS/RA0 AN20/INT1/RA12 AN21/INT2/RA13 AN5/CN7/RB5 AN4/CN6/RB4 AN3/CN5/RB3 AN2/SS1/CN4/RB2 SDI2/CN9/RG7 SDO2/CN10/RG8 PGC3/EMUC3/AN1/CN3/RB1 PGD3/EMUD3/AN0/CN2/RB0 COFS/RG15 VDD SS2/CN11/RG9 MCLR AN12/RB12 AN13/RB13 AN14/RB14 AN15/OCFB/CN12/RB15 C2TX/RG1 C1TX/RF1 OC8/CN16/RD7 OC7/CN15/RD6 TDO/RA5 INT4/RA15 INT3/RA14 VSS VSS VSS VDD TDI/RA4 TCK/RA1 100-Pin TQFP dsPIC33FJ128GP710 100 dsPIC33FJ256GP710 dsPIC33FJ64GP710dsPIC33F DS70165E-page 12 Preliminary © 2007 Microchip Technology Inc. dsPIC33F Motor Control Family Variants Device Pins Progra m Flash Memory (Kbyte) RAM (Kbyte) (1) Timer 16-bit Input Capture Output Compare Std. PWM Motor Control PWM Quadrature Encoder Interface Codec Interface ADC UART SPI I 2 C™ Enhanced CAN I/O Pins (Max) (2) Packages dsPIC33FJ64MC506 64 64 8 9 8 8 8 ch 1 0 1 ADC, 16 ch 2 2 2 1 53 PT dsPIC33FJ64MC508 80 64 8 9 8 8 8 ch 1 0 1 ADC, 18 ch 2 2 2 1 69 PT dsPIC33FJ64MC510 100 64 8 9 8 8 8 ch 1 0 1 ADC, 24 ch 2 2 2 1 85 PF, PT dsPIC33FJ64MC706 64 64 16 9 8 8 8 ch 1 0 2 ADC, 16 ch 2 2 2 1 53 PT dsPIC33FJ64MC710 100 64 16 9 8 8 8 ch 1 0 2 ADC, 24 ch 2 2 2 2 85 PF, PT dsPIC33FJ128MC506 64 128 8 9 8 8 8 ch 1 0 1 ADC, 16 ch 2 2 2 1 53 PT dsPIC33FJ128MC510 100 128 8 9 8 8 8 ch 1 0 1 ADC, 24 ch 2 2 2 1 85 PF, PT dsPIC33FJ128MC706 64 128 16 9 8 8 8 ch 1 0 2 ADC, 16 ch 2 2 2 1 53 PT dsPIC33FJ128MC708 80 128 16 9 8 8 8 ch 1 0 2 ADC, 18 ch 2 2 2 2 69 PT dsPIC33FJ128MC710 100 128 16 9 8 8 8 ch 1 0 2 ADC, 24 ch 2 2 2 2 85 PF, PT dsPIC33FJ256MC510 100 256 16 9 8 8 8 ch 1 0 1 ADC, 24 ch 2 2 2 1 85 PF, PT dsPIC33FJ256MC710 100 256 30 9 8 8 8 ch 1 0 2 ADC, 24 ch 2 2 2 2 85 PF, PT Note 1: RAM size is inclusive of 2 Kbytes DMA RAM. 2: Maximum I/O pin count includes pins shared by the peripheral functions.© 2007 Microchip Technology Inc. Preliminary DS70165E-page 13 dsPIC33F Pin Diagrams 64-Pin TQFP 1 2 3 4 5 6 7 8 9 10 11 12 13 36 35 34 33 26 27 28 29 30 31 32 64 63 62 61 60 59 58 57 56 14 15 16 17 18 19 20 21 22 23 24 25 PGC2/EMUC2/SOSCO/T1CK/CN0/RC14 PGD2/EMUD2/SOSCI/T4CK/CN1/RC13 OC1/RD0 IC4/INT4/RD11 IC2/U1CTS/FLTB/INT2/RD9 IC1/FLTA/INT1/RD8 VSS OSC2/CLKO/RC15 OSC1/CLKIN/RC12 VDD SCL1/RG2 U1RTS/SCK1/INT0/RF6 U1RX/SDI1/RF2 U1TX/SDO1/RF3 PWM3H/RE5 PWM4L/RE6 PWM4H/RE7 SCK2/CN8/RG6 SDI2/CN9/RG7 SDO2/CN10/RG8 MCLR VSS VDD AN3/INDX/CN5/RB3 AN2/SS1/CN4/RB2 PGC3/EMUC3/AN1/VREF-/CN3/RB1 PGD3/EMUD3/AN0/VREF+/CN2/RB0 PWM3L/RE4 PWM2H/RE3 PWM2L/RE2 V OC8/UPDN/CN16/RD7 DDCORE PWM1H/RE1 PWM1L/RE0 C1TX/RF1 OC3/RD2 OC2/RD1 PGC1/EMUC1/AN6/OCFA/RB6 PGD1/EMUD1/AN7/RB7 AVDD AVSS U2CTS/AN8/RB8 AN9/RB9 TMS/AN10/RB10 TDO/AN11/RB11 VSS VDD TCK/AN12/RB12 TDI/AN13/RB13 U2RTS/AN14/RB14 AN15/OCFB/CN12/RB15 U2RX U2TX/CN18/RF5 CN17/RF4 / SDA1/RG3 43 42 41 40 39 38 37 44 48 47 46 55 54 53 52 51 50 49 45 SS2/T5CK/CN11/RG9 AN5/QEB/IC8/CN7/RB5 AN4/QEA/IC7/CN6/RB4 IC3/INT3/RD10 VDD C1RX/RF0 OC7/CN15/RD6 OC6/IC6/CN14/RD5 OC5/IC5/CN13/RD4 OC4/RD3 dsPIC33FJ64MC506dsPIC33F DS70165E-page 14 Preliminary © 2007 Microchip Technology Inc. Pin Diagrams (Continued) 64-Pin TQFP 1 2 3 4 5 6 7 8 9 10 11 12 13 36 35 34 33 26 27 28 29 30 31 32 64 63 62 61 60 59 58 57 56 14 15 16 17 18 19 20 21 22 23 24 25 PGC2/EMUC2/SOSCO/T1CK/CN0/RC14 PGD2/EMUD2/SOSCI/T4CK/CN1/RC13 OC1/RD0 IC4/INT4/RD11 IC2/U1CTS/FLTB/INT2/RD9 IC1/FLTA/INT1/RD8 VSS OSC2/CLKO/RC15 OSC1/CLKIN/RC12 VDD SCL1/RG2 U1RTS/SCK1/INT0/RF6 U1RX/SDI1/RF2 U1TX/SDO1/RF3 PWM3H/RE5 PWM4L/RE6 PWM4H/RE7 SCK2/CN8/RG6 SDI2/CN9/RG7 SDO2/CN10/RG8 MCLR VSS VDD AN3/INDX/CN5/RB3 AN2/SS1/CN4/RB2 PGC3/EMUC3/AN1/VREF-/CN3/RB1 PGD3/EMUD3/AN0/VREF+/CN2/RB0 PWM3L/RE4 PWM2H/RE3 PWM2L/RE2 V OC8/UPDN/CN16/RD7 DDCORE PWM1H/RE1 PWM1L/RE0 C1TX/RF1 OC3/RD2 OC2/RD1 PGC1/EMUC1/AN6/OCFA/RB6 PGD1/EMUD1/AN7/RB7 AVDD AVSS U2CTS/AN8/RB8 AN9/RB9 TMS/AN10/RB10 TDO/AN11/RB11 VSS VDD TCK/AN12/RB12 TDI/AN13/RB13 U2RTS/AN14/RB14 AN15/OCFB/CN12/RB15 U2RX U2TX/SCL2/CN18/RF5 SDA2/CN17/RF4 / SDA1/RG3 43 42 41 40 39 38 37 44 48 47 46 55 54 53 52 51 50 49 45 SS2/T5CK/CN11/RG9 AN5/QEB/IC8/CN7/RB5 AN4/QEA/IC7/CN6/RB4 IC3/INT3/RD10 VDD C1RX/RF0 OC7/CN15/RD6 OC6/IC6/CN14/RD5 OC5/IC5/CN13/RD4 OC4/RD3 dsPIC33FJ128MC506 dsPIC33FJ64MC506 dsPIC33FJ128MC706© 2007 Microchip Technology Inc. Preliminary DS70165E-page 15 dsPIC33F Pin Diagrams (Continued) 80-Pin TQFP 74 73 72 71 70 69 68 67 66 65 64 63 62 61 20 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 50 49 48 47 46 45 44 21 41 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 17 18 19 75 1 57 56 55 54 53 52 51 60 59 58 43 42 79 78 77 76 22 80 PWM3L/RE4 PWM2H/RE3 PWM2L/RE2 PWM1H/RE1 PWM1L/RE0 RG0 RG1 C1TX/RF1 C1RX/RF0 OC8/CN16/UPDN/RD7 OC6/CN14/RD5 IC5/RD12 OC4/RD3 OC3/RD2 OC2/RD1 OC1/RD0 IC4/RD11 IC2/RD9 IC1/RD8 IC3/RD10 VSS OSC1/CLKIN/RC12 VDD SCL1/RG2 U1RX/RF2 U1TX/RF3 PGC2/EMUC2/SOSCO/T1CK/CN0/RC14 PGD2/EMUD2/SOSCI/CN1/RC13 VREF+/RA10 VREF-/RA9 AVDD AVSS U2CTS/AN8/RB8 AN9/RB9 AN10/RB10 AN11/RB11 VDD U2RX/CN17/RF4 IC8/U1RTS/CN21/RD15 U2TX/CN18/RF5 PGC1/EMUC1/AN6/OCFA/RB6 PGD1/EMUD1/AN7/RB7 PWM4H/RE7 AN16/T2CK/T7CK/RC1 AN17/T3CK/T6CK/RC2 SCK2/CN8/RG6 SDI2/CN9/RG7 SDO2/CN10/RG8 MCLR SS2/CN11/RG9 AN4/QEA/CN6/RB4 AN3/INDX/CN5/RB3 AN2/SS1/CN4/RB2 PGC3/EMUC3/AN1/CN3/RB1 PGD3/EMUD3/AN0/CN2/RB0 VSS VDD PWM3H/RE5 PWM4L/RE6 TDO/FLTB/INT2/RE9 TMS/FLTA/INT1/RE8 TCK/AN12/RB12 TDI/AN13/RB13 U2RTS/AN14/RB14 AN15/OCFB/CN12/RB15 VDD VDDCORE OC5/CN13/RD4 IC6/CN19/RD13 SDA1/RG3 SDI1/RF7 SDO1/RF8 AN5/QEB/CN7/RB5 VSS OSC2/CLKO/RC15 OC7/CN15/RD6 SCK1/INT0/RF6 IC7/U1CTS/CN20/RD14 SDA2/INT4/RA3 SCL2/INT3/RA2 dsPIC33FJ64MC508dsPIC33F DS70165E-page 16 Preliminary © 2007 Microchip Technology Inc. Pin Diagrams (Continued) 80-Pin TQFP 74 73 72 71 70 69 68 67 66 65 64 63 62 61 20 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 50 49 48 47 46 45 44 21 41 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 17 18 19 75 1 57 56 55 54 53 52 51 60 59 58 43 42 79 78 77 76 22 80 PWM3L/RE4 PWM2H/RE3 PWM2L/RE2 PWM1H/RE1 PWM1L/RE0 CRX2/RG0 C2TX/RG1 C1TX/RF1 C1RX/RF0 OC8/CN16/UPDN/RD7 OC6/CN14/RD5 IC5/RD12 OC4/RD3 OC3/RD2 OC2/RD1 OC1/RD0 IC4/RD11 IC2/RD9 IC1/RD8 IC3/RD10 VSS OSC1/CLKIN/RC12 VDD SCL1/RG2 U1RX/RF2 U1TX/RF3 PGC2/EMUC2/SOSCO/T1CK/CN0/RC14 PGD2/EMUD2/SOSCI/CN1/RC13 VREF+/RA10 VREF-/RA9 AVDD AVSS U2CTS/AN8/RB8 AN9/RB9 AN10/RB10 AN11/RB11 VDD U2RX/CN17/RF4 IC8/U1RTS/CN21/RD15 U2TX/CN18/RF5 PGC1/EMUC1/AN6/OCFA/RB6 PGD1/EMUD1/AN7/RB7 PWM4H/RE7 AN16/T2CK/T7CK/RC1 AN17/T3CK/T6CK/RC2 SCK2/CN8/RG6 SDI2/CN9/RG7 SDO2/CN10/RG8 MCLR SS2/CN11/RG9 AN4/QEA/CN6/RB4 AN3/INDX/CN5/RB3 AN2/SS1/CN4/RB2 PGC3/EMUC3/AN1/CN3/RB1 PGD3/EMUD3/AN0/CN2/RB0 VSS VDD PWM3H/RE5 PWM4L/RE6 TDO/FLTB/INT2/RE9 TMS/FLTA/INT1/RE8 TCK/AN12/RB12 TDI/AN13/RB13 U2RTS/AN14/RB14 AN15/OCFB/CN12/RB15 VDD VDDCORE OC5/CN13/RD4 IC6/CN19/RD13 SDA1/RG3 SDI1/RF7 SDO1/RF8 AN5/QEB/CN7/RB5 VSS OSC2/CLKO/RC15 OC7/CN15/RD6 SCK1/INT0/RF6 IC7/U1CTS/CN20/RD14 SDA2/INT4/RA3 SCL2/INT3/RA2 dsPIC33FJ128MC708© 2007 Microchip Technology Inc. Preliminary DS70165E-page 17 dsPIC33F Pin Diagrams (Continued) 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 20 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 65 64 63 62 61 60 59 26 56 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 17 18 19 21 22 95 1 77 76 72 71 70 69 68 67 66 75 74 73 58 57 24 23 25 99 98 97 96 27 46 47 48 49 50 55 54 53 52 51 100 PWM3L/RE4 PWM2H/RE3 PWM2L/RE2 CSDO/RG13 CSDI/RG12 CSCK/RG14 PWM1H/RE1 PWM1L/RE0 AN23/CN23/RA7 AN22/CN22/RA6 RG0 C1RX/RF0 V OC6/CN14/RD5 OC5/CN13/RD4 IC6/CN19/RD13 IC5/RD12 OC4/RD3 OC3/RD2 OC2/RD1 DDCORE PGD2/EMUD2/SOSCI/CN1/RC13 OC1/RD0 IC3/RD10 IC2/RD9 IC1/RD8 IC4/RD11 RA3 RA2 OSC2/CLKO/RC15 OSC1/CLKIN/RC12 VDD SCL1/RG2 SCK1/INT0/RF6 SDI1/RF7 SDO1/RF8 SDA1/RG3 U1RX/RF2 U1TX/RF3 VSS PGC2/EMUC2/SOSCO/T1CK/CN0/RC14 VREF+/RA10 VREF-/RA9 AVDD AVSS AN8/RB8 AN9/RB9 AN10/RB10 AN11/RB11 VDD U2RTS/RF13 U2CTS/RF12 IC7/U1CTS/CN20/RD14 IC8/U1RTS/CN21/RD15 VDD VSS PGC1/EMUC1/AN6/OCFA/RB6 PGD1/EMUD1/AN7/RB7 U2RX/CN17/RF4 U2TX/CN18/RF5 PWM3H/RE5 PWM4L/RE6 PWM4H/RE7 AN16/T2CK/T7CK/RC1 AN17/T3CK/T6CK/RC2 AN18/T4CK/T9CK/RC3 AN19/T5CK/T8CK/RC4 SCK2/CN8/RG6 VDD TMS/RA0 AN20/FLTA/INT1/RE8 AN21/FLTB/INT2/RE9 AN5/QEB/CN7/RB5 AN4/QEA/CN6/RB4 AN3/INDX/CN5/RB3 AN2/SS1/CN4/RB2 SDI2/CN9/RG7 SDO2/CN10/RG8 PGC3/EMUC3/AN1/CN3/RB1 PGD3/EMUD3/AN0/CN2/RB0 COFS/RG15 VDD SS2/CN11/RG9 MCLR AN12/RB12 AN13/RB13 AN14/RB14 AN15/OCFB/CN12/RB15 RG1 C1TX/RF1 OC8/UPDN//CN16/RD7 OC7/CN15/RD6 TDO/RA5 INT4/RA15 INT3/RA14 VSS VSS VSS VDD TDI/RA4 TCK/RA1 100-Pin TQFP dsPIC33FJ64MC510dsPIC33F DS70165E-page 18 Preliminary © 2007 Microchip Technology Inc. Pin Diagrams (Continued) 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 20 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 65 64 63 62 61 60 59 26 56 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 17 18 19 21 22 95 1 77 76 72 71 70 69 68 67 66 75 74 73 58 57 24 23 25 99 98 97 96 27 46 47 48 49 50 55 54 53 52 51 100 PWM3L/RE4 PWM2H/RE3 PWM2L/RE2 CSDO/RG13 CSDI/RG12 CSCK/RG14 PWM1H/RE1 PWM1L/RE0 AN23/CN23/RA7 AN22/CN22/RA6 RG0 C1RX/RF0 V OC6/CN14/RD5 OC5/CN13/RD4 IC6/CN19/RD13 IC5/RD12 OC4/RD3 OC3/RD2 OC2/RD1 DDCORE PGD2/EMUD2/SOSCI/CN1/RC13 OC1/RD0 IC3/RD10 IC2/RD9 IC1/RD8 IC4/RD11 SDA2/RA3 SCL2/RA2 OSC2/CLKO/RC15 OSC1/CLKIN/RC12 VDD SCL1/RG2 SCK1/INT0/RF6 SDI1/RF7 SDO1/RF8 SDA1/RG3 U1RX/RF2 U1TX/RF3 VSS PGC2/EMUC2/SOSCO/T1CK/CN0/RC14 VREF+/RA10 VREF-/RA9 AVDD AVSS AN8/RB8 AN9/RB9 AN10/RB10 AN11/RB11 VDD U2RTS/RF13 U2CTS/RF12 IC7/U1CTS/CN20/RD14 IC8/U1RTS/CN21/RD15 VDD VSS PGC1/EMUC1/AN6/OCFA/RB6 PGD1/EMUD1/AN7/RB7 U2RX/CN17/RF4 U2TX/CN18/RF5 PWM3H/RE5 PWM4L/RE6 PWM4H/RE7 AN16/T2CK/T7CK/RC1 AN17/T3CK/T6CK/RC2 AN18/T4CK/T9CK/RC3 AN19/T5CK/T8CK/RC4 SCK2/CN8/RG6 VDD TMS/RA0 AN20/FLTA/INT1/RE8 AN21/FLTB/INT2/RE9 AN5/QEB/CN7/RB5 AN4/QEA/CN6/RB4 AN3/INDX/CN5/RB3 AN2/SS1/CN4/RB2 SDI2/CN9/RG7 SDO2/CN10/RG8 PGC3/EMUC3/AN1/CN3/RB1 PGD3/EMUD3/AN0/CN2/RB0 COFS/RG15 VDD SS2/CN11/RG9 MCLR AN12/RB12 AN13/RB13 AN14/RB14 AN15/OCFB/CN12/RB15 RG1 C1TX/RF1 OC8/UPDN//CN16/RD7 OC7/CN15/RD6 TDO/RA5 INT4/RA15 INT3/RA14 VSS VSS VSS VDD TDI/RA4 TCK/RA1 100-Pin TQFP dsPIC33FJ128MC510 dsPIC33FJ256MC510© 2007 Microchip Technology Inc. Preliminary DS70165E-page 19 dsPIC33F Pin Diagrams (Continued) 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 20 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 65 64 63 62 61 60 59 26 56 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 17 18 19 21 22 95 1 77 76 72 71 70 69 68 67 66 75 74 73 58 57 24 23 25 99 98 97 96 27 46 47 48 49 50 55 54 53 52 51 100 PWM3L/RE4 PWM2H/RE3 PWM2L/RE2 CSDO/RG13 CSDI/RG12 CSCK/RG14 PWM1H/RE1 PWM1L/RE0 AN23/CN23/RA7 AN22/CN22/RA6 C2RX/RG0 C1RX/RF0 V OC6/CN14/RD5 OC5/CN13/RD4 IC6/CN19/RD13 IC5/RD12 OC4/RD3 OC3/RD2 OC2/RD1 DDCORE PGD2/EMUD2/SOSCI/CN1/RC13 OC1/RD0 IC3/RD10 IC2/RD9 IC1/RD8 IC4/RD11 SDA2/RA3 SCL2/RA2 OSC2/CLKO/RC15 OSC1/CLKIN/RC12 VDD SCL1/RG2 SCK1/INT0/RF6 SDI1/RF7 SDO1/RF8 SDA1/RG3 U1RX/RF2 U1TX/RF3 VSS PGC2/EMUC2/SOSCO/T1CK/CN0/RC14 VREF+/RA10 VREF-/RA9 AVDD AVSS AN8/RB8 AN9/RB9 AN10/RB10 AN11/RB11 VDD U2RTS/RF13 U2CTS/RF12 IC7/U1CTS/CN20/RD14 IC8/U1RTS/CN21/RD15 VDD VSS PGC1/EMUC1/AN6/OCFA/RB6 PGD1/EMUD1/AN7/RB7 U2RX/CN17/RF4 U2TX/CN18/RF5 PWM3H/RE5 PWM4L/RE6 PWM4H/RE7 AN16/T2CK/T7CK/RC1 AN17/T3CK/T6CK/RC2 AN18/T4CK/T9CK/RC3 AN19/T5CK/T8CK/RC4 SCK2/CN8/RG6 VDD TMS/RA0 AN20/FLTA/INT1/RE8 AN21/FLTB/INT2/RE9 AN5/QEB/CN7/RB5 AN4/QEA/CN6/RB4 AN3/INDX/CN5/RB3 AN2/SS1/CN4/RB2 SDI2/CN9/RG7 SDO2/CN10/RG8 PGC3/EMUC3/AN1/CN3/RB1 PGD3/EMUD3/AN0/CN2/RB0 COFS/RG15 VDD SS2/CN11/RG9 MCLR AN12/RB12 AN13/RB13 AN14/RB14 AN15/OCFB/CN12/RB15 C2TX/RG1 C1TX/RF1 OC8/UPDN//CN16/RD7 OC7/CN15/RD6 TDO/RA5 INT4/RA15 INT3/RA14 VSS VSS VSS VDD TDI/RA4 TCK/RA1 100-Pin TQFP dsPIC33FJ64MC710 dsPIC33FJ128MC710 dsPIC33FJ256MC710dsPIC33F DS70165E-page 20 Preliminary © 2007 Microchip Technology Inc. Table of Contents dsPIC33F Product Families ................................................................................................................................................................... 3 1.0 Device Overview ........................................................................................................................................................................ 23 2.0 CPU............................................................................................................................................................................................ 27 3.0 Memory Organization................................................................................................................................................................. 39 4.0 Flash Program Memory.............................................................................................................................................................. 77 5.0 Resets ....................................................................................................................................................................................... 83 6.0 Interrupt Controller ..................................................................................................................................................................... 87 7.0 Direct Memory Access (DMA).................................................................................................................................................. 135 8.0 Oscillator Configuration ............................................................................................................................................................ 149 9.0 Power-Saving Features............................................................................................................................................................ 157 10.0 I/O Ports ................................................................................................................................................................................... 159 11.0 Timer1 ...................................................................................................................................................................................... 161 12.0 Timer2/3, Timer4/5, Timer6/7 and Timer8/9 ............................................................................................................................ 163 13.0 Input Capture............................................................................................................................................................................ 169 14.0 Output Compare....................................................................................................................................................................... 171 15.0 Motor Control PWM Module ..................................................................................................................................................... 175 16.0 Quadrature Encoder Interface (QEI) Module ........................................................................................................................... 197 17.0 Serial Peripheral Interface (SPI)............................................................................................................................................... 205 18.0 Inter-Integrated Circuit (I 2 C)..................................................................................................................................................... 213 19.0 Universal Asynchronous Receiver Transmitter (UART) ........................................................................................................... 223 20.0 Enhanced CAN Module............................................................................................................................................................ 231 21.0 Data Converter Interface (DCI) Module.................................................................................................................................... 261 22.0 10-bit/12-bit Analog-to-Digital Converter (ADC)....................................................................................................................... 275 23.0 Special Features ...................................................................................................................................................................... 289 24.0 Instruction Set Summary.......................................................................................................................................................... 297 25.0 Development Support............................................................................................................................................................... 305 26.0 Electrical Characteristics.......................................................................................................................................................... 309 27.0 Packaging Information.............................................................................................................................................................. 351 Appendix A: Revision History............................................................................................................................................................. 357 Index ................................................................................................................................................................................................. 359 The Microchip Web Site..................................................................................................................................................................... 365 Customer Change Notification Service .............................................................................................................................................. 365 Customer Support.............................................................................................................................................................................. 365 Reader Response .............................................................................................................................................................................. 366 Product Identification System ............................................................................................................................................................ 367© 2007 Microchip Technology Inc. Preliminary DS70165E-page 21 dsPIC33F TO OUR VALUED CUSTOMERS It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced. If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We welcome your feedback. Most Current Data Sheet To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at: http://www.microchip.com You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000). Errata An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies. To determine if an errata sheet exists for a particular device, please check with one of the following: • Microchip’s Worldwide Web site; http://www.microchip.com • Your local Microchip sales office (see last page) When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using. Customer Notification System Register on our web site at www.microchip.com to receive the most current information on all of our products.dsPIC33F DS70165E-page 22 Preliminary © 2007 Microchip Technology Inc. NOTES:© 2007 Microchip Technology Inc. Preliminary DS70165E-page 23 dsPIC33F 1.0 DEVICE OVERVIEW This document contains device specific information for the following devices: • dsPIC33FJ64GP206 • dsPIC33FJ64GP306 • dsPIC33FJ64GP310 • dsPIC33FJ64GP706 • dsPIC33FJ64GP708 • dsPIC33FJ64GP710 • dsPIC33FJ128GP206 • dsPIC33FJ128GP306 • dsPIC33FJ128GP310 • dsPIC33FJ128GP706 • dsPIC33FJ128GP708 • dsPIC33FJ128GP710 • dsPIC33FJ256GP506 • dsPIC33FJ256GP510 • dsPIC33FJ256GP710 • dsPIC33FJ64MC506 • dsPIC33FJ64MC508 • dsPIC33FJ64MC510 • dsPIC33FJ64MC706 • dsPIC33FJ64MC710 • dsPIC33FJ128MC506 • dsPIC33FJ128MC510 • dsPIC33FJ128MC706 • dsPIC33FJ128MC708 • dsPIC33FJ128MC710 • dsPIC33FJ256MC510 • dsPIC33FJ256MC710 The dsPIC33F General Purpose and Motor Control Families of devices include devices with a wide range of pin counts (64, 80 and 100), different program memory sizes (64 Kbytes, 128 Kbytes and 256 Kbytes) and different RAM sizes (8 Kbytes, 16 Kbytes and 30 Kbytes) This makes these families suitable for a wide variety of high-performance digital signal control application. The devices are pin compatible with the PIC24H family of devices, and also share a very high degree of compatibility with the dsPIC30F family devices. This allows easy migration between device families as may be necessitated by the specific functionality, computational resource and system cost requirements of the application. The dsPIC33F device family employs a powerful 16-bit architecture that seamlessly integrates the control features of a Microcontroller (MCU) with the computational capabilities of a Digital Signal Processor (DSP). The resulting functionality is ideal for applications that rely on high-speed, repetitive computations, as well as control. The DSP engine, dual 40-bit accumulators, hardware support for division operations, barrel shifter, 17 x 17 multiplier, a large array of 16-bit working registers and a wide variety of data addressing modes, together provide the dsPIC33F Central Processing Unit (CPU) with extensive mathematical processing capability. Flexible and deterministic interrupt handling, coupled with a powerful array of peripherals, renders the dsPIC33F devices suitable for control applications. Further, Direct Memory Access (DMA) enables overhead-free transfer of data between several peripherals and a dedicated DMA RAM. Reliable, field programmable Flash program memory ensures scalability of applications that use dsPIC33F devices. Figure 1-1 shows a general block diagram of the various core and peripheral modules in the dsPIC33F family of devices, while Table 1-1 lists the functions of the various pins shown in the pinout diagrams. Note: This data sheet summarizes the features of this group of dsPIC33F devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the “dsPIC30F Family Reference Manual” (DS70046).dsPIC33F DS70165E-page 24 Preliminary © 2007 Microchip Technology Inc. FIGURE 1-1: dsPIC33F GENERAL BLOCK DIAGRAM 16 OSC1/CLKI OSC2/CLKO VDD, VSS Timing Generation MCLR Power-up Timer Oscillator Start-up Timer Power-on Reset Watchdog Timer Brown-out Reset Precision Reference Band Gap FRC/LPRC Oscillators Regulator Voltage VDDCORE/VCAP UART1,2 PWM DCI ECAN1,2 IC1-8 OC/ SPI1,2 I2C1,2 QEI PORTA Note: Not all pins or features are implemented on all device pinout configurations. See pinout diagrams for the specific pins and features present on each device. PWM1-8 CN1-23 Instruction Decode & Control PCH PCL 16 Program Counter 16-bit ALU 23 23 24 23 Instruction Reg PCU 16 x 16 W Register Array ROM Latch 16 EA MUX 16 16 8 Interrupt Controller PSV & Table Data Access Control Block Stack Control Logic Loop Control Logic Data Latch Address Latch Address Latch Program Memory Data Latch Address Bus Literal Data 16 16 16 16 Data Latch Address Latch 16 X RAM Y RAM 16 Y Data Bus X Data Bus DSP Engine Divide Support 16 DMA RAM DMA Controller Control Signals to Various Blocks ADC1,2 Timers PORTB PORTC PORTD PORTE PORTF PORTG Address Generator Units 1-9© 2007 Microchip Technology Inc. Preliminary DS70165E-page 25 dsPIC33F TABLE 1-1: PINOUT I/O DESCRIPTIONS Pin Name Pin Type Buffer Type Description AN0-AN31 I Analog Analog input channels. AVDD P P Positive supply for analog modules. AVSS P P Ground reference for analog modules. CLKI CLKO I O ST/CMOS — External clock source input. Always associated with OSC1 pin function. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function. CN0-CN23 I ST Input change notification inputs. Can be software programmed for internal weak pull-ups on all inputs. COFS CSCK CSDI CSDO I/O I/O I O ST ST ST — Data Converter Interface frame synchronization pin. Data Converter Interface serial clock input/output pin. Data Converter Interface serial data input pin. Data Converter Interface serial data output pin. C1RX C1TX C2RX C2TX I O I O ST — ST — ECAN1 bus receive pin. ECAN1 bus transmit pin. ECAN2 bus receive pin. ECAN2 bus transmit pin. PGD1/EMUD1 PGC1/EMUC1 PGD2/EMUD2 PGC2/EMUC2 PGD3/EMUD3 PGC3/EMUC3 I/O I I/O I I/O I ST ST ST ST ST ST Data I/O pin for programming/debugging communication channel 1. Clock input pin for programming/debugging communication channel 1. Data I/O pin for programming/debugging communication channel 2. Clock input pin for programming/debugging communication channel 2. Data I/O pin for programming/debugging communication channel 3. Clock input pin for programming/debugging communication channel 3. IC1-IC8 I ST Capture inputs 1 through 8. INDX QEA QEB UPDN I I I O ST ST ST CMOS Quadrature Encoder Index Pulse input. Quadrature Encoder Phase A input in QEI mode. Auxiliary Timer External Clock/Gate input in Timer mode. Quadrature Encoder Phase A input in QEI mode. Auxiliary Timer External Clock/Gate input in Timer mode. Position Up/Down Counter Direction State. INT0 INT1 INT2 INT3 INT4 I I I I I ST ST ST ST ST External interrupt 0. External interrupt 1. External interrupt 2. External interrupt 3. External interrupt 4. FLTA FLTB PWM1L PWM1H PWM2L PWM2H PWM3L PWM3H PWM4L PWM4H I I O O O O O O O O ST ST — — — — — — — — PWM Fault A input. PWM Fault B input. PWM 1 low output. PWM 1 high output. PWM 2 low output. PWM 2 high output. PWM 3 low output. PWM 3 high output. PWM 4 low output. PWM 4 high output. MCLR I/P ST Master Clear (Reset) input. This pin is an active-low Reset to the device. OCFA OCFB OC1-OC8 I I O ST ST — Compare Fault A input (for Compare Channels 1, 2, 3 and 4). Compare Fault B input (for Compare Channels 5, 6, 7 and 8). Compare outputs 1 through 8. OSC1 OSC2 I I/O ST/CMOS — Oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Legend: CMOS = CMOS compatible input or output; Analog = Analog input ST = Schmitt Trigger input with CMOS levels; O = Output; I = Input; P = PowerdsPIC33F DS70165E-page 26 Preliminary © 2007 Microchip Technology Inc. RA0-RA7 RA9-RA10 RA12-RA15 I/O I/O I/O ST ST ST PORTA is a bidirectional I/O port. RB0-RB15 I/O ST PORTB is a bidirectional I/O port. RC1-RC4 RC12-RC15 I/O I/O ST ST PORTC is a bidirectional I/O port. RD0-RD15 I/O ST PORTD is a bidirectional I/O port. RE0-RE9 I/O ST PORTE is a bidirectional I/O port. RF0-RF8 RF12-RF13 I/O ST PORTF is a bidirectional I/O port. RG0-RG3 RG6-RG9 RG12-RG15 I/O I/O I/O ST ST ST PORTG is a bidirectional I/O port. SCK1 SDI1 SDO1 SS1 SCK2 SDI2 SDO2 SS2 I/O I O I/O I/O I O I/O ST ST — ST ST ST — ST Synchronous serial clock input/output for SPI1. SPI1 data in. SPI1 data out. SPI1 slave synchronization or frame pulse I/O. Synchronous serial clock input/output for SPI2. SPI2 data in. SPI2 data out. SPI2 slave synchronization or frame pulse I/O. SCL1 SDA1 SCL2 SDA2 I/O I/O I/O I/O ST ST ST ST Synchronous serial clock input/output for I2C1. Synchronous serial data input/output for I2C1. Synchronous serial clock input/output for I2C2. Synchronous serial data input/output for I2C2. SOSCI SOSCO I O ST/CMOS — 32.768 kHz low-power oscillator crystal input; CMOS otherwise. 32.768 kHz low-power oscillator crystal output. TMS TCK TDI TDO I I I O ST ST ST — JTAG Test mode select pin. JTAG test clock input pin. JTAG test data input pin. JTAG test data output pin. T1CK T2CK T3CK T4CK T5CK T6CK T7CK T8CK T9CK I I I I I I I I I ST ST ST ST ST ST ST ST ST Timer1 external clock input. Timer2 external clock input. Timer3 external clock input. Timer4 external clock input. Timer5 external clock input. Timer6 external clock input. Timer7 external clock input. Timer8 external clock input. Timer9 external clock input. U1CTS U1RTS U1RX U1TX U2CTS U2RTS U2RX U2TX I O I O I O I O ST — ST — ST — ST — UART1 clear to send. UART1 ready to send. UART1 receive. UART1 transmit. UART2 clear to send. UART2 ready to send. UART2 receive. UART2 transmit. VDD P — Positive supply for peripheral logic and I/O pins. VDDCORE P — CPU logic filter capacitor connection. VSS P — Ground reference for logic and I/O pins. VREF+ I Analog Analog voltage reference (high) input. VREF- I Analog Analog voltage reference (low) input. TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED) Pin Name Pin Type Buffer Type Description Legend: CMOS = CMOS compatible input or output; Analog = Analog input ST = Schmitt Trigger input with CMOS levels; O = Output; I = Input; P = Power© 2007 Microchip Technology Inc. Preliminary DS70165E-page 27 dsPIC33F 2.0 CPU The dsPIC33F CPU module has a 16-bit (data) modified Harvard architecture with an enhanced instruction set, including significant support for DSP. The CPU has a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M x 24 bits of user program memory space. The actual amount of program memory implemented varies by device. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double word move (MOV.D) instruction and the table instructions. Overhead-free program loop constructs are supported using the DO and REPEAT instructions, both of which are interruptible at any point. The dsPIC33F devices have sixteen, 16-bit working registers in the programmer’s model. Each of the working registers can serve as a data, address or address offset register. The 16th working register (W15) operates as a software Stack Pointer (SP) for interrupts and calls. The dsPIC33F instruction set has two classes of instructions: MCU and DSP. These two instruction classes are seamlessly integrated into a single CPU. The instruction set includes many addressing modes and is designed for optimum C compiler efficiency. For most instructions, the dsPIC33F is capable of executing a data (or program data) memory read, a working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, three parameter instructions can be supported, allowing A + B = C operations to be executed in a single cycle. A block diagram of the CPU is shown in Figure 2-1, and the programmer’s model for the dsPIC33F is shown in Figure 2-2. 2.1 Data Addressing Overview The data space can be addressed as 32K words or 64 Kbytes and is split into two blocks, referred to as X and Y data memory. Each memory block has its own independent Address Generation Unit (AGU). The MCU class of instructions operates solely through the X memory AGU, which accesses the entire memory map as one linear data space. Certain DSP instructions operate through the X and Y AGUs to support dual operand reads, which splits the data address space into two parts. The X and Y data space boundary is device-specific. Overhead-free circular buffers (Modulo Addressing mode) are supported in both X and Y address spaces. The Modulo Addressing removes the software boundary checking overhead for DSP algorithms. Furthermore, the X AGU circular addressing can be used with any of the MCU class of instructions. The X AGU also supports Bit-Reversed Addressing to greatly simplify input or output data reordering for radix-2 FFT algorithms. The upper 32 Kbytes of the data space memory map can optionally be mapped into program space at any 16K program word boundary defined by the 8-bit Program Space Visibility Page (PSVPAG) register. The program to data space mapping feature lets any instruction access program space as if it were data space. The data space also includes 2 Kbytes of DMA RAM, which is primarily used for DMA data transfers, but may be used as general purpose RAM. 2.2 DSP Engine Overview The DSP engine features a high-speed, 17-bit by 17-bit multiplier, a 40-bit ALU, two 40-bit saturating accumulators and a 40-bit bidirectional barrel shifter. The barrel shifter is capable of shifting a 40-bit value, up to 16 bits right or left, in a single cycle. The DSP instructions operate seamlessly with all other instructions and have been designed for optimal real-time performance. The MAC instruction and other associated instructions can concurrently fetch two data operands from memory while multiplying two W registers and accumulating and optionally saturating the result in the same cycle. This instruction functionality requires that the RAM memory data space be split for these instructions and linear for all others. Data space partitioning is achieved in a transparent and flexible manner through dedicating certain working registers to each address space. 2.3 Special MCU Features The dsPIC33F features a 17-bit by 17-bit, single-cycle multiplier that is shared by both the MCU ALU and DSP engine. The multiplier can perform signed, unsigned and mixed-sign multiplication. Using a 17-bit by 17-bit multiplier for 16-bit by 16-bit multiplication not only allows you to perform mixed-sign multiplication, it also achieves accurate results for special operations, such as (-1.0) x (-1.0). The dsPIC33F supports 16/16 and 32/16 divide operations, both fractional and integer. All divide instructions are iterative operations. They must be executed within a REPEAT loop, resulting in a total execution time of 19 instruction cycles. The divide operation can be interrupted during any of those 19 cycles without loss of data. A 40-bit barrel shifter is used to perform up to a 16-bit, left or right shift in a single cycle. The barrel shifter can be used by both MCU and DSP instructions. Note: This data sheet summarizes the features of this group of dsPIC33F devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the “dsPIC30F Family Reference Manual” (DS70046).dsPIC33F DS70165E-page 28 Preliminary © 2007 Microchip Technology Inc. FIGURE 2-1: dsPIC33F CPU CORE BLOCK DIAGRAM Instruction Decode & Control PCH PCL Program Counter 16-bit ALU 24 23 Instruction Reg PCU 16 x 16 W Register Array ROM Latch EA MUX Interrupt Controller Stack Control Logic Loop Control Logic Data Latch Address Latch Control Signals to Various Blocks Address Bus Literal Data 16 16 16 To Peripheral Modules Data Latch Address Latch 16 X RAM Y RAM Address Generator Units 16 Y Data Bus X Data Bus DMA Controller DMA RAM DSP Engine Divide Support 16 16 23 23 8 16 PSV & Table Data Access Control Block 16 16 16 16 Program Memory Data Latch Address Latch© 2007 Microchip Technology Inc. Preliminary DS70165E-page 29 dsPIC33F FIGURE 2-2: dsPIC33F PROGRAMMER’S MODEL PC22 PC0 7 0 D15 D0 Program Counter Data Table Page Address STATUS Register Working Registers DSP Operand Registers W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12/DSP Offset W13/DSP Write Back W14/Frame Pointer W15/Stack Pointer DSP Address Registers AD39 AD0 AD31 DSP Accumulators AccA AccB 7 0 Program Space Visibility Page Address Z 0 OA OB SA SB RCOUNT 15 0 REPEAT Loop Counter DCOUNT 15 0 DO Loop Counter DOSTART 22 0 DO Loop Start Address IPL2 IPL1 SPLIM Stack Pointer Limit Register AD15 SRL PUSH.S Shadow DO Shadow OAB SAB 15 0 Core Configuration Register Legend CORCON DA DC RA N TBLPAG PSVPAG IPL0 OV W0/WREG SRH DOEND DO Loop End Address 22 CdsPIC33F DS70165E-page 30 Preliminary © 2007 Microchip Technology Inc. 2.4 CPU Control Registers REGISTER 2-1: SR: CPU STATUS REGISTER R-0 R-0 R/C-0 R/C-0 R-0 R/C-0 R -0 R/W-0 OA OB SA (1) SB (1) OAB SAB DA DC bit 15 bit 8 R/W-0 (2) R/W-0 (3) R/W-0 (3) R-0 R/W-0 R/W-0 R/W-0 R/W-0 IPL<2:0> (2) RA N OV Z C bit 7 bit 0 Legend: C = Clear only bit R = Readable bit U = Unimplemented bit, read as ‘0’ S = Set only bit W = Writable bit -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 OA: Accumulator A Overflow Status bit 1 = Accumulator A overflowed 0 = Accumulator A has not overflowed bit 14 OB: Accumulator B Overflow Status bit 1 = Accumulator B overflowed 0 = Accumulator B has not overflowed bit 13 SA: Accumulator A Saturation ‘Sticky’ Status bit (1) 1 = Accumulator A is saturated or has been saturated at some time 0 = Accumulator A is not saturated bit 12 SB: Accumulator B Saturation ‘Sticky’ Status bit (1) 1 = Accumulator B is saturated or has been saturated at some time 0 = Accumulator B is not saturated bit 11 OAB: OA || OB Combined Accumulator Overflow Status bit 1 = Accumulators A or B have overflowed 0 = Neither Accumulators A or B have overflowed bit 10 SAB: SA || SB Combined Accumulator ‘Sticky’ Status bit 1 = Accumulators A or B are saturated or have been saturated at some time in the past 0 = Neither Accumulator A or B are saturated Note: This bit may be read or cleared (not set). Clearing this bit will clear SA and SB. bit 9 DA: DO Loop Active bit 1 = DO loop in progress 0 = DO loop not in progress bit 8 DC: MCU ALU Half Carry/Borrow bit 1 = A carry-out from the 4th low-order bit (for byte sized data) or 8th low-order bit (for word sized data) of the result occurred 0 = No carry-out from the 4th low-order bit (for byte sized data) or 8th low-order bit (for word sized data) of the result occurred Note 1: This bit may be read or cleared (not set). 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1. 3: The IPL<2:0> Status bits are read only when NSTDIS = 1 (INTCON1<15>).© 2007 Microchip Technology Inc. Preliminary DS70165E-page 31 dsPIC33F bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits (2) 111 = CPU Interrupt Priority Level is 7 (15), user interrupts disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9) 000 = CPU Interrupt Priority Level is 0 (8) bit 4 RA: REPEAT Loop Active bit 1 = REPEAT loop in progress 0 = REPEAT loop not in progress bit 3 N: MCU ALU Negative bit 1 = Result was negative 0 = Result was non-negative (zero or positive) bit 2 OV: MCU ALU Overflow bit This bit is used for signed arithmetic (2’s complement). It indicates an overflow of the magnitude which causes the sign bit to change state. 1 = Overflow occurred for signed arithmetic (in this arithmetic operation) 0 = No overflow occurred bit 1 Z: MCU ALU Zero bit 1 = An operation which affects the Z bit has set it at some time in the past 0 = The most recent operation which affects the Z bit has cleared it (i.e., a non-zero result) bit 0 C: MCU ALU Carry/Borrow bit 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred REGISTER 2-1: SR: CPU STATUS REGISTER (CONTINUED) Note 1: This bit may be read or cleared (not set). 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1. 3: The IPL<2:0> Status bits are read only when NSTDIS = 1 (INTCON1<15>).dsPIC33F DS70165E-page 32 Preliminary © 2007 Microchip Technology Inc. REGISTER 2-2: CORCON: CORE CONTROL REGISTER U-0 U-0 U-0 R/W-0 R/W-0 R-0 R-0 R-0 — — — US EDT (1) DL<2:0> bit 15 bit 8 R/W-0 R/W-0 R/W-1 R/W-0 R/C-0 R/W-0 R/W-0 R/W-0 SATA SATB SATDW ACCSAT IPL3 (2) PSV RND IF bit 7 bit 0 Legend: C = Clear only bit R = Readable bit W = Writable bit -n = Value at POR ‘1’ = Bit is set 0’ = Bit is cleared ‘x = Bit is unknown U = Unimplemented bit, read as ‘0’ bit 15-13 Unimplemented: Read as ‘0’ bit 12 US: DSP Multiply Unsigned/Signed Control bit 1 = DSP engine multiplies are unsigned 0 = DSP engine multiplies are signed bit 11 EDT: Early DO Loop Termination Control bit (1) 1 = Terminate executing DO loop at end of current loop iteration 0 = No effect bit 10-8 DL<2:0>: DO Loop Nesting Level Status bits 111 = 7 DO loops active • • 001 = 1 DO loop active 000 = 0 DO loops active bit 7 SATA: AccA Saturation Enable bit 1 = Accumulator A saturation enabled 0 = Accumulator A saturation disabled bit 6 SATB: AccB Saturation Enable bit 1 = Accumulator B saturation enabled 0 = Accumulator B saturation disabled bit 5 SATDW: Data Space Write from DSP Engine Saturation Enable bit 1 = Data space write saturation enabled 0 = Data space write saturation disabled bit 4 ACCSAT: Accumulator Saturation Mode Select bit 1 = 9.31 saturation (super saturation) 0 = 1.31 saturation (normal saturation) bit 3 IPL3: CPU Interrupt Priority Level Status bit 3 (2) 1 = CPU interrupt priority level is greater than 7 0 = CPU interrupt priority level is 7 or less bit 2 PSV: Program Space Visibility in Data Space Enable bit 1 = Program space visible in data space 0 = Program space not visible in data space bit 1 RND: Rounding Mode Select bit 1 = Biased (conventional) rounding enabled 0 = Unbiased (convergent) rounding enabled bit 0 IF: Integer or Fractional Multiplier Mode Select bit 1 = Integer mode enabled for DSP multiply ops 0 = Fractional mode enabled for DSP multiply ops Note 1: This bit will always read as ‘0’. 2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.© 2007 Microchip Technology Inc. Preliminary DS70165E-page 33 dsPIC33F 2.5 Arithmetic Logic Unit (ALU) The dsPIC33F ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are 2’s complement in nature. Depending on the operation, the ALU may affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations. The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array, or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location. Refer to the “dsPIC30F/33F Programmer’s Reference Manual” (DS70157) for information on the SR bits affected by each instruction. The dsPIC33F CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit-divisor division. 2.5.1 MULTIPLIER Using the high-speed 17-bit x 17-bit multiplier of the DSP engine, the ALU supports unsigned, signed or mixed-sign operation in several MCU multiplication modes: 1. 16-bit x 16-bit signed 2. 16-bit x 16-bit unsigned 3. 16-bit signed x 5-bit (literal) unsigned 4. 16-bit unsigned x 16-bit unsigned 5. 16-bit unsigned x 5-bit (literal) unsigned 6. 16-bit unsigned x 16-bit signed 7. 8-bit unsigned x 8-bit unsigned 2.5.2 DIVIDER The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes: 1. 32-bit signed/16-bit signed divide 2. 32-bit unsigned/16-bit unsigned divide 3. 16-bit signed/16-bit signed divide 4. 16-bit unsigned/16-bit unsigned divide The quotient for all divide instructions ends up in W0 and the remainder in W1. 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn) and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute. 2.6 DSP Engine The DSP engine consists of a high-speed, 17-bit x 17-bit multiplier, a barrel shifter and a 40-bit adder/subtracter (with two target accumulators, round and saturation logic). The dsPIC33F is a single-cycle, instruction flow architecture; therefore, concurrent operation of the DSP engine with MCU instruction flow is not possible. However, some MCU ALU and DSP engine resources may be used concurrently by the same instruction (e.g., ED, EDAC). The DSP engine also has the capability to perform inherent accumulator-to-accumulator operations which require no additional data. These instructions are ADD, SUB and NEG. The DSP engine has various options selected through various bits in the CPU Core Control register (CORCON), as listed below: 1. Fractional or integer DSP multiply (IF). 2. Signed or unsigned DSP multiply (US). 3. Conventional or convergent rounding (RND). 4. Automatic saturation on/off for AccA (SATA). 5. Automatic saturation on/off for AccB (SATB). 6. Automatic saturation on/off for writes to data memory (SATDW). 7. Accumulator Saturation mode selection (ACCSAT). A block diagram of the DSP engine is shown in Figure 2-3. TABLE 2-1: DSP INSTRUCTIONS SUMMARY Instruction Algebraic Operation ACC Write Back CLR A = 0 Yes ED A = (x – y) 2 No EDAC A = A + (x – y) 2 No MAC A = A + (x * y) Yes MAC A = A + x 2 No MOVSAC No change in A Yes MPY A = x * y No MPY A = x 2 No MPY.N A = – x * y No MSC A = A – x * y YesdsPIC33F DS70165E-page 34 Preliminary © 2007 Microchip Technology Inc. FIGURE 2-3: DSP ENGINE BLOCK DIAGRAM Zero Backfill Sign-Extend Barrel Shifter 40-bit Accumulator A 40-bit Accumulator B Round Logic X Data Bus To/From W Array Adder Saturate Negate 32 32 33 16 16 16 16 40 40 40 40 S a t u r a t e Y Data Bus 40 Carry/Borrow Out Carry/Borrow In 16 40 Multiplier/Scaler 17-bit© 2007 Microchip Technology Inc. Preliminary DS70165E-page 35 dsPIC33F 2.6.1 MULTIPLIER The 17-bit x 17-bit multiplier is capable of signed or unsigned operation and can multiplex its output using a scaler to support either 1.31 fractional (Q31) or 32-bit integer results. Unsigned operands are zero-extended into the 17th bit of the multiplier input value. Signed operands are sign-extended into the 17th bit of the multiplier input value. The output of the 17-bit x 17-bit multiplier/scaler is a 33-bit value which is sign-extended to 40 bits. Integer data is inherently represented as a signed two’s complement value, where the MSb is defined as a sign bit. Generally speaking, the range of an N-bit two’s complement integer is -2 N-1 to 2 N-1 – 1. For a 16-bit integer, the data range is -32768 (0x8000) to 32767 (0x7FFF) including ‘0’. For a 32-bit integer, the data range is -2,147,483,648 (0x8000 0000) to 2,147,483,647 (0x7FFF FFFF). When the multiplier is configured for fractional multiplication, the data is represented as a two’s complement fraction, where the MSb is defined as a sign bit and the radix point is implied to lie just after the sign bit (QX format). The range of an N-bit two’s complement fraction with this implied radix point is -1.0 to (1 – 2 1-N ). For a 16-bit fraction, the Q15 data range is -1.0 (0x8000) to 0.999969482 (0x7FFF) including ‘0’ and has a precision of 3.01518x10 -5 . In Fractional mode, the 16 x 16 multiply operation generates a 1.31 product which has a precision of 4.65661 x 10 -10 . The same multiplier is used to support the MCU multiply instructions which include integer 16-bit signed, unsigned and mixed sign multiplies. The MUL instruction may be directed to use byte or word sized operands. Byte operands will direct a 16-bit result, and word operands will direct a 32-bit result to the specified register(s) in the W array. 2.6.2 DATA ACCUMULATORS AND ADDER/SUBTRACTER The data accumulator consists of a 40-bit adder/subtracter with automatic sign extension logic. It can select one of two accumulators (A or B) as its pre-accumulation source and post-accumulation destination. For the ADD and LAC instructions, the data to be accumulated or loaded can be optionally scaled via the barrel shifter prior to accumulation. 2.6.2.1 Adder/Subtracter, Overflow and Saturation The adder/subtracter is a 40-bit adder with an optional zero input into one side, and either true, or complement data into the other input. In the case of addition, the carry/borrow input is active-high and the other input is true data (not complemented), whereas in the case of subtraction, the carry/borrow input is active-low and the other input is complemented. The adder/subtracter generates Overflow Status bits, SA/SB and OA/OB, which are latched and reflected in the STATUS register: • Overflow from bit 39: this is a catastrophic overflow in which the sign of the accumulator is destroyed. • Overflow into guard bits 32 through 39: this is a recoverable overflow. This bit is set whenever all the guard bits are not identical to each other. The adder has an additional saturation block which controls accumulator data saturation, if selected. It uses the result of the adder, the Overflow Status bits described above and the SAT (CORCON<7:6>) and ACCSAT (CORCON<4>) mode control bits to determine when and to what value to saturate. Six STATUS register bits have been provided to support saturation and overflow; they are: 1. OA: AccA overflowed into guard bits 2. OB: AccB overflowed into guard bits 3. SA: AccA saturated (bit 31 overflow and saturation) or AccA overflowed into guard bits and saturated (bit 39 overflow and saturation) 4. SB: AccB saturated (bit 31 overflow and saturation) or AccB overflowed into guard bits and saturated (bit 39 overflow and saturation) 5. OAB: Logical OR of OA and OB 6. SAB: Logical OR of SA and SB The OA and OB bits are modified each time data passes through the adder/subtracter. When set, they indicate that the most recent operation has overflowed into the accumulator guard bits (bits 32 through 39). The OA and OB bits can also optionally generate an arithmetic warning trap when set and the corresponding Overflow Trap Flag Enable bits (OVATE, OVBTE) in the INTCON1 register (refer to Section 6.0 “Interrupt Controller”) are set. This allows the user to take immediate action, for example, to correct system gain. dsPIC33F DS70165E-page 36 Preliminary © 2007 Microchip Technology Inc. The SA and SB bits are modified each time data passes through the adder/subtracter, but can only be cleared by the user. When set, they indicate that the accumulator has overflowed its maximum range (bit 31 for 32-bit saturation or bit 39 for 40-bit saturation) and will be saturated (if saturation is enabled). When saturation is not enabled, SA and SB default to bit 39 overflow and, thus, indicate that a catastrophic overflow has occurred. If the COVTE bit in the INTCON1 register is set, SA and SB bits will generate an arithmetic warning trap when saturation is disabled. The Overflow and Saturation Status bits can optionally be viewed in the STATUS Register (SR) as the logical OR of OA and OB (in bit OAB) and the logical OR of SA and SB (in bit SAB). This allows programmers to check one bit in the STATUS register to determine if either accumulator has overflowed, or one bit to determine if either accumulator has saturated. This would be useful for complex number arithmetic which typically uses both the accumulators. The device supports three Saturation and Overflow modes: 1. Bit 39 Overflow and Saturation: When bit 39 overflow and saturation occurs, the saturation logic loads the maximally positive 9.31 (0x7FFFFFFFFF), or maximally negative 9.31 value (0x8000000000), into the target accumulator. The SA or SB bit is set and remains set until cleared by the user. This is referred to as ‘super saturation’ and provides protection against erroneous data or unexpected algorithm problems (e.g., gain calculations). 2. Bit 31 Overflow and Saturation: When bit 31 overflow and saturation occurs, the saturation logic then loads the maximally positive 1.31 value (0x007FFFFFFF), or maximally negative 1.31 value (0x0080000000), into the target accumulator. The SA or SB bit is set and remains set until cleared by the user. When this Saturation mode is in effect, the guard bits are not used (so the OA, OB or OAB bits are never set). 3. Bit 39 Catastrophic Overflow: The bit 39 Overflow Status bit from the adder is used to set the SA or SB bit, which remains set until cleared by the user. No saturation operation is performed and the accumulator is allowed to overflow (destroying its sign). If the COVTE bit in the INTCON1 register is set, a catastrophic overflow can initiate a trap exception. 2.6.2.2 Accumulator ‘Write Back’ The MAC class of instructions (with the exception of MPY, MPY.N, ED and EDAC) can optionally write a rounded version of the high word (bits 31 through 16) of the accumulator that is not targeted by the instruction into data space memory. The write is performed across the X bus into combined X and Y address space. The following addressing modes are supported: 1. W13, Register Direct: The rounded contents of the non-target accumulator are written into W13 as a 1.15 fraction. 2. [W13]+ = 2, Register Indirect with Post-Increment: The rounded contents of the non-target accumulator are written into the address pointed to by W13 as a 1.15 fraction. W13 is then incremented by 2 (for a word write). 2.6.2.3 Round Logic The round logic is a combinational block which performs a conventional (biased) or convergent (unbiased) round function during an accumulator write (store). The Round mode is determined by the state of the RND bit in the CORCON register. It generates a 16-bit, 1.15 data value which is passed to the data space write saturation logic. If rounding is not indicated by the instruction, a truncated 1.15 data value is stored and the least significant word is simply discarded. Conventional rounding zero-extends bit 15 of the accumulator and adds it to the ACCxH word (bits 16 through 31 of the accumulator). If the ACCxL word (bits 0 through 15 of the accumulator) is between 0x8000 and 0xFFFF (0x8000 included), ACCxH is incremented. If ACCxL is between 0x0000 and 0x7FFF, ACCxH is left unchanged. A consequence of this algorithm is that over a succession of random rounding operations, the value tends to be biased slightly positive. Convergent (or unbiased) rounding operates in the same manner as conventional rounding, except when ACCxL equals 0x8000. In this case, the Least Significant bit (bit 16 of the accumulator) of ACCxH is examined. If it is ‘1’, ACCxH is incremented. If it is ‘0’, ACCxH is not modified. Assuming that bit 16 is effectively random in nature, this scheme removes any rounding bias that may accumulate. The SAC and SAC.R instructions store either a truncated (SAC), or rounded (SAC.R) version of the contents of the target accumulator to data memory via the X bus, subject to data saturation (see Section 2.6.2.4 “Data Space Write Saturation”). For the MAC class of instructions, the accumulator write-back operation will function in the same manner, addressing combined MCU (X and Y) data space though the X bus. For this class of instructions, the data is always subject to rounding.© 2007 Microchip Technology Inc. Preliminary DS70165E-page 37 dsPIC33F 2.6.2.4 Data Space Write Saturation In addition to adder/subtracter saturation, writes to data space can also be saturated but without affecting the contents of the source accumulator. The data space write saturation logic block accepts a 16-bit, 1.15 fractional value from the round logic block as its input, together with overflow status from the original source (accumulator) and the 16-bit round adder. These inputs are combined and used to select the appropriate 1.15 fractional value as output to write to data space memory. If the SATDW bit in the CORCON register is set, data (after rounding or truncation) is tested for overflow and adjusted accordingly, For input data greater than 0x007FFF, data written to memory is forced to the maximum positive 1.15 value, 0x7FFF. For input data less than 0xFF8000, data written to memory is forced to the maximum negative 1.15 value, 0x8000. The Most Significant bit of the source (bit 39) is used to determine the sign of the operand being tested. If the SATDW bit in the CORCON register is not set, the input data is always passed through unmodified under all conditions. 2.6.3 BARREL SHIFTER The barrel shifter is capable of performing up to 16-bit arithmetic or logic right shifts, or up to 16-bit left shifts in a single cycle. The source can be either of the two DSP accumulators or the X bus (to support multi-bit shifts of register or memory data). The shifter requires a signed binary value to determine both the magnitude (number of bits) and direction of the shift operation. A positive value shifts the operand right. A negative value shifts the operand left. A value of ‘0’ does not modify the operand. The barrel shifter is 40 bits wide, thereby obtaining a 40-bit result for DSP shift operations and a 16-bit result for MCU shift operations. Data from the X bus is presented to the barrel shifter between bit positions 16 to 31 for right shifts, and between bit positions 0 to 16 for left shifts.dsPIC33F DS70165E-page 38 Preliminary © 2007 Microchip Technology Inc. NOTES:© 2007 Microchip Technology Inc. Preliminary DS70165E-page 39 dsPIC33F 3.0 MEMORY ORGANIZATION The dsPIC33F architecture features separate program and data memory spaces and buses. This architecture also allows the direct access of program memory from the data space during code execution. 3.1 Program Address Space The program address memory space of the dsPIC33F devices is 4M instructions. The space is addressable by a 24-bit value derived from either the 23-bit Program Counter (PC) during program execution, or from table operation or data space remapping as described in Section 3.6 “Interfacing Program and Data Memory Spaces”. User access to the program memory space is restricted to the lower half of the address range (0x000000 to 0x7FFFFF). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space. Memory maps for the dsPIC33F family of devices are shown in Figure 3-1. FIGURE 3-1: PROGRAM MEMORY MAP FOR dsPIC33F FAMILY DEVICES Note: This data sheet summarizes the features of this group of dsPIC33F devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the “dsPIC30F Family Reference Manual” (DS70046). Reset Address 0x000000 0x0000FE 0x000002 0x000100 Device Configuration User Program Flash Memory 0x00AC00 0x00ABFE (22K instructions) 0x800000 0xF80000 Registers 0xF80017 0xF80010 DEVID (2) 0xFEFFFE 0xFF0000 0xFFFFFE 0xF7FFFE Unimplemented (Read ‘0’s) GOTO Instruction 0x000004 Reserved 0x7FFFFE Reserved 0x000200 0x0001FE 0x000104 Alternate Vector Table Reserved Interrupt Vector Table Reset Address Device Configuration Registers DEVID (2) Unimplemented (Read ‘0’s) GOTO Instruction Reserved Reserved Alternate Vector Table Reserved Interrupt Vector Table Reset Address Device Configuration User Program Flash Memory (88K instructions) Registers DEVID (2) GOTO Instruction Reserved Reserved Alternate Vector Table Reserved Interrupt Vector Table dsPIC33FJ64XXXXX dsPIC33FJ128XXXXX dsPIC33FJ256XXXXX Configuration Memory Space User Memory Space 0x015800 0x0157FE User Program (44K instructions) Flash Memory (Read ‘0’s) Unimplemented 0x02AC00 0x02ABFEdsPIC33F DS70165E-page 40 Preliminary © 2007 Microchip Technology Inc. 3.1.1 PROGRAM MEMORY ORGANIZATION The program memory space is organized in word-addressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 3-2). Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented by two during code execution. This arrangement also provides compatibility with data memory space addressing and makes it possible to access data in the program memory space. 3.1.2 INTERRUPT AND TRAP VECTORS All dsPIC33F devices reserve the addresses between 0x00000 and 0x000200 for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user at 0x000000, with the actual address for the start of code at 0x000002. dsPIC33F devices also have two interrupt vector tables, located from 0x000004 to 0x0000FF and 0x000100 to 0x0001FF. These vector tables allow each of the many device interrupt sources to be handled by separate Interrupt Service Routines (ISRs). A more detailed discussion of the interrupt vector tables is provided in Section 6.1 “Interrupt Vector Table”. FIGURE 3-2: PROGRAM MEMORY ORGANIZATION 16 8 0 PC Address 0x000000 0x000002 0x000004 0x000006 23 00000000 00000000 00000000 00000000 Program Memory ‘Phantom’ Byte (read as ‘0’) most significant word least significant word Instruction Width 0x000001 0x000003 0x000005 0x000007 msw Address (lsw Address)© 2007 Microchip Technology Inc. Preliminary DS70165E-page 41 dsPIC33F 3.2 Data Address Space The dsPIC33F CPU has a separate 16-bit wide data memory space. The data space is accessed using separate Address Generation Units (AGUs) for read and write operations. Data memory maps of devices with different RAM sizes are shown in Figure 3-3 through Figure 3-5. All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the data space. This arrangement gives a data space address range of 64 Kbytes or 32K words. The lower half of the data memory space (that is, when EA<15> = 0) is used for implemented memory addresses, while the upper half (EA<15> = 1) is reserved for the Program Space Visibility area (see Section 3.6.3 “Reading Data From Program Memory Using Program Space Visibility”). dsPIC33F devices implement a total of up to 30 Kbytes of data memory. Should an EA point to a location outside of this area, an all-zero word or byte will be returned. 3.2.1 DATA SPACE WIDTH The data memory space is organized in byte addressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-bit words, but all data space EAs resolve to bytes. The Least Significant Bytes of each word have even addresses, while the Most Significant Bytes have odd addresses. 3.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT To maintain backward compatibility with PIC® devices and improve data space memory usage efficiency, the dsPIC33F instruction set supports both word and byte operations. As a consequence of byte accessibility, all effective address calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] will result in a value of Ws + 1 for byte operations and Ws + 2 for word operations. Data byte reads will read the complete word that contains the byte, using the LSb of any EA to determine which byte to select. The selected byte is placed onto the LSb of the data path. That is, data memory and registers are organized as two parallel byte-wide entities with shared (word) address decode but separate write lines. Data byte writes only write to the corresponding side of the array or register which matches the byte address. All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations, or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap is generated. If the error occurred on a read, the instruction underway is completed; if it occurred on a write, the instruction will be executed but the write does not occur. In either case, a trap is then executed, allowing the system and/or user to examine the machine state prior to execution of the address Fault. All byte loads into any W register are loaded into the Least Significant Byte. The Most Significant Byte is not modified. A sign-extend instruction (SE) is provided to allow users to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, users can clear the MSb of any W register by executing a zero-extend (ZE) instruction on the appropriate address. 3.2.3 SFR SPACE The first 2 Kbytes of the Near Data Space, from 0x0000 to 0x07FF, is primarily occupied by Special Function Registers (SFRs). These are used by the dsPIC33F core and peripheral modules for controlling the operation of the device. SFRs are distributed among the modules that they control, and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as ‘0’. A complete listing of implemented SFRs, including their addresses, is shown in Table 3-1 through Table 3-34. 3.2.4 NEAR DATA SPACE The 8-Kbyte area between 0x0000 and 0x1FFF is referred to as the Near Data Space. Locations in this space are directly addressable via a 13-bit absolute address field within all memory direct instructions. Additionally, the whole data space is addressable using MOV instructions, which support Memory Direct Addressing mode with a 16-bit address field, or by using Indirect Addressing mode using a working register as an Address Pointer. Note: The actual set of peripheral features and interrupts varies by the device. Please refer to the corresponding device tables and pinout diagrams for device-specific information.dsPIC33F DS70165E-page 42 Preliminary © 2007 Microchip Technology Inc. FIGURE 3-3: DATA MEMORY MAP FOR dsPIC33F DEVICES WITH 8 KBs RAM 0x0000 0x07FE 0x17FE 0xFFFE LSb 16 bits Address MSb LSb MSb Address 0x0001 0x07FF 0x17FF 0xFFFF Optionally Mapped into Program Memory 0x27FF 0x27FE 0x0801 0x0800 0x1801 0x1800 2-Kbyte SFR Space 8-Kbyte SRAM Space 0x8001 0x8000 0x2801 0x2800 0x1FFE 0x2000 0x1FFF 0x2001 Space Data Near 8-Kbyte SFR Space X Data RAM (X) X Data Unimplemented (X) DMA RAM Y Data RAM (Y)© 2007 Microchip Technology Inc. Preliminary DS70165E-page 43 dsPIC33F FIGURE 3-4: DATA MEMORY MAP FOR dsPIC33F DEVICES WITH 16 KBs RAM 0x0000 0x07FE 0x27FE 0xFFFE LSb Address 16 bits MSb LSb MSb Address 0x0001 0x07FF 0x27FF 0xFFFF Optionally Mapped into Program Memory 0x47FF 0x47FE 0x0801 0x0800 0x2801 0x2800 Near Data 2-Kbyte SFR Space 16-Kbyte SRAM Space 8-Kbyte Space 0x8001 0x8000 0x4801 0x4800 0x3FFE 0x4000 0x3FFF 0x4001 0x1FFF 0x1FFE SFR Space X Data RAM (X) X Data Unimplemented (X) DMA RAM Y Data RAM (Y)dsPIC33F DS70165E-page 44 Preliminary © 2007 Microchip Technology Inc. FIGURE 3-5: DATA MEMORY MAP FOR dsPIC33F DEVICES WITH 30 KBs RAM 0x0000 0x07FE SFR Space 0xFFFE X Data RAM (X) 16 bits MSb LSb 0x0001 0x07FF 0xFFFF X Data Optionally Mapped into Program Memory Unimplemented (X) 0x0801 0x0800 2-Kbyte SFR Space 0x4800 0x47FE 0x4801 0x47FF 0x7FFE 0x8000 30-Kbyte SRAM Space 0x7FFF 0x8001 Y Data RAM (Y) Near Data 8-Kbyte Space 0x77FE 0x7800 0x77FF 0x7800 LSb Address MSb Address DMA RAM© 2007 Microchip Technology Inc. Preliminary DS70165E-page 45 dsPIC33F 3.2.5 X AND Y DATA SPACES The core has two data spaces, X and Y. These data spaces can be considered either separate (for some DSP instructions), or as one unified linear address range (for MCU instructions). The data spaces are accessed using two Address Generation Units (AGUs) and separate data paths. This feature allows certain instructions to concurrently fetch two words from RAM, thereby enabling efficient execution of DSP algorithms such as Finite Impulse Response (FIR) filtering and Fast Fourier Transform (FFT). The X data space is used by all instructions and supports all addressing modes. There are separate read and write data buses for X data space. The X read data bus is the read data path for all instructions that view data space as combined X and Y address space. It is also the X data prefetch path for the dual operand DSP instructions (MAC class). The Y data space is used in concert with the X data space by the MAC class of instructions (CLR, ED, EDAC, MAC, MOVSAC, MPY, MPY.N and MSC) to provide two concurrent data read paths. Both the X and Y data spaces support Modulo Addressing mode for all instructions, subject to addressing mode restrictions. Bit-Reversed Addressing mode is only supported for writes to X data space. All data memory writes, including in DSP instructions, view data space as combined X and Y address space. The boundary between the X and Y data spaces is device-dependent and is not user-programmable. All effective addresses are 16 bits wide and point to bytes within the data space. Therefore, the data space address range is 64 Kbytes, or 32K words, though the implemented memory locations vary by device. 3.2.6 DMA RAM Every dsPIC33F device contains 2 Kbytes of dual ported DMA RAM located at the end of Y data space. Memory locations is part of Y data RAM and is in the DMA RAM space are accessible simultaneously by the CPU and the DMA controller module. DMA RAM is utilized by the DMA controller to store data to be transferred to various peripherals using DMA, as well as data transferred from various peripherals using DMA. The DMA RAM can be accessed by the DMA controller without having to steal cycles from the CPU. When the CPU and the DMA controller attempt to concurrently write to the same DMA RAM location, the hardware ensures that the CPU is given precedence in accessing the DMA RAM location. Therefore, the DMA RAM provides a reliable means of transferring DMA data without ever having to stall the CPU. Note: DMA RAM can be used for general purpose data storage if the DMA function is not required in an application.DS70165E-page 46 dsPIC33F Preliminary © 2007 Microchip Technology Inc. TABLE 3-1: CPU CORE REGISTERS MAP SFR Name SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets WREG0 0000 Working Register 0 0000 WREG1 0002 Working Register 1 0000 WREG2 0004 Working Register 2 0000 WREG3 0006 Working Register 3 0000 WREG4 0008 Working Register 4 0000 WREG5 000A Working Register 5 0000 WREG6 000C Working Register 6 0000 WREG7 000E Working Register 7 0000 WREG8 0010 Working Register 8 0000 WREG9 0012 Working Register 9 0000 WREG10 0014 Working Register 10 0000 WREG11 0016 Working Register 11 0000 WREG12 0018 Working Register 12 0000 WREG13 001A Working Register 13 0000 WREG14 001C Working Register 14 0000 WREG15 001E Working Register 15 0800 SPLIM 0020 Stack Pointer Limit Register xxxx PCL 002E Program Counter Low Word Register 0000 PCH 0030 — — — — — — — — Program Counter High Byte Register 0000 TBLPAG 0032 — — — — — — — — Table Page Address Pointer Register 0000 PSVPAG 0034 — — — — — — — — Program Memory Visibility Page Address Pointer Register 0000 RCOUNT 0036 Repeat Loop Counter Register xxxx DCOUNT 0038 DCOUNT<15:0> xxxx DOSTARTL 003A DOSTARTL<15:1> 0 xxxx DOSTARTH 003C — — — — — — — — — — DOSTARTH<5:0> 00xx DOENDL 003E DOENDL<15:1> 0 xxxx DOENDH 0040 — — — — — — — — — — DOENDH 00xx SR 0042 OA OB SA SB OAB SAB DA DC IPL2 IPL1 IPL0 RA N OV Z C 0000 CORCON 0044 — — — US EDT DL<2:0> SATA SATB SATDW ACCSAT IPL3 PSV RND IF 0000 MODCON 0046 XMODEN YMODEN — — BWM<3:0> YWM<3:0> XWM<3:0> 0000 XMODSRT 0048 XS<15:1> 0 xxxx XMODEND 004A XE<15:1> 1 xxxx YMODSRT 004C YS<15:1> 0 xxxx YMODEND 004E YE<15:1> 1 xxxx XBREV 0050 BREN XB<14:0> xxxx DISICNT 0052 — — Disable Interrupts Counter Register xxxx BSRAM 0750 — — — — — — — — — — — — — IW_BSR IR_BSR RL_BSR 0000 SSRAM 0752 — — — — — — — — — — — — — IW_SSR IR_SSR RL_SSR 0000 Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.© 2007 Microchip Technology Inc. Preliminary DS70165E-page 47 dsPIC33F TABLE 3-2: CHANGE NOTIFICATION REGISTER MAP SFR Name SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets CNEN1 0060 CN15IE CN14IE CN13IE CN12IE CN11IE CN10IE CN9IE CN8IE CN7IE CN6IE CN5IE CN4IE CN3IE CN2IE CN1IE CN0IE 0000 CNEN2 0062 — — — — — — — — CN23IE CN22IE CN21IE CN20IE CN19IE CN18IE CN17IE CN16IE 0000 CNPU1 0068 CN15PUE CN14PUE CN13PUE CN12PUE CN11PUE CN10PUE CN9PUE CN8PUE CN7PUE CN6PUE CN5PUE CN4PUE CN3PUE CN2PUE CN1PUE CN0PUE 0000 CNPU2 006A — — — — — — — — CN23PUE CN22PUE CN21PUE CN20PUE CN19PUE CN18PUE CN17PUE CN16PUE 0000 Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.DS70165E-page 48 dsPIC33F Preliminary © 2007 Microchip Technology Inc. TABLE 3-3: INTERRUPT CONTROLLER REGISTER MAP SFR Name SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets INTCON1 0080 NSTDIS OVAERR OVBERR COVAERR COVBERR OVATE OVBTE COVTE SFTACERR DIV0ERR DMACERR MATHERR ADDRERR STKERR OSCFAIL — 0000 INTCON2 0082 ALTIVT DISI — — — — — — — — — INT4EP INT3EP INT2EP INT1EP INT0EP 0000 IFS0 0084 — DMA1IF AD1IF U1TXIF U1RXIF SPI1IF SPI1EIF T3IF T2IF OC2IF IC2IF DMA0IF T1IF OC1IF IC1IF INT0IF 0000 IFS1 0086 U2TXIF U2RXIF INT2IF T5IF T4IF OC4IF OC3IF DMA2IF IC8IF IC7IF AD2IF INT1IF CNIF — MI2C1IF SI2C1IF 0000 IFS2 0088 T6IF DMA4IF — OC8IF OC7IF OC6IF OC5IF IC6IF IC5IF IC4IF IC3IF DMA3IF C1IF C1RXIF SPI2IF SPI2EIF 0000 IFS3 008A FLTAIF — DMA5IF DCIIF DCIEIF QEIIF PWMIF C2IF C2RXIF INT4IF INT3IF T9IF T8IF MI2C2IF SI2C2IF T7IF 0000 IFS4 008C — — — — — — — — C2TXIF C1TXIF DMA7IF DMA6IF — U2EIF U1EIF FLTBIF 0000 IEC0 0094 — DMA1IE AD1IE U1TXIE U1RXIE SPI1IE SPI1EIE T3IE T2IE OC2IE IC2IE DMA0IE T1IE OC1IE IC1IE INT0IE 0000 IEC1 0096 U2TXIE U2RXIE INT2IE T5IE T4IE OC4IE OC3IE DMA2IE IC8IE IC7IE AD2IE INT1IE CNIE — MI2C1IE SI2C1IE 0000 IEC2 0098 T6IE DMA4IE — OC8IE OC7IE OC6IE OC5IE IC6IE IC5IE IC4IE IC3IE DMA3IE C1IE C1RXIE SPI2IE SPI2EIE 0000 IEC3 009A FLTAIE — DMA5IE DCIIE DCIEIE QEIIE PWMIE C2IE C2RXIE INT4IE INT3IE T9IE T8IE MI2C2IE SI2C2IE T7IE 0000 IEC4 009C — — — — — — — — C2TXIE C1TXIE DMA7IE DMA6IE — U2EIE U1EIE FLTBIE 0000 IPC0 00A4 — T1IP<2:0> — OC1IP<2:0> — IC1IP<2:0> — INT0IP<2:0> 4444 IPC1 00A6 — T2IP<2:0> — OC2IP<2:0> — IC2IP<2:0> — DMA0IP<2:0> 4444 IPC2 00A8 — U1RXIP<2:0> — SPI1IP<2:0> — SPI1EIP<2:0> — T3IP<2:0> 4444 IPC3 00AA — — — — — DMA1IP<2:0> — AD1IP<2:0> — U1TXIP<2:0> 4444 IPC4 00AC — CNIP<2:0> — — — — — MI2C1IP<2:0> — SI2C1IP<2:0> 4444 IPC5 00AE — IC8IP<2:0> — IC7IP<2:0> — AD2IP<2:0> — INT1IP<2:0> 4444 IPC6 00B0 — T4IP<2:0> — OC4IP<2:0> — OC3IP<2:0> — DMA2IP<2:0> 4444 IPC7 00B2 — U2TXIP<2:0> — U2RXIP<2:0> — INT2IP<2:0> — T5IP<2:0> 4444 IPC8 00B4 — C1IP<2:0> — C1RXIP<2:0> — SPI2IP<2:0> — SPI2EIP<2:0> 4444 IPC9 00B6 — IC5IP<2:0> — IC4IP<2:0> — IC3IP<2:0> — DMA3IP<2:0> 4444 IPC10 00B8 — OC7IP<2:0> — OC6IP<2:0> — OC5IP<2:0> — IC6IP<2:0> 4444 IPC11 00BA — T6IP<2:0> — DMA4IP<2:0> — — — — — OC8IP<2:0> 4444 IPC12 00BC — T8IP<2:0> — MI2C2IP<2:0> — SI2C2IP<2:0> — T7IP<2:0> 4444 IPC13 00BE — C2RXIP<2:0> — INT4IP<2:0> — INT3IP<2:0> — T9IP<2:0> 4444 IPC14 00C0 — DCIEIP<2:0> — QEIIP<2:0> — PWMIP<2:0> — C2IP<2:0> 4444 IPC15 00C2 — FLTAIP<2:0> — — — — — DMA5IP<2:0> — DCIIP<2:0> 4444 IPC16 00C4 — — — — — U2EIP<2:0> — U1EIP<2:0> — FLTBIP<2:0> 4444 IPC17 00C6 — C2TXIP<2:0> — C1TXIP<2:0> — DMA7IP<2:0> — DMA6IP<2:0> 4444 Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.© 2007 Microchip Technology Inc. Preliminary DS70165E-page 49 dsPIC33F TABLE 3-4: TIMER REGISTER MAP SFR Name SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets TMR1 0100 Timer1 Register xxxx PR1 0102 Period Register 1 FFFF T1CON 0104 TON — TSIDL — — — — — — TGATE TCKPS<1:0> — TSYNC TCS — 0000 TMR2 0106 Timer2 Register xxxx TMR3HLD 0108 Timer3 Holding Register (for 32-bit timer operations only) xxxx TMR3 010A Timer3 Register xxxx PR2 010C Period Register 2 FFFF PR3 010E Period Register 3 FFFF T2CON 0110 TON — TSIDL — — — — — — TGATE TCKPS<1:0> T32 — TCS — 0000 T3CON 0112 TON — TSIDL — — — — — — TGATE TCKPS<1:0> — — TCS — 0000 TMR4 0114 Timer4 Register xxxx TMR5HLD 0116 Timer5 Holding Register (for 32-bit operations only) xxxx TMR5 0118 Timer5 Register xxxx PR4 011A Period Register 4 FFFF PR5 011C Period Register 5 FFFF T4CON 011E TON — TSIDL — — — — — — TGATE TCKPS<1:0> T32 — TCS — 0000 T5CON 0120 TON — TSIDL — — — — — — TGATE TCKPS<1:0> — — TCS — 0000 TMR6 0122 Timer6 Register xxxx TMR7HLD 0124 Timer7 Holding Register (for 32-bit operations only) xxxx TMR7 0126 Timer7 Register xxxx PR6 0128 Period Register 6 FFFF PR7 012A Period Register 7 FFFF T6CON 012C TON — TSIDL — — — — — — TGATE TCKPS<1:0> T32 — TCS — 0000 T7CON 012E TON — TSIDL — — — — — — TGATE TCKPS<1:0> — — TCS — 0000 TMR8 0130 Timer8 Register xxxx TMR9HLD 0132 Timer9 Holding Register (for 32-bit operations only) xxxx TMR9 0134 Timer9 Register xxxx PR8 0136 Period Register 8 FFFF PR9 0138 Period Register 9 FFFF T8CON 013A TON — TSIDL — — — — — — TGATE TCKPS<1:0> T32 — TCS — 0000 T9CON 013C TON — TSIDL — — — — — — TGATE TCKPS<1:0> — — TCS — 0000 Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.DS70165E-page 50 dsPIC33F Preliminary © 2007 Microchip Technology Inc. TABLE 3-5: INPUT CAPTURE REGISTER MAP SFR Name SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets IC1BUF 0140 Input 1 Capture Register xxxx IC1CON 0142 — — ICSIDL — — — — — ICTMR ICI<1:0> ICOV ICBNE ICM<2:0> 0000 IC2BUF 0144 Input 2 Capture Register xxxx IC2CON 0146 — — ICSIDL — — — — — ICTMR ICI<1:0> ICOV ICBNE ICM<2:0> 0000 IC3BUF 0148 Input 3 Capture Register xxxx IC3CON 014A — — ICSIDL — — — — — ICTMR ICI<1:0> ICOV ICBNE ICM<2:0> 0000 IC4BUF 014C Input 4 Capture Register xxxx IC4CON 014E — — ICSIDL — — — — — ICTMR ICI<1:0> ICOV ICBNE ICM<2:0> 0000 IC5BUF 0150 Input 5 Capture Register xxxx IC5CON 0152 — — ICSIDL — — — — — ICTMR ICI<1:0> ICOV ICBNE ICM<2:0> 0000 IC6BUF 0154 Input 6 Capture Register xxxx IC6CON 0156 — — ICSIDL — — — — — ICTMR ICI<1:0> ICOV ICBNE ICM<2:0> 0000 IC7BUF 0158 Input 7 Capture Register xxxx IC7CON 015A — — ICSIDL — — — — — ICTMR ICI<1:0> ICOV ICBNE ICM<2:0> 0000 IC8BUF 015C Input 8 Capture Register xxxx IC8CON 015E — — ICSIDL — — — — — ICTMR ICI<1:0> ICOV ICBNE ICM<2:0> 0000 Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.© 2007 Microchip Technology Inc. Preliminary DS70165E-page 51 dsPIC33F TABLE 3-6: OUTPUT COMPARE REGISTER MAP SFR Name SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets OC1RS 0180 Output Compare 1 Secondary Register xxxx OC1R 0182 Output Compare 1 Register xxxx OC1CON 0184 — — OCSIDL — — — — — — — — OCFLT OCTSEL OCM<2:0> 0000 OC2RS 0186 Output Compare 2 Secondary Register xxxx OC2R 0188 Output Compare 2 Register xxxx OC2CON 018A — — OCSIDL — — — — — — — — OCFLT OCTSEL OCM<2:0> 0000 OC3RS 018C Output Compare 3 Secondary Register xxxx OC3R 018E Output Compare 3 Register xxxx OC3CON 0190 — — OCSIDL — — — — — — — — OCFLT OCTSEL OCM<2:0> 0000 OC4RS 0192 Output Compare 4 Secondary Register xxxx OC4R 0194 Output Compare 4 Register xxxx OC4CON 0196 — — OCSIDL — — — — — — — — OCFLT OCTSEL OCM<2:0> 0000 OC5RS 0198 Output Compare 5 Secondary Register xxxx OC5R 019A Output Compare 5 Register xxxx OC5CON 019C — — OCSIDL — — — — — — — — OCFLT OCTSEL OCM<2:0> 0000 OC6RS 019E Output Compare 6 Secondary Register xxxx OC6R 01A0 Output Compare 6 Register xxxx OC6CON 01A2 — — OCSIDL — — — — — — — — OCFLT OCTSEL OCM<2:0> 0000 OC7RS 01A4 Output Compare 7 Secondary Register xxxx OC7R 01A6 Output Compare 7 Register xxxx OC7CON 01A8 — — OCSIDL — — — — — — — — OCFLT OCTSEL OCM<2:0> 0000 OC8RS 01AA Output Compare 8 Secondary Register xxxx OC8R 01AC Output Compare 8 Register xxxx OC8CON 01AE — — OCSIDL — — — — — — — — OCFLT OCTSEL OCM<2:0> 0000 Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.DS70165E-page 52 dsPIC33F Preliminary © 2007 Microchip Technology Inc. TABLE 3-7: 8-OUTPUT PWM REGISTER MAP SFR Name Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset State PTCON 01C0 PTEN — PTSIDL — — — — — PTOPS<3:0> PTCKPS<1:0> PTMOD<1:0> 0000 0000 0000 0000 PTMR 01C2 PTDIR PWM Timer Count Value Register 0000 0000 0000 0000 PTPER 01C4 — PWM Time Base Period Register 0000 0000 0000 0000 SEVTCMP 01C6 SEVTDI R PWM Special Event Compare Register 0000 0000 0000 0000 PWMCON1 01C8 — — — — PMOD4 PMOD3 PMOD2 PMOD1 PEN4H PEN3H PEN2H PEN1H PEN4L PEN3L PEN2L PEN1L 0000 0000 1111 1111 PWMCON2 01CA — — — — SEVOPS<3:0> — — — — — IUE OSYNC UDIS 0000 0000 0000 0000 DTCON1 01CC DTBPS<1:0> DTB<5:0> DTAPS<1:0> DTA<5:0> 0000 0000 0000 0000 DTCON2 01CE — — — — — — — — DTS4A DTS4I DTS3A DTS3I DTS2A DTS2I DTS1A DTS1I 0000 0000 0000 0000 FLTACON 01D0 FAOV4H FAOV4L FAOV3 H FAOV3L FAOV2 H FAOV2L FAOV1 H FAOV1L FLTAM — — — FAEN4 FAEN3 FAEN2 FAEN1 0000 0000 0000 0000 FLTBCON 01D2 FBOV4H FBOV4L FBOV3 H FBOV3L FBOV2 H FBOV2L FBOV1 H FBOV1L FLTBM — — — FBEN4 FBEN3 FBEN2 FBEN1 0000 0000 0000 0000 OVDCON 01D4 POVD4H POVD4 L POVD3 H POVD3 L POVD2 H POVD2L POVD1 H POVD1L POUT4 H POUT4 L POUT3 H POUT3 L POUT2 H POUT2 L POUT1 H POUT1 L 1111 1111 0000 0000 PDC1 01D6 PWM Duty Cycle #1 Register 0000 0000 0000 0000 PDC2 01D8 PWM Duty Cycle #2 Register 0000 0000 0000 0000 PDC3 01DA PWM Duty Cycle #3 Register 0000 0000 0000 0000 PDC4 01DC PWM Duty Cycle #4 Register 0000 0000 0000 0000 Legend: u = uninitialized bit, — = unimplemented, read as ‘0’© 2007 Microchip Technology Inc. Preliminary DS70165E-page 53 dsPIC33F TABLE 3-8: QEI REGISTER MAP SFR Name Addr . Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset State QEICON 01E0 CNTERR — QEISIDL INDX UPDN QEIM<2:0> SWPAB PCDOUT TQGATE TQCKPS<1:0> POSRES TQCS UPDN_SRC 0000 0000 0000 0000 DFLTCON 01E2 — — — — — IMV<1:0> CEID QEOUT QECK<2:0> — — — — 0000 0000 0000 0000 POSCNT 01E4 Position Counter<15:0> 0000 0000 0000 0000 MAXCNT 01E6 Maximum Count<15:0> 1111 1111 1111 1111 Legend: u = uninitialized bit, — = unimplemented, read as ‘0’ TABLE 3-9: I2C1 REGISTER MAP SFR Name SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets I2C1RCV 0200 — — — — — — — — Receive Register 0000 I2C1TRN 0202 — — — — — — — — Transmit Register 00FF I2C1BRG 0204 — — — — — — — Baud Rate Generator Register 0000 I2C1CON 0206 I2CEN — I2CSIDL SCLREL IPMIEN A10M DISSLW SMEN GCEN STREN ACKDT ACKEN RCEN PEN RSEN SEN 1000 I2C1STAT 0208 ACKSTAT TRSTAT — — — BCL GCSTAT ADD10 IWCOL I2COV D_A P S R_W RBF TBF 0000 I2C1ADD 020A — — — — — — Address Register 0000 I2C1MSK 020C — — — — — — Address Mask Register 0000 Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. TABLE 3-10: I2C2 REGISTER MAP SFR Name SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets I2C2RCV 0210 — — — — — — — — Receive Register 0000 I2C2TRN 0212 — — — — — — — — Transmit Register 00FF I2C2BRG 0214 — — — — — — — Baud Rate Generator Register 0000 I2C2CON 0216 I2CEN — I2CSIDL SCLREL IPMIEN A10M DISSLW SMEN GCEN STREN ACKDT ACKEN RCEN PEN RSEN SEN 1000 I2C2STAT 0218 ACKSTAT TRSTAT — — — BCL GCSTAT ADD10 IWCOL I2COV D_A P S R_W RBF TBF 0000 I2C2ADD 021A — — — — — — Address Register 0000 I2C2MSK 021C — — — — — — Address Mask Register 0000 Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.DS70165E-page 54 dsPIC33F Preliminary © 2007 Microchip Technology Inc. TABLE 3-11: UART1 REGISTER MAP SFR Name SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets U1MODE 0220 UARTEN — USIDL IREN RTSMD — UEN1 UEN0 WAKE LPBACK ABAUD URXINV BRGH PDSEL<1:0> STSEL 0000 U1STA 0222 UTXISEL1 UTXINV UTXISEL0 — UTXBRK UTXEN UTXBF TRMT URXISEL<1:0> ADDEN RIDLE PERR FERR OERR URXDA 0110 U1TXREG 0224 — — — — — — — UART Transmit Register xxxx U1RXREG 0226 — — — — — — — UART Receive Register 0000 U1BRG 0228 Baud Rate Generator Prescaler 0000 Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. TABLE 3-12: UART2 REGISTER MAP SFR Name SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets U2MODE 0230 UARTEN — USIDL IREN RTSMD — UEN1 UEN0 WAKE LPBACK ABAUD URXINV BRGH PDSEL<1:0> STSEL 0000 U2STA 0232 UTXISEL1 UTXINV UTXISEL0 — UTXBRK UTXEN UTXBF TRMT URXISEL<1:0> ADDEN RIDLE PERR FERR OERR URXDA 0110 U2TXREG 0234 — — — — — — — UART Transmit Register xxxx U2RXREG 0236 — — — — — — — UART Receive Register 0000 U2BRG 0238 Baud Rate Generator Prescaler 0000 Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. TABLE 3-13: SPI1 REGISTER MAP SFR Name SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets SPI1STAT 0240 SPIEN — SPISIDL — — — — — — SPIROV — — — — SPITBF SPIRBF 0000 SPI1CON1 0242 — — — DISSCK DISSDO MODE16 SMP CKE SSEN CKP MSTEN SPRE<2:0> PPRE<1:0> 0000 SPI1CON2 0244 FRMEN SPIFSD FRMPOL — — — — — — — — — — — FRMDLY — 0000 SPI1BUF 0248 SPI1 Transmit and Receive Buffer Register 0000 Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. TABLE 3-14: SPI2 REGISTER MAP SFR Name SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets SPI2STAT 0260 SPIEN — SPISIDL — — — — — — SPIROV — — — — SPITBF SPIRBF 0000 SPI2CON1 0262 — — — DISSCK DISSDO MODE16 SMP CKE SSEN CKP MSTEN SPRE<2:0> PPRE<1:0> 0000 SPI2CON2 0264 FRMEN SPIFSD FRMPOL — — — — — — — — — — — FRMDLY — 0000 SPI2BUF 0268 SPI2 Transmit and Receive Buffer Register 0000 Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.© 2007 Microchip Technology Inc. Preliminary DS70165E-page 55 dsPIC33F TABLE 3-15: ADC1 REGISTER MAP File Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets ADC1BUF0 0300 ADC Data Buffer 0 xxxx AD1CON1 0320 ADON — ADSIDL ADDMABM — AD12B FORM<1:0> SSRC<2:0> — SIMSAM ASAM SAMP DONE 0000 AD1CON2 0322 VCFG<2:0> — — CSCNA CHPS<1:0> BUFS — SMPI<3:0> BUFM ALTS 0000 AD1CON3 0324 ADRC — — SAMC<4:0> — — ADCS<5:0> 0000 AD1CHS123 0326 — — — — — CH123NB<1:0> CH123SB — — — — — CH123NA<1:0> CH123SA 0000 AD1CHS0 0328 CH0NB — — CH0SB<4:0> CH0NA — — CH0SA<4:0> 0000 AD1PCFGH 032A PCFG31 PCFG30 PCFG29 PCFG28 PCFG27 PCFG26 PCFG25 PCFG24 PCFG23 PCFG22 PCFG21 PCFG20 PCFG19 PCFG18 PCFG17 PCFG16 0000 AD1PCFGL 032C PCFG15 PCFG14 PCFG13 PCFG12 PCFG11 PCFG10 PCFG9 PCFG8 PCFG7 PCFG6 PCFG5 PCFG4 PCFG3 PCFG2 PCFG1 PCFG0 0000 AD1CSSH 032E CSS31 CSS30 CSS29 CSS28 CSS27 CSS26 CSS25 CSS24 CSS23 CSS22 CSS21 CSS20 CSS19 CSS18 CSS17 CSS16 0000 AD1CSSL 0330 CSS15 CSS14 CSS13 CSS12 CSS11 CSS10 CSS9 CSS8 CSS7 CSS6 CSS5 CSS4 CSS3 CSS2 CSS1 CSS0 0000 AD1CON4 0332 — — — — — — — — — — — — — DMABL<2:0> 0000 Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. TABLE 3-16: ADC2 REGISTER MAP File Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets ADC2BUF0 0340 ADC Data Buffer 0 xxxx AD2CON1 0360 ADON — ADSIDL ADDMABM — AD12B FORM<1:0> SSRC<2:0> — SIMSAM ASAM SAMP DONE 0000 AD2CON2 0362 VCFG<2:0> — — CSCNA CHPS<1:0> BUFS — SMPI<3:0> BUFM ALTS 0000 AD2CON3 0364 ADRC — — SAMC<4:0> — — ADCS<5:0> 0000 AD2CHS123 0366 — — — — — CH123NB<1:0> CH123SB — — — — — CH123NA<1:0> CH123SA 0000 AD2CHS0 0368 CH0NB — — — CH0SB<3:0> CH0NA — — — CH0SA<3:0> 0000 Reserved 036A — — — — — — — — — — — — — — — — 0000 AD2PCFGL 036C PCFG15 PCFG14 PCFG13 PCFG12 PCFG11 PCFG10 PCFG9 PCFG8 PCFG7 PCFG6 PCFG5 PCFG4 PCFG3 PCFG2 PCFG1 PCFG0 0000 Reserved 036E — — — — — — — — — — — — — — — — 0000 AD2CSSL 0370 CSS15 CSS14 CSS13 CSS12 CSS11 CSS10 CSS9 CSS8 CSS7 CSS6 CSS5 CSS4 CSS3 CSS2 CSS1 CSS0 0000 AD2CON4 0372 — — — — — — — — — — — — — DMABL<2:0> 0000 Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.DS70165E-page 56 dsPIC33F Preliminary © 2007 Microchip Technology Inc. TABLE 3-17: DMA REGISTER MAP File Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets DMA0CON 0380 CHEN SIZE DIR HALF NULLW — — — — — AMODE<1:0> — — MODE<1:0> 0000 DMA0REQ 0382 FORCE — — — — — — — — IRQSEL<6:0> 0000 DMA0STA 0384 STA<15:0> 0000 DMA0STB 0386 STB<15:0> 0000 DMA0PAD 0388 PAD<15:0> 0000 DMA0CNT 038A — — — — — — CNT<9:0> 0000 DMA1CON 038C CHEN SIZE DIR HALF NULLW — — — — — AMODE<1:0> — — MODE<1:0> 0000 DMA1REQ 038E FORCE — — — — — — — — IRQSEL<6:0> 0000 DMA1STA 0390 STA<15:0> 0000 DMA1STB 0392 STB<15:0> 0000 DMA1PAD 0394 PAD<15:0> 0000 DMA1CNT 0396 — — — — — — CNT<9:0> 0000 DMA2CON 0398 CHEN SIZE DIR HALF NULLW — — — — — AMODE<1:0> — — MODE<1:0> 0000 DMA2REQ 039A FORCE — — — — — — — — IRQSEL<6:0> 0000 DMA2STA 039C STA<15:0> 0000 DMA2STB 039E STB<15:0> 0000 DMA2PAD 03A0 PAD<15:0> 0000 DMA2CNT 03A2 — — — — — — CNT<9:0> 0000 DMA3CON 03A4 CHEN SIZE DIR HALF NULLW — — — — — AMODE<1:0> — — MODE<1:0> 0000 DMA3REQ 03A6 FORCE — — — — — — — — IRQSEL<6:0> 0000 DMA3STA 03A8 STA<15:0> 0000 DMA3STB 03AA STB<15:0> 0000 DMA3PAD 03AC PAD<15:0> 0000 DMA3CNT 03AE — — — — — — CNT<9:0> 0000 DMA4CON 03B0 CHEN SIZE DIR HALF NULLW — — — — — AMODE<1:0> — — MODE<1:0> 0000 DMA4REQ 03B2 FORCE — — — — — — — — IRQSEL<6:0> 0000 DMA4STA 03B4 STA<15:0> 0000 DMA4STB 03B6 STB<15:0> 0000 DMA4PAD 03B8 PAD<15:0> 0000 DMA4CNT 03BA — — — — — — CNT<9:0> 0000 DMA5CON 03BC CHEN SIZE DIR HALF NULLW — — — — — AMODE<1:0> — — MODE<1:0> 0000 DMA5REQ 03BE FORCE — — — — — — — — IRQSEL<6:0> 0000 DMA5STA 03C0 STA<15:0> 0000 DMA5STB 03C2 STB<15:0> 0000 DMA5PAD 03C4 PAD<15:0> 0000 Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.© 2007 Microchip Technology Inc. Preliminary DS70165E-page 57 dsPIC33F DMA5CNT 03C6 — — — — — — CNT<9:0> 0000 DMA6CON 03C8 CHEN SIZE DIR HALF NULLW — — — — — AMODE<1:0> — — MODE<1:0> 0000 DMA6REQ 03CA FORCE — — — — — — — — IRQSEL<6:0> 0000 DMA6STA 03CC STA<15:0> 0000 DMA6STB 03CE STB<15:0> 0000 DMA6PAD 03D0 PAD<15:0> 0000 DMA6CNT 03D2 — — — — — — CNT<9:0> 0000 DMA7CON 03D4 CHEN SIZE DIR HALF NULLW — — — — — AMODE<1:0> — — MODE<1:0> 0000 DMA7REQ 03D6 FORCE — — — — — — — — IRQSEL<6:0> 0000 DMA7STA 03D8 STA<15:0> 0000 DMA7STB 03DA STB<15:0> 0000 DMA7PAD 03DC PAD<15:0> 0000 DMA7CNT 03DE — — — — — — CNT<9:0> 0000 DMACS0 03E0 PWCOL7 PWCOL6 PWCOL5 PWCOL4 PWCOL3 PWCOL2 PWCOL1 PWCOL0 XWCOL7 XWCOL6 XWCOL5 XWCOL4 XWCOL3 XWCOL2 XWCOL1 XWCOL0 0000 DMACS1 03E2 — — — — LSTCH<3:0> PPST7 PPST6 PPST5 PPST4 PPST3 PPST2 PPST1 PPST0 0000 DSADR 03E4 DSADR<15:0> 0000 TABLE 3-17: DMA REGISTER MAP (CONTINUED) File Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.DS70165E-page 58 dsPIC33F Preliminary © 2007 Microchip Technology Inc. TABLE 3-18: ECAN1 REGISTER MAP WHEN C1CTRL1.WIN = 0 OR 1 File Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Reset s C1CTRL1 0400 — — CSIDL ABAT CANCK S REQOP<2:0> OPMODE<2:0> — CANCAP — — WIN 0480 C1CTRL2 0402 — — — — — — — — — — — DNCNT<4:0> 0000 C1VEC 0404 — — — FILHIT<4:0> — ICODE<6:0> 0000 C1FCTRL 0406 DMABS<2:0> — — — — — — — — FSA<4:0> 0000 C1FIFO 0408 — — FBP<5:0> — — FNRB<5:0> 0000 C1INTF 040A — — TXBO TXBP RXBP TXWAR RXWAR EWARN IVRIF WAKIF ERRIF — FIFOIF RBOVIF RBIF TBIF 0000 C1INTE 040C — — — — — — — — IVRIE WAKIE ERRIE — FIFOIE RBOVIE RBIE TBIE 0000 C1EC 040E TERRCNT<7:0> RERRCNT<7:0> 0000 C1CFG1 0410 — — — — — — — — SJW<1:0> BRP<5:0> 0000 C1CFG2 0412 — WAKFIL — — — SEG2PH<2:0> SEG2PHT S SAM SEG1PH<2:0> PRSEG<2:0> 0000 C1FEN1 0414 FLTEN15 FLTEN14 FLTEN13 FLTEN12 FLTEN11 FLTEN10 FLTEN9 FLTEN8 FLTEN7 FLTEN6 FLTEN5 FLTEN4 FLTEN3 FLTEN2 FLTEN1 FLTEN0 0000 C1FMSKSEL1 0418 F7MSK<1:0> F6MSK<1:0> F5MSK<1:0> F4MSK<1:0> F3MSK<1:0> F2MSK<1:0> F1MSK<1:0> F0MSK<1:0> 0000 C1FMSKSEL2 041A F15MSK<1:0> F14MSK<1:0> F13MSK<1:0> F12MSK<1:0> F11MSK<1:0> F10MSK<1:0> F9MSK<1:0> F8MSK<1:0> 0000 Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. TABLE 3-19: ECAN1 REGISTER MAP WHEN C1CTRL1.WIN = 0 File Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets 0400- 041E See definition when WIN = x C1RXFUL1 0420 RXFUL15 RXFUL14 RXFUL13 RXFUL12 RXFUL11 RXFUL10 RXFUL9 RXFUL8 RXFUL7 RXFUL6 RXFUL5 RXFUL4 RXFUL3 RXFUL2 RXFUL1 RXFUL0 0000 C1RXFUL2 0422 RXFUL31 RXFUL30 RXFUL29 RXFUL28 RXFUL27 RXFUL26 RXFUL25 RXFUL24 RXFUL23 RXFUL22 RXFUL21 RXFUL20 RXFUL19 RXFUL18 RXFUL17 RXFUL16 0000 C1RXOVF1 0428 RXOVF15 RXOVF14 RXOVF13 RXOVF12 RXOVF11 RXOVF10 RXOVF9 RXOVF8 RXOVF7 RXOVF6 RXOVF5 RXOVF4 RXOVF3 RXOVF2 RXOVF1 RXOVF0 0000 C1RXOVF2 042A RXOVF31 RXOVF30 RXOVF29 RXOVF28 RXOVF27 RXOVF26 RXOVF25 RXOVF24 RXOVF23 RXOVF22 RXOVF21 RXOVF20 RXOVF19 RXOVF18 RXOVF17 RXOVF16 0000 C1TR01CON 0430 TXEN1 TXABT1 TXLARB1 TXERR1 TXREQ1 RTREN1 TX1PRI<1:0> TXEN0 TXABAT0 TXLARB0 TXERR0 TXREQ0 RTREN0 TX0PRI<1:0> 0000 C1TR23CON 0432 TXEN3 TXABT3 TXLARB3 TXERR3 TXREQ3 RTREN3 TX3PRI<1:0> TXEN2 TXABAT2 TXLARB2 TXERR2 TXREQ2 RTREN2 TX2PRI<1:0> 0000 C1TR45CON 0434 TXEN5 TXABT5 TXLARB5 TXERR5 TXREQ5 RTREN5 TX5PRI<1:0> TXEN4 TXABAT4 TXLARB4 TXERR4 TXREQ4 RTREN4 TX4PRI<1:0> 0000 C1TR67CON 0436 TXEN7 TXABT7 TXLARB7 TXERR7 TXREQ7 RTREN7 TX7PRI<1:0> TXEN6 TXABAT6 TXLARB6 TXERR6 TXREQ6 RTREN6 TX6PRI<1:0> xxxx C1RXD 0440 Received Data Word xxxx C1TXD 0442 Transmit Data Word xxxx Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.© 2007 Microchip Technology Inc. Preliminary DS70165E-page 59 dsPIC33F TABLE 3-20: ECAN1 REGISTER MAP WHEN C1CTRL1.WIN = 1 File Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets 0400- 041E See definition when WIN = x C1BUFPNT1 0420 F3BP<3:0> F2BP<3:0> F1BP<3:0> F0BP<3:0> 0000 C1BUFPNT2 0422 F7BP<3:0> F6BP<3:0> F5BP<3:0> F4BP<3:0> 0000 C1BUFPNT3 0424 F11BP<3:0> F10BP<3:0> F9BP<3:0> F8BP<3:0> 0000 C1BUFPNT4 0426 F15BP<3:0> F14BP<3:0> F13BP<3:0> F12BP<3:0> 0000 C1RXM0SID 0430 SID<10:3> SID<2:0> — MIDE — EID<17:16> xxxx C1RXM0EID 0432 EID<15:8> EID<7:0> xxxx C1RXM1SID 0434 SID<10:3> SID<2:0> — MIDE — EID<17:16> xxxx C1RXM1EID 0436 EID<15:8> EID<7:0> xxxx C1RXM2SID 0438 SID<10:3> SID<2:0> — MIDE — EID<17:16> xxxx C1RXM2EID 043A EID<15:8> EID<7:0> xxxx C1RXF0SID 0440 SID<10:3> SID<2:0> — EXIDE — EID<17:16> xxxx C1RXF0EID 0442 EID<15:8> EID<7:0> xxxx C1RXF1SID 0444 SID<10:3> SID<2:0> — EXIDE — EID<17:16> xxxx C1RXF1EID 0446 EID<15:8> EID<7:0> xxxx C1RXF2SID 0448 SID<10:3> SID<2:0> — EXIDE — EID<17:16> xxxx C1RXF2EID 044A EID<15:8> EID<7:0> xxxx C1RXF3SID 044C SID<10:3> SID<2:0> — EXIDE — EID<17:16> xxxx C1RXF3EID 044E EID<15:8> EID<7:0> xxxx C1RXF4SID 0450 SID<10:3> SID<2:0> — EXIDE — EID<17:16> xxxx C1RXF4EID 0452 EID<15:8> EID<7:0> xxxx C1RXF5SID 0454 SID<10:3> SID<2:0> — EXIDE — EID<17:16> xxxx C1RXF5EID 0456 EID<15:8> EID<7:0> xxxx C1RXF6SID 0458 SID<10:3> SID<2:0> — EXIDE — EID<17:16> xxxx C1RXF6EID 045A EID<15:8> EID<7:0> xxxx C1RXF7SID 045C SID<10:3> SID<2:0> — EXIDE — EID<17:16> xxxx C1RXF7EID 045E EID<15:8> EID<7:0> xxxx C1RXF8SID 0460 SID<10:3> SID<2:0> — EXIDE — EID<17:16> xxxx C1RXF8EID 0462 EID<15:8> EID<7:0> xxxx C1RXF9SID 0464 SID<10:3> SID<2:0> — EXIDE — EID<17:16> xxxx C1RXF9EID 0466 EID<15:8> EID<7:0> xxxx C1RXF10SID 0468 SID<10:3> SID<2:0> — EXIDE — EID<17:16> xxxx C1RXF10EID 046A EID<15:8> EID<7:0> xxxx Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.DS70165E-page 60 dsPIC33F Preliminary © 2007 Microchip Technology Inc. C1RXF11SID 046C SID<10:3> SID<2:0> — EXIDE — EID<17:16> xxxx C1RXF11EID 046E EID<15:8> EID<7:0> xxxx C1RXF12SID 0470 SID<10:3> SID<2:0> — EXIDE — EID<17:16> xxxx C1RXF12EID 0472 EID<15:8> EID<7:0> xxxx C1RXF13SID 0474 SID<10:3> SID<2:0> — EXIDE — EID<17:16> xxxx C1RXF13EID 0476 EID<15:8> EID<7:0> xxxx C1RXF14SID 0478 SID<10:3> SID<2:0> — EXIDE — EID<17:16> xxxx C1RXF14EID 047A EID<15:8> EID<7:0> xxxx C1RXF15SID 047C SID<10:3> SID<2:0> — EXIDE — EID<17:16> xxxx C1RXF15EID 047E EID<15:8> EID<7:0> xxxx TABLE 3-20: ECAN1 REGISTER MAP WHEN C1CTRL1.WIN = 1 (CONTINUED) File Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.© 2007 Microchip Technology Inc. Preliminary DS70165E-page 61 dsPIC33F TABLE 3-21: ECAN2 REGISTER MAP WHEN C2CTRL1.WIN = 0 OR 1 File Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets C2CTRL1 0500 — — CSIDL ABAT CANCKS REQOP<2:0> OPMODE<2:0> — CANCAP — — WIN 0480 C2CTRL2 0502 — — — — — — — — — — — DNCNT<4:0> 0000 C2VEC 0504 — — — FILHIT<4:0> — ICODE<6:0> 0000 C2FCTRL 0506 DMABS<2:0> — — — — — — — — FSA<4:0> 0000 C2FIFO 0508 — — FBP<5:0> — — FNRB<5:0> 0000 C2INTF 050A — — TXBO TXBP RXBP TXWAR RXWAR EWARN IVRIF WAKIF ERRIF — FIFOIF RBOVIF RBIF TBIF 0000 C2INTE 050C — — — — — — — — IVRIE WAKIE ERRIE — FIFOIE RBOVIE RBIE TBIE 0000 C2EC 050E TERRCNT<7:0> RERRCNT<7:0> 0000 C2CFG1 0510 — — — — — — — — SJW<1:0> BRP<5:0> 0000 C2CFG2 0512 — WAKFIL — — — SEG2PH<2:0> SEG2PHTS SAM SEG1PH<2:0> PRSEG<2:0> 0000 C2FEN1 0514 FLTEN15 FLTEN14 FLTEN13 FLTEN12 FLTEN11 FLTEN10 FLTEN9 FLTEN8 FLTEN7 FLTEN6 FLTEN5 FLTEN4 FLTEN3 FLTEN2 FLTEN1 FLTEN0 0000 C2FMSKSEL1 0518 F7MSK<1:0> F6MSK<1:0> F5MSK<1:0> F4MSK<1:0> F3MSK<1:0> F2MSK<1:0> F1MSK<1:0> F0MSK<1:0> 0000 C2FMSKSEL2 051A F15MSK<1:0> F14MSK<1:0> F13MSK<1:0> F12MSK<1:0> F11MSK<1:0> F10MSK<1:0> F9MSK<1:0> F8MSK<1:0> 0000 Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. TABLE 3-22: ECAN2 REGISTER MAP WHEN C2CTRL1.WIN = 0 File Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets 0500- 051E See definition when WIN = x C2RXFUL1 0520 RXFUL15 RXFUL14 RXFUL13 RXFUL12 RXFUL11 RXFUL10 RXFUL9 RXFUL8 RXFUL7 RXFUL6 RXFUL5 RXFUL4 RXFUL3 RXFUL2 RXFUL1 RXFUL0 0000 C2RXFUL2 0522 RXFUL31 RXFUL30 RXFUL29 RXFUL28 RXFUL27 RXFUL26 RXFUL25 RXFUL24 RXFUL23 RXFUL22 RXFUL21 RXFUL20 RXFUL19 RXFUL18 RXFUL17 RXFUL16 0000 C2RXOVF1 0528 RXOVF15 RXOVF14 RXOVF13 RXOVF12 RXOVF11 RXOVF10 RXOVF09 RXOVF08 RXOVF7 RXOVF6 RXOVF5 RXOVF4 RXOVF3 RXOVF2 RXOVF1 RXOVF0 0000 C2RXOVF2 052A RXOVF31 RXOVF30 RXOVF29 RXOVF28 RXOVF27 RXOVF26 RXOVF25 RXOVF24 RXOVF23 RXOVF22 RXOVF21 RXOVF20 RXOVF19 RXOVF18 RXOVF17 RXOVF16 0000 C2TR01CON 0530 TXEN1 TX ABAT1 TX LARB1 TX ERR1 TX REQ1 RTREN1 TX1PRI<1:0> TXEN0 TX ABAT0 TX LARB0 TX ERR0 TX REQ0 RTREN0 TX0PRI<1:0> 0000 C2TR23CON 0532 TXEN3 TX ABAT3 TX LARB3 TX ERR3 TX REQ3 RTREN3 TX3PRI<1:0> TXEN2 TX ABAT2 TX LARB2 TX ERR2 TX REQ2 RTREN2 TX2PRI<1:0> 0000 C2TR45CON 0534 TXEN5 TX ABAT5 TX LARB5 TX ERR5 TX REQ5 RTREN5 TX5PRI<1:0> TXEN4 TX ABAT4 TX LARB4 TX ERR4 TX REQ4 RTREN4 TX4PRI<1:0> 0000 C2TR67CON 0536 TXEN7 TX ABAT7 TX LARB7 TX ERR7 TX REQ7 RTREN7 TX7PRI<1:0> TXEN6 TX ABAT6 TX LARB6 TX ERR6 TX REQ6 RTREN6 TX6PRI<1:0> xxxx C2RXD 0540 Recieved Data Word xxxx C2TXD 0542 Transmit Data Word xxxx Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.DS70165E-page 62 dsPIC33F Preliminary © 2007 Microchip Technology Inc. TABLE 3-23: ECAN2 REGISTER MAP WHEN C2CTRL1.WIN = 1 File Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Reset s 0500 - 051E See definition when WIN = x C2BUFPNT1 0520 F3BP<3:0> F2BP<3:0> F1BP<3:0> F0BP<3:0> 0000 C2BUFPNT2 0522 F7BP<3:0> F6BP<3:0> F5BP<3:0> F4BP<3:0> 0000 C2BUFPNT3 0524 F11BP<3:0> F10BP<3:0> F9BP<3:0> F8BP<3:0> 0000 C2BUFPNT4 0526 F15BP<3:0> F14BP<3:0> F13BP<3:0> F12BP<3:0> 0000 C2RXM0SID 0530 SID<10:3> SID<2:0> — MIDE — EID<17:16> xxxx C2RXM0EID 0532 EID<15:8> EID<7:0> xxxx C2RXM1SID 0534 SID<10:3> SID<2:0> — MIDE — EID<17:16> xxxx C2RXM1EID 0536 EID<15:8> EID<7:0> xxxx C2RXM2SID 0538 SID<10:3> SID<2:0> — MIDE — EID<17:16> xxxx C2RXM2EID 053A EID<15:8> EID<7:0> xxxx C2RXF0SID 0540 SID<10:3> SID<2:0> — EXIDE — EID<17:16> xxxx C2RXF0EID 0542 EID<15:8> EID<7:0> xxxx C2RXF1SID 0544 SID<10:3> SID<2:0> — EXIDE — EID<17:16> xxxx C2RXF1EID 0546 EID<15:8> EID<7:0> xxxx C2RXF2SID 0548 SID<10:3> SID<2:0> — EXIDE — EID<17:16> xxxx C2RXF2EID 054A EID<15:8> EID<7:0> xxxx C2RXF3SID 054C SID<10:3> SID<2:0> — EXIDE — EID<17:16> xxxx C2RXF3EID 054E EID<15:8> EID<7:0> xxxx C2RXF4SID 0550 SID<10:3> SID<2:0> — EXIDE — EID<17:16> xxxx C2RXF4EID 0552 EID<15:8> EID<7:0> xxxx C2RXF5SID 0554 SID<10:3> SID<2:0> — EXIDE — EID<17:16> xxxx C2RXF5EID 0556 EID<15:8> EID<7:0> xxxx C2RXF6SID 0558 SID<10:3> SID<2:0> — EXIDE — EID<17:16> xxxx C2RXF6EID 055A EID<15:8> EID<7:0> xxxx C2RXF7SID 055C SID<10:3 SID<2:0> — EXIDE — EID<17:16> xxxx C2RXF7EID 055E EID<15:8> EID<7:0> xxxx C2RXF8SID 0560 SID<10:3 SID<2:0> — EXIDE — EID<17:16> xxxx C2RXF8EID 0562 EID<15:8> EID<7:0> xxxx C2RXF9SID 0564 SID<10:3 SID<2:0> — EXIDE — EID<17:16> xxxx C2RXF9EID 0566 EID<15:8> EID<7:0> xxxx C2RXF10SID 0568 SID<10:3 SID<2:0> — EXIDE — EID<17:16> xxxx C2RXF10EID 056A EID<15:8> EID<7:0> xxxx Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.© 2007 Microchip Technology Inc. Preliminary DS70165E-page 63 dsPIC33F C2RXF11SID 056C SID<10:3 SID<2:0> — EXIDE — EID<17:16> xxxx C2RXF11EID 056E EID<15:8> EID<7:0> xxxx C2RXF12SID 0570 SID<10:3 SID<2:0> — EXIDE — EID<17:16> xxxx C2RXF12EID 0572 EID<15:8> EID<7:0> xxxx C2RXF13SID 0574 SID<10:3 SID<2:0> — EXIDE — EID<17:16> xxxx C2RXF13EID 0576 EID<15:8> EID<7:0> xxxx C2RXF14SID 0578 SID<10:3 SID<2:0> — EXIDE — EID<17:16> xxxx C2RXF14EID 057A EID<15:8> EID<7:0> xxxx C2RXF15SID 057C SID<10:3 SID<2:0> — EXIDE — EID<17:16> xxxx C2RXF15EID 057E EID<15:8> EID<7:0> xxxx TABLE 3-23: ECAN2 REGISTER MAP WHEN C2CTRL1.WIN = 1 (CONTINUED) File Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Reset s Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.DS70165E-page 64 dsPIC33F Preliminary © 2007 Microchip Technology Inc. TABLE 3-24: DCI REGISTER MAP SFR Name Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset State DCICON1 0280 DCIEN — DCISIDL — DLOOP CSCKD CSCKE COFSD UNFM CSDOM DJST — — — COFSM1 COFSM0 0000 0000 0000 0000 DCICON2 0282 — — — — BLEN1 BLEN0 — COFSG<3:0> — WS<3:0> 0000 0000 0000 0000 DCICON3 0284 — — — — BCG<11:0> 0000 0000 0000 0000 DCISTAT 0286 — — — — SLOT3 SLOT2 SLOT1 SLOT0 — — — — ROV RFUL TUNF TMPTY 0000 0000 0000 0000 TSCON 0288 TSE15 TSE14 TSE13 TSE12 TSE11 TSE10 TSE9 TSE8 TSE7 TSE6 TSE5 TSE4 TSE3 TSE2 TSE1 TSE0 0000 0000 0000 0000 RSCON 028C RSE15 RSE14 RSE13 RSE12 RSE11 RSE10 RSE9 RSE8 RSE7 RSE6 RSE5 RSE4 RSE 3 RSE2 RSE1 RSE0 0000 0000 0000 0000 RXBUF0 0290 Receive Buffer #0 Data Register 0000 0000 0000 0000 RXBUF1 0292 Receive Buffer #1 Data Register 0000 0000 0000 0000 RXBUF2 0294 Receive Buffer #2 Data Register 0000 0000 0000 0000 RXBUF3 0296 Receive Buffer #3 Data Register 0000 0000 0000 0000 TXBUF0 0298 Transmit Buffer #0 Data Register 0000 0000 0000 0000 TXBUF1 029A Transmit Buffer #1 Data Register 0000 0000 0000 0000 TXBUF2 029C Transmit Buffer #2 Data Register 0000 0000 0000 0000 TXBUF3 029E Transmit Buffer #3 Data Register 0000 0000 0000 0000 Legend: — = unimplemented, read as ‘0’. Note 1: Refer to the “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields. TABLE 3-25: PORTA REGISTER MAP (1) File Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets TRISA 02C0 TRISA15 TRISA14 TRISA13 TRISA12 — TRISA10 TRISA9 — TRISA7 TRISA6 TRISA5 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0 D6C0 PORTA 02C2 RA15 RA14 RA13 RA12 — RA10 RA9 — RA7 RA6 RA5 RA4 RA3 RA2 RA1 RA0 xxxx LATA 02C4 LATA15 LATA14 LATA13 LATA12 — LATA10 LATA9 — LATA7 LATA6 LATA5 LATA4 LATA3 LATA2 LATA1 LATA0 xxxx ODCA (2) 06C0 ODCA15 ODCA14 ODCA13 ODCA12 — — — — — — ODCA5 ODCA4 ODCA3 ODCA2 ODCA1 ODCA0 xxxx Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for 100-pin devices. Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams. TABLE 3-26: PORTB REGISTER MAP (1) File Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets TRISB 02C6 TRISB15 TRISB14 TRISB13 TRISB12 TRISB11 TRISB10 TRISB9 TRISB8 TRISB7 TRISB6 TRISB5 TRISB4 TRISB3 TRISB2 TRISB1 TRISB0 FFFF PORTB 02C8 RB15 RB14 RB13 RB12 RB11 RB10 RB9 RB8 RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0 xxxx LATB 02CA LATB15 LATB14 LATB13 LATB12 LATB11 LATB10 LATB9 LATB8 LATB7 LATB6 LATB5 LATB4 LATB3 LATB2 LATB1 LATB0 xxxx Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for 100-pin devices. Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.© 2007 Microchip Technology Inc. Preliminary DS70165E-page 65 dsPIC33F TABLE 3-27: PORTC REGISTER MAP (1) File Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets TRISC 02CC TRISC15 TRISC14 TRISC13 TRISC12 — — — — — — — TRISC4 TRISC3 TRISC2 TRISC1 — F01E PORTC 02CE RC15 RC14 RC13 RC12 — — — — — — — RC4 RC3 RC2 RC1 — xxxx LATC 02D0 LATC15 LATC14 LATC13 LATC12 — — — — — — — LATC4 LATC3 LATC2 LATC1 — xxxx Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for 100-pin devices. Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams. TABLE 3-28: PORTD REGISTER MAP (1) File Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets TRISD 02D2 TRISD15 TRISD14 TRISD13 TRISD12 TRISD11 TRISD10 TRISD9 TRISD8 TRISD7 TRISD6 TRISD5 TRISD4 TRISD3 TRISD2 TRISD1 TRISD0 FFFF PORTD 02D4 RD15 RD14 RD13 RD12 RD11 RD10 RD9 RD8 RD7 RD6 RD5 RD4 RD3 RD2 RD1 RD0 xxxx LATD 02D6 LATD15 LATD14 LATD13 LATD12 LATD11 LATD10 LATD9 LATD8 LATD7 LATD6 LATD5 LATD4 LATD3 LATD2 LATD1 LATD0 xxxx ODCD 06D2 ODCD15 ODCD14 ODCD13 ODCD12 ODCD11 ODCD10 ODCD9 ODCD8 ODCD7 ODCD6 ODCD5 ODCD4 ODCD3 ODCD2 ODCD1 ODCD0 xxxx Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for 100-pin devices. Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams. TABLE 3-29: PORTE REGISTER MAP (1) File Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets TRISE 02D8 — — — — — — — — TRISE7 TRISE6 TRISE5 TRISE4 TRISE3 TRISE2 TRISE1 TRISE0 03FF PORTE 02DA — — — — — — — — RE7 RE6 RE5 RE4 RE3 RE2 RE1 RE0 xxxx LATE 02DC — — — — — — — — LATE7 LATE6 LATE5 LATE4 LATE3 LATE2 LATE1 LATE0 xxxx Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for 100-pin devices. Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams. TABLE 3-30: PORTF REGISTER MAP (1) File Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets TRISF 02DE — — TRISF13 TRISF12 — — — TRISF8 TRISF7 TRISF6 TRISF5 TRISF4 TRISF3 TRISF2 TRISF1 TRISF0 31FF PORTF 02E0 — — RF13 RF12 — — — RF8 RF7 RF6 RF5 RF4 RF3 RF2 RF1 RF0 xxxx LATF 02E2 — — LATF13 LATF12 — — — LATF8 LATF7 LATF6 LATF5 LATF4 LATF3 LATF2 LATF1 LATF0 xxxx ODCF 06DE — — ODCF13 ODCF12 — — — ODCF8 ODCF7 ODCF6 ODCF5 ODCF4 ODCF3 ODCF2 ODCF1 ODCF0 xxxx Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for 100-pin devices. Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.DS70165E-page 66 dsPIC33F Preliminary © 2007 Microchip Technology Inc. TABLE 3-31: PORTG REGISTER MAP (1) File Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets TRISG 02E4 TRISG15 TRISG14 TRISG13 TRISG12 — — TRISG9 TRISG8 TRISG7 TRISG6 — — TRISG3 TRISG2 TRISG1 TRISG0 F3CF PORTG 02E6 RG15 RG14 RG13 RG12 — — RG9 RG8 RG7 RG6 — — RG3 RG2 RG1 RG0 xxxx LATG 02E8 LATG15 LATG14 LATG13 LATG12 — — LATG9 LATG8 LATG7 LATG6 — — LATG3 LATG2 LATG1 LATG0 xxxx ODCG 06E4 ODCG15 ODCG14 ODCG13 ODCG12 — — ODCG9 ODCG8 ODCG7 ODCG6 — — ODCG3 ODCG2 ODCG1 ODCG0 xxxx Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for 100-pin devices. Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams. TABLE 3-32: SYSTEM CONTROL REGISTER MAP File Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets RCON 0740 TRAPR IOPUWR — — — — — VREGS EXTR SWR SWDTEN WDTO SLEEP IDLE BOR POR xxxx (1) OSCCON 0742 — COSC<2:0> — NOSC<2:0> CLKLOCK — LOCK — CF — LPOSCEN OSWEN 0300 (2) CLKDIV 0744 ROI DOZE<2:0> DOZEN FRCDIV<2:0> PLLPOST<1:0> — PLLPRE<4::0> 0040 PLLFBD 0746 — — — — — — — PLLDIV<8:0> 0030 OSCTUN 0748 — — — — — — — — — — TUN<5:0> 0000 Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note 1: RCON register Reset values dependent on type of Reset. 2: OSCCON register Reset values dependent on the FOSC Configuration bits and by type of Reset. TABLE 3-33: NVM REGISTER MAP File Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets NVMCON 0760 WR WREN WRERR — — — — — — ERASE — — NVMOP<3:0> 0000 (1) NVMKEY 0766 — — — — — — — — NVMKEY<7:0> 0000 Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note 1: Reset value shown is for POR only. Value on other Reset states is dependent on the state of memory write or erase operations at the time of Reset. TABLE 3-34: PMD REGISTER MAP File Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets PMD1 0770 T5MD T4MD T3MD T2MD T1MD QEIMD PWMMD DCIMD I2C1MD U2MD U1MD SPI2MD SPI1MD C2MD C1MD AD1MD 0000 PMD2 0772 IC8MD IC7MD IC6MD IC5MD IC4MD IC3MD IC2MD IC1MD OC8MD OC7MD OC6MD OC5MD OC4MD OC3MD OC2MD OC1MD 0000 PMD3 0774 T9MD T8MD T7MD T6MD — — — — — — — — — — I2C2MD AD2MD 0000 Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.© 2007 Microchip Technology Inc. Preliminary DS70165E-page 67 dsPIC33F 3.2.7 SOFTWARE STACK In addition to its use as a working register, the W15 register in the dsPIC33F devices is also used as a software Stack Pointer. The Stack Pointer always points to the first available free word and grows from lower to higher addresses. It pre-decrements for stack pops and post-increments for stack pushes, as shown in Figure 3-6. For a PC push during any CALL instruction, the MSb of the PC is zero-extended before the push, ensuring that the MSb is always clear. The Stack Pointer Limit register (SPLIM) associated with the Stack Pointer sets an upper address boundary for the stack. SPLIM is uninitialized at Reset. As is the case for the Stack Pointer, SPLIM<0> is forced to ‘0’ because all stack operations must be word-aligned. Whenever an EA is generated using W15 as a source or destination pointer, the resulting address is compared with the value in SPLIM. If the contents of the Stack Pointer (W15) and the SPLIM register are equal and a push operation is performed, a stack error trap will not occur. The stack error trap will occur on a subsequent push operation. Thus, for example, if it is desirable to cause a stack error trap when the stack grows beyond address 0x2000 in RAM, initialize the SPLIM with the value 0x1FFE. Similarly, a Stack Pointer underflow (stack error) trap is generated when the Stack Pointer address is found to be less than 0x0800. This prevents the stack from interfering with the Special Function Register (SFR) space. A write to the SPLIM register should not be immediately followed by an indirect read operation using W15. FIGURE 3-6: CALL STACK FRAME 3.2.8 DATA RAM PROTECTION FEATURE The dsPIC33F product family supports Data RAM protection features which enable segments of RAM to be protected when used in conjunction with Boot and Secure Code Segment Security. BSRAM (Secure RAM segment for BS) is accessible only from the Boot Segment Flash code when enabled. SSRAM (Secure RAM segment for RAM) is accessible only from the Secure Segment Flash code when enabled. See Table 3-1 for an overview of the BSRAM and SSRAM SFRs. 3.3 Instruction Addressing Modes The addressing modes in Table 3-35 form the basis of the addressing modes optimized to support the specific features of individual instructions. The addressing modes provided in the MAC class of instructions are somewhat different from those in the other instruction types. 3.3.1 FILE REGISTER INSTRUCTIONS Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (Near Data Space). Most file register instructions employ a working register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire data space. 3.3.2 MCU INSTRUCTIONS The 3-operand MCU instructions are of the form: Operand 3 = Operand 1 Operand 2 where Operand 1 is always a working register (i.e., the addressing mode can only be register direct) which is referred to as Wb. Operand 2 can be a W register, fetched from data memory, or a 5-bit literal. The result location can be either a W register or a data memory location. The following addressing modes are supported by MCU instructions: • Register Direct • Register Indirect • Register Indirect Post-Modified • Register Indirect Pre-Modified • 5-bit or 10-bit Literal Note: A PC push during exception processing concatenates the SRL register to the MSb of the PC prior to the push. PC<15:0> 000000000 15 0 W15 (before CALL) W15 (after CALL) Stack Grows Towards Higher Address 0x0000 PC<22:16> POP : [--W15] PUSH : [W15++] Note: Not all instructions support all the addressing modes given above. Individual instructions may support different subsets of these addressing modes.dsPIC33F DS70165E-page 68 Preliminary © 2007 Microchip Technology Inc. TABLE 3-35: FUNDAMENTAL ADDRESSING MODES SUPPORTED 3.3.3 MOVE AND ACCUMULATOR INSTRUCTIONS Move instructions and the DSP accumulator class of instructions provide a greater degree of addressing flexibility than other instructions. In addition to the Addressing modes supported by most MCU instructions, move and accumulator instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode. In summary, the following Addressing modes are supported by move and accumulator instructions: • Register Direct • Register Indirect • Register Indirect Post-modified • Register Indirect Pre-modified • Register Indirect with Register Offset (Indexed) • Register Indirect with Literal Offset • 8-bit Literal • 16-bit Literal 3.3.4 MAC INSTRUCTIONS The dual source operand DSP instructions (CLR, ED, EDAC, MAC, MPY, MPY.N, MOVSAC and MSC), also referred to as MAC instructions, utilize a simplified set of addressing modes to allow the user to effectively manipulate the data pointers through register indirect tables. The 2-source operand prefetch registers must be members of the set {W8, W9, W10, W11}. For data reads, W8 and W9 are always directed to the X RAGU and W10 and W11 will always be directed to the Y AGU. The effective addresses generated (before and after modification) must, therefore, be valid addresses within X data space for W8 and W9 and Y data space for W10 and W11. In summary, the following addressing modes are supported by the MAC class of instructions: • Register Indirect • Register Indirect Post-Modified by 2 • Register Indirect Post-Modified by 4 • Register Indirect Post-Modified by 6 • Register Indirect with Register Offset (Indexed) 3.3.5 OTHER INSTRUCTIONS Besides the various addressing modes outlined above, some instructions use literal constants of various sizes. For example, BRA (branch) instructions use 16-bit signed literals to specify the branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ADD Acc, the source of an operand or result is implied by the opcode itself. Certain operations, such as NOP, do not have any operands. 3.4 Modulo Addressing Modulo Addressing mode is a method of providing an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms. Modulo Addressing can operate in either data or program space (since the data pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the X (which also provides the pointers into program space) and Y data spaces. Modulo Addressing can operate on any W register pointer. However, it is not Addressing Mode Description File Register Direct The address of the file register is specified explicitly. Register Direct The contents of a register are accessed directly. Register Indirect The contents of Wn forms the EA. Register Indirect Post-Modified The contents of Wn forms the EA. Wn is post-modified (incremented or decremented) by a constant value. Register Indirect Pre-Modified Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA. Register Indirect with Register Offset The sum of Wn and Wb forms the EA. Register Indirect with Literal Offset The sum of Wn and a literal forms the EA. Note: For the MOV instructions, the Addressing mode specified in the instruction can differ for the source and destination EA. However, the 4-bit Wb (Register Offset) field is shared between both source and destination (but typically only used by one). Note: Not all instructions support all the Addressing modes given above. Individual instructions may support different subsets of these Addressing modes. Note: Register Indirect with Register Offset Addressing mode is only available for W9 (in X space) and W11 (in Y space).© 2007 Microchip Technology Inc. Preliminary DS70165E-page 69 dsPIC33F advisable to use W14 or W15 for Modulo Addressing since these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively. In general, any particular circular buffer can only be configured to operate in one direction as there are certain restrictions on the buffer start address (for incrementing buffers), or end address (for decrementing buffers), based upon the direction of the buffer. The only exception to the usage restrictions is for buffers which have a power-of-2 length. As these buffers satisfy the start and end address criteria, they may operate in a bidirectional mode (i.e., address boundary checks will be performed on both the lower and upper address boundaries). 3.4.1 START AND END ADDRESS The Modulo Addressing scheme requires that a starting and ending address be specified and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 3-1). The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes). 3.4.2 W ADDRESS REGISTER SELECTION The Modulo and Bit-Reversed Addressing Control register, MODCON<15:0>, contains enable flags as well as a W register field to specify the W Address registers. The XWM and YWM fields select which registers will operate with Modulo Addressing. If XWM = 15, X RAGU and X WAGU Modulo Addressing is disabled. Similarly, if YWM = 15, Y AGU Modulo Addressing is disabled. The X Address Space Pointer W register (XWM), to which Modulo Addressing is to be applied, is stored in MODCON<3:0> (see Table 3-1). Modulo Addressing is enabled for X data space when XWM is set to any value other than ‘15’ and the XMODEN bit is set at MODCON<15>. The Y Address Space Pointer W register (YWM) to which Modulo Addressing is to be applied is stored in MODCON<7:4>. Modulo Addressing is enabled for Y data space when YWM is set to any value other than FIGURE 3-7: MODULO ADDRESSING OPERATION EXAMPLE Note: Y space Modulo Addressing EA calculations assume word sized data (LSb of every EA is always clear). 0x1100 0x1163 Start Addr = 0x1100 End Addr = 0x1163 Length = 0x0032 words Byte Address MOV #0x1100, W0 MOV W0, XMODSRT ;set modulo start address MOV #0x1163, W0 MOV W0, MODEND ;set modulo end address MOV #0x8001, W0 MOV W0, MODCON ;enable W1, X AGU for modulo MOV #0x0000, W0 ;W0 holds buffer fill value MOV #0x1110, W1 ;point W1 to buffer DO AGAIN, #0x31 ;fill the 50 buffer locations MOV W0, [W1++] ;fill the next location AGAIN: INC W0, W0 ;increment the fill valuedsPIC33F DS70165E-page 70 Preliminary © 2007 Microchip Technology Inc. 3.4.3 MODULO ADDRESSING APPLICABILITY Modulo Addressing can be applied to the Effective Address (EA) calculation associated with any W register. It is important to realize that the address boundaries check for addresses less than, or greater than, the upper (for incrementing buffers) and lower (for decrementing buffers) boundary addresses (not just equal to). Address changes may, therefore, jump beyond boundaries and still be adjusted correctly. 3.5 Bit-Reversed Addressing Bit-Reversed Addressing mode is intended to simplify data re-ordering for radix-2 FFT algorithms. It is supported by the X AGU for data writes only. The modifier, which may be a constant value or register contents, is regarded as having its bit order reversed. The address source and destination are kept in normal order. Thus, the only operand requiring reversal is the modifier. 3.5.1 BIT-REVERSED ADDRESSING IMPLEMENTATION Bit-Reversed Addressing mode is enabled when: 1. BWM bits (W register selection) in the MODCON register are any value other than ‘15’ (the stack cannot be accessed using Bit-Reversed Addressing). 2. The BREN bit is set in the XBREV register. 3. The addressing mode used is Register Indirect with Pre-Increment or Post-Increment. If the length of a bit-reversed buffer is M = 2 N bytes, the last ‘N’ bits of the data buffer start address must be zeros. XB<14:0> is the Bit-Reversed Address modifier, or ‘pivot point’, which is typically a constant. In the case of an FFT computation, its value is equal to half of the FFT data buffer size. When enabled, Bit-Reversed Addressing is only executed for Register Indirect with Pre-Increment or Post-Increment Addressing and word sized data writes. It will not function for any other addressing mode or for byte sized data and normal addresses are generated instead. When Bit-Reversed Addressing is active, the W Address Pointer is always added to the address modifier (XB) and the offset associated with the Register Indirect Addressing mode is ignored. In addition, as word sized data is a requirement, the LSb of the EA is ignored (and always clear). If Bit-Reversed Addressing has already been enabled by setting the BREN (XBREV<15>) bit, then a write to the XBREV register should not be immediately followed by an indirect read operation using the W register that has been designated as the bit-reversed pointer. Note: The modulo corrected effective address is written back to the register only when Pre-Modify or Post-Modify Addressing mode is used to compute the effective address. When an address offset (e.g., [W7+W2]) is used, Modulo Address correction is performed but the contents of the register remain unchanged. Note: All bit-reversed EA calculations assume word sized data (LSb of every EA is always clear). The XB value is scaled accordingly to generate compatible (byte) addresses. Note: Modulo Addressing and Bit-Reversed Addressing should not be enabled together. In the event that the user attempts to do so, Bit-Reversed Addressing will assume priority when active for the X WAGU and X WAGU Modulo Addressing will be disabled. However, Modulo Addressing will continue to function in the X RAGU.© 2007 Microchip Technology Inc. Preliminary DS70165E-page 71 dsPIC33F FIGURE 3-8: BIT-REVERSED ADDRESS EXAMPLE TABLE 3-36: BIT-REVERSED ADDRESS SEQUENCE (16-ENTRY) b3 b2 b1 0 b2 b3 b4 0 Bit Locations Swapped Left-to-Right Around Center of Binary Value Bit-Reversed Address XB = 0x0008 for a 16-Word Bit-Reversed Buffer b7 b6 b5 b1 b11 b10 b9 b8 b7 b6 b5 b4 b11 b10 b9 b8 b15 b14 b13 b12 b15 b14 b13 b12 Sequential Address Pivot Point Normal Address Bit-Reversed Address A3 A2 A1 A0 Decimal A3 A2 A1 A0 Decimal 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 8 0 0 1 0 2 0 1 0 0 4 0 0 1 1 3 1 1 0 0 12 0 1 0 0 4 0 0 1 0 2 0 1 0 1 5 1 0 1 0 10 0 1 1 0 6 0 1 1 0 6 0 1 1 1 7 1 1 1 0 14 1 0 0 0 8 0 0 0 1 1 1 0 0 1 9 1 0 0 1 9 1 0 1 0 10 0 1 0 1 5 1 0 1 1 11 1 1 0 1 13 1 1 0 0 12 0 0 1 1 3 1 1 0 1 13 1 0 1 1 11 1 1 1 0 14 0 1 1 1 7 1 1 1 1 15 1 1 1 1 15dsPIC33F DS70165E-page 72 Preliminary © 2007 Microchip Technology Inc. 3.6 Interfacing Program and Data Memory Spaces The dsPIC33F architecture uses a 24-bit wide program space and a 16-bit wide data space. The architecture is also a modified Harvard scheme, meaning that data can also be present in the program space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces. Aside from normal execution, the dsPIC33F architecture provides two methods by which program space can be accessed during operation: • Using table instructions to access individual bytes or words anywhere in the program space • Remapping a portion of the program space into the data space (Program Space Visibility) Table instructions allow an application to read or write to small areas of the program memory. This capability makes the method ideal for accessing data tables that need to be updated from time to time. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look ups from a large table of static data. It can only access the least significant word of the program word. 3.6.1 ADDRESSING PROGRAM SPACE Since the address ranges for the data and program spaces are 16 and 24 bits, respectively, a method is needed to create a 23-bit or 24-bit program address from 16-bit data registers. The solution depends on the interface method to be used. For table operations, the 8-bit Table Page register (TBLPAG) is used to define a 32K word region within the program space. This is concatenated with a 16-bit EA to arrive at a full 24-bit program space address. In this format, the Most Significant bit of TBLPAG is used to determine if the operation occurs in the user memory (TBLPAG<7> = 0) or the configuration memory (TBLPAG<7> = 1). For remapping operations, the 8-bit Program Space Visibility register (PSVPAG) is used to define a 16K word page in the program space. When the Most Significant bit of the EA is ‘1’, PSVPAG is concatenated with the lower 15 bits of the EA to form a 23-bit program space address. Unlike table operations, this limits remapping operations strictly to the user memory area. Table 3-37 and Figure 3-9 show how the program EA is created for table operations and remapping accesses from the data EA. Here, P<23:0> refers to a program space word, whereas D<15:0> refers to a data space word. TABLE 3-37: PROGRAM SPACE ADDRESS CONSTRUCTION Access Type Access Space Program Space Address <23> <22:16> <15> <14:1> <0> Instruction Access (Code Execution) User 0 PC<22:1> 0 0xx xxxx xxxx xxxx xxxx xxx0 TBLRD/TBLWT (Byte/Word Read/Write) User TBLPAG<7:0> Data EA<15:0> 0xxx xxxx xxxx xxxx xxxx xxxx Configuration TBLPAG<7:0> Data EA<15:0> 1xxx xxxx xxxx xxxx xxxx xxxx Program Space Visibility (Block Remap/Read) User 0 PSVPAG<7:0> Data EA<14:0> (1) 0 xxxx xxxx xxx xxxx xxxx xxxx Note 1: Data EA<15> is always ‘1’ in this case, but is not used in calculating the program space address. Bit 15 of the address is PSVPAG<0>.© 2007 Microchip Technology Inc. Preliminary DS70165E-page 73 dsPIC33F FIGURE 3-9: DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION Program Counter 0 23 bits 1 PSVPAG 8 bits EA 15 bits Program Counter (1) Select TBLPAG 8 bits EA 16 bits Byte Select 0 0 1/0 User/Configuration Table Operations (2) Program Space Visibility (1) Space Select 24 bits 23 bits (Remapping) 1/0 0 Note 1: The LSb of program space addresses is always fixed as ‘0’ in order to maintain word alignment of data in the program and data spaces. 2: Table operations are not required to be word-aligned. Table read operations are permitted in the configuration memory space.dsPIC33F DS70165E-page 74 Preliminary © 2007 Microchip Technology Inc. 3.6.2 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program space without going through data space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data. The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to data space addresses. Program memory can thus be regarded as two 16-bit word wide address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space which contains the least significant data word and TBLRDH and TBLWTH access the space which contains the upper data byte. Two table instructions are provided to move byte or word sized (16-bit) data to and from program space. Both function as either byte or word operations. 1. TBLRDL (Table Read Low): In Word mode, it maps the lower word of the program space location (P<15:0>) to a data address (D<15:0>). In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when Byte Select is ‘1’; the lower byte is selected when it is ‘0’. 2. TBLRDH (Table Read High): In Word mode, it maps the entire upper word of a program address (P<23:16>) to a data address. Note that D<15:8>, the ‘phantom byte’, will always be ‘0’. In Byte mode, it maps the upper or lower byte of the program word to D<7:0> of the data address, as above. Note that the data will always be ‘0’ when the upper ‘phantom’ byte is selected (Byte Select = 1). In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are explained in Section 4.0 “Flash Program Memory”. For all table operations, the area of program memory space to be accessed is determined by the Table Page register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space. FIGURE 3-10: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS 23 16 8 0 00000000 00000000 00000000 00000000 ‘Phantom’ Byte TBLRDH.B (Wn<0> = 0) TBLRDL.W TBLRDL.B (Wn<0> = 1) TBLRDL.B (Wn<0> = 0) 23 15 0 TBLPAG 02 0x000000 0x800000 0x020000 0x030000 Program Space The address for the table operation is determined by the data EA within the page defined by the TBLPAG register. Only read operations are shown; write operations are also valid in the user memory area.© 2007 Microchip Technology Inc. Preliminary DS70165E-page 75 dsPIC33F 3.6.3 READING DATA FROM PROGRAM MEMORY USING PROGRAM SPACE VISIBILITY The upper 32 Kbytes of data space may optionally be mapped into any 16K word page of the program space. This option provides transparent access of stored constant data from the data space without the need to use special instructions (i.e., TBLRDL/H). Program space access through the data space occurs if the Most Significant bit of the data space EA is ‘1’ and program space visibility is enabled by setting the PSV bit in the Core Control register (CORCON<2>). The location of the program memory space to be mapped into the data space is determined by the Program Space Visibility Page register (PSVPAG). This 8-bit register defines any one of 256 possible pages of 16K words in program space. In effect, PSVPAG functions as the upper 8 bits of the program memory address, with the 15 bits of the EA functioning as the lower bits. Note that by incrementing the PC by 2 for each program memory word, the lower 15 bits of data space addresses directly map to the lower 15 bits in the corresponding program space addresses. Data reads to this area add an additional cycle to the instruction being executed, since two program memory fetches are required. Although each data space address, 8000h and higher, maps directly into a corresponding program memory address (see Figure 3-11), only the lower 16 bits of the 24-bit program word are used to contain the data. The upper 8 bits of any program space location used as data should be programmed with ‘1111 1111’ or ‘0000 0000’ to force a NOP. This prevents possible issues should the area of code ever be accidentally executed. For operations that use PSV and are executed outside a REPEAT loop, the MOV and MOV.D instructions require one instruction cycle in addition to the specified execution time. All other instructions require two instruction cycles in addition to the specified execution time. For operations that use PSV, which are executed inside a REPEAT loop, there will be some instances that require two instruction cycles in addition to the specified execution time of the instruction: • Execution in the first iteration • Execution in the last iteration • Execution prior to exiting the loop due to an interrupt • Execution upon re-entering the loop after an interrupt is serviced Any other iteration of the REPEAT loop will allow the instruction accessing data, using PSV, to execute in a single cycle. FIGURE 3-11: PROGRAM SPACE VISIBILITY OPERATION Note: PSV access is temporarily disabled during table reads/writes. PSVPAG 23 15 0 Program Space Data Space 0x0000 0x8000 0xFFFF 02 0x000000 0x800000 0x010000 0x018000 When CORCON<2> = 1 and EA<15> = 1: The data in the page designated by PSVPAG is mapped into the upper half of the data memory space... Data EA<14:0> ...while the lower 15 bits of the EA specify an exact address within the PSV area. This corresponds exactly to the same lower 15 bits of the actual program space address. PSV AreadsPIC33F DS70165E-page 76 Preliminary © 2007 Microchip Technology Inc. NOTES:© 2007 Microchip Technology Inc. Preliminary DS70165E-page 77 dsPIC33F 4.0 FLASH PROGRAM MEMORY The dsPIC33F devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range. Flash memory can be programmed in two ways: 1. In-Circuit Serial Programming™ (ICSP™) programming capability 2. Run-Time Self-Programming (RTSP) ICSP allows a dsPIC33F device to be serially programmed while in the end application circuit. This is simply done with two lines for programming clock and programming data (one of the alternate programming pin pairs: PGC1/PGD1, PGC2/PGD2 or PGC3/PGD3), and three other lines for power (VDD), ground (VSS) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the digital signal controller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed. RTSP is accomplished using TBLRD (table read) and TBLWT (table write) instructions. With RTSP, the user can write program memory data either in blocks or ‘rows’ of 64 instructions (192 bytes) at a time or a single program memory word, and erase program memory in blocks or ‘pages’ of 512 instructions (1536 bytes) at a time. 4.1 Table Instructions and Flash Programming Regardless of the method used, all programming of Flash memory is done with the table read and table write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits<7:0> of the TBLPAG register and the Effective Address (EA) from a W register specified in the table instruction, as shown in Figure 4-1. The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes. The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode. FIGURE 4-1: ADDRESSING FOR TABLE REGISTERS Note: This data sheet summarizes the features of this group of dsPIC33F devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the “dsPIC30F Family Reference Manual” (DS70046). Program Counter 0 24 bits Program Counter TBLPAG Reg 8 bits Working Reg EA 16 bits Byte 24-bit EA 0 1/0 Select Using Table Instruction Using User/Configuration Space SelectdsPIC33F DS70165E-page 78 Preliminary © 2007 Microchip Technology Inc. 4.2 RTSP Operation The dsPIC33F Flash program memory array is organized into rows of 64 instructions or 192 bytes. RTSP allows the user to erase a page of memory, which consists of eight rows (512 instructions) at a time, and to program one row or one word at a time. Table 26-11, DC Characteristics: Program Memory shows typical erase and programming times. The 8- row erase pages and single row write rows are edgealigned, from the beginning of program memory, on boundaries of 1536 bytes and 192 bytes, respectively. The program memory implements holding buffers that can contain 64 instructions of programming data. Prior to the actual programming operation, the write data must be loaded into the buffers in sequential order. The instruction words loaded must always be from a group of 64 boundary. The basic sequence for RTSP programming is to set up a Table Pointer, then do a series of TBLWT instructions to load the buffers. Programming is performed by setting the control bits in the NVMCON register. A total of 64 TBLWTL and TBLWTH instructions are required to load the instructions. All of the table write operations are single-word writes (two instruction cycles) because only the buffers are written. A programming cycle is required for programming each row. 4.3 Control Registers There are two SFRs used to read and write the program Flash memory: NVMCON and NVMKEY. The NVMCON register (Register 4-1) controls which blocks are to be erased, which memory type is to be programmed and the start of the programming cycle. NVMKEY is a write-only register that is used for write protection. To start a programming or erase sequence, the user must consecutively write 55h and AAh to the NVMKEY register. Refer to Section 4.4 “Programming Operations” for further details. 4.4 Programming Operations A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. A programming operation is nominally 4 ms in duration and the processor stalls (waits) until the operation is finished. Setting the WR bit (NVMCON<15>) starts the operation, and the WR bit is automatically cleared when the operation is finished.© 2007 Microchip Technology Inc. Preliminary DS70165E-page 79 dsPIC33F REGISTER 4-1: NVMCON: FLASH MEMORY CONTROL REGISTER R/SO-0 (1) R/W-0 (1) R/W-0 (1) U-0 U-0 U-0 U-0 U-0 WR WREN WRERR — — — — — bit 15 bit 8 U-0 R/W-0 (1) U-0 U-0 R/W-0 (1) R/W-0 (1) R/W-0 (1) R/W-0 (1) — ERASE — — NVMOP<3:0> (2) bit 7 bit 0 Legend: SO = Satiable only bit R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 WR: Write Control bit 1 = Initiates a Flash memory program or erase operation. The operation is self-timed and the bit is cleared by hardware once operation is complete. 0 = Program or erase operation is complete and inactive bit 14 WREN: Write Enable bit 1 = Enable Flash program/erase operations 0 = Inhibit Flash program/erase operations bit 13 WRERR: Write Sequence Error Flag bit 1 = An improper program or erase sequence attempt or termination has occurred (bit is set automatically on any set attempt of the WR bit) 0 = The program or erase operation completed normally bit 12-7 Unimplemented: Read as ‘0’ bit 6 ERASE: Erase/Program Enable bit 1 = Perform the erase operation specified by NVMOP<3:0> on the next WR command 0 = Perform the program operation specified by NVMOP<3:0> on the next WR command bit 5-4 Unimplemented: Read as ‘0’ bit 3-0 NVMOP<3:0>: NVM Operation Select bits (2) 1111 = Memory bulk erase operation (ERASE = 1) or no operation (ERASE = 0) 1110 = Reserved 1101 = Erase General Segment and FGS Configuration register (ERASE = 1) or no operation (ERASE = 0) 1100 = Erase Secure Segment and FSS Configuration register (ERASE = 1) or no operation (ERASE = 0) 1011 = Reserved 0011 = Memory word program operation (ERASE = 0) or no operation (ERASE = 1) 0010 = Memory page erase operation (ERASE = 1) or no operation (ERASE = 0) 0001 = Memory row program operation (ERASE = 0) or no operation (ERASE = 1) 0000 = Program or erase a single Configuration register byte Note 1: These bits can only be reset on POR. 2: All other combinations of NVMOP<3:0> are unimplemented.dsPIC33F DS70165E-page 80 Preliminary © 2007 Microchip Technology Inc. 4.4.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY The user can program one row of program Flash memory at a time. To do this, it is necessary to erase the 8-row erase page that contains the desired row. The general process is: 1. Read eight rows of program memory (512 instructions) and store in data RAM. 2. Update the program data in RAM with the desired new data. 3. Erase the block (see Example 4-1): a) Set the NVMOP bits (NVMCON<3:0>) to ‘0010’ to configure for block erase. Set the ERASE (NVMCON<6>) and WREN (NVMCON<14>) bits. b) Write the starting address of the page to be erased into the TBLPAG and W registers. c) Write 55h to NVMKEY. d) Write AAh to NVMKEY. e) Set the WR bit (NVMCON<15>). The erase cycle begins and the CPU stalls for the duration of the erase cycle. When the erase is done, the WR bit is cleared automatically. 4. Write the first 64 instructions from data RAM into the program memory buffers (see Example 4-2). 5. Write the program block to Flash memory: a) Set the NVMOP bits to ‘0001’ to configure for row programming. Clear the ERASE bit and set the WREN bit. b) Write 55h to NVMKEY. c) Write AAh to NVMKEY. d) Set the WR bit. The programming cycle begins and the CPU stalls for the duration of the write cycle. When the write to Flash memory is done, the WR bit is cleared automatically. 6. Repeat steps 4 and 5, using the next available 64 instructions from the block in data RAM by incrementing the value in TBLPAG, until all 512 instructions are written back to Flash memory. For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPs, as shown in Example 4-3. EXAMPLE 4-1: ERASING A PROGRAM MEMORY PAGE ; Set up NVMCON for block erase operation MOV #0x4042, W0 ; MOV W0, NVMCON ; Initialize NVMCON ; Init pointer to row to be ERASED MOV #tblpage(PROG_ADDR), W0 ; MOV W0, TBLPAG ; Initialize PM Page Boundary SFR MOV #tbloffset(PROG_ADDR), W0 ; Initialize in-page EA[15:0] pointer TBLWTL W0, [W0] ; Set base address of erase block DISI #5 ; Block all interrupts with priority <7 ; for next 5 instructions MOV #0x55, W0 MOV W0, NVMKEY ; Write the 55 key MOV #0xAA, W1 ; MOV W1, NVMKEY ; Write the AA key BSET NVMCON, #WR ; Start the erase sequence NOP ; Insert two NOPs after the erase NOP ; command is asserted© 2007 Microchip Technology Inc. Preliminary DS70165E-page 81 dsPIC33F EXAMPLE 4-2: LOADING THE WRITE BUFFERS EXAMPLE 4-3: INITIATING A PROGRAMMING SEQUENCE ; Set up NVMCON for row programming operations MOV #0x4001, W0 ; MOV W0, NVMCON ; Initialize NVMCON ; Set up a pointer to the first program memory location to be written ; program memory selected, and writes enabled MOV #0x0000, W0 ; MOV W0, TBLPAG ; Initialize PM Page Boundary SFR MOV #0x6000, W0 ; An example program memory address ; Perform the TBLWT instructions to write the latches ; 0th_program_word MOV #LOW_WORD_0, W2 ; MOV #HIGH_BYTE_0, W3 ; TBLWTL W2, [W0] ; Write PM low word into program latch TBLWTH W3, [W0++] ; Write PM high byte into program latch ; 1st_program_word MOV #LOW_WORD_1, W2 ; MOV #HIGH_BYTE_1, W3 ; TBLWTL W2, [W0] ; Write PM low word into program latch TBLWTH W3, [W0++] ; Write PM high byte into program latch ; 2nd_program_word MOV #LOW_WORD_2, W2 ; MOV #HIGH_BYTE_2, W3 ; TBLWTL W2, [W0] ; Write PM low word into program latch TBLWTH W3, [W0++] ; Write PM high byte into program latch • • • ; 63rd_program_word MOV #LOW_WORD_31, W2 ; MOV #HIGH_BYTE_31, W3 ; TBLWTL W2, [W0] ; Write PM low word into program latch TBLWTH W3, [W0++] ; Write PM high byte into program latch DISI #5 ; Block all interrupts with priority <7 ; for next 5 instructions MOV #0x55, W0 MOV W0, NVMKEY ; Write the 55 key MOV #0xAA, W1 ; MOV W1, NVMKEY ; Write the AA key BSET NVMCON, #WR ; Start the erase sequence NOP ; Insert two NOPs after the NOP ; erase command is asserteddsPIC33F DS70165E-page 82 Preliminary © 2007 Microchip Technology Inc. NOTES:© 2007 Microchip Technology Inc. Preliminary DS70165E-page 83 dsPIC33F 5.0 RESETS The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources: • POR: Power-on Reset • BOR: Brown-out Reset • MCLR: Master Clear Pin Reset • SWR: RESET Instruction • WDT: Watchdog Timer Reset • TRAPR: Trap Conflict Reset • IOPUWR: Illegal Opcode and Uninitialized W Register Reset A simplified block diagram of the Reset module is shown in Figure 5-1. Any active source of Reset will make the SYSRST signal active. Many registers associated with the CPU and peripherals are forced to a known Reset state. Most registers are unaffected by a Reset; their status is unknown on POR and unchanged by all other Resets. All types of device Reset will set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 5-1). A POR will clear all bits, except for the POR bit (RCON<0>), that are set. The user can set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur. The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this manual. FIGURE 5-1: RESET SYSTEM BLOCK DIAGRAM Note: This data sheet summarizes the features of this group of dsPIC33F devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the “dsPIC30F Family Reference Manual” (DS70046). Note: Refer to the specific peripheral or CPU section of this manual for register Reset states. Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset will be meaningful. MCLR VDD VDD Rise Detect POR Sleep or Idle RESET Instruction WDT Module Glitch Filter Trap Conflict Illegal Opcode Uninitialized W Register SYSRST Internal Regulator BORdsPIC33F DS70165E-page 84 Preliminary © 2007 Microchip Technology Inc. REGISTER 5-1: RCON: RESET CONTROL REGISTER (1) R/W-0 R/W-0 U-0 U-0 U-0 U-0 U-0 R/W-0 TRAPR IOPUWR — — — — — VREGS bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-1 R/W-1 EXTR SWR SWDTEN (2) WDTO SLEEP IDLE BOR POR bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 TRAPR: Trap Reset Flag bit 1 = A Trap Conflict Reset has occurred 0 = A Trap Conflict Reset has not occurred bit 14 IOPUWR: Illegal Opcode or Uninitialized W Access Reset Flag bit 1 = An illegal opcode detection, an illegal address mode or uninitialized W register used as an Address Pointer caused a Reset 0 = An illegal opcode or uninitialized W Reset has not occurred bit 13-9 Unimplemented: Read as ‘0’ bit 8 VREGS: Voltage Regulator Standby During Sleep bit 1 = Voltage regulator goes into Standby mode during Sleep 0 = Voltage regulator is active during Sleep bit 7 EXTR: External Reset (MCLR) Pin bit 1 = A Master Clear (pin) Reset has occurred 0 = A Master Clear (pin) Reset has not occurred bit 6 SWR: Software Reset (Instruction) Flag bit 1 = A RESET instruction has been executed 0 = A RESET instruction has not been executed bit 5 SWDTEN: Software Enable/Disable of WDT bit (2) 1 = WDT is enabled 0 = WDT is disabled bit 4 WDTO: Watchdog Timer Time-out Flag bit 1 = WDT time-out has occurred 0 = WDT time-out has not occurred bit 3 SLEEP: Wake-up from Sleep Flag bit 1 = Device has been in Sleep mode 0 = Device has not been in Sleep mode bit 2 IDLE: Wake-up from Idle Flag bit 1 = Device was in Idle mode 0 = Device was not in Idle mode bit 1 BOR: Brown-out Reset Flag bit 1 = A Brown-out Reset has occurred 0 = A Brown-out Reset has not occurred Note 1: All of the Reset status bits may be set or cleared in software. Setting one of these bits in software does not cause a device Reset. 2: If the FWDTEN Configuration bit is ‘1’ (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.© 2007 Microchip Technology Inc. Preliminary DS70165E-page 85 dsPIC33F TABLE 5-1: RESET FLAG BIT OPERATION 5.1 Clock Source Selection at Reset If clock switching is enabled, the system clock source at device Reset is chosen, as shown in Table 5-2. If clock switching is disabled, the system clock source is always selected according to the oscillator Configuration bits. Refer to Section 8.0 “Oscillator Configuration” for further details. TABLE 5-2: OSCILLATOR SELECTION vs. TYPE OF RESET (CLOCK SWITCHING ENABLED) 5.2 Device Reset Times The Reset times for various types of device Reset are summarized in Table 5-3. The system Reset signal, SYSRST, is released after the POR and PWRT delay times expire. The time at which the device actually begins to execute code also depends on the system oscillator delays, which include the Oscillator Start-up Timer (OST) and the PLL lock time. The OST and PLL lock times occur in parallel with the applicable SYSRST delay times. The FSCM delay determines the time at which the FSCM begins to monitor the system clock source after the SYSRST signal is released. bit 0 POR: Power-on Reset Flag bit 1 = A Power-up Reset has occurred 0 = A Power-up Reset has not occurred Flag Bit Setting Event Clearing Event TRAPR (RCON<15>) Trap conflict event POR IOPUWR (RCON<14>) Illegal opcode or uninitialized W register access POR EXTR (RCON<7>) MCLR Reset POR SWR (RCON<6>) RESET instruction POR WDTO (RCON<4>) WDT time-out PWRSAV instruction, POR SLEEP (RCON<3>) PWRSAV #SLEEP instruction POR IDLE (RCON<2>) PWRSAV #IDLE instruction POR BOR (RCON<1> BOR — POR (RCON<0>) POR — Note: All Reset flag bits may be set or cleared by the user software. REGISTER 5-1: RCON: RESET CONTROL REGISTER (1) Note 1: All of the Reset status bits may be set or cleared in software. Setting one of these bits in software does not cause a device Reset. 2: If the FWDTEN Configuration bit is ‘1’ (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting. Reset Type Clock Source Determinant POR Oscillator Configuration bits BOR (FNOSC<2:0>) MCLR COSC Control bits WDTR (OSCCON<14:12>) SWRdsPIC33F DS70165E-page 86 Preliminary © 2007 Microchip Technology Inc. TABLE 5-3: RESET DELAY TIMES FOR VARIOUS DEVICE RESETS 5.2.1 POR AND LONG OSCILLATOR START-UP TIMES The oscillator start-up circuitry and its associated delay timers are not linked to the device Reset delays that occur at power-up. Some crystal circuits (especially low-frequency crystals) have a relatively long start-up time. Therefore, one or more of the following conditions is possible after SYSRST is released: • The oscillator circuit has not begun to oscillate. • The Oscillator Start-up Timer has not expired (if a crystal oscillator is used). • The PLL has not achieved a lock (if PLL is used). The device will not begin to execute code until a valid clock source has been released to the system. Therefore, the oscillator and PLL start-up delays must be considered when the Reset delay time must be known. 5.2.2 FAIL-SAFE CLOCK MONITOR (FSCM) AND DEVICE RESETS If the FSCM is enabled, it begins to monitor the system clock source when SYSRST is released. If a valid clock source is not available at this time, the device automatically switches to the FRC oscillator and the user can switch to the desired crystal oscillator in the Trap Service Routine. 5.2.2.1 FSCM Delay for Crystal and PLL Clock Sources When the system clock source is provided by a crystal oscillator and/or the PLL, a small delay, TFSCM, is automatically inserted after the POR and PWRT delay times. The FSCM does not begin to monitor the system clock source until this delay expires. The FSCM delay time is nominally 100 μs and provides additional time for the oscillator and/or PLL to stabilize. In most cases, the FSCM delay prevents an oscillator failure trap at a device Reset when the PWRT is disabled. 5.3 Special Function Register Reset States Most of the Special Function Registers (SFRs) associated with the CPU and peripherals are reset to a particular value at a device Reset. The SFRs are grouped by their peripheral or CPU function and their Reset values are specified in each section of this manual. The Reset value for each SFR does not depend on the type of Reset, with the exception of two registers. The Reset value for the Reset Control register, RCON, depends on the type of device Reset. The Reset value for the Oscillator Control register, OSCCON, depends on the type of Reset and the programmed values of the oscillator Configuration bits in the FOSC Configuration register. Reset Type Clock Source SYSRST Delay System Clock Delay FSCM Delay Notes POR EC, FRC, LPRC TPOR + TSTARTUP + TRST — — 1, 2, 3 ECPLL, FRCPLL TPOR + TSTARTUP + TRST TLOCK TFSCM 1, 2, 3, 5, 6 XT, HS, SOSC TPOR + TSTARTUP + TRST TOST TFSCM 1, 2, 3, 4, 6 XTPLL, HSPLL TPOR + TSTARTUP + TRST TOST + TLOCK TFSCM 1, 2, 3, 4, 5, 6 MCLR Any Clock TRST — — 3 WDT Any Clock TRST — — 3 Software Any Clock TRST — — 3 Illegal Opcode Any Clock TRST — — 3 Uninitialized W Any Clock TRST — — 3 Trap Conflict Any Clock TRST — — 3 Note 1: TPOR = Power-on Reset delay (10 μs nominal). 2: TSTARTUP = Conditional POR delay of 20 μs nominal (if on-chip regulator is enabled) or 64 ms nominal Power-up Timer delay (if regulator is disabled). TSTARTUP is also applied to all returns from powered-down states, including waking from Sleep mode, only if the regulator is enabled. 3: TRST = Internal state Reset time (20 μs nominal). 4: TOST = Oscillator Start-up Timer. A 10-bit counter counts 1024 oscillator periods before releasing the oscillator clock to the system. 5: TLOCK = PLL lock time (20 μs nominal). 6: TFSCM = Fail-Safe Clock Monitor delay (100 μs nominal).© 2007 Microchip Technology Inc. Preliminary DS70165E-page 87 dsPIC33F 6.0 INTERRUPT CONTROLLER The dsPIC33F interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the dsPIC33F CPU. It has the following features: • Up to 8 processor exceptions and software traps • 7 user-selectable priority levels • Interrupt Vector Table (IVT) with up to 118 vectors • A unique vector for each interrupt or exception source • Fixed priority within a specified user priority level • Alternate Interrupt Vector Table (AIVT) for debug support • Fixed interrupt entry and return latencies 6.1 Interrupt Vector Table The Interrupt Vector Table (IVT) is shown in Figure 6-1. The IVT resides in program memory, starting at location 000004h. The IVT contains 126 vectors consisting of 8 nonmaskable trap vectors plus up to 118 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR). Interrupt vectors are prioritized in terms of their natural priority; this priority is linked to their position in the vector table. All other things being equal, lower addresses have a higher natural priority. For example, the interrupt associated with vector 0 will take priority over interrupts at any other vector address. dsPIC33F devices implement up to 67 unique interrupts and 5 nonmaskable traps. These are summarized in Table 6-1 and Table 6-2. 6.1.1 ALTERNATE VECTOR TABLE The Alternate Interrupt Vector Table (AIVT) is located after the IVT, as shown in Figure 6-1. Access to the AIVT is provided by the ALTIVT control bit (INTCON2<15>). If the ALTIVT bit is set, all interrupt and exception processes use the alternate vectors instead of the default vectors. The alternate vectors are organized in the same manner as the default vectors. The AIVT supports debugging by providing a means to switch between an application and a support environment without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications for evaluation of different software algorithms at run time. If the AIVT is not needed, the AIVT should be programmed with the same addresses used in the IVT. 6.2 Reset Sequence A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The dsPIC33F device clears its registers in response to a Reset, which forces the PC to zero. The digital signal controller then begins program execution at location 0x000000. The user programs a GOTO instruction at the Reset address which redirects program execution to the appropriate start-up routine. Note: This data sheet summarizes the features of this group of dsPIC33F devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the “dsPIC30F Family Reference Manual” (DS70046). Note: Any unimplemented or unused vector locations in the IVT and AIVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.dsPIC33F DS70165E-page 88 Preliminary © 2007 Microchip Technology Inc. FIGURE 6-1: dsPIC33F INTERRUPT VECTOR TABLE Reset – GOTO Instruction 0x000000 Reset – GOTO Address 0x000002 Reserved 0x000004 Oscillator Fail Trap Vector Address Error Trap Vector Stack Error Trap Vector Math Error Trap Vector DMA Error Trap Vector Reserved Reserved Interrupt Vector 0 0x000014 Interrupt Vector 1 ~ ~ ~ Interrupt Vector 52 0x00007C Interrupt Vector 53 0x00007E Interrupt Vector 54 0x000080 ~ ~ ~ Interrupt Vector 116 0x0000FC Interrupt Vector 117 0x0000FE Reserved 0x000100 Reserved 0x000102 Reserved Oscillator Fail Trap Vector Address Error Trap Vector Stack Error Trap Vector Math Error Trap Vector DMA Error Trap Vector Reserved Reserved Interrupt Vector 0 0x000114 Interrupt Vector 1 ~ ~ ~ Interrupt Vector 52 0x00017C Interrupt Vector 53 0x00017E Interrupt Vector 54 0x000180 ~ ~ ~ Interrupt Vector 116 Interrupt Vector 117 0x0001FE Start of Code 0x000200 Decreasing Natural Order Priority Interrupt Vector Table (IVT) (1) Alternate Interrupt Vector Table (AIVT) (1) Note 1: See Table 6-1 for the list of implemented interrupt vectors. © 2007 Microchip Technology Inc. Preliminary DS70165E-page 89 dsPIC33F TABLE 6-1: INTERRUPT VECTORS Vector Number Interrupt Request (IRQ) Number IVT Address AIVT Address Interrupt Source 8 0 0x000014 0x000114 INT0 – External Interrupt 0 9 1 0x000016 0x000116 IC1 – Input Compare 1 10 2 0x000018 0x000118 OC1 – Output Compare 1 11 3 0x00001A 0x00011A T1 – Timer1 12 4 0x00001C 0x00011C DMA0 – DMA Channel 0 13 5 0x00001E 0x00011E IC2 – Input Capture 2 14 6 0x000020 0x000120 OC2 – Output Compare 2 15 7 0x000022 0x000122 T2 – Timer2 16 8 0x000024 0x000124 T3 – Timer3 17 9 0x000026 0x000126 SPI1E – SPI1 Error 18 10 0x000028 0x000128 SPI1 – SPI1 Transfer Done 19 11 0x00002A 0x00012A U1RX – UART1 Receiver 20 12 0x00002C 0x00012C U1TX – UART1 Transmitter 21 13 0x00002E 0x00012E ADC1 – ADC 1 22 14 0x000030 0x000130 DMA1 – DMA Channel 1 23 15 0x000032 0x000132 Reserved 24 16 0x000034 0x000134 SI2C1 – I2C1 Slave Events 25 17 0x000036 0x000136 MI2C1 – I2C1 Master Events 26 18 0x000038 0x000138 Reserved 27 19 0x00003A 0x00013A Change Notification Interrupt 28 20 0x00003C 0x00013C INT1 – External Interrupt 1 29 21 0x00003E 0x00013E ADC2 – ADC 2 30 22 0x000040 0x000140 IC7 – Input Capture 7 31 23 0x000042 0x000142 IC8 – Input Capture 8 32 24 0x000044 0x000144 DMA2 – DMA Channel 2 33 25 0x000046 0x000146 OC3 – Output Compare 3 34 26 0x000048 0x000148 OC4 – Output Compare 4 35 27 0x00004A 0x00014A T4 – Timer4 36 28 0x00004C 0x00014C T5 – Timer5 37 29 0x00004E 0x00014E INT2 – External Interrupt 2 38 30 0x000050 0x000150 U2RX – UART2 Receiver 39 31 0x000052 0x000152 U2TX – UART2 Transmitter 40 32 0x000054 0x000154 SPI2E – SPI2 Error 41 33 0x000056 0x000156 SPI1 – SPI1 Transfer Done 42 34 0x000058 0x000158 C1RX – ECAN1 Receive Data Ready 43 35 0x00005A 0x00015A C1 – ECAN1 Event 44 36 0x00005C 0x00015C DMA3 – DMA Channel 3 45 37 0x00005E 0x00015E IC3 – Input Capture 3 46 38 0x000060 0x000160 IC4 – Input Capture 4 47 39 0x000062 0x000162 IC5 – Input Capture 5 48 40 0x000064 0x000164 IC6 – Input Capture 6 49 41 0x000066 0x000166 OC5 – Output Compare 5 50 42 0x000068 0x000168 OC6 – Output Compare 6 51 43 0x00006A 0x00016A OC7 – Output Compare 7 52 44 0x00006C 0x00016C OC8 – Output Compare 8 53 45 0x00006E 0x00016E ReserveddsPIC33F DS70165E-page 90 Preliminary © 2007 Microchip Technology Inc. TABLE 6-2: TRAP VECTORS 54 46 0x000070 0x000170 DMA4 – DMA Channel 4 55 47 0x000072 0x000172 T6 – Timer6 56 48 0x000074 0x000174 T7 – Timer7 57 49 0x000076 0x000176 SI2C2 – I2C2 Slave Events 58 50 0x000078 0x000178 MI2C2 – I2C2 Master Events 59 51 0x00007A 0x00017A T8 – Timer8 60 52 0x00007C 0x00017C T9 – Timer9 61 53 0x00007E 0x00017E INT3 – External Interrupt 3 62 54 0x000080 0x000180 INT4 – External Interrupt 4 63 55 0x000082 0x000182 C2RX – ECAN2 Receive Data Ready 64 56 0x000084 0x000184 C2 – ECAN2 Event 65 57 0x000086 0x000186 PWM – PWM Period Match 66 58 0x000088 0x000188 QEI – Position Counter Compare 67 59 0x00008A 0x00018A DCIE – DCI Error 68 60 0x00008C 0x00018C DCID – DCI Transfer Done 69 61 0x00008E 0x00018E DMA5 – DMA Channel 5 70 62 0x000090 0x000190 Reserved 71 63 0x000092 0x000192 FLTA – MCPWM Fault A 72 64 0x000094 0x000194 FLTB – MCPWM Fault B 73 65 0x000096 0x000196 U1E – UART1 Error 74 66 0x000098 0x000198 U2E – UART2 Error 75 67 0x00009A 0x00019A Reserved 76 68 0x00009C 0x00019C DMA6 – DMA Channel 6 77 69 0x00009E 0x00019E DMA7 – DMA Channel 7 78 70 0x0000A0 0x0001A0 C1TX – ECAN1 Transmit Data Request 79 71 0x0000A2 0x0001A2 C2TX – ECAN2 Transmit Data Request 80-125 72-117 0x0000A4- 0x0000FE 0x0001A4- 0x0001FE Reserved Vector Number IVT Address AIVT Address Trap Source 0 0x000004 0x000084 Reserved 1 0x000006 0x000086 Oscillator Failure 2 0x000008 0x000088 Address Error 3 0x00000A 0x00008A Stack Error 4 0x00000C 0x00008C Math Error 5 0x00000E 0x00008E DMA Error Trap 6 0x000010 0x000090 Reserved 7 0x000012 0x000092 Reserved TABLE 6-1: INTERRUPT VECTORS (CONTINUED) Vector Number Interrupt Request (IRQ) Number IVT Address AIVT Address Interrupt Source© 2007 Microchip Technology Inc. Preliminary DS70165E-page 91 dsPIC33F 6.3 Interrupt Control and Status Registers dsPIC33F devices implement a total of 30 registers for the interrupt controller: • INTCON1 • INTCON2 • IFS0 through IFS4 • IEC0 through IEC4 • IPC0 through IPC17 • INTTREG Global interrupt control functions are controlled from INTCON1 and INTCON2. INTCON1 contains the Interrupt Nesting Disable (NSTDIS) bit as well as the control and status flags for the processor trap sources. The INTCON2 register controls the external interrupt request signal behavior and the use of the Alternate Interrupt Vector Table. The IFS registers maintain all of the interrupt request flags. Each source of interrupt has a Status bit, which is set by the respective peripherals or external signal and is cleared via software. The IEC registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals. The IPC registers are used to set the interrupt priority level for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels. The INTTREG register contains the associated interrupt vector number and the new CPU interrupt priority level, which are latched into vector number (VECNUM<6:0>) and Interrupt level (ILR<3:0>) bit fields in the INTTREG register. The new interrupt priority level is the priority of the pending interrupt. The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence that they are listed in Table 6-1. For example, the INT0 (External Interrupt 0) is shown as having vector number 8 and a natural order priority of 0. Thus, the INT0IF bit is found in IFS0<0>, the INT0IE bit in IEC0<0>, and the INT0IP bits in the first position of IPC0 (IPC0<2:0>). Although they are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality. The CPU STATUS register, SR, contains the IPL<2:0> bits (SR<7:5>). These bits indicate the current CPU interrupt priority level. The user can change the current CPU priority level by writing to the IPL bits. The CORCON register contains the IPL3 bit which, together with IPL<2:0>, also indicates the current CPU priority level. IPL3 is a read-only bit so that trap events cannot be masked by the user software. All Interrupt registers are described in Register 6-1 through Register 6-32, in the following pages. dsPIC33F DS70165E-page 92 Preliminary © 2007 Microchip Technology Inc. REGISTER 6-1: SR: CPU STATUS REGISTER (1) R-0 R-0 R/C-0 R/C-0 R-0 R/C-0 R -0 R/W-0 OA OB SA SB OAB SAB DA DC bit 15 bit 8 R/W-0 (3) R/W-0 (3) R/W-0 (3) R-0 R/W-0 R/W-0 R/W-0 R/W-0 IPL2 (2) IPL1 (2) IPL0 (2) RA N OV Z C bit 7 bit 0 Legend: C = Clear only bit R = Readable bit U = Unimplemented bit, read as ‘0’ S = Set only bit W = Writable bit -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits (1) 111 = CPU Interrupt Priority Level is 7 (15), user interrupts disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9) 000 = CPU Interrupt Priority Level is 0 (8) Note 1: For complete register details, see Register 2-1: “SR: CPU STATUS Register”. 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1. 3: The IPL<2:0> Status bits are read-only when NSTDIS (INTCON1<15>) = 1. REGISTER 6-2: CORCON: CORE CONTROL REGISTER (1) U-0 U-0 U-0 R/W-0 R/W-0 R-0 R-0 R-0 — — — US EDT DL<2:0> bit 15 bit 8 R/W-0 R/W-0 R/W-1 R/W-0 R/C-0 R/W-0 R/W-0 R/W-0 SATA SATB SATDW ACCSAT IPL3 (2) PSV RND IF bit 7 bit 0 Legend: C = Clear only bit R = Readable bit W = Writable bit -n = Value at POR ‘1’ = Bit is set 0’ = Bit is cleared ‘x = Bit is unknown U = Unimplemented bit, read as ‘0’ bit 3 IPL3: CPU Interrupt Priority Level Status bit 3 (2) 1 = CPU interrupt priority level is greater than 7 0 = CPU interrupt priority level is 7 or less Note 1: For complete register details, see Register 2-2: “CORCON: CORE Control Register”. 2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.© 2007 Microchip Technology Inc. Preliminary DS70165E-page 93 dsPIC33F REGISTER 6-3: INTCON1: INTERRUPT CONTROL REGISTER 1 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 NSTDIS OVAERR OVBERR COVAERR COVBERR OVATE OVBTE COVTE bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 U-0 SFTACERR DIV0ERR DMACERR MATHERR ADDRERR STKERR OSCFAIL — bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 NSTDIS: Interrupt Nesting Disable bit 1 = Interrupt nesting is disabled 0 = Interrupt nesting is enabled bit 14 OVAERR: Accumulator A Overflow Trap Flag bit 1 = Trap was caused by overflow of Accumulator A 0 = Trap was not caused by overflow of Accumulator A bit 13 OVBERR: Accumulator B Overflow Trap Flag bit 1 = Trap was caused by overflow of Accumulator B 0 = Trap was not caused by overflow of Accumulator B bit 12 COVAERR: Accumulator A Catastrophic Overflow Trap Enable bit 1 = Trap was caused by catastrophic overflow of Accumulator A 0 = Trap was not caused by catastrophic overflow of Accumulator A bit 11 COVBERR: Accumulator B Catastrophic Overflow Trap Enable bit 1 = Trap was caused by catastrophic overflow of Accumulator B 0 = Trap was not caused by catastrophic overflow of Accumulator B bit 10 OVATE: Accumulator A Overflow Trap Enable bit 1 = Trap overflow of Accumulator A 0 = Trap disabled bit 9 OVBTE: Accumulator B Overflow Trap Enable bit 1 = Trap overflow of Accumulator B 0 = Trap disabled bit 8 COVTE: Catastrophic Overflow Trap Enable bit 1 = Trap on catastrophic overflow of Accumulator A or B enabled 0 = Trap disabled bit 7 SFTACERR: Shift Accumulator Error Status bit 1 = Math error trap was caused by an invalid accumulator shift 0 = Math error trap was not caused by an invalid accumulator shift bit 6 DIV0ERR: Arithmetic Error Status bit 1 = Math error trap was caused by a divide by zero 0 = Math error trap was not caused by a divide by zero bit 5 DMACERR: DMA Controller Error Status bit 1 = DMA controller error trap has occurred 0 = DMA controller error trap has not occurred bit 4 MATHERR: Arithmetic Error Status bit 1 = Math error trap has occurred 0 = Math error trap has not occurreddsPIC33F DS70165E-page 94 Preliminary © 2007 Microchip Technology Inc. bit 3 ADDRERR: Address Error Trap Status bit 1 = Address error trap has occurred 0 = Address error trap has not occurred bit 2 STKERR: Stack Error Trap Status bit 1 = Stack error trap has occurred 0 = Stack error trap has not occurred bit 1 OSCFAIL: Oscillator Failure Trap Status bit 1 = Oscillator failure trap has occurred 0 = Oscillator failure trap has not occurred bit 0 Unimplemented: Read as ‘0’ REGISTER 6-3: INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)© 2007 Microchip Technology Inc. Preliminary DS70165E-page 95 dsPIC33F REGISTER 6-4: INTCON2: INTERRUPT CONTROL REGISTER 2 R/W-0 R-0 U-0 U-0 U-0 U-0 U-0 U-0 ALTIVT DISI — — — — — — bit 15 bit 8 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 — — — INT4EP INT3EP INT2EP INT1EP INT0EP bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 ALTIVT: Enable Alternate Interrupt Vector Table bit 1 = Use alternate vector table 0 = Use standard (default) vector table bit 14 DISI: DISI Instruction Status bit 1 = DISI instruction is active 0 = DISI instruction is not active bit 13-5 Unimplemented: Read as ‘0’ bit 4 INT4EP: External Interrupt 4 Edge Detect Polarity Select bit 1 = Interrupt on negative edge 0 = Interrupt on positive edge bit 3 INT3EP: External Interrupt 3 Edge Detect Polarity Select bit 1 = Interrupt on negative edge 0 = Interrupt on positive edge bit 2 INT2EP: External Interrupt 2 Edge Detect Polarity Select bit 1 = Interrupt on negative edge 0 = Interrupt on positive edge bit 1 INT1EP: External Interrupt 1 Edge Detect Polarity Select bit 1 = Interrupt on negative edge 0 = Interrupt on positive edge bit 0 INT0EP: External Interrupt 0 Edge Detect Polarity Select bit 1 = Interrupt on negative edge 0 = Interrupt on positive edgedsPIC33F DS70165E-page 96 Preliminary © 2007 Microchip Technology Inc. REGISTER 6-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 — DMA1IF AD1IF U1TXIF U1RXIF SPI1IF SPI1EIF T3IF bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 T2IF OC2IF IC2IF DMA01IF T1IF OC1IF IC1IF INT0IF bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as ‘0’ bit 14 DMA1IF: DMA Channel 1 Data Transfer Complete Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 13 AD1IF: ADC1 Conversion Complete Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 12 U1TXIF: UART1 Transmitter Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 11 U1RXIF: UART1 Receiver Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 10 SPI1IF: SPI1 Event Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 9 SPI1EIF: SPI1 Fault Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 8 T3IF: Timer3 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 7 T2IF: Timer2 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 6 OC2IF: Output Compare Channel 2 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 5 IC2IF: Input Capture Channel 2 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 4 DMA0IF: DMA Channel 0 Data Transfer Complete Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 3 T1IF: Timer1 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred© 2007 Microchip Technology Inc. Preliminary DS70165E-page 97 dsPIC33F bit 2 OC1IF: Output Compare Channel 1 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 1 IC1IF: Input Capture Channel 1 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 0 INT0IF: External Interrupt 0 Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred REGISTER 6-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0 (CONTINUED)dsPIC33F DS70165E-page 98 Preliminary © 2007 Microchip Technology Inc. REGISTER 6-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 U2TXIF U2RXIF INT2IF T5IF T4IF OC4IF OC3IF DMA21IF bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 IC8IF IC7IF AD2IF INT1IF CNIF — MI2C1IF SI2C1IF bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 U2TXIF: UART2 Transmitter Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 14 U2RXIF: UART2 Receiver Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 13 INT2IF: External Interrupt 2 Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 12 T5IF: Timer5 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 11 T4IF: Timer4 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 10 OC4IF: Output Compare Channel 4 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 9 OC3IF: Output Compare Channel 3 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 8 DMA2IF: DMA Channel 2 Data Transfer Complete Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 7 IC8IF: Input Capture Channel 8 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 6 IC7IF: Input Capture Channel 7 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 5 AD2IF: ADC2 Conversion Complete Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 4 INT1IF: External Interrupt 1 Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred© 2007 Microchip Technology Inc. Preliminary DS70165E-page 99 dsPIC33F bit 3 CNIF: Input Change Notification Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 2 Unimplemented: Read as ‘0’ bit 1 MI2C1IF: I2C1 Master Events Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 0 SI2C1IF: I2C1 Slave Events Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred REGISTER 6-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1 (CONTINUED)dsPIC33F DS70165E-page 100 Preliminary © 2007 Microchip Technology Inc. REGISTER 6-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2 R/W-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 T6IF DMA4IF — OC8IF OC7IF OC6IF OC5IF IC6IF bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 IC5IF IC4IF IC3IF DMA3IF C1IF C1RXIF SPI2IF SPI2EIF bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 T6IF: Timer6 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 14 DMA4IF: DMA Channel 4 Data Transfer Complete Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 13 Unimplemented: Read as ‘0’ bit 12 OC8IF: Output Compare Channel 8 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 11 OC7IF: Output Compare Channel 7 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 10 OC6IF: Output Compare Channel 6 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 9 OC5IF: Output Compare Channel 5 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 8 IC6IF: Input Capture Channel 6 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 7 IC5IF: Input Capture Channel 5 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 6 IC4IF: Input Capture Channel 4 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 5 IC3IF: Input Capture Channel 3 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 4 DMA3IF: DMA Channel 3 Data Transfer Complete Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 3 C1IF: ECAN1 Event Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred© 2007 Microchip Technology Inc. Preliminary DS70165E-page 101 dsPIC33F bit 2 C1RXIF: ECAN1 Receive Data Ready Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 1 SPI2IF: SPI2 Event Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 0 SPI2EIF: SPI2 Error Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred REGISTER 6-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2 (CONTINUED)dsPIC33F DS70165E-page 102 Preliminary © 2007 Microchip Technology Inc. REGISTER 6-8: IFS3: INTERRUPT FLAG STATUS REGISTER 3 R/W-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 FLTAIF — DMA5IF DCIIF DCIEIF QEIIF PWMIF C2IF bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 C2RXIF INT4IF INT3IF T9IF T8IF MI2C2IF SI2C2IF T7IF bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 FLTAIF: PWM Fault A Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 14 Unimplemented: Read as ‘0’ bit 13 DMA5IF: DMA Channel 5 Data Transfer Complete Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 12 DCIIF: DCI Event Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 11 DCIEIF: DCI Error Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 10 QEIIF: QEI Event Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 9 PWMIF: PWM Error Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 8 C2IF: ECAN2 Event Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 7 C2RXIF: ECAN2 Receive Data Ready Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 6 INT4IF: External Interrupt 4 Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 5 INT3IF: External Interrupt 3 Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 4 T9IF: Timer9 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 3 T8IF: Timer8 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred© 2007 Microchip Technology Inc. Preliminary DS70165E-page 103 dsPIC33F bit 2 MI2C2IF: I2C2 Master Events Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 1 SI2C2IF: I2C2 Slave Events Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 0 T7IF: Timer7 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred REGISTER 6-8: IFS3: INTERRUPT FLAG STATUS REGISTER 3 (CONTINUED)dsPIC33F DS70165E-page 104 Preliminary © 2007 Microchip Technology Inc. REGISTER 6-9: IFS4: INTERRUPT FLAG STATUS REGISTER 4 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 — — — — — — — — bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 C2TXIF C1TXIF DMA7IF DMA6IF — U2EIF U1EIF FLTBIF bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-8 Unimplemented: Read as ‘0’ bit 7 C2TXIF: ECAN2 Transmit Data Request Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 6 C1TXIF: ECAN1 Transmit Data Request Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 5 DMA7IF: DMA Channel 7 Data Transfer Complete Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 4 DMA6IF: DMA Channel 6 Data Transfer Complete Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 3 Unimplemented: Read as ‘0’ bit 2 U2EIF: UART2 Error Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 1 U1EIF: UART1 Error Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 0 FLTBIF: PWM Fault B Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred © 2007 Microchip Technology Inc. Preliminary DS70165E-page 105 dsPIC33F REGISTER 6-10: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 — DMA1IE AD1IE U1TXIE U1RXIE SPI1IE SPI1EIE T3IE bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 T2IE OC2IE IC2IE DMA0IE T1IE OC1IE IC1IE INT0IE bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as ‘0’ bit 14 DMA1IE: DMA Channel 1 Data Transfer Complete Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 13 AD1IE: ADC1 Conversion Complete Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 12 U1TXIE: UART1 Transmitter Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 11 U1RXIE: UART1 Receiver Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 10 SPI1IE: SPI1 Event Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 9 SPI1EIE: SPI1 Error Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 8 T3IE: Timer3 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 7 T2IE: Timer2 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 6 OC2IE: Output Compare Channel 2 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 5 IC2IE: Input Capture Channel 2 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 4 DMA0IE: DMA Channel 0 Data Transfer Complete Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 3 T1IE: Timer1 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enableddsPIC33F DS70165E-page 106 Preliminary © 2007 Microchip Technology Inc. bit 2 OC1IE: Output Compare Channel 1 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 1 IC1IE: Input Capture Channel 1 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 0 INT0IE: External Interrupt 0 Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled REGISTER 6-10: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0 (CONTINUED)© 2007 Microchip Technology Inc. Preliminary DS70165E-page 107 dsPIC33F REGISTER 6-11: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 U2TXIE U2RXIE INT2IE T5IE T4IE OC4IE OC3IE DMA2IE bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 IC8IE IC7IE AD2IE INT1IE CNIE — MI2C1IE SI2C1IE bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 U2TXIE: UART2 Transmitter Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 14 U2RXIE: UART2 Receiver Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 13 INT2IE: External Interrupt 2 Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 12 T5IE: Timer5 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 11 T4IE: Timer4 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 10 OC4IE: Output Compare Channel 4 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 9 OC3IE: Output Compare Channel 3 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 8 DMA2IE: DMA Channel 2 Data Transfer Complete Interrupt Enable bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 7 IC8IE: Input Capture Channel 8 Interrupt Enable bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 6 IC7IE: Input Capture Channel 7 Interrupt Enable bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 5 AD2IE: ADC2 Conversion Complete Interrupt Enable bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 4 INT1IE: External Interrupt 1 Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enableddsPIC33F DS70165E-page 108 Preliminary © 2007 Microchip Technology Inc. bit 3 CNIE: Input Change Notification Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 2 Unimplemented: Read as ‘0’ bit 1 MI2C1IE: I2C1 Master Events Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 0 SI2C1IE: I2C1 Slave Events Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled REGISTER 6-11: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1 (CONTINUED)© 2007 Microchip Technology Inc. Preliminary DS70165E-page 109 dsPIC33F REGISTER 6-12: IEC2: INTERRUPT ENABLE CONTROL REGISTER 2 R/W-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 T6IE DMA4IE — OC8IE OC7IE OC6IE OC5IE IC6IE bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 IC5IE IC4IE IC3IE DMA3IE C1IE C1RXIE SPI2IE SPI2EIE bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 T6IE: Timer6 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 14 DMA4IE: DMA Channel 4 Data Transfer Complete Interrupt Enable bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 13 Unimplemented: Read as ‘0’ bit 12 OC8IE: Output Compare Channel 8 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 11 OC7IE: Output Compare Channel 7 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 10 OC6IE: Output Compare Channel 6 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 9 OC5IE: Output Compare Channel 5 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 8 IC6IE: Input Capture Channel 6 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 7 IC5IE: Input Capture Channel 5 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 6 IC4IE: Input Capture Channel 4 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 5 IC3IE: Input Capture Channel 3 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 4 DMA3IE: DMA Channel 3 Data Transfer Complete Interrupt Enable bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 3 C1IE: ECAN1 Event Interrupt Enable bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurreddsPIC33F DS70165E-page 110 Preliminary © 2007 Microchip Technology Inc. bit 2 C1RXIE: ECAN1 Receive Data Ready Interrupt Enable bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 1 SPI2IE: SPI2 Event Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 0 SPI2EIE: SPI2 Error Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled REGISTER 6-12: IEC2: INTERRUPT ENABLE CONTROL REGISTER 2 (CONTINUED)© 2007 Microchip Technology Inc. Preliminary DS70165E-page 111 dsPIC33F REGISTER 6-13: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3 R/W-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 FLTAIE — DMA5IE DCIIE DCIEIE QEIIE PWMIE C2IE bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 C2RXIE INT4IE INT3IE T9IE T8IE MI2C2IE SI2C2IE T7IE bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 FLTAIE: PWM Fault A Interrupt Enable bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 14 Unimplemented: Read as ‘0’ bit 13 DMA5IE: DMA Channel 5 Data Transfer Complete Interrupt Enable bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 12 DCIIE: DCI Event Interrupt Enable bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 11 DCIEIE: DCI Error Interrupt Enable bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 10 QEIIE: QEI Event Interrupt Enable bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 9 PWMIE: PWM Error Interrupt Enable bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 8 C2IE: ECAN2 Event Interrupt Enable bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 7 C2RXIE: ECAN2 Receive Data Ready Interrupt Enable bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 6 INT4IE: External Interrupt 4 Enable bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 5 INT3IE: External Interrupt 3 Enable bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 4 T9IE: Timer9 Interrupt Enable bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 3 T8IE: Timer8 Interrupt Enable bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurreddsPIC33F DS70165E-page 112 Preliminary © 2007 Microchip Technology Inc. bit 2 MI2C2IE: I2C2 Master Events Interrupt Enable bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 1 SI2C2IE: I2C2 Slave Events Interrupt Enable bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 0 T7IE: Timer7 Interrupt Enable bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred REGISTER 6-13: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3 (CONTINUED)© 2007 Microchip Technology Inc. Preliminary DS70165E-page 113 dsPIC33F REGISTER 6-14: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 — — — — — — — — bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 C2TXIE C1TXIE DMA7IE DMA6IE — U2EIE U1EIE FLTBIE bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-8 Unimplemented: Read as ‘0’ bit 7 C2TXIE: ECAN2 Transmit Data Request Interrupt Enable bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 6 C1TXIE: ECAN1 Transmit Data Request Interrupt Enable bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 5 DMA7IE: DMA Channel 7 Data Transfer Complete Enable Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 4 DMA6IE: DMA Channel 6 Data Transfer Complete Enable Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 3 Unimplemented: Read as ‘0’ bit 2 U2EIE: UART2 Error Interrupt Enable bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 1 U1EIE: UART1 Error Interrupt Enable bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 0 FLTBIE: PWM Fault B Interrupt Enable bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurreddsPIC33F DS70165E-page 114 Preliminary © 2007 Microchip Technology Inc. REGISTER 6-15: IPC0: INTERRUPT PRIORITY CONTROL REGISTER 0 U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0 — T1IP<2:0> — OC1IP<2:0> bit 15 bit 8 U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0 — IC1IP<2:0> — INT0IP<2:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as ‘0’ bit 14-12 T1IP<2:0>: Timer1 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 11 Unimplemented: Read as ‘0’ bit 10-8 OC1IP<2:0>: Output Compare Channel 1 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 7 Unimplemented: Read as ‘0’ bit 6-4 IC1IP<2:0>: Input Capture Channel 1 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 3 Unimplemented: Read as ‘0’ bit 2-0 INT0IP<2:0>: External Interrupt 0 Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled© 2007 Microchip Technology Inc. Preliminary DS70165E-page 115 dsPIC33F REGISTER 6-16: IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1 U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0 — T2IP<2:0> — OC2IP<2:0> bit 15 bit 8 U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0 — IC2IP<2:0> — DMA0IP<2:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as ‘0’ bit 14-12 T2IP<2:0>: Timer2 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 11 Unimplemented: Read as ‘0’ bit 10-8 OC2IP<2:0>: Output Compare Channel 2 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 7 Unimplemented: Read as ‘0’ bit 6-4 IC2IP<2:0>: Input Capture Channel 2 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 3 Unimplemented: Read as ‘0’ bit 2-0 DMA0IP<2:0>: DMA Channel 0 Data Transfer Complete Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disableddsPIC33F DS70165E-page 116 Preliminary © 2007 Microchip Technology Inc. REGISTER 6-17: IPC2: INTERRUPT PRIORITY CONTROL REGISTER 2 U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0 — U1RXIP<2:0> — SPI1IP<2:0> bit 15 bit 8 U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0 — SPI1EIP<2:0> — T3IP<2:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as ‘0’ bit 14-12 U1RXIP<2:0>: UART1 Receiver Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 11 Unimplemented: Read as ‘0’ bit 10-8 SPI1IP<2:0>: SPI1 Event Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 7 Unimplemented: Read as ‘0’ bit 6-4 SPI1EIP<2:0>: SPI1 Error Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 3 Unimplemented: Read as ‘0’ bit 2-0 T3IP<2:0>: Timer3 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled© 2007 Microchip Technology Inc. Preliminary DS70165E-page 117 dsPIC33F REGISTER 6-18: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3 U-0 U-0 U-0 U-0 U-0 R/W-1 R/W-0 R/W-0 — — — — — DMA1IP<2:0> bit 15 bit 8 U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0 — AD1IP<2:0> — U1TXIP<2:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-11 Unimplemented: Read as ‘0’ bit 10-8 DMA1IP<2:0>: DMA Channel 1 Data Transfer Complete Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 7 Unimplemented: Read as ‘0’ bit 6-4 AD1IP<2:0>: ADC1 Conversion Complete Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 3 Unimplemented: Read as ‘0’ bit 2-0 U1TXIP<2:0>: UART1 Transmitter Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disableddsPIC33F DS70165E-page 118 Preliminary © 2007 Microchip Technology Inc. REGISTER 6-19: IPC4: INTERRUPT PRIORITY CONTROL REGISTER 4 U-0 R/W-1 R/W-0 R/W-0 U-0 U-0 U-0 U-0 — CNIP<2:0> — — — — bit 15 bit 8 U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0 — MI2C1IP<2:0> — SI2C1IP<2:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as ‘0’ bit 14-12 CNIP<2:0>: Change Notification Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 11-7 Unimplemented: Read as ‘0’ bit 6-4 MI2C1IP<2:0>: I2C1 Master Events Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 3 Unimplemented: Read as ‘0’ bit 2-0 SI2C1IP<2:0>: I2C1 Slave Events Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled© 2007 Microchip Technology Inc. Preliminary DS70165E-page 119 dsPIC33F REGISTER 6-20: IPC5: INTERRUPT PRIORITY CONTROL REGISTER 5 U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0 — IC8IP<2:0> — IC7IP<2:0> bit 15 bit 8 U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0 — AD2IP<2:0> — INT1IP<2:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as ‘0’ bit 14-12 IC8IP<2:0>: Input Capture Channel 8 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 11 Unimplemented: Read as ‘0’ bit 10-8 IC7IP<2:0>: Input Capture Channel 7 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 7 Unimplemented: Read as ‘0’ bit 6-4 AD2IP<2:0>: ADC2 Conversion Complete Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 3 Unimplemented: Read as ‘0’ bit 2-0 INT1IP<2:0>: External Interrupt 1 Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disableddsPIC33F DS70165E-page 120 Preliminary © 2007 Microchip Technology Inc. REGISTER 6-21: IPC6: INTERRUPT PRIORITY CONTROL REGISTER 6 U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0 — T4IP<2:0> — OC4IP<2:0> bit 15 bit 8 U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0 — OC3IP<2:0> — DMA2IP<2:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as ‘0’ bit 14-12 T4IP<2:0>: Timer4 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 11 Unimplemented: Read as ‘0’ bit 10-8 OC4IP<2:0>: Output Compare Channel 4 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 7 Unimplemented: Read as ‘0’ bit 6-4 OC3IP<2:0>: Output Compare Channel 3 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 3 Unimplemented: Read as ‘0’ bit 2-0 DMA2IP<2:0>: DMA Channel 2 Data Transfer Complete Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled© 2007 Microchip Technology Inc. Preliminary DS70165E-page 121 dsPIC33F REGISTER 6-22: IPC7: INTERRUPT PRIORITY CONTROL REGISTER 7 U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0 — U2TXIP<2:0> — U2RXIP<2:0> bit 15 bit 8 U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0 — INT2IP<2:0> — T5IP<2:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as ‘0’ bit 14-12 U2TXIP<2:0>: UART2 Transmitter Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 11 Unimplemented: Read as ‘0’ bit 10-8 U2RXIP<2:0>: UART2 Receiver Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 7 Unimplemented: Read as ‘0’ bit 6-4 INT2IP<2:0>: External Interrupt 2 Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 3 Unimplemented: Read as ‘0’ bit 2-0 T5IP<2:0>: Timer5 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disableddsPIC33F DS70165E-page 122 Preliminary © 2007 Microchip Technology Inc. REGISTER 6-23: IPC8: INTERRUPT PRIORITY CONTROL REGISTER 8 U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0 — C1IP<2:0> — C1RXIP<2:0> bit 15 bit 8 U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0 — SPI2IP<2:0> — SPI2EIP<2:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as ‘0’ bit 14-12 C1IP<2:0>: ECAN1 Event Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 11 Unimplemented: Read as ‘0’ bit 10-8 C1RXIP<2:0>: ECAN1 Receive Data Ready Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 7 Unimplemented: Read as ‘0’ bit 6-4 SPI2IP<2:0>: SPI2 Event Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 3 Unimplemented: Read as ‘0’ bit 2-0 SPI2EIP<2:0>: SPI2 Error Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled© 2007 Microchip Technology Inc. Preliminary DS70165E-page 123 dsPIC33F REGISTER 6-24: IPC9: INTERRUPT PRIORITY CONTROL REGISTER 9 U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0 — IC5IP<2:0> — IC4IP<2:0> bit 15 bit 8 U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0 — IC3IP<2:0> — DMA3IP<2:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as ‘0’ bit 14-12 IC5IP<2:0>: Input Capture Channel 5 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 11 Unimplemented: Read as ‘0’ bit 10-8 IC4IP<2:0>: Input Capture Channel 4 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 7 Unimplemented: Read as ‘0’ bit 6-4 IC3IP<2:0>: Input Capture Channel 3 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 3 Unimplemented: Read as ‘0’ bit 2-0 DMA3IP<2:0>: DMA Channel 3 Data Transfer Complete Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disableddsPIC33F DS70165E-page 124 Preliminary © 2007 Microchip Technology Inc. REGISTER 6-25: IPC10: INTERRUPT PRIORITY CONTROL REGISTER 10 U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0 — OC7IP<2:0> — OC6IP<2:0> bit 15 bit 8 U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0 — OC5IP<2:0> — IC6IP<2:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as ‘0’ bit 14-12 OC7IP<2:0>: Output Compare Channel 7 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 11 Unimplemented: Read as ‘0’ bit 10-8 OC6IP<2:0>: Output Compare Channel 6 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 7 Unimplemented: Read as ‘0’ bit 6-4 OC5IP<2:0>: Output Compare Channel 5 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 3 Unimplemented: Read as ‘0’ bit 2-0 IC6IP<2:0>: Input Capture Channel 6 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled© 2007 Microchip Technology Inc. Preliminary DS70165E-page 125 dsPIC33F REGISTER 6-26: IPC11: INTERRUPT PRIORITY CONTROL REGISTER 11 U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0 — T6IP<2:0> — DMA4IP<2:0> bit 15 bit 8 U-0 U-0 U-0 U-0 U-0 R/W-1 R/W-0 R/W-0 — — — — — OC8IP<2:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as ‘0’ bit 14-12 T6IP<2:0>: Timer6 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 11 Unimplemented: Read as ‘0’ bit 10-8 DMA4IP<2:0>: DMA Channel 4 Data Transfer Complete Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 7-3 Unimplemented: Read as ‘0’ bit 2-0 OC8IP<2:0>: Output Compare Channel 8 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disableddsPIC33F DS70165E-page 126 Preliminary © 2007 Microchip Technology Inc. REGISTER 6-27: IPC12: INTERRUPT PRIORITY CONTROL REGISTER 12 U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0 — T8IP<2:0> — MI2C2IP<2:0> bit 15 bit 8 U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0 — SI2C2IP<2:0> — T7IP<2:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as ‘0’ bit 14-12 T8IP<2:0>: Timer8 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 11 Unimplemented: Read as ‘0’ bit 10-8 MI2C2IP<2:0>: I2C2 Master Events Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 7 Unimplemented: Read as ‘0’ bit 6-4 SI2C2IP<2:0>: I2C2 Slave Events Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 3 Unimplemented: Read as ‘0’ bit 2-0 T7IP<2:0>: Timer7 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled© 2007 Microchip Technology Inc. Preliminary DS70165E-page 127 dsPIC33F REGISTER 6-28: IPC13: INTERRUPT PRIORITY CONTROL REGISTER 13 U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0 — C2RXIP<2:0> — INT4IP<2:0> bit 15 bit 8 U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0 — INT3IP<2:0> — T9IP<2:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as ‘0’ bit 14-12 C2RXIP<2:0>: ECAN2 Receive Data Ready Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 11 Unimplemented: Read as ‘0’ bit 10-8 INT4IP<2:0>: External Interrupt 4 Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 7 Unimplemented: Read as ‘0’ bit 6-4 INT3IP<2:0>: External Interrupt 3 Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 3 Unimplemented: Read as ‘0’ bit 2-0 T9IP<2:0>: Timer9 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disableddsPIC33F DS70165E-page 128 Preliminary © 2007 Microchip Technology Inc. REGISTER 6-29: IPC14: INTERRUPT PRIORITY CONTROL REGISTER 14 U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0 — DCIEIP<2:0> — QEIIP<2:0> bit 15 bit 8 U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0 — PWMIP<2:0> — C2IP<2:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as ‘0’ bit 14-12 DCIEIP<2:0>: DCI Error Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 11 Unimplemented: Read as ‘0’ bit 10-8 QEIIP<2:0>: QEI Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 7 Unimplemented: Read as ‘0’ bit 6-4 PWMIP<2:0>: PWM Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 3 Unimplemented: Read as ‘0’ bit 2-0 C2IP<2:0>: ECAN2 Event Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled© 2007 Microchip Technology Inc. Preliminary DS70165E-page 129 dsPIC33F REGISTER 6-30: IPC15: INTERRUPT PRIORITY CONTROL REGISTER 15 U-0 R/W-1 R/W-0 R/W-0 U-0 U-0 U-0 U-0 — FLTAIP<2:0> — — — — bit 15 bit 8 U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0 — DMA5IP<2:0> — DCIIP<2:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as ‘0’ bit 14-12 FLTAIP<2:0>: PWM Fault A Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 11-7 Unimplemented: Read as ‘0’ bit 6-4 DMA5IP<2:0>: DMA Channel 5 Data Transfer Complete Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 3 Unimplemented: Read as ‘0’ bit 2-0 DCIIP<2:0>: DCI Event Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disableddsPIC33F DS70165E-page 130 Preliminary © 2007 Microchip Technology Inc. REGISTER 6-31: IPC16: INTERRUPT PRIORITY CONTROL REGISTER 16 U-0 U-0 U-0 U-0 U-0 R/W-1 R/W-0 R/W-0 — — — — — U2EIP<2:0> bit 15 bit 8 U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0 — U1EIP<2:0> — FLTBIP<2:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-11 Unimplemented: Read as ‘0’ bit 10-8 U2EIP<2:0>: UART2 Error Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 7 Unimplemented: Read as ‘0’ bit 6-4 U1EIP<2:0>: UART1 Error Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 3 Unimplemented: Read as ‘0’ bit 2-0 FLTBIP<2:0>: PWM Fault B Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled© 2007 Microchip Technology Inc. Preliminary DS70165E-page 131 dsPIC33F REGISTER 6-32: IPC17: INTERRUPT PRIORITY CONTROL REGISTER 17 U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0 — C2TXIP<2:0> — C1TXIP<2:0> bit 15 bit 8 U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0 — DMA7IP<2:0> — DMA6IP<2:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as ‘0’ bit 14-12 C2TXIP<2:0>: ECAN2 Transmit Data Request Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 11 Unimplemented: Read as ‘0’ bit 10-8 C1TXIP<2:0>: ECAN1 Transmit Data Request Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 7 Unimplemented: Read as ‘0’ bit 6-4 DMA7IP<2:0>: DMA Channel 7 Data Transfer Complete Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 3 Unimplemented: Read as ‘0’ bit 2-0 DMA6IP<2:0>: DMA Channel 6 Data Transfer Complete Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disableddsPIC33F DS70165E-page 132 Preliminary © 2007 Microchip Technology Inc. REGISTER 6-33: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER R-0 R/W-0 U-0 U-0 R-0 R-0 R-0 R-0 — — — — ILR<3:0> bit 15 bit 8 U-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 — VECNUM<6:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-12 Unimplemented: Read as ‘0’ bit 11-8 ILR: New CPU Interrupt Priority Level bits 1111 = CPU Interrupt Priority Level is 15 • • • 0001 = CPU Interrupt Priority Level is 1 0000 = CPU Interrupt Priority Level is 0 bit 7 Unimplemented: Read as ‘0’ bit 6-0 VECNUM: Vector Number of Pending Interrupt bits 0111111 = Interrupt Vector pending is number 135 • • • 0000001 = Interrupt Vector pending is number 9 0000000 = Interrupt Vector pending is number 8© 2007 Microchip Technology Inc. Preliminary DS70165E-page 133 dsPIC33F 6.4 Interrupt Setup Procedures 6.4.1 INITIALIZATION To configure an interrupt source: 1. Set the NSTDIS bit (INTCON1<15>) if nested interrupts are not desired. 2. Select the user-assigned priority level for the interrupt source by writing the control bits in the appropriate IPCx register. The priority level will depend on the specific application and type of interrupt source. If multiple priority levels are not desired, the IPCx register control bits for all enabled interrupt sources may be programmed to the same non-zero value. 3. Clear the interrupt flag status bit associated with the peripheral in the associated IFSx register. 4. Enable the interrupt source by setting the interrupt enable control bit associated with the source in the appropriate IECx register. 6.4.2 INTERRUPT SERVICE ROUTINE The method that is used to declare an ISR and initialize the IVT with the correct vector address will depend on the programming language (i.e., C or assembler) and the language development toolsuite that is used to develop the application. In general, the user must clear the interrupt flag in the appropriate IFSx register for the source of interrupt that the ISR handles. Otherwise, the ISR will be re-entered immediately after exiting the routine. If the ISR is coded in assembly language, it must be terminated using a RETFIE instruction to unstack the saved PC value, SRL value and old CPU priority level. 6.4.3 TRAP SERVICE ROUTINE A Trap Service Routine (TSR) is coded like an ISR, except that the appropriate trap status flag in the INTCON1 register must be cleared to avoid re-entry into the TSR. 6.4.4 INTERRUPT DISABLE All user interrupts can be disabled using the following procedure: 1. Push the current SR value onto the software stack using the PUSH instruction. 2. Force the CPU to priority level 7 by inclusive ORing the value OEh with SRL. To enable user interrupts, the POP instruction may be used to restore the previous SR value. Note that only user interrupts with a priority level of 7 or less can be disabled. Trap sources (level 8-level 15) cannot be disabled. The DISI instruction provides a convenient way to disable interrupts of priority levels 1-6 for a fixed period of time. Level 7 interrupt sources are not disabled by the DISI instruction. Note: At a device Reset, the IPCx registers are initialized, such that all user interrupt sources are assigned to priority level 4.dsPIC33F DS70165E-page 134 Preliminary © 2007 Microchip Technology Inc. NOTES:© 2007 Microchip Technology Inc. Preliminary DS70165E-page 135 dsPIC33F 7.0 DIRECT MEMORY ACCESS (DMA) Direct Memory Access (DMA) is a very efficient mechanism of copying data between peripheral SFRs (e.g., UART Receive register, Input Capture 1 buffer), and buffers or variables stored in RAM, with minimal CPU intervention. The DMA controller can automatically copy entire blocks of data without requiring the user software to read or write the peripheral Special Function Registers (SFRs) every time a peripheral interrupt occurs. The DMA controller uses a dedicated bus for data transfers and therefore, does not steal cycles from the code execution flow of the CPU. To exploit the DMA capability, the corresponding user buffers or variables must be located in DMA RAM. The dsPIC33F peripherals that can utilize DMA are listed in Table 7-1 along with their associated Interrupt Request (IRQ) numbers. TABLE 7-1: PERIPHERALS WITH DMA SUPPORT The DMA controller features eight identical data transfer channels. Each channel has its own set of control and status registers. Each DMA channel can be configured to copy data either from buffers stored in dual port DMA RAM to peripheral SFRs, or from peripheral SFRs to buffers in DMA RAM. The DMA controller supports the following features: • Word or byte sized data transfers. • Transfers from peripheral to DMA RAM or DMA RAM to peripheral. • Indirect Addressing of DMA RAM locations with or without automatic post-increment. • Peripheral Indirect Addressing – In some peripherals, the DMA RAM read/write addresses may be partially derived from the peripheral. • One-Shot Block Transfers – Terminating DMA transfer after one block transfer. • Continuous Block Transfers – Reloading DMA RAM buffer start address after every block transfer is complete. • Ping-Pong Mode – Switching between two DMA RAM start addresses between successive block transfers, thereby filling two buffers alternately. • Automatic or manual initiation of block transfers • Each channel can select from 20 possible sources of data sources or destinations. For each DMA channel, a DMA interrupt request is generated when a block transfer is complete. Alternatively, an interrupt can be generated when half of the block has been filled. Note: This data sheet summarizes the features of this group of dsPIC33F devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the “dsPIC30F Family Reference Manual” (DS70046). Peripheral IRQ Number INT0 0 Input Capture 1 1 Input Capture 2 5 Output Compare 1 2 Output Compare 2 6 Timer2 7 Timer3 8 SPI1 10 SPI2 33 UART1 Reception 11 UART1 Transmission 12 UART2 Reception 30 UART2 Transmission 31 ADC1 13 ADC2 21 DCI 60 ECAN1 Reception 34 ECAN1 Transmission 70 ECAN2 Reception 55 ECAN2 Transmission 71dsPIC33F DS70165E-page 136 Preliminary © 2007 Microchip Technology Inc. FIGURE 7-1: TOP LEVEL SYSTEM ARCHITECTURE USING A DEDICATED TRANSACTION BUS 7.1 DMAC Registers Each DMAC Channel x (x = 0, 1, 2, 3, 4, 5, 6 or 7) contains the following registers: • A 16-bit DMA Channel Control register (DMAxCON) • A 16-bit DMA Channel IRQ Select register (DMAxREQ) • A 16-bit DMA RAM Primary Start Address register (DMAxSTA) • A 16-bit DMA RAM Secondary Start Address register (DMAxSTB) • A 16-bit DMA Peripheral Address register (DMAxPAD) • A 10-bit DMA Transfer Count register (DMAxCNT) An additional pair of status registers, DMACS0 and DMACS1, are common to all DMAC channels. DMACS0 contains the DMA RAM and SFR write collision flags, XWCOLx and PWCOLx, respectively. DMACS1 indicates DMA channel and Ping-Pong mode status. The DMAxCON, DMAxREQ, DMAxPAD and DMAxCNT are all conventional read/write registers. Reads of DMAxSTA or DMAxSTB will read the contents of the DMA RAM Address register. Writes to DMAxSTA or DMAxSTB write to the registers. This allows the user to determine the DMA buffer pointer value (address) at any time. The interrupt flags (DMAxIF) are located in an IFSx register in the interrupt controller. The corresponding interrupt enable control bits (DMAxIE) are located in an IECx register in the interrupt controller, and the corresponding interrupt priority control bits (DMAxIP) are located in an IPCx register in the interrupt controller. 7.2 DMAC Operating Modes Each DMA channel has its own status and control register (DMAxCON) that is used to configure the channel to support the following operating modes: • Word or byte size data transfers • Peripheral to DMA RAM or DMA RAM to peripheral transfers • Post-increment or static DMA RAM address • One-shot or continuous block transfers • Auto-switch between two start addresses after each transfer complete (Ping-Pong mode) • Force a single DMA transfer (Manual mode) Each DMA channel can be independently configured to: • Select from one of 20 DMA request sources • Manually enable or disable the DMA channel • Interrupt the CPU when the transfer is half or fully complete DMA channel interrupts are routed to the interrupt controller module and enabled through associated enable flags. The channel DMA RAM and peripheral write collision Faults are combined into a single DMAC error trap (Level 10) and are not maskable. Each channel has DMA RAM write collision (XWCOLx) and peripheral CPU SRAM DMA RAM CPU Peripheral DS Bus Peripheral 3 DMA Peripheral Non-DMA SRAM X-Bus PORT 1 PORT 2 Peripheral 1 DMA Ready Peripheral 2 DMA Ready Ready Ready DMA DS Bus CPU DMA CPU DMA CPU DMA Peripheral Indirect Address Note: CPU and DMA address buses are not shown for clarity. DMA Control DMA Controller DMA Channels© 2007 Microchip Technology Inc. Preliminary DS70165E-page 137 dsPIC33F write collision (PWCOLx) status bits in a DMAC Status register (DMACS0) to allow the DMAC error trap handler to determine the source of the Fault condition. 7.2.1 BYTE OR WORD TRANSFER Each DMA channel can be configured to transfer words or bytes. As usual, words can only be moved to and from aligned (even) addresses. Bytes can be moved to or from any (legal) address. If the SIZE bit (DMAxCON<14>) is clear, word sized data is transferred. The LSb of the DMA RAM Address register (DMAxSTA or DMAxSTB) is ignored. If Post-Increment Addressing mode is enabled, the DMA RAM Address register is incremented by 2 after every word transfer. If the SIZE bit is set, byte sized data is transferred. If Post-Increment Addressing is enabled, the DMA RAM Address register is incremented by 1 after every byte transfer. 7.2.2 ADDRESSING MODES The DMAC supports Register Indirect and Register Indirect Post-Increment Addressing modes for DMA RAM addresses (source or destination). Each channel can select the DMA RAM Addressing mode independently. The Peripheral SFR is always accessed using Register Indirect Addressing. If the AMODE<1:0> bits (DMAxCON<5:4>) are set to ‘01’, Register Indirect Addressing without Post-Increment is used, which implies that the DMA RAM address remains constant. If the AMODE<1:0> bits are clear, DMA RAM is accessed using Register Indirect Addressing with Post-Increment, which means the DMA RAM address will be incremented after every access Any DMA channel can be configured to operate in Peripheral Indirect Addressing mode by setting the AMODE<1:0> bits to ‘10’. In this mode, the DMA RAM source or destination address is partially derived from the peripheral as well as the DMA Address registers. Each peripheral module has a pre-assigned peripheral indirect address which is logically ORed with the DMA Start Address register to obtain the effective DMA RAM address. The DMA RAM Start Address register value must be aligned to a power-of-two boundary. 7.2.3 DMA TRANSFER DIRECTION Each DMA channel can be configured to transfer data from a peripheral to DMA RAM, or from DMA RAM to a peripheral. If the DIR bit (DMAxCON<13>) is clear, the reads occur from a peripheral SFR (using the DMA Peripheral Address register, DMAxPAD) and the writes are directed to the DMA RAM (using the DMA RAM Address register). If the DIR bit (DMAxCON<13>) is set, the reads occur from the DMA RAM (using the DMA RAM Address register) and the writes are directed to the peripheral (using the DMA Peripheral Address register, DMAxPAD). 7.2.4 NULL DATA PERIPHERAL WRITE MODE If the NULLW bit (DMAxCON<11>) is set, a null data write to the peripheral SFR is performed in addition to a data transfer from the peripheral SFR to DMA RAM (assuming the DIR bit is clear). This mode is most useful in applications in which sequential reception of data is required without any data transmission Note: DMAxCNT value is independent of data transfer size (byte/word). If an address offset is required, a 1-bit left shift of the counter is required to generate the correct offset for (aligned) word transfers. Note: Only the ECAN and ADC modules can use Peripheral Indirect AddressingdsPIC33F DS70165E-page 138 Preliminary © 2007 Microchip Technology Inc. 7.2.5 CONTINUOUS OR ONE-SHOT OPERATION Each DMA channel can be configured for One-Shot or Continuous mode operation. If MODE<0> (DMAxCON<0>) is clear, the channel operates in Continuous mode. When all data has been moved (i.e., buffer end has been detected), the channel is automatically reconfigured for subsequent use. During the last data transfer, the next Effective Address generated will be the original start address (from the selected DMAxSTA or DMAxSTB register). If the HALF bit (DMAxCON<12>) is clear, the transfer complete interrupt flag (DMAxIF) is set. If the HALF bit is set, DMAxIF will not be set at this time and the channel will remain enabled. If MODE<0> is set, the channel operates in One-Shot mode. When all data has been moved (i.e., buffer end has been detected), the channel is automatically disabled. During the last data transfer, no new Effective Address is generated and the DMA RAM Address register retains the last DMA RAM address that was accessed. If the HALF bit is clear, the DMAxIF bit is set. If the HALF bit is set, the DMAxIF will not be set at this time and the channel is automatically disabled. 7.2.6 PING-PONG MODE When the MODE<1> bit (DMAxCON<1>) is set by the user, Ping-Pong mode is enabled. In this mode, successive block transfers alternately select DMAxSTA and DMAxSTB as the DMA RAM start address. In this way, a single DMA channel can be used to support two buffers of the same length in DMA RAM. Using this technique maximizes data throughput by allowing the CPU time to process one buffer while the other is being loaded. 7.2.7 MANUAL TRANSFER MODE A manual DMA request can be created by setting the FORCE bit (DMAxREQ<15>) in software. If already enabled, the corresponding DMA channel executes a single data element transfer rather than a block transfer The FORCE bit is cleared by hardware when the forced DMA transfer is complete and cannot be cleared by the user. Any attempt to set this bit prior to completion of a DMA request that is underway will have no effect. The manual DMA transfer function is a one-time event. The DMA channel always reverts to normal operation (i.e., based on hardware DMA requests) after a forced (manual) transfer. This mode provides the user a straightforward method of initiating a block transfer. For example, using Manual mode to transfer the first data element into a serial peripheral allows subsequent data within the buffer to be moved automatically by the DMAC using a ‘transmit buffer empty’ DMA request. 7.2.8 DMA REQUEST SOURCE SELECTION Each DMA channel can select between one of 128 interrupt sources to be a DMA request for that channel, based on the contents of the IRQSEL<6:0> bits (DMAxREQ<6:0>). The available interrupt sources are device dependent. Please refer to Table 7-1 for IRQ numbers associated with each of the interrupt sources that can generate a DMA transfer. 7.3 DMA Interrupts and Traps Each DMA channel can generate an independent ‘block transfer complete’ (HALF = 0) or ‘half block transfer complete’ (HALF = 1) interrupt. Every DMA channel has its own interrupt vector and therefore, does not use the interrupt vector of the peripheral to which it is assigned. If a peripheral contains multi-word buffers, the buffering function must be disabled in the peripheral in order to use DMA. DMA interrupt requests are only generated by data transfers and not by peripheral error conditions. The DMA controller can also react to peripheral and DMA RAM write collision error conditions through a nonmaskable CPU trap event. A DMA error trap is generated in either of the following Fault conditions: • DMA RAM data write collision between the CPU and a peripheral - This condition occurs when the CPU and a peripheral attempt to write to the same DMA RAM address simultaneously • Peripheral SFR data write collision between the CPU and the DMA controller - This condition occurs when the CPU and the DMA controller attempt to write to the same peripheral SFR simultaneously The channel DMA RAM and peripheral write collision Faults are combined into a single DMAC error trap (Level 10) and are nonmaskable. Each channel has DMA RAM Write Collision (XWCOLx) and Peripheral Write Collision (PWCOLx) status bits in the DMAC Status register (DMACS) to allow the DMAC error trap handler to determine the source of the Fault condition.© 2007 Microchip Technology Inc. Preliminary DS70165E-page 139 dsPIC33F 7.4 DMA Initialization Example The following is a DMA initialization example: EXAMPLE 7-1: DMA SAMPLE INITIALIZATION METHOD // Clear all DMA controller status bits to a known state DMACS0 = 0; // Set up DMA Channel 0: Word mode, Read from Peripheral & Write to DMA; Interrupt when all the data has been moved; Indirect with post-increment; Continuous mode with Ping-Pong Disabled DMA0CON = 0x0000; //Automatic DMA transfer initiation by DMA request; DMA Peripheral IRQ Number set up for ADC1 DMA0REQ = 0x000D; // Set up offset into DMA RAM so that the buffer that collects ADC result data starts at the base of DMA RAM DMA0STA = 0x0000; // DMA0PAD should be loaded with the address of the ADC conversion result register DMA0PAD = (volatile unsigned int) &ADC1BUF0; // DMA transfer of 256 words of data DMA0CNT = 0x0100 ; //Clear the DMA0 Interrupt Flag IFS0bits.DMA0IF = 0; //Enable DMA0 Interrupts IEC0bits.DMA0IE = 1; //Enable the DMA0 Channel DMA0CONbits.CHEN = 1;dsPIC33F DS70165E-page 140 Preliminary © 2007 Microchip Technology Inc. REGISTER 7-1: DMAxCON: DMA CHANNEL x CONTROL REGISTER R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 U-0 U-0 U-0 CHEN SIZE DIR HALF NULLW — — — bit 15 bit 8 U-0 U-0 R/W-0 R/W-0 U-0 U-0 R/W-0 R/W-0 — — AMODE<1:0> — — MODE<1:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 CHEN: Channel Enable bit 1 = Channel enabled 0 = Channel disabled bit 14 SIZE: Data Transfer Size bit 1 = Byte 0 = Word bit 13 DIR: Transfer Direction bit (source/destination bus select) 1 = Read from DMA RAM address, write to peripheral address 0 = Read from peripheral address, write to DMA RAM address bit 12 HALF: Early Block Transfer Complete Interrupt Select bit 1 = Initiate block transfer complete interrupt when half of the data has been moved 0 = Initiate block transfer complete interrupt when all of the data has been moved bit 11 NULLW: Null Data Peripheral Write Mode Select bit 1 = Null data write to peripheral in addition to DMA RAM write (DIR bit must also be clear) 0 = Normal operation bit 10-6 Unimplemented: Read as ‘0’ bit 5-4 AMODE<1:0>: DMA Channel Operating Mode Select bits 11 = Reserved (will act as Peripheral Indirect Addressing mode) 10 = Peripheral Indirect Addressing mode 01 = Register Indirect without Post-Increment mode 00 = Register Indirect with Post-Increment mode bit 3-2 Unimplemented: Read as ‘0’ bit 1-0 MODE<1:0>: DMA Channel Operating Mode Select bits 11 = One-Shot, Ping-Pong modes enabled (one block transfer from/to each DMA RAM buffer) 10 = Continuous, Ping-Pong modes enabled 01 = One-Shot, Ping-Pong modes disabled 00 = Continuous, Ping-Pong modes disabled© 2007 Microchip Technology Inc. Preliminary DS70165E-page 141 dsPIC33F REGISTER 7-2: DMAxREQ: DMA CHANNEL x IRQ SELECT REGISTER R/W-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 FORCE (1) — — — — — — — bit 15 bit 8 U-0 R/W-0 R/W-0 R/W-0 U-0 U-0 R/W-0 R/W-0 — IRQSEL6 (2) IRQSEL5 (2) IRQSEL4 (2) IRQSEL3 (2) IRQSEL2 (2) IRQSEL1 (2) IRQSEL0 (2) bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 FORCE: Force DMA Transfer bit (1) 1 = Force a single DMA transfer (Manual mode) 0 = Automatic DMA transfer initiation by DMA request bit 14-7 Unimplemented: Read as ‘0’ bit 6-0 IRQSEL<6:0>: DMA Peripheral IRQ Number Select bits (2) 0000000-1111111 = DMAIRQ0-DMAIRQ127 selected to be Channel DMAREQ Note 1: The FORCE bit cannot be cleared by the user. The FORCE bit is cleared by hardware when the forced DMA transfer is complete. 2: Please see Table 6-1 for a complete listing of IRQ numbers for all interrupt sources.dsPIC33F DS70165E-page 142 Preliminary © 2007 Microchip Technology Inc. REGISTER 7-3: DMAxSTA: DMA CHANNEL x RAM START ADDRESS REGISTER A (1) R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 STA<15:8> bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 STA<7:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-0 STA<15:0>: Primary DMA RAM Start Address bits (source or destination) Note 1: A read of this address register will return the current contents of the DMA RAM Address register, not the contents written to STA<15:0>. If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided. REGISTER 7-4: DMAxSTB: DMA CHANNEL x RAM START ADDRESS REGISTER B (1) R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 STB<15:8> bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 STB<7:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-0 STB<15:0>: Secondary DMA RAM Start Address bits (source or destination) Note 1: A read of this address register will return the current contents of the DMA RAM Address register, not the contents written to STB<15:0>. If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.© 2007 Microchip Technology Inc. Preliminary DS70165E-page 143 dsPIC33F REGISTER 7-5: DMAxPAD: DMA CHANNEL x PERIPHERAL ADDRESS REGISTER (1) R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 PAD<15:8> bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 PAD<7:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-0 PAD<15:0>: Peripheral Address Register bits Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided. REGISTER 7-6: DMAxCNT: DMA CHANNEL x TRANSFER COUNT REGISTER (1) U-0 U-0 U-0 U-0 U-0 U-0 U-0 R/W-0 — — — — — — — CNT<9:8> (2) bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 CNT<7:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-10 Unimplemented: Read as ‘0’ bit 9-0 CNT<9:0>: DMA Transfer Count Register bits (2) Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided. 2: Number of DMA transfers = CNT<9:0> + 1. dsPIC33F DS70165E-page 144 Preliminary © 2007 Microchip Technology Inc. REGISTER 7-7: DMACS0: DMA CONTROLLER STATUS REGISTER 0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 PWCOL7 PWCOL6 PWCOL5 PWCOL4 PWCOL3 PWCOL2 PWCOL1 PWCOL0 bit 15 bit 8 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 XWCOL7 XWCOL6 XWCOL5 XWCOL4 XWCOL3 XWCOL2 XWCOL1 XWCOL0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 PWCOL7: Channel 7 Peripheral Write Collision Flag bit 1 = Write collision detected 0 = No write collision detected bit 14 PWCOL6: Channel 6 Peripheral Write Collision Flag bit 1 = Write collision detected 0 = No write collision detected bit 13 PWCOL5: Channel 5 Peripheral Write Collision Flag bit 1 = Write collision detected 0 = No write collision detected bit 12 PWCOL4: Channel 4 Peripheral Write Collision Flag bit 1 = Write collision detected 0 = No write collision detected bit 11 PWCOL3: Channel 3 Peripheral Write Collision Flag bit 1 = Write collision detected 0 = No write collision detected bit 10 PWCOL2: Channel 2 Peripheral Write Collision Flag bit 1 = Write collision detected 0 = No write collision detected bit 9 PWCOL1: Channel 1 Peripheral Write Collision Flag bit 1 = Write collision detected 0 = No write collision detected bit 8 PWCOL0: Channel 0 Peripheral Write Collision Flag bit 1 = Write collision detected 0 = No write collision detected bit 7 XWCOL7: Channel 7 DMA RAM Write Collision Flag bit 1 = Write collision detected 0 = No write collision detected bit 6 XWCOL6: Channel 6 DMA RAM Write Collision Flag bit 1 = Write collision detected 0 = No write collision detected bit 5 XWCOL5: Channel 5 DMA RAM Write Collision Flag bit 1 = Write collision detected 0 = No write collision detected bit 4 XWCOL4: Channel 4 DMA RAM Write Collision Flag bit 1 = Write collision detected 0 = No write collision detected© 2007 Microchip Technology Inc. Preliminary DS70165E-page 145 dsPIC33F bit 3 XWCOL3: Channel 3 DMA RAM Write Collision Flag bit 1 = Write collision detected 0 = No write collision detected bit 2 XWCOL2: Channel 2 DMA RAM Write Collision Flag bit 1 = Write collision detected 0 = No write collision detected bit 1 XWCOL1: Channel 1 DMA RAM Write Collision Flag bit 1 = Write collision detected 0 = No write collision detected bit 0 XWCOL0: Channel 0 DMA RAM Write Collision Flag bit 1 = Write collision detected 0 = No write collision detected REGISTER 7-7: DMACS0: DMA CONTROLLER STATUS REGISTER 0 (CONTINUED)dsPIC33F DS70165E-page 146 Preliminary © 2007 Microchip Technology Inc. REGISTER 7-8: DMACS1: DMA CONTROLLER STATUS REGISTER 1 U-0 U-0 U-0 U-0 R-1 R-1 R-1 R-1 — — — — LSTCH<3:0> bit 15 bit 8 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 PPST7 PPST6 PPST5 PPST4 PPST3 PPST2 PPST1 PPST0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-12 Unimplemented: Read as ‘0’ bit 11-8 LSTCH<3:0>: Last DMA Channel Active bits 1111 = No DMA transfer has occurred since system Reset 1110-1000 = Reserved 0111 = Last data transfer was by DMA Channel 7 0110 = Last data transfer was by DMA Channel 6 0101 = Last data transfer was by DMA Channel 5 0100 = Last data transfer was by DMA Channel 4 0011 = Last data transfer was by DMA Channel 3 0010 = Last data transfer was by DMA Channel 2 0001 = Last data transfer was by DMA Channel 1 0000 = Last data transfer was by DMA Channel 0 bit 7 PPST7: Channel 7 Ping-Pong Mode Status Flag bit 1 = DMA7STB register selected 0 = DMA7STA register selected bit 6 PPST6: Channel 6 Ping-Pong Mode Status Flag bit 1 = DMA6STB register selected 0 = DMA6STA register selected bit 5 PPST5: Channel 5 Ping-Pong Mode Status Flag bit 1 = DMA5STB register selected 0 = DMA5STA register selected bit 4 PPST4: Channel 4 Ping-Pong Mode Status Flag bit 1 = DMA4STB register selected 0 = DMA4STA register selected bit 3 PPST3: Channel 3 Ping-Pong Mode Status Flag bit 1 = DMA3STB register selected 0 = DMA3STA register selected bit 2 PPST2: Channel 2 Ping-Pong Mode Status Flag bit 1 = DMA2STB register selected 0 = DMA2STA register selected bit 1 PPST1: Channel 1 Ping-Pong Mode Status Flag bit 1 = DMA1STB register selected 0 = DMA1STA register selected bit 0 PPST0: Channel 0 Ping-Pong Mode Status Flag bit 1 = DMA0STB register selected 0 = DMA0STA register selected© 2007 Microchip Technology Inc. Preliminary DS70165E-page 147 dsPIC33F REGISTER 7-9: DSADR: MOST RECENT DMA RAM ADDRESS R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 DSADR<15:8> bit 15 bit 8 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 DSADR<7:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-0 DSADR<15:0>: Most Recent DMA RAM Address Accessed by DMA Controller bitsdsPIC33F DS70165E-page 148 Preliminary © 2007 Microchip Technology Inc. NOTES:© 2007 Microchip Technology Inc. Preliminary DS70165E-page 149 dsPIC33F 8.0 OSCILLATOR CONFIGURATION The dsPIC33F oscillator system provides: • Various external and internal oscillator options as clock sources • An on-chip PLL to scale the internal operating frequency to the required system clock frequency • The internal FRC oscillator can also be used with the PLL, thereby allowing full-speed operation without any external clock generation hardware • Clock switching between various clock sources • Programmable clock postscaler for system power savings • A Fail-Safe Clock Monitor (FSCM) that detects clock failure and takes fail-safe measures • A Clock Control register (OSCCON) • Nonvolatile Configuration bits for main oscillator selection. A simplified diagram of the oscillator system is shown in Figure 8-1. FIGURE 8-1: dsPIC33F OSCILLATOR SYSTEM DIAGRAM Note: This data sheet summarizes the features of this group of dsPIC33F devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the “dsPIC30F Family Reference Manual” (DS70046). dsPIC33F PLL Secondary Oscillator SOSCEN Enable Oscillator SOSCO SOSCI Clock Source Option for other Modules OSC1 OSC2 Primary Oscillator XTPLL, HSPLL, XT, HS, EC CPU Peripherals /FRCDIIV FRCDIV<2:0> WDT, PWRT FRC FRC, FRCDIVN Oscillator LPRC Oscillator SOSC LPRC /DOZE Clock Control Logic Fail-Safe Clock Monitor DOZE<2:0> ECPLL, FRCPLL Divide By 16 FRCDIV16dsPIC33F DS70165E-page 150 Preliminary © 2007 Microchip Technology Inc. 8.1 CPU Clocking System There are seven system clock options provided by the dsPIC33F: • FRC Oscillator • FRC Oscillator with PLL • Primary (XT, HS or EC) Oscillator • Primary Oscillator with PLL • Secondary (LP) Oscillator • LPRC Oscillator • FRC Oscillator with postscaler 8.1.1 SYSTEM CLOCK SOURCES The FRC (Fast RC) internal oscillator runs at a nominal frequency of 7.37 MHz. The user software can tune the FRC frequency. User software can optionally specify a factor (ranging from 1:2 to 1:256) by which the FRC clock frequency is divided. This factor is selected using the FRCDIV<2:0> (CLKDIV<10:8>) bits. The primary oscillator can use one of the following as its clock source: 1. XT (Crystal): Crystals and ceramic resonators in the range of 3 MHz to 10 MHz. The crystal is connected to the OSC1 and OSC2 pins. 2. HS (High-Speed Crystal): Crystals in the range of 10 MHz to 40 MHz. The crystal is connected to the OSC1 and OSC2 pins. 3. EC (External Clock): External clock signal in the range of 0.8 MHz to 64 MHz. The external clock signal is directly applied to the OSC1 pin. The secondary (LP) oscillator is designed for low power and uses a 32.768 kHz crystal or ceramic resonator. The LP oscillator uses the SOSCI and SOSCO pins. The LPRC (Low-Power RC) internal oscIllator runs at a nominal frequency of 32.768 kHz. It is also used as a reference clock by the Watchdog Timer (WDT) and Fail-Safe Clock Monitor (FSCM). The clock signals generated by the FRC and primary oscillators can be optionally applied to an on-chip Phase Locked Loop (PLL) to provide a wide range of output frequencies for device operation. PLL configuration is described in Section 8.1.3 “PLL Configuration”. 8.1.2 SYSTEM CLOCK SELECTION The oscillator source that is used at a device Power-on Reset event is selected using Configuration bit settings. The oscillator Configuration bit settings are located in the Configuration registers in the program memory. (Refer to Section 23.1 “Configuration Bits” for further details.) The Initial Oscillator Selection Configuration bits, FNOSC<2:0> (FOSCSEL<2:0>), and the Primary Oscillator Mode Select Configuration bits, POSCMD<1:0> (FOSC<1:0>), select the oscillator source that is used at a Power-on Reset. The FRC primary oscillator is the default (unprogrammed) selection. The Configuration bits allow users to choose between twelve different clock modes, shown in Table 8-1. The output of the oscillator (or the output of the PLL if a PLL mode has been selected) FOSC is divided by 2 to generate the device instruction clock (FCY). FCY defines the operating speed of the device, and speeds up to 40 MHz are supported by the dsPIC33F architecture. Instruction execution speed or device operating frequency, FCY, is given by: EQUATION 8-1: DEVICE OPERATING FREQUENCY 8.1.3 PLL CONFIGURATION The primary oscillator and internal FRC oscillator can optionally use an on-chip PLL to obtain higher speeds of operation. The PLL provides a significant amount of flexibility in selecting the device operating speed. A block diagram of the PLL is shown in Figure 8-2. The output of the primary oscillator or FRC, denoted as ‘FIN’, is divided down by a prescale factor (N1) of 2, 3, ... or 33 before being provided to the PLL’s Voltage Controlled Oscillator (VCO). The input to the VCO must be selected to be in the range of 0.8 MHz to 8 MHz. Since the minimum prescale factor is 2, this implies that FIN must be chosen to be in the range of 1.6 MHz to 16 MHz. The prescale factor ‘N1’ is selected using the PLLPRE<4:0> bits (CLKDIV<4:0>). The PLL Feedback Divisor, selected using the PLLDIV<8:0> bits (PLLFBD<8:0>), provides a factor ‘M’, by which the input to the VCO is multiplied. This factor must be selected such that the resulting VCO output frequency is in the range of 100 MHz to 200 MHz. The VCO output is further divided by a postscale factor ‘N2’. This factor is selected using the PLLPOST<1:0> bits (CLKDIV<7:6>). ‘N2’ can be either 2, 4 or 8, and must be selected such that the PLL output frequency (FOSC) is in the range of 12.5 MHz to 80 MHz, which generates device operating speeds of 6.25-40 MIPS. For a primary oscillator or FRC oscillator, output ‘FIN’, the PLL output ‘FOSC’ is given by: EQUATION 8-2: FOSC CALCULATION FCY = FOSC/2 ( ) M N1*N2 FOSC = FIN* © 2007 Microchip Technology Inc. Preliminary DS70165E-page 151 dsPIC33F For example, suppose a 10 MHz crystal is being used, with “XT with PLL” being the selected oscillator mode. If PLLPRE<4:0> = 0, then N1 = 2. This yields a VCO input of 10/2 = 5 MHz, which is within the acceptable range of 0.8-8 MHz. If PLLDIV<8:0> = 0x1E, then M = 32. This yields a VCO output of 5 x 32 = 160 MHz, which is within the 100-200 MHz ranged needed. If PLLPOST<1:0> = 0, then N2 = 2. This provides a Fosc of 160/2 = 80 MHz. The resultant device operating speed is 80/2 = 40 MIPS. EQUATION 8-3: XT WITH PLL MODE EXAMPLE FIGURE 8-2: dsPIC33F PLL BLOCK DIAGRAM TABLE 8-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION FCY = FOSC = 1 ( 10000000*32 ) = 40 MIPS 2 2 2*2 Oscillator Mode Oscillator Source POSCMD<1:0> FNOSC<2:0> Note Fast RC Oscillator with Divide-by-N (FRCDIVN) Internal 11 111 1, 2 Fast RC Oscillator with Divide-by-16 (FRCDIV16) Internal 11 110 1 Low-Power RC Oscillator (LPRC) Internal 11 101 1 Secondary (Timer1) Oscillator (SOSC) Secondary 11 100 1 Primary Oscillator (HS) with PLL (HSPLL) Primary 10 011 Primary Oscillator (XT) with PLL (XTPLL) Primary 01 011 Primary Oscillator (EC) with PLL (ECPLL) Primary 00 011 1 Primary Oscillator (HS) Primary 10 010 Primary Oscillator (XT) Primary 01 010 Primary Oscillator (EC) Primary 00 010 1 Fast RC Oscillator with PLL (FRCPLL) Internal 11 001 1 Fast RC Oscillator (FRC) Internal 11 000 1 Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit. 2: This is the default oscillator mode for an unprogrammed (erased) device. 0.8-8.0 MHz Here 100-200 MHz Here Divide by 2, 4, 8 Divide by 2-513 Divide by 2-33 1.6-16.0 MHz Source (Crystal, External Clock PLLPRE X VCO PLLDIV PLLPOST or Internal RC) Here 12.5-80 MHz Here FOSCdsPIC33F DS70165E-page 152 Preliminary © 2007 Microchip Technology Inc. REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER U-0 R-0 R-0 R-0 U-0 R/W-y R/W-y R/W-y — COSC<2:0> — NOSC<2:0> bit 15 bit 8 R/W-0 U-0 R-0 U-0 R/C-0 U-0 R/W-0 R/W-0 CLKLOCK — LOCK — CF — LPOSCEN OSWEN bit 7 bit 0 Legend: y = Value set from Configuration bits on POR R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as ‘0’ bit 14-12 COSC<2:0>: Current Oscillator Selection bits (read-only) 000 = Fast RC oscillator (FRC) 001 = Fast RC oscillator (FRC) with PLL 010 = Primary oscillator (XT, HS, EC) 011 = Primary oscillator (XT, HS, EC) with PLL 100 = Secondary oscillator (SOSC) 101 = Low-Power RC oscillator (LPRC) 110 = Fast RC oscillator (FRC) with Divide-by-16 111 = Fast RC oscillator (FRC) with Divide-by-n bit 11 Unimplemented: Read as ‘0’ bit 10-8 NOSC<2:0>: New Oscillator Selection bits 000 = Fast RC oscillator (FRC) 001 = Fast RC oscillator (FRC) with PLL 010 = Primary oscillator (XT, HS, EC) 011 = Primary oscillator (XT, HS, EC) with PLL 100 = Secondary oscillator (SOSC) 101 = Low-Power RC oscillator (LPRC) 110 = Fast RC oscillator (FRC) with Divide-by-16 111 = Fast RC oscillator (FRC) with Divide-by-n bit 7 CLKLOCK: Clock Lock Enable bit 1 = If (FCKSM1 = 1), then clock and PLL configurations are locked. If (FCKSM1 = 0), then clock and PLL configurations may be modified. 0 = Clock and PLL selections are not locked, configurations may be modified bit 6 Unimplemented: Read as ‘0’ bit 5 LOCK: PLL Lock Status bit (read-only) 1 = Indicates that PLL is in lock, or PLL start-up timer is satisfied 0 = Indicates that PLL is out of lock, start-up timer is in progress or PLL is disabled bit 4 Unimplemented: Read as ‘0’ bit 3 CF: Clock Fail Detect bit (read/clear by application) 1 = FSCM has detected clock failure 0 = FSCM has not detected clock failure bit 2 Unimplemented: Read as ‘0’ bit 1 LPOSCEN: Secondary (LP) Oscillator Enable bit 1 = Enable secondary oscillator 0 = Disable secondary oscillator bit 0 OSWEN: Oscillator Switch Enable bit 1 = Request oscillator switch to selection specified by NOSC<2:0> bits 0 = Oscillator switch is complete© 2007 Microchip Technology Inc. Preliminary DS70165E-page 153 dsPIC33F REGISTER 8-2: CLKDIV: CLOCK DIVISOR REGISTER R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-1 R/W-0 R/W-0 ROI DOZE<2:0> DOZEN (1) FRCDIV<2:0> bit 15 bit 8 R/W-0 R/W-1 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 PLLPOST<1:0> — PLLPRE<4:0> bit 7 bit 0 Legend: y = Value set from Configuration bits on POR R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 ROI: Recover on Interrupt bit 1 = Interrupts will clear the DOZEN bit and the processor clock/peripheral clock ratio is set to 1:1 0 = Interrupts have no effect on the DOZEN bit bit 14-12 DOZE<2:0>: Processor Clock Reduction Select bits (3) 000 = FCY/1 (default) 001 = FCY/2 010 = FCY/4 011 = FCY/8 100 = FCY/16 101 = FCY/32 110 = FCY/64 111 = FCY/128 bit 11 DOZEN: DOZE Mode Enable bit (1) 1 = DOZE<2:0> field specifies the ratio between the peripheral clocks and the processor clocks 0 = Processor clock/peripheral clock ratio forced to 1:1 bit 10-8 FRCDIV<2:0>: Internal Fast RC Oscillator Postscaler bits 000 = FRC divide by 1 001 = FRC divide by 2 010 = FRC divide by 4 011 = FRC divide by 8 (default) 100 = FRC divide by 16 101 = FRC divide by 32 110 = FRC divide by 64 111 = FRC divide by 256 bit 7-6 PLLPOST<1:0>: PLL VCO Output Divider Select bits (also denoted as ‘N2’, PLL postscaler) (2) 00 = Output/2 01 = Output/4 10 = Reserved (defaults to output/4) 11 = Output/8 bit 5 Unimplemented: Read as ‘0’ bit 4-0 PLLPRE<4:0>: PLL Phase Detector Input Divider bits (also denoted as ‘N1’, PLL prescaler) 00000 = Input/2 00001 = Input/3 • • • 11111 = Input/33 Note 1: This bit is cleared when the ROI bit is set and an interrupt occurs.dsPIC33F DS70165E-page 154 Preliminary © 2007 Microchip Technology Inc. REGISTER 8-3: PLLFBD: PLL FEEDBACK DIVISOR REGISTER U-0 U-0 U-0 U-0 U-0 U-0 U-0 R/W-0 (1) — — — — — — — PLLDIV<8> bit 15 bit 8 R/W-0 R/W-0 R/W-1 R/W-1 R/W-0 R/W-0 R/W-0 R/W-0 PLLDIV<7:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-9 Unimplemented: Read as ‘0’ bit 8-0 PLLDIV<8:0>: PLL Feedback Divisor bits (also denoted as ‘M’, PLL multiplier) 000000000 = 2 000000001 = 3 000000010 = 4 • • • 111111111 = 513© 2007 Microchip Technology Inc. Preliminary DS70165E-page 155 dsPIC33F REGISTER 8-4: OSCTUN: FRC OSCILLATOR TUNING REGISTER U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 — — — — — — — — bit 15 bit 8 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 — — TUN5 TUN4 TUN3 TUN2 TUN1 TUN0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-6 Unimplemented: Read as ‘0’ bit 5-0 TUN<5:0>: FRC Oscillator Tuning bits 011111 = Center frequency + 11.625% 011110 = Center frequency + 11.25% (8.23 MHz) • • • 000001 = Center frequency + 0.375% (7.40 MHz) 000000 = Center frequency (7.37 MHz nominal) 111111 = Center frequency – 0.375% (7.345 MHz) • • • 100001 = Center frequency – 11.625% (6.52 MHz) 100000 = Center frequency – 12% (6.49 MHz)dsPIC33F DS70165E-page 156 Preliminary © 2007 Microchip Technology Inc. 8.2 Clock Switching Operation Applications are free to switch between any of the four clock sources (Primary, LP, FRC and LPRC) under software control at any time. To limit the possible side effects that could result from this flexibility, dsPIC33F devices have a safeguard lock built into the switch process. 8.2.1 ENABLING CLOCK SWITCHING To enable clock switching, the FCKSM1 Configuration bit in the Configuration register must be programmed to ‘0’. (Refer to Section 23.1 “Configuration Bits” for further details.) If the FCKSM1 Configuration bit is unprogrammed (‘1’), the clock switching function and Fail-Safe Clock Monitor function are disabled. This is the default setting. The NOSC control bits (OSCCON<10:8>) do not control the clock selection when clock switching is disabled. However, the COSC bits (OSCCON<14:12>) reflect the clock source selected by the FNOSC Configuration bits. The OSWEN control bit (OSCCON<0>) has no effect when clock switching is disabled. It is held at ‘0’ at all times. 8.2.2 OSCILLATOR SWITCHING SEQUENCE At a minimum, performing a clock switch requires this basic sequence: 1. If desired, read the COSC bits (OSCCON<14:12>) to determine the current oscillator source. 2. Perform the unlock sequence to allow a write to the OSCCON register high byte. 3. Write the appropriate value to the NOSC control bits (OSCCON<10:8>) for the new oscillator source. 4. Perform the unlock sequence to allow a write to the OSCCON register low byte. 5. Set the OSWEN bit to initiate the oscillator switch. Once the basic sequence is completed, the system clock hardware responds automatically as follows: 1. The clock switching hardware compares the COSC status bits with the new value of the NOSC control bits. If they are the same, then the clock switch is a redundant operation. In this case, the OSWEN bit is cleared automatically and the clock switch is aborted. 2. If a valid clock switch has been initiated, the LOCK (OSCCON<5>) and the CF (OSCCON<3>) status bits are cleared. 3. The new oscillator is turned on by the hardware if it is not currently running. If a crystal oscillator must be turned on, the hardware waits until the Oscillator Start-up Timer (OST) expires. If the new source is using the PLL, the hardware waits until a PLL lock is detected (LOCK = 1). 4. The hardware waits for 10 clock cycles from the new clock source and then performs the clock switch. 5. The hardware clears the OSWEN bit to indicate a successful clock transition. In addition, the NOSC bit values are transferred to the COSC status bits. 6. The old clock source is turned off at this time, with the exception of LPRC (if WDT or FSCM are enabled) or LP (if LPOSCEN remains set). 8.3 Fail-Safe Clock Monitor (FSCM) The Fail-Safe Clock Monitor (FSCM) allows the device to continue to operate even in the event of an oscillator failure. The FSCM function is enabled by programming. If the FSCM function is enabled, the LPRC internal oscillator runs at all times (except during Sleep mode) and is not subject to control by the Watchdog Timer. In the event of an oscillator failure, the FSCM generates a clock failure trap event and switches the system clock over to the FRC oscillator. Then the application program can either attempt to restart the oscillator or execute a controlled shutdown. The trap can be treated as a warm Reset by simply loading the Reset address into the oscillator fail trap vector. If the PLL multiplier is used to scale the system clock, the internal FRC is also multiplied by the same factor on clock failure. Essentially, the device switches to FRC with PLL on a clock failure. Note: Primary Oscillator mode has three different submodes (XT, HS and EC) which are determined by the POSCMD<1:0> Configuration bits. While an application can switch to and from Primary Oscillator mode in software, it cannot switch between the different primary submodes without reprogramming the device. Note 1: The processor continues to execute code throughout the clock switching sequence. Timing sensitive code should not be executed during this time. 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.© 2007 Microchip Technology Inc. Preliminary DS70165E-page 157 dsPIC33F 9.0 POWER-SAVING FEATURES The dsPIC33F devices provide the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of circuits being clocked constitutes lower consumed power. dsPIC33F devices can manage power consumption in four different ways: • Clock frequency • Instruction-based Sleep and Idle modes • Software-controlled Doze mode • Selective peripheral control in software Combinations of these methods can be used to selectively tailor an application’s power consumption while still maintaining critical application features, such as timing-sensitive communications. 9.1 Clock Frequency and Clock Switching dsPIC33F devices allow a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSC bits (OSCCON<10:8>). The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in Section 8.0 “Oscillator Configuration”. 9.2 Instruction-Based Power-Saving Modes dsPIC33F devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembly syntax of the PWRSAV instruction is shown in Example 9-1. Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to “wake-up”. 9.2.1 SLEEP MODE Sleep mode has these features: • The system clock source is shut down. If an on-chip oscillator is used, it is turned off. • The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current. • The Fail-Safe Clock Monitor does not operate during Sleep mode since the system clock source is disabled. • The LPRC clock continues to run in Sleep mode if the WDT is enabled. • The WDT, if enabled, is automatically cleared prior to entering Sleep mode. • Some device features or peripherals may continue to operate in Sleep mode. This includes items such as the input change notification on the I/O ports, or peripherals that use an external clock input. Any peripheral that requires the system clock source for its operation is disabled in Sleep mode. The device will wake-up from Sleep mode on any of the these events: • Any interrupt source that is individually enabled. • Any form of device Reset. • A WDT time-out. On wake-up from Sleep, the processor restarts with the same clock source that was active when Sleep mode was entered. EXAMPLE 9-1: PWRSAV INSTRUCTION SYNTAX Note: This data sheet summarizes the features of this group of dsPIC33F devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the “dsPIC30F Family Reference Manual” (DS70046). Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device. PWRSAV #SLEEP_MODE ; Put the device into SLEEP mode PWRSAV #IDLE_MODE ; Put the device into IDLE modedsPIC33F DS70165E-page 158 Preliminary © 2007 Microchip Technology Inc. 9.2.2 IDLE MODE Idle mode has these features: • The CPU stops executing instructions. • The WDT is automatically cleared. • The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 9.4 “Peripheral Module Disable”). • If the WDT or FSCM is enabled, the LPRC also remains active. The device will wake from Idle mode on any of these events: • Any interrupt that is individually enabled. • Any device Reset. • A WDT time-out. On wake-up from Idle, the clock is reapplied to the CPU and instruction execution begins immediately, starting with the instruction following the PWRSAV instruction, or the first instruction in the ISR. 9.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS Any interrupt that coincides with the execution of a PWRSAV instruction is held off until entry into Sleep or Idle mode has completed. The device then wakes up from Sleep or Idle mode. 9.3 Doze Mode Generally, changing clock speed and invoking one of the power-saving modes are the preferred strategies for reducing power consumption. There may be circumstances, however, where this is not practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed may introduce communication errors, while using a power-saving mode may stop communications completely. Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate. Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default setting. It is also possible to use Doze mode to selectively reduce power consumption in event-driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU idles, waiting for something to invoke an interrupt routine. Enabling the automatic return to full-speed CPU operation on interrupts is enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation. For example, suppose the device is operating at 20 MIPS and the CAN module has been configured for 500 kbps based on this device operating speed. If the device is now placed in Doze mode with a clock frequency ratio of 1:4, the CAN module continues to communicate at the required bit rate of 500 kbps, but the CPU now starts executing instructions at a frequency of 5 MIPS. 9.4 Peripheral Module Disable The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled via the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers will have no effect and read values will be invalid. A peripheral module is only enabled if both the associated bit in the PMD register is cleared and the peripheral is supported by the specific dsPIC® DSC variant. If the peripheral is present in the device, it is enabled in the PMD register by default. Note: If a PMD bit is set, the corresponding module is disabled after a delay of 1 instruction cycle. Similarly, if a PMD bit is cleared, the corresponding module is enabled after a delay of 1 instruction cycle (assuming the module control registers are already configured to enable module operation).© 2007 Microchip Technology Inc. Preliminary DS70165E-page 159 dsPIC33F 10.0 I/O PORTS All of the device pins (except VDD, VSS, MCLR and OSC1/CLKIN) are shared between the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity. 10.1 Parallel I/O (PIO) Ports A parallel I/O port that shares a pin with a peripheral is, in general, subservient to the peripheral. The peripheral’s output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents “loop through”, in which a port’s digital output can drive the input of a peripheral that shares the same pin. Figure 10-1 shows how ports are shared with other peripherals and the associated I/O pin to which they are connected. When a peripheral is enabled and actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin may be read, but the output driver for the parallel port bit will be disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin may be driven by a port. All port pins have three registers directly associated with their operation as digital I/O. The data direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a ‘1’, then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx), read the latch. Writes to the latch, write the latch. Reads from the port (PORTx), read the port pins, while writes to the port pins, write the latch. Any bit and its associated data and control registers that are not valid for a particular device will be disabled. That means the corresponding LATx and TRISx registers and the port pins will read as zeros. When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs. An example is the INT4 pin. FIGURE 10-1: BLOCK DIAGRAM OF A TYPICAL SHARED PORT STRUCTURE Note: This data sheet summarizes the features of this group of dsPIC33F devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the “dsPIC30F Family Reference Manual” (DS70046). Note: The voltage on a digital input pin can be between -0.3V to 5.6V. D Q CK WR LAT + TRIS Latch I/O Pin WR PORT Data Bus D Q CK Data Latch Read Port Read TRIS 1 0 1 0 WR TRIS Peripheral Output Data Output Enable Peripheral Input Data I/O Peripheral Module Peripheral Output Enable PIO Module Output Multiplexers Output Data Input Data Peripheral Module Enable Read LATdsPIC33F DS70165E-page 160 Preliminary © 2007 Microchip Technology Inc. 10.2 Open-Drain Configuration In addition to the PORT, LAT and TRIS registers for data control, each port pin can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output. The open-drain feature allows the generation of outputs higher than VDD (e.g., 5V) on any desired digital only pins by using external pull-up resistors. (The open-drain I/O feature is not supported on pins which have analog functionality multiplexed on the pin.) The maximum open-drain voltage allowed is the same as the maximum VIH specification. The open-drain output feature is supported for both port pin and peripheral configurations. 10.3 Configuring Analog Port Pins The use of the ADxPCFGH, ADxPCFGL and TRIS registers control the operation of the ADC port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bit set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) is converted. Clearing any bit in the ADxPCFGH or ADxPCFGL register configures the corresponding bit to be an analog pin. This is also the Reset state of any I/O pin that has an analog (ANx) function associated with it. When reading the PORT register, all pins configured as analog input channels will read as cleared (a low level). Pins configured as digital inputs will not convert an analog input. Analog levels on any pin that is defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications. 10.4 I/O Port Write/Read Timing One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP. 10.5 Input Change Notification The input change notification function of the I/O ports allows the dsPIC33F devices to generate interrupt requests to the processor in response to a change-of-state on selected input pins. This feature is capable of detecting input change-of-states even in Sleep mode, when the clocks are disabled. Depending on the device pin count, there are up to 24 external signals (CN0 through CN23) that can be selected (enabled) for generating an interrupt request on a change-of-state. There are four control registers associated with the CN module. The CNEN1 and CNEN2 registers contain the CN interrupt enable (CNxIE) control bits for each of the CN input pins. Setting any of these bits enables a CN interrupt for the corresponding pins. Each CN pin also has a weak pull-up connected to it. The pull-ups act as a current source that is connected to the pin and eliminate the need for external resistors when push button or keypad devices are connected. The pull-ups are enabled separately using the CNPU1 and CNPU2 registers, which contain the weak pull-up enable (CNxPUE) bits for each of the CN pins. Setting any of the control bits enables the weak pull-ups for the corresponding pins. EXAMPLE 10-1: PORT WRITE/READ EXAMPLE Note: In devices with two ADC modules, if the corresponding PCFG bit in either AD1PCFGH(L) and AD2PCFGH(L) is cleared, the pin is configured as an analog input. Note: The voltage on an analog input pin can be between -0.3V to (VDD + 0.3 V). Note: Pull-ups on change notification pins should always be disabled whenever the port pin is configured as a digital output. MOV 0xFF00, W0 ; Configure PORTB<15:8> as inputs MOV W0, TRISBB ; and PORTB<7:0> as outputs NOP ; Delay 1 cycle btss PORTB, #13 ; Next Instruction© 2007 Microchip Technology Inc. Preliminary DS70165E-page 161 dsPIC33F 11.0 TIMER1 The Timer1 module is a 16-bit timer, which can serve as the time counter for the real-time clock, or operate as a free-running interval timer/counter. Timer1 can operate in three modes: • 16-bit Timer • 16-bit Synchronous Counter • 16-bit Asynchronous Counter Timer1 also supports these features: • Timer gate operation • Selectable prescaler settings • Timer operation during CPU Idle and Sleep modes • Interrupt on 16-bit Period register match or falling edge of external gate signal Figure 11-1 presents a block diagram of the 16-bit timer module. To configure Timer1 for operation: 1. Set the TON bit (= 1) in the T1CON register. 2. Select the timer prescaler ratio using the TCKPS<1:0> bits in the T1CON register. 3. Set the Clock and Gating modes using the TCS and TGATE bits in the T1CON register. 4. Set or clear the TSYNC bit in T1CON to select synchronous or asynchronous operation. 5. Load the timer period value into the PR1 register. 6. If interrupts are required, set the interrupt enable bit, T1IE. Use the priority bits, T1IP<2:0>, to set the interrupt priority. FIGURE 11-1: 16-BIT TIMER1 MODULE BLOCK DIAGRAM Note: This data sheet summarizes the features of this group of dsPIC33F devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the “dsPIC30F Family Reference Manual” (DS70046). TON SOSCI SOSCO/ PR1 Set T1IF Equal Comparator TMR1 Reset SOSCEN 1 0 TSYNC Q Q D CK TCKPS<1:0> Prescaler 1, 8, 64, 256 2 TGATE TCY 1 0 T1CK TCS 1x 01 TGATE 00 Sync Gate SyncdsPIC33F DS70165E-page 162 Preliminary © 2007 Microchip Technology Inc. REGISTER 11-1: T1CON: TIMER1 CONTROL REGISTER R/W-0 U-0 R/W-0 U-0 U-0 U-0 U-0 U-0 TON — TSIDL — — — — — bit 15 bit 8 U-0 R/W-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0 U-0 — TGATE TCKPS<1:0> — TSYNC TCS — bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 TON: Timer1 On bit 1 = Starts 16-bit Timer1 0 = Stops 16-bit Timer1 bit 14 Unimplemented: Read as ‘0’ bit 13 TSIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode bit 12-7 Unimplemented: Read as ‘0’ bit 6 TGATE: Timer1 Gated Time Accumulation Enable bit When T1CS = 1: This bit is ignored. When T1CS = 0: 1 = Gated time accumulation enabled 0 = Gated time accumulation disabled bit 5-4 TCKPS<1:0> Timer1 Input Clock Prescale Select bits 11 = 1:256 10 = 1:64 01 = 1:8 00 = 1:1 bit 3 Unimplemented: Read as ‘0’ bit 2 TSYNC: Timer1 External Clock Input Synchronization Select bit When TCS = 1: 1 = Synchronize external clock input 0 = Do not synchronize external clock input When TCS = 0: This bit is ignored. bit 1 TCS: Timer1 Clock Source Select bit 1 = External clock from pin T1CK (on the rising edge) 0 = Internal clock (FCY) bit 0 Unimplemented: Read as ‘0’© 2007 Microchip Technology Inc. Preliminary DS70165E-page 163 dsPIC33F 12.0 TIMER2/3, TIMER4/5, TIMER6/7 AND TIMER8/9 The Timer2/3, Timer4/5, Timer6/7 and Timer8/9 modules are 32-bit timers, which can also be configured as four independent 16-bit timers with selectable operating modes. As a 32-bit timer, Timer2/3, Timer4/5, Timer6/7 and Timer8/9 operate in three modes: • Two Independent 16-bit Timers (e.g., Timer2 and Timer3) with all 16-bit operating modes (except Asynchronous Counter mode) • Single 32-bit Timer • Single 32-bit Synchronous Counter They also support these features: • Timer Gate Operation • Selectable Prescaler Settings • Timer Operation during Idle and Sleep modes • Interrupt on a 32-bit Period Register Match • Time Base for Input Capture and Output Compare Modules (Timer2 and Timer3 only) • ADC1 Event Trigger (Timer2/3 only) • ADC2 Event Trigger (Timer4/5 only) Individually, all eight of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed above, except for the event trigger; this is implemented only with Timer2/3. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, T4CON, T5CON, T6CON, T7CON, T8CON and T9CON registers. T2CON, T4CON, T6CON and T8CON are shown in generic form in Register 12-1. T3CON, T5CON, T7CON and T9CON are shown in Register 12-2. For 32-bit timer/counter operation, Timer2, Timer4, Timer6 or Timer8 is the least significant word; Timer3, Timer5, Timer7 or Timer9 is the most significant word of the 32-bit timers. To configure Timer2/3, Timer4/5, Timer6/7 or Timer8/9 for 32-bit operation: 1. Set the corresponding T32 control bit. 2. Select the prescaler ratio for Timer2, Timer4, Timer6 or Timer8 using the TCKPS<1:0> bits. 3. Set the Clock and Gating modes using the corresponding TCS and TGATE bits. 4. Load the timer period value. PR3, PR5, PR7 or PR9 contains the most significant word of the value, while PR2, PR4, PR6 or PR8 contains the least significant word. 5. If interrupts are required, set the interrupt enable bit, T3IE, T5IE, T7IE or T9IE. Use the priority bits, T3IP<2:0>, T5IP<2:0>, T7IP<2:0> or T9IP<2:0>, to set the interrupt priority. While Timer2, Timer4, Timer6 or Timer8 control the timer, the interrupt appears as a Timer3, Timer5, Timer7 or Timer9 interrupt. 6. Set the corresponding TON bit. The timer value at any point is stored in the register pair, TMR3:TMR2, TMR5:TMR4, TMR7:TMR6 or TMR9:TMR8. TMR3, TMR5, TMR7 or TMR9 always contains the most significant word of the count, while TMR2, TMR4, TMR6 or TMR8 contains the least significant word. To configure any of the timers for individual 16-bit operation: 1. Clear the T32 bit corresponding to that timer. 2. Select the timer prescaler ratio using the TCKPS<1:0> bits. 3. Set the Clock and Gating modes using the TCS and TGATE bits. 4. Load the timer period value into the PRx register. 5. If interrupts are required, set the interrupt enable bit, TxIE. Use the priority bits, TxIP<2:0>, to set the interrupt priority. 6. Set the TON bit. A block diagram for a 32-bit timer pair (Timer4/5) example is shown in Figure 12-1 and a timer (Timer4) operating in 16-bit mode example is shown in Figure 12-2. Note: This data sheet summarizes the features of this group of dsPIC33F devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the “dsPIC30F Family Reference Manual” (DS70046). Note: For 32-bit operation, T3CON, T5CON, T7CON and T9CON control bits are ignored. Only T2CON, T4CON, T6CON and T8CON control bits are used for setup and control. Timer2, Timer4, Timer6 and Timer8 clock and gate inputs are utilized for the 32-bit timer modules, but an interrupt is generated with the Timer3, Timer5, Ttimer7 and Timer9 interrupt flags. Note: Only Timer2 and Timer3 can trigger a DMA data transfer.dsPIC33F DS70165E-page 164 Preliminary © 2007 Microchip Technology Inc. FIGURE 12-1: TIMER2/3 (32-BIT) BLOCK DIAGRAM(1) Set T3IF Equal Comparator PR3 PR2 Reset MSb LSb Note 1: The 32-bit timer control bit, T32, must be set for 32-bit timer/counter operation. All control bits are respective to the T2CON register. 2: The ADC event trigger is available only on Timer2/3. Data Bus<15:0> TMR3HLD Read TMR2 Write TMR2 16 16 16 Q Q D CK TGATE 0 1 TON TCKPS<1:0> 2 TCY TCS 1x 01 TGATE 00 T2CK ADC Event Trigger (2) Gate Sync Prescaler 1, 8, 64, 256 TMR3 TMR2 Sync 16© 2007 Microchip Technology Inc. Preliminary DS70165E-page 165 dsPIC33F FIGURE 12-2: TIMER2 (16-BIT) BLOCK DIAGRAM TON TCKPS<1:0> Prescaler 1, 8, 64, 256 2 TCY TCS TGATE T2CK PR2 Set T2IF Equal Comparator TMR2 Reset Q Q D CK TGATE 1 0 Gate Sync 1x 01 00 SyncdsPIC33F DS70165E-page 166 Preliminary © 2007 Microchip Technology Inc. REGISTER 12-1: TxCON (T2CON, T4CON, T6CON OR T8CON) CONTROL REGISTER R/W-0 U-0 R/W-0 U-0 U-0 U-0 U-0 U-0 TON — TSIDL — — — — — bit 15 bit 8 U-0 R/W-0 R/W-0 R/W-0 R/W-0 U-0 R/W-0 U-0 — TGATE TCKPS<1:0> T32 (1) — TCS — bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 TON: Timerx On bit When T32 = 1: 1 = Starts 32-bit Timerx/y 0 = Stops 32-bit Timerx/y When T32 = 0: 1 = Starts 16-bit Timerx 0 = Stops 16-bit Timerx bit 14 Unimplemented: Read as ‘0’ bit 13 TSIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode bit 12-7 Unimplemented: Read as ‘0’ bit 6 TGATE: Timerx Gated Time Accumulation Enable bit When TCS = 1: This bit is ignored. When TCS = 0: 1 = Gated time accumulation enabled 0 = Gated time accumulation disabled bit 5-4 TCKPS<1:0>: Timerx Input Clock Prescale Select bits 11 = 1:256 10 = 1:64 01 = 1:8 00 = 1:1 bit 3 T32: 32-bit Timer Mode Select bit (1) 1 = Timerx and Timery form a single 32-bit timer 0 = Timerx and Timery act as two 16-bit timers bit 2 Unimplemented: Read as ‘0’ bit 1 TCS: Timerx Clock Source Select bit 1 = External clock from pin TxCK (on the rising edge) 0 = Internal clock (FCY) bit 0 Unimplemented: Read as ‘0’ Note 1: In 32-bit mode, T3CON control bits do not affect 32-bit timer operation.© 2007 Microchip Technology Inc. Preliminary DS70165E-page 167 dsPIC33F REGISTER 12-2: TyCON (T3CON, T5CON, T7CON OR T9CON) CONTROL REGISTER R/W-0 U-0 R/W-0 U-0 U-0 U-0 U-0 U-0 TON (1) — TSIDL (1) — — — — — bit 15 bit 8 U-0 R/W-0 R/W-0 R/W-0 U-0 U-0 R/W-0 U-0 — TGATE (1) TCKPS<1:0> (1) — — TCS (1) — bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 TON: Timery On bit (1) 1 = Starts 16-bit Timery 0 = Stops 16-bit Timery bit 14 Unimplemented: Read as ‘0’ bit 13 TSIDL: Stop in Idle Mode bit (1) 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode bit 12-7 Unimplemented: Read as ‘0’ bit 6 TGATE: Timery Gated Time Accumulation Enable bit (1) When TCS = 1: This bit is ignored. When TCS = 0: 1 = Gated time accumulation enabled 0 = Gated time accumulation disabled bit 5-4 TCKPS<1:0>: Timer3 Input Clock Prescale Select bits (1) 11 = 1:256 10 = 1:64 01 = 1:8 00 = 1:1 bit 3-2 Unimplemented: Read as ‘0’ bit 1 TCS: Timery Clock Source Select bit (1) 1 = External clock from pin TyCK (on the rising edge) 0 = Internal clock (FCY) bit 0 Unimplemented: Read as ‘0’ Note 1: When 32-bit operation is enabled (T2CON<3> = 1), these bits have no effect on Timery operation; all timer functions are set through T2CON.dsPIC33F DS70165E-page 168 Preliminary © 2007 Microchip Technology Inc. NOTES:© 2007 Microchip Technology Inc. Preliminary DS70165E-page 169 dsPIC33F 13.0 INPUT CAPTURE The input capture module is useful in applications requiring frequency (period) and pulse measurement. The dsPIC33F devices support up to eight input capture channels. The input capture module captures the 16-bit value of the selected Time Base register when an event occurs at the ICx pin. The events that cause a capture event are listed below in three categories: 1. Simple Capture Event modes -Capture timer value on every falling edge of input at ICx pin -Capture timer value on every rising edge of input at ICx pin 2. Capture timer value on every edge (rising and falling) 3. Prescaler Capture Event modes -Capture timer value on every 4th rising edge of input at ICx pin -Capture timer value on every 16th rising edge of input at ICx pin Each input capture channel can select between one of two 16-bit timers (Timer2 or Timer3) for the time base. The selected timer can use either an internal or external clock. Other operational features include: • Device wake-up from capture pin during CPU Sleep and Idle modes • Interrupt on input capture event • 4-word FIFO buffer for capture values - Interrupt optionally generated after 1, 2, 3 or 4 buffer locations are filled • Input capture can also be used to provide additional sources of external interrupts FIGURE 13-1: INPUT CAPTURE BLOCK DIAGRAM Note: This data sheet summarizes the features of this group of dsPIC33F devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the “dsPIC30F Family Reference Manual” (DS70046). Note: Only IC1 and IC2 can trigger a DMA data transfer. If DMA data transfers are required, the FIFO buffer size must be set to 1 (ICI<1:0> = 00). ICxBUF ICx Pin ICM<2:0> (ICxCON<2:0>) Mode Select 3 1 0 Set Flag ICxIF (in IFSn Register) TMRy TMRz Edge Detection Logic 16 16 FIFO R/W Logic ICxI<1:0> ICOV, ICBNE (ICxCON<4:3>) ICxCON Interrupt Logic System Bus From 16-bit Timers ICTMR (ICxCON<7>) FIFO Prescaler Counter (1, 4, 16) and Clock Synchronizer Note: An ‘x’ in a signal, register or bit name denotes the number of the capture channel.dsPIC33F DS70165E-page 170 Preliminary © 2007 Microchip Technology Inc. 13.1 Input Capture Registers REGISTER 13-1: ICxCON: INPUT CAPTURE x CONTROL REGISTER U-0 U-0 R/W-0 U-0 U-0 U-0 U-0 U-0 — — ICSIDL — — — — — bit 15 bit 8 R/W-0 R/W-0 R/W-0 R-0, HC R-0, HC R/W-0 R/W-0 R/W-0 ICTMR (1) ICI<1:0> ICOV ICBNE ICM<2:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-14 Unimplemented: Read as ‘0’ bit 13 ICSIDL: Input Capture Module Stop in Idle Control bit 1 = Input capture module will halt in CPU Idle mode 0 = Input capture module will continue to operate in CPU Idle mode bit 12-8 Unimplemented: Read as ‘0’ bit 7 ICTMR: Input Capture Timer Select bits (1) 1 = TMR2 contents are captured on capture event 0 = TMR3 contents are captured on capture event bit 6-5 ICI<1:0>: Select Number of Captures per Interrupt bits 11 = Interrupt on every fourth capture event 10 = Interrupt on every third capture event 01 = Interrupt on every second capture event 00 = Interrupt on every capture event bit 4 ICOV: Input Capture Overflow Status Flag bit (read-only) 1 = Input capture overflow occurred 0 = No input capture overflow occurred bit 3 ICBNE: Input Capture Buffer Empty Status bit (read-only) 1 = Input capture buffer is not empty, at least one more capture value can be read 0 = Input capture buffer is empty bit 2-0 ICM<2:0>: Input Capture Mode Select bits 111 =Input capture functions as interrupt pin only when device is in Sleep or Idle mode (Rising edge detect only, all other control bits are not applicable.) 110 =Unused (module disabled) 101 =Capture mode, every 16th rising edge 100 =Capture mode, every 4th rising edge 011 =Capture mode, every rising edge 010 =Capture mode, every falling edge 001 =Capture mode, every edge (rising and falling) (ICI<1:0> bits do not control interrupt generation for this mode.) 000 =Input capture module turned off Note 1: Timer selections may vary. Refer to the device data sheet for details.© 2007 Microchip Technology Inc. Preliminary DS70165E-page 171 dsPIC33F 14.0 OUTPUT COMPARE 14.1 Setup for Single Output Pulse Generation When the OCM control bits (OCxCON<2:0>) are set to ‘100’, the selected output compare channel initializes the OCx pin to the low state and generates a single output pulse. To generate a single output pulse, the following steps are required (these steps assume timer source is initially turned off but this is not a requirement for the module operation): 1. Determine the instruction clock cycle time. Take into account the frequency of the external clock to the timer source (if one is used) and the timer prescaler settings. 2. Calculate time to the rising edge of the output pulse relative to the TMRy start value (0000h). 3. Calculate the time to the falling edge of the pulse based on the desired pulse width and the time to the rising edge of the pulse. 4. Write the values computed in steps 2 and 3 above into the Output Compare register, OCxR, and the Output Compare Secondary register, OCxRS, respectively. 5. Set Timer Period register, PRy, to value equal to or greater than value in OCxRS, the Output Compare Secondary register. 6. Set the OCM bits to ‘100’ and the OCTSEL (OCxCON<3>) bit to the desired timer source. The OCx pin state will now be driven low. 7. Set the TON (TyCON<15>) bit to ‘1’, which enables the compare time base to count. 8. Upon the first match between TMRy and OCxR, the OCx pin will be driven high. 9. When the incrementing timer, TMRy, matches the Output Compare Secondary register, OCxRS, the second and trailing edge (high-tolow) of the pulse is driven onto the OCx pin. No additional pulses are driven onto the OCx pin and it remains at low. As a result of the second compare match event, the OCxIF interrupt flag bit is set, which will result in an interrupt if it is enabled, by setting the OCxIE bit. For further information on peripheral interrupts, refer to Section 6.0 “Interrupt Controller”. 10. To initiate another single pulse output, change the Timer and Compare register settings, if needed, and then issue a write to set the OCM bits to ‘100’. Disabling and re-enabling of the timer, and clearing the TMRy register, are not required but may be advantageous for defining a pulse from a known event time boundary. The output compare module does not have to be disabled after the falling edge of the output pulse. Another pulse can be initiated by rewriting the value of the OCxCON register. 14.2 Setup for Continuous Output Pulse Generation When the OCM control bits (OCxCON<2:0>) are set to ‘101’, the selected output compare channel initializes the OCx pin to the low state and generates output pulses on each and every compare match event. For the user to configure the module for the generation of a continuous stream of output pulses, the following steps are required (these steps assume timer source is initially turned off but this is not a requirement for the module operation): 1. Determine the instruction clock cycle time. Take into account the frequency of the external clock to the timer source (if one is used) and the timer prescaler settings. 2. Calculate time to the rising edge of the output pulse relative to the TMRy start value (0000h). 3. Calculate the time to the falling edge of the pulse, based on the desired pulse width and the time to the rising edge of the pulse. 4. Write the values computed in step 2 and 3 above into the Output Compare register, OCxR, and the Output Compare Secondary register, OCxRS, respectively. 5. Set Timer Period register, PRy, to a value equal to or greater than value in OCxRS, the Output Compare Secondary register. 6. Set the OCM bits to ‘101’ and the OCTSEL bit to the desired timer source. The OCx pin state will now be driven low. 7. Enable the compare time base by setting the TON (TyCON<15>) bit to ‘1’. 8. Upon the first match between TMRy and OCxR, the OCx pin will be driven high. 9. When the compare time base, TMRy, matches the Output Compare Secondary register, OCxRS, the second and trailing edge (high-to-low) of the pulse is driven onto the OCx pin. 10. As a result of the second compare match event, the OCxIF interrupt flag bit is set. 11. When the compare time base and the value in its respective Timer Period register match, the TMRy register resets to 0x0000 and resumes counting. 12. Steps 8 through 11 are repeated and a continuous stream of pulses is generated, indefinitely. The OCxIF flag is set on each OCxRS-TMRy compare match event. Note: This data sheet summarizes the features of this group of dsPIC33F devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the “dsPIC30F Family Reference Manual” (DS70046).dsPIC33F DS70165E-page 172 Preliminary © 2007 Microchip Technology Inc. 14.3 Pulse-Width Modulation Mode The following steps should be taken when configuring the output compare module for PWM operation: 1. Set the PWM period by writing to the selected Timer Period register (PRy). 2. Set the PWM duty cycle by writing to the OCxRS register. 3. Write the OxCR register with the initial duty cycle. 4. Enable interrupts, if required, for the timer and output compare modules. The output compare interrupt is required for PWM Fault pin utilization. 5. Configure the output compare module for one of two PWM operation modes by writing to the Output Compare Mode bits, OCM<2:0> (OCxCON<2:0>). 6. Set the TMRy prescale value and enable the time base by setting TON = 1 (TxCON<15>). 14.3.1 PWM PERIOD The PWM period is specified by writing to PRy, the Timer Period register. The PWM period can be calculated using Equation 14-1: EQUATION 14-1: CALCULATING THE PWM PERIOD 14.3.2 PWM DUTY CYCLE The PWM duty cycle is specified by writing to the OCxRS register. The OCxRS register can be written to at any time, but the duty cycle value is not latched into OCxR until a match between PRy and TMRy occurs (i.e., the period is complete). This provides a double buffer for the PWM duty cycle and is essential for glitchless PWM operation. In the PWM mode, OCxR is a read-only register. Some important boundary parameters of the PWM duty cycle include: • If the Output Compare register, OCxR, is loaded with 0000h, the OCx pin will remain low (0% duty cycle). • If OCxR is greater than PRy (Timer Period register), the pin will remain high (100% duty cycle). • If OCxR is equal to PRy, the OCx pin will be low for one time base count value and high for all other count values. See Example 14-1 for PWM mode timing details. Table 14-1 shows example PWM frequencies and resolutions for a device operating at 10 MIPS. EQUATION 14-2: CALCULATION FOR MAXIMUM PWM RESOLUTION EXAMPLE 14-1: PWM PERIOD AND DUTY CYCLE CALCULATIONS Note: The OCxR register should be initialized before the output compare module is first enabled. The OCxR register becomes a read-only duty cycle register when the module is operated in the PWM modes. The value held in OCxR will become the PWM duty cycle for the first PWM period. The contents of the Output Compare Secondary register, OCxRS, will not be transferred into OCxR until a time base period match occurs. Note: A PRy value of N will produce a PWM period of N + 1 time base count cycles. For example, a value of 7 written into the PRy register will yield a period consisting of eight time base cycles. PWM Period = [(PRy) + 1] • TCY • (Timer Prescale Value) PWM Frequency = 1/[PWM Period] where: ( ) Maximum PWM Resolution (bits) = FCY FPWM log 10 log 10 (2) bits 1. Find the Timer Period register value for a desired PWM frequency that is 52.08 kHz, where FCY = 16 MHz and a Timer2 prescaler setting of 1:1. TCY = 62.5 ns PWM Period = 1/PWM Frequency = 1/52.08 kHz = 19.2 μs PWM Period = (PR2 + 1) • TCY • (Timer2 Prescale Value) 19.2 μs = (PR2 + 1) • 62.5 ns • 1 PR2 = 306 2. Find the maximum resolution of the duty cycle that can be used with a 52.08 kHz frequency and a 32 MHz device clock rate: PWM Resolution = log 10 (FCY/FPWM)/log 10 2) bits = (log 10 (16 MHz/52.08 kHz)/log 10 2) bits = 8.3 bits© 2007 Microchip Technology Inc. Preliminary DS70165E-page 173 dsPIC33F TABLE 14-1: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 4 MIPS (FCY = 4 MHz) TABLE 14-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 16 MIPS (FCY = 16 MHz) TABLE 14-3: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 40 MIPS (FCY = 40 MHz) FIGURE 14-1: OUTPUT COMPARE MODULE BLOCK DIAGRAM PWM Frequency 7.6 Hz 61 Hz 122 Hz 977 Hz 3.9 kHz 31.3 kHz 125 kHz Timer Prescaler Ratio 8 1 1 1 1 1 1 Period Register Value FFFFh FFFFh 7FFFh 0FFFh 03FFh 007Fh 001Fh Resolution (bits) 16 16 15 12 10 7 5 PWM Frequency 30.5 Hz 244 Hz 488 Hz 3.9 kHz 15.6 kHz 125 kHz 500 kHz Timer Prescaler Ratio 8 1 1 1 1 1 1 Period Register Value FFFFh FFFFh 7FFFh 0FFFh 03FFh 007Fh 001Fh Resolution (bits) 16 16 15 12 10 7 5 PWM Frequency 76 Hz 610 Hz 1.22 Hz 9.77 kHz 39 kHz 313 kHz 1.25 MHz Timer Prescaler Ratio 8 1 1 1 1 1 1 Period Register Value FFFFh FFFFh 7FFFh 0FFFh 03FFh 007Fh 001Fh Resolution (bits) 16 16 15 12 10 7 5 Note: Only OC1 and OC2 can trigger a DMA data transfer. OCxR (1) Comparator Output Logic OCM2:OCM0 Output Enable OCx (1) Set Flag bit OCxIF (1) OCxRS (1) Mode Select 3 Note 1:Where ‘x’ is shown, reference is made to the registers associated with the respective output compare channels 1 through 8. 2: OCFA pin controls OC1-OC4 channels. OCFB pin controls OC5-OC8 channels. 3: Each output compare channel can use one of two selectable time bases. Refer to the device data sheet for the time bases associated with the module. OCTSEL 0 1 16 16 OCFA or OCFB (2) TMR register inputs from time bases (3) Period match signals from time bases (3) 0 1 S Q RdsPIC33F DS70165E-page 174 Preliminary © 2007 Microchip Technology Inc. 14.4 Output Compare Register REGISTER 14-1: OCxCON: OUTPUT COMPARE x CONTROL REGISTER U-0 U-0 R/W-0 U-0 U-0 U-0 U-0 U-0 — — OCSIDL — — — — — bit 15 bit 8 U-0 U-0 U-0 R-0 HC R/W-0 R/W-0 R/W-0 R/W-0 — — — OCFLT OCTSEL (1) OCM<2:0> bit 7 bit 0 Legend: HC = Cleared in Hardware HS = Set in Hardware R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-14 Unimplemented: Read as ‘0’ bit 13 OCSIDL: Stop Output Compare in Idle Mode Control bit 1 = Output Compare x will halt in CPU Idle mode 0 = Output Compare x will continue to operate in CPU Idle mode bit 12-5 Unimplemented: Read as ‘0’ bit 4 OCFLT: PWM Fault Condition Status bit 1 = PWM Fault condition has occurred (cleared in HW only) 0 = No PWM Fault condition has occurred (This bit is only used when OCM<2:0> = 111.) bit 3 OCTSEL: Output Compare Timer Select bit (1) 1 = Timer3 is the clock source for Compare x 0 = Timer2 is the clock source for Compare x bit 2-0 OCM<2:0>: Output Compare Mode Select bits 111 = PWM mode on OCx, Fault pin enabled 110 = PWM mode on OCx, Fault pin disabled 101 = Initialize OCx pin low, generate continuous output pulses on OCx pin 100 = Initialize OCx pin low, generate single output pulse on OCx pin 011 = Compare event toggles OCx pin 010 = Initialize OCx pin high, compare event forces OCx pin low 001 = Initialize OCx pin low, compare event forces OCx pin high 000 = Output compare channel is disabled Note 1: Refer to the device data sheet for specific time bases available to the output compare module.© 2007 Microchip Technology Inc. Preliminary DS70165E-page 175 dsPIC33F 15.0 MOTOR CONTROL PWM MODULE This module simplifies the task of generating multiple, synchronized Pulse-Width Modulated (PWM) outputs. In particular, the following power and motion control applications are supported by the PWM module: • 3-Phase AC Induction Motor • Switched Reluctance (SR) Motor • Brushless DC (BLDC) Motor • Uninterruptible Power Supply (UPS) The PWM module has the following features: • 8 PWM I/O pins with 4 duty cycle generators • Up to 16-bit resolution • ‘On-the-fly’ PWM frequency changes • Edge and Center-Aligned Output modes • Single Pulse Generation mode • Interrupt support for asymmetrical updates in Center-Aligned mode • Output override control for Electrically Commutative Motor (ECM) operation • ‘Special Event’ comparator for scheduling other peripheral events • Fault pins to optionally drive each of the PWM output pins to a defined state • Duty cycle updates are configurable to be immediate or synchronized to the PWM time base This module contains 4 duty cycle generators, numbered 1 through 4. The module has eight PWM output pins, numbered PWM1H/PWM1L through PWM4H/PWM4L. The eight I/O pins are grouped into high/low numbered pairs, denoted by the suffix H or L, respectively. For complementary loads, the low PWM pins are always the complement of the corresponding high I/O pin. The PWM module allows several modes of operation which are beneficial for specific power control applications. Note: This data sheet summarizes the features of this group of dsPIC33F devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the “dsPIC30F Family Reference Manual” (DS70046).dsPIC33F DS70165E-page 176 Preliminary © 2007 Microchip Technology Inc. FIGURE 15-1: PWM MODULE BLOCK DIAGRAM PDC4 PDC4 Buffer PWMCON1 PWMCON2 PTPER Comparator Comparator Channel 4 Dead-Time Generator and PTCON SEVTCMP Comparator Special Event Trigger FLTBCON OVDCON PWM Enable and Mode SFRs PWM Manual Control SFR Channel 3 Dead-Time Generator and Channel 2 Dead-Time Generator and PWM Generator #3 PWM Generator #2 PWM Generator #4 SEVTDIR PTDIR DTCON1 Dead-Time Control SFRs PWM1L PWM1H PWM2L PWM2H PWM3L PWM3H PWM Generator #1 Channel 1 Dead-Time Generator and Note: Details of PWM Generator #1, #2 and #3 not shown for clarity. 16-bit Data Bus PWM4L PWM4H DTCON2 FLTACON Fault Pin Control SFRs PWM Time Base Output Driver Block FLTB FLTA Override Logic Override Logic Override Logic Override Logic Special Event Postscaler PTPER Buffer PTMR© 2007 Microchip Technology Inc. Preliminary DS70165E-page 177 dsPIC33F 15.1 PWM Time Base The PWM time base is provided by a 15-bit timer with a prescaler and postscaler. The time base is accessible via the PTMR SFR. PTMR<15> is a read-only status bit, PTDIR, that indicates the present count direction of the PWM time base. If PTDIR is cleared, PTMR is counting upwards. If PTDIR is set, PTMR is counting downwards. The PWM time base is configured via the PTCON SFR. The time base is enabled/disabled by setting/clearing the PTEN bit in the PTCON SFR. PTMR is not cleared when the PTEN bit is cleared in software. The PTPER SFR sets the counting period for PTMR. The user must write a 15-bit value to PTPER<14:0>. When the value in PTMR<14:0> matches the value in PTPER<14:0>, the time base will either reset to ‘0’ or reverse the count direction on the next occurring clock cycle. The action taken depends on the operating mode of the time base. The PWM time base can be configured for four different modes of operation: • Free-Running mode • Single-Shot mode • Continuous Up/Down Count mode • Continuous Up/Down Count mode with interrupts for double updates These four modes are selected by the PTMOD<1:0> bits in the PTCON SFR. The Up/Down Count modes support center-aligned PWM generation. The SingleShot mode allows the PWM module to support pulse control of certain Electronically Commutative Motors (ECMs). The interrupt signals generated by the PWM time base depend on the mode selection bits (PTMOD<1:0>) and the postscaler bits (PTOPS<3:0>) in the PTCON SFR. 15.1.1 FREE-RUNNING MODE In Free-Running mode, the PWM time base counts upwards until the value in the PWM Time Base Period register (PTPER) is matched. The PTMR register is reset on the following input clock edge, and the time base will continue to count upwards as long as the PTEN bit remains set. When the PWM time base is in the Free-Running mode (PTMOD<1:0> = 00), an interrupt event is generated each time a match with the PTPER register occurs and the PTMR register is reset to zero. The postscaler selection bits may be used in this mode of the timer to reduce the frequency of the interrupt events. 15.1.2 SINGLE-SHOT MODE In Single-Shot mode, the PWM time base begins counting upwards when the PTEN bit is set. When the value in the PTMR register matches the PTPER register, the PTMR register will be reset on the following input clock edge, and the PTEN bit will be cleared by the hardware to halt the time base. When the PWM time base is in the Single-Shot mode (PTMOD<1:0> = 01), an interrupt event is generated when a match with the PTPER register occurs. The PTMR register is reset to zero on the following input clock edge and the PTEN bit is cleared. The postscaler selection bits have no effect in this mode of the timer. 15.1.3 CONTINUOUS UP/DOWN COUNT MODES In the Continuous Up/Down Count modes, the PWM time base counts upwards until the value in the PTPER register is matched. The timer will begin counting downwards on the following input clock edge. The PTDIR bit in the PTMR SFR is read-only and indicates the counting direction. The PTDIR bit is set when the timer counts downwards. In the Up/Down Count mode (PTMOD<1:0> = 10), an interrupt event is generated each time the value of the PTMR register becomes zero and the PWM time base begins to count upwards. The postscaler selection bits may be used in this mode of the timer to reduce the frequency of the interrupt events. Note: If the PWM Period register is set to 0x0000, the timer will stop counting and the interrupt and Special Event Trigger will not be generated, even if the special event value is also 0x0000. The module will not update the PWM Period register if it is already at 0x0000; therefore, the user must disable the module in order to update the PWM Period register.dsPIC33F DS70165E-page 178 Preliminary © 2007 Microchip Technology Inc. 15.1.4 DOUBLE UPDATE MODE In the Double Update mode (PTMOD<1:0> = 11), an interrupt event is generated each time the PTMR register is equal to zero, as well as each time a period match occurs. The postscaler selection bits have no effect in this mode of the timer. The Double Update mode provides two additional functions to the user. First, the control loop bandwidth is doubled because the PWM duty cycles can be updated, twice per period. Second, asymmetrical center-aligned PWM waveforms can be generated, which are useful for minimizing output waveform distortion in certain motor control applications. 15.1.5 PWM TIME BASE PRESCALER The input clock to PTMR (FOSC/4) has prescaler options of 1:1, 1:4, 1:16 or 1:64, selected by control bits, PTCKPS<1:0>, in the PTCON SFR. The prescaler counter is cleared when any of the following occurs: • a write to the PTMR register • a write to the PTCON register • any device Reset The PTMR register is not cleared when PTCON is written. 15.1.6 PWM TIME BASE POSTSCALER The match output of PTMR can optionally be postscaled through a 4-bit postscaler (which gives a 1:1 to 1:16 scaling). The postscaler counter is cleared when any of the following occurs: • a write to the PTMR register • a write to the PTCON register • any device Reset The PTMR register is not cleared when PTCON is written. 15.2 PWM Period PTPER is a 15-bit register and is used to set the counting period for the PWM time base. PTPER is a doublebuffered register. The PTPER buffer contents are loaded into the PTPER register at the following instants: • Free-Running and Single-Shot modes: When the PTMR register is reset to zero after a match with the PTPER register. • Up/Down Count modes: When the PTMR register is zero. The value held in the PTPER buffer is automatically loaded into the PTPER register when the PWM time base is disabled (PTEN = 0). The PWM period can be determined using Equation 15-1: EQUATION 15-1: PWM PERIOD If the PWM time base is configured for one of the Up/ Down Count modes, the PWM period will be twice the value provided by Equation 15-1. The maximum resolution (in bits) for a given device oscillator and PWM frequency can be determined using Equation 15-2: EQUATION 15-2: PWM RESOLUTION 15.3 Edge-Aligned PWM Edge-aligned PWM signals are produced by the module when the PWM time base is in Free-Running or SingleShot mode. For edge-aligned PWM outputs, the output has a period specified by the value in PTPER and a duty cycle specified by the appropriate Duty Cycle register (see Figure 15-2). The PWM output is driven active at the beginning of the period (PTMR = 0) and is driven inactive when the value in the Duty Cycle register matches PTMR. If the value in a particular Duty Cycle register is zero, then the output on the corresponding PWM pin will be inactive for the entire PWM period. In addition, the output on the PWM pin will be active for the entire PWM period if the value in the Duty Cycle register is greater than the value held in the PTPER register. FIGURE 15-2: EDGE-ALIGNED PWM Note: Programming a value of 0x0001 in the PWM Period register could generate a continuous interrupt pulse and hence, must be avoided. TPWM = TCY • (PTPER + 1) (PTMR Prescale Value) Resolution = log (2 • TPWM/TCY) log (2) Period Duty Cycle 0 PTPER PTMR Value New Duty Cycle Latched© 2007 Microchip Technology Inc. Preliminary DS70165E-page 179 dsPIC33F 15.4 Center-Aligned PWM Center-aligned PWM signals are produced by the module when the PWM time base is configured in an Up/Down Count mode (see Figure 15-3). The PWM compare output is driven to the active state when the value of the Duty Cycle register matches the value of PTMR and the PWM time base is counting downwards (PTDIR = 1). The PWM compare output is driven to the inactive state when the PWM time base is counting upwards (PTDIR = 0) and the value in the PTMR register matches the duty cycle value. If the value in a particular Duty Cycle register is zero, then the output on the corresponding PWM pin will be inactive for the entire PWM period. In addition, the output on the PWM pin will be active for the entire PWM period if the value in the Duty Cycle register is equal to the value held in the PTPER register. FIGURE 15-3: CENTER-ALIGNED PWM 15.5 PWM Duty Cycle Comparison Units There are four 16-bit Special Function Registers (PDC1, PDC2, PDC3 and PDC4) used to specify duty cycle values for the PWM module. The value in each Duty Cycle register determines the amount of time that the PWM output is in the active state. The Duty Cycle registers are 16 bits wide. The LSb of a Duty Cycle register determines whether the PWM edge occurs in the beginning. Thus, the PWM resolution is effectively doubled. 15.5.1 DUTY CYCLE REGISTER BUFFERS The four PWM Duty Cycle registers are doublebuffered to allow glitchless updates of the PWM outputs. For each duty cycle, there is a Duty Cycle register that is accessible by the user and a second Duty Cycle register that holds the actual compare value used in the present PWM period. For edge-aligned PWM output, a new duty cycle value will be updated whenever a match with the PTPER register occurs and PTMR is reset. The contents of the duty cycle buffers are automatically loaded into the Duty Cycle registers when the PWM time base is disabled (PTEN = 0) and the UDIS bit is cleared in PWMCON2. When the PWM time base is in the Up/Down Count mode, new duty cycle values are updated when the value of the PTMR register is zero, and the PWM time base begins to count upwards. The contents of the duty cycle buffers are automatically loaded into the Duty Cycle registers when the PWM time base is disabled (PTEN = 0). When the PWM time base is in the Up/Down Count mode with double updates, new duty cycle values are updated when the value of the PTMR register is zero, and when the value of the PTMR register matches the value in the PTPER register. The contents of the duty cycle buffers are automatically loaded into the Duty Cycle registers when the PWM time base is disabled (PTEN = 0). 15.5.2 DUTY CYCLE IMMEDIATE UPDATES When the Immediate Update Enable bit is set (IUE = 1), any write to the Duty Cycle registers will update the new duty cycle value immediately. This feature gives the option to the user to allow immediate updates of the active PWM Duty Cycle registers instead of waiting for the end of the current time base period. System stability is improved in closed-loop servo applications by reducing the delay between system observation and the issuance of system corrective commands when immediate updates are enabled (IUE = 1). If the PWM output is active at the time the new duty cycle is written and the new duty cycle is less than the current time base value, the PWM pulse width will be shortened. If the PWM output is active at the time the new duty cycle is written and the new duty cycle is greater than the current time base value, the PWM pulse width will be lengthened. If the PWM output is inactive at the time the new duty cycle is written and the new duty cycle is greater than the current time base value, the PWM output will become active immediately and will remain active for the new written duty cycle value. 0 PTPER PTMR Value Period Period/2 Duty CycledsPIC33F DS70165E-page 180 Preliminary © 2007 Microchip Technology Inc. 15.6 Complementary PWM Operation In the Complementary mode of operation, each pair of PWM outputs is obtained by a complementary PWM signal. A dead time may be optionally inserted during device switching, when both outputs are inactive for a short period (refer to Section 15.7 “Dead-Time Generators”). In Complementary mode, the duty cycle comparison units are assigned to the PWM outputs as follows: • PDC1 register controls PWM1H/PWM1L outputs • PDC2 register controls PWM2H/PWM2L outputs • PDC3 register controls PWM3H/PWM3L outputs • PDC4 register controls PWM4H/PWM4L outputs The Complementary mode is selected for each PWM I/O pin pair by clearing the appropriate PMODx bit in the PWMCON1 SFR. The PWM I/O pins are set to Complementary mode by default upon a device Reset. 15.7 Dead-Time Generators Dead-time generation may be provided when any of the PWM I/O pin pairs are operating in the Complementary Output mode. The PWM outputs use push-pull drive circuits. Due to the inability of the power output devices to switch instantaneously, some amount of time must be provided between the turn-off event of one PWM output in a complementary pair and the turn-on event of the other transistor. The PWM module allows two different dead times to be programmed. These two dead times may be used in one of two methods, described below, to increase user flexibility: • The PWM output signals can be optimized for different turn-off times in the high side and low side transistors in a complementary pair of transistors. The first dead time is inserted between the turn-off event of the lower transistor of the complementary pair and the turn-on event of the upper transistor. The second dead time is inserted between the turn-off event of the upper transistor and the turn-on event of the lower transistor. • The two dead times can be assigned to individual PWM I/O pin pairs. This operating mode allows the PWM module to drive different transistor/load combinations with each complementary PWM I/O pin pair. 15.7.1 DEAD-TIME GENERATORS Each complementary output pair for the PWM module has a 6-bit down counter that is used to produce the dead-time insertion. As shown in Figure 15-4, each dead-time unit has a rising and falling edge detector connected to the duty cycle comparison output. FIGURE 15-4: DEAD-TIME TIMING DIAGRAM Duty Cycle Generator PWMxH PWMxL Time Selected by DTSxA bit (A or B) Time Selected by DTSxI bit (A or B)© 2007 Microchip Technology Inc. Preliminary DS70165E-page 181 dsPIC33F 15.7.2 DEAD-TIME ASSIGNMENT The DTCON2 SFR contains control bits that allow the dead times to be assigned to each of the complementary outputs. Table 15-1 summarizes the function of each dead-time selection control bit. TABLE 15-1: DEAD-TIME SELECTION BITS 15.7.3 DEAD-TIME RANGES The amount of dead time provided by each dead-time unit is selected by specifying the input clock prescaler value and a 6-bit unsigned value. The amount of dead time provided by each unit may be set independently. Four input clock prescaler selections have been provided to allow a suitable range of dead times, based on the device operating frequency. The clock prescaler option may be selected independently for each of the two dead-time values. The dead-time clock prescaler values are selected using the DTAPS<1:0> and DTBPS<1:0> control bits in the DTCON1 SFR. One of four clock prescaler options (TCY, 2 TCY, 4 TCY or 8 TCY) may be selected for each of the dead-time values. After the prescaler values are selected, the dead time for each unit is adjusted by loading two 6-bit unsigned values into the DTCON1 SFR. The dead-time unit prescalers are cleared on the following events: • On a load of the down timer due to a duty cycle comparison edge event. • On a write to the DTCON1 or DTCON2 registers. • On any device Reset. 15.8 Independent PWM Output An Independent PWM Output mode is required for driving certain types of loads. A particular PWM output pair is in the Independent Output mode when the corresponding PMODx bit in the PWMCON1 register is set. No dead-time control is implemented between adjacent PWM I/O pins when the module is operating in the Independent PWM Output mode and both I/O pins are allowed to be active simultaneously. In the Independent PWM Output mode, each duty cycle generator is connected to both of the PWM I/O pins in an output pair. By using the associated Duty Cycle register and the appropriate bits in the OVDCON register, the user may select the following signal output options for each PWM I/O pin operating in this mode: • I/O pin outputs PWM signal • I/O pin inactive • I/O pin active 15.9 Single Pulse PWM Operation The PWM module produces single pulse outputs when the PTCON control bits PTMOD<1:0> = 10. Only edgealigned outputs may be produced in the Single Pulse mode. In Single Pulse mode, the PWM I/O pin(s) are driven to the active state when the PTEN bit is set. When a match with a Duty Cycle register occurs, the PWM I/O pin is driven to the inactive state. When a match with the PTPER register occurs, the PTMR register is cleared, all active PWM I/O pins are driven to the inactive state, the PTEN bit is cleared and an interrupt is generated. 15.10 PWM Output Override The PWM output override bits allow the user to manually drive the PWM I/O pins to specified logic states, independent of the duty cycle comparison units. All control bits associated with the PWM output override function are contained in the OVDCON register. The upper half of the OVDCON register contains eight bits, POVDxH<4:1> and POVDxL<4:1>, that determine which PWM I/O pins will be overridden. The lower half of the OVDCON register contains eight bits, POUTxH<4:1> and POUTxL<4:1>, that determine the state of the PWM I/O pins when a particular output is overridden via the POVD bits. 15.10.1 COMPLEMENTARY OUTPUT MODE When a PWMxL pin is driven active via the OVDCON register, the output signal is forced to be the complement of the corresponding PWMxH pin in the pair. Dead-time insertion is still performed when PWM channels are overridden manually. Bit Function DTS1A Selects PWM1L/PWM1H active edge dead time. DTS1I Selects PWM1L/PWM1H inactive edge dead time. DTS2A Selects PWM2L/PWM2H active edge dead time. DTS2I Selects PWM2L/PWM2H inactive edge dead time. DTS3A Selects PWM3L/PWM3H active edge dead time. DTS3I Selects PWM3L/PWM3H inactive edge dead time. DTS4A Selects PWM4L/PWM4H active edge dead time. DTS4I Selects PWM4L/PWM4H inactive edge dead time. Note: The user should not modify the DTCON1 or DTCON2 values while the PWM module is operating (PTEN = 1). Unexpected results may occur.dsPIC33F DS70165E-page 182 Preliminary © 2007 Microchip Technology Inc. 15.10.2 OVERRIDE SYNCHRONIZATION If the OSYNC bit in the PWMCON2 register is set, all output overrides performed via the OVDCON register are synchronized to the PWM time base. Synchronous output overrides occur at the following times: • Edge-Aligned mode – when PTMR is zero • Center-Aligned modes – when PTMR is zero and the value of PTMR matches PTPER 15.11 PWM Output and Polarity Control There are three device Configuration bits associated with the PWM module that provide PWM output pin control: • HPOL Configuration bit • LPOL Configuration bit • PWMPIN Configuration bit These three bits in the FPOR Configuration register (see Section 23.0 “Special Features”) work in conjunction with the eight PWM Enable bits (PENxH<4:1>, PENxL<4:1>) located in the PWMCON1 SFR. The Configuration bits and PWM Enable bits ensure that the PWM pins are in the correct states after a device Reset occurs. The PWMPIN configuration fuse allows the PWM module outputs to be optionally enabled on a device Reset. If PWMPIN = 0, the PWM outputs will be driven to their inactive states at Reset. If PWMPIN = 1 (default), the PWM outputs will be tri-stated. The HPOL bit specifies the polarity for the PWMxH outputs, whereas the LPOL bit specifies the polarity for the PWMxL outputs. 15.11.1 OUTPUT PIN CONTROL The PENxH<4:1> and PENxL<4:1> control bits in the PWMCON1 SFR enable each high PWM output pin and each low PWM output pin, respectively. If a particular PWM output pin is not enabled, it is treated as a general purpose I/O pin. 15.12 PWM Fault Pins There are two Fault pins (FLTA and FLTB) associated with the PWM module. When asserted, these pins can optionally drive each of the PWM I/O pins to a defined state. 15.12.1 FAULT PIN ENABLE BITS The FLTACON and FLTBCON SFRs each have four control bits that determine whether a particular pair of PWM I/O pins is to be controlled by the Fault input pin. To enable a specific PWM I/O pin pair for Fault overrides, the corresponding bit should be set in the FLTACON or FLTBCON register. If all enable bits are cleared in the FLTACON or FLTBCON register, then the corresponding Fault input pin has no effect on the PWM module and the pin may be used as a general purpose interrupt or I/O pin. 15.12.2 FAULT STATES The FLTACON and FLTBCON Special Function Registers have eight bits each that determine the state of each PWM I/O pin when it is overridden by a Fault input. When these bits are cleared, the PWM I/O pin is driven to the inactive state. If the bit is set, the PWM I/O pin will be driven to the active state. The active and inactive states are referenced to the polarity defined for each PWM I/O pin (HPOL and LPOL polarity control bits). A special case exists when a PWM module I/O pair is in the Complementary mode and both pins are programmed to be active on a Fault condition. The PWMxH pin always has priority in the Complementary mode so that both I/O pins cannot be driven active simultaneously. 15.12.3 FAULT PIN PRIORITY If both Fault input pins have been assigned to control a particular PWM I/O pin, the Fault state programmed for the Fault A input pin will take priority over the Fault B input pin. Note: The Fault pin logic can operate independent of the PWM logic. If all the enable bits in the FLTACON/FLTBCON registers are cleared, then the Fault pin(s) could be used as general purpose interrupt pin(s). Each Fault pin has an interrupt vector, interrupt flag bit and interrupt priority bits associated with it.© 2007 Microchip Technology Inc. Preliminary DS70165E-page 183 dsPIC33F 15.12.4 FAULT INPUT MODES Each of the Fault input pins have two modes of operation: • Latched Mode: When the Fault pin is driven low, the PWM outputs will go to the states defined in the FLTACON/FLTBCON registers. The PWM outputs will remain in this state until the Fault pin is driven high and the corresponding interrupt flag has been cleared in software. When both of these actions have occurred, the PWM outputs will return to normal operation at the beginning of the next PWM cycle or half-cycle boundary. If the interrupt flag is cleared before the Fault condition ends, the PWM module will wait until the Fault pin is no longer asserted, to restore the outputs. • Cycle-by-Cycle Mode: When the Fault input pin is driven low, the PWM outputs remain in the defined Fault states for as long as the Fault pin is held low. After the Fault pin is driven high, the PWM outputs return to normal operation at the beginning of the following PWM cycle or half-cycle boundary. The operating mode for each Fault input pin is selected using the FLTAM and FLTBM control bits in the FLTACON and FLTBCON Special Function Registers. Each of the Fault pins can be controlled manually in software. 15.13 PWM Update Lockout For a complex PWM application, the user may need to write up to four Duty Cycle registers and the PWM Time Base Period register, PTPER, at a given time. In some applications, it is important that all buffer registers be written before the new duty cycle and period values are loaded for use by the module. The PWM update lockout feature is enabled by setting the UDIS control bit in the PWMCON2 SFR. The UDIS bit affects all Duty Cycle Buffer registers and the PWM Time Base Period register, PTPER. No duty cycle changes or period value changes will have effect while UDIS = 1. If the IUE bit is set, any change to the Duty Cycle registers will be immediately updated regardless of the UDIS bit state. The PWM Period register (PTPER) updates are not affected by the IUE control bit. 15.14 PWM Special Event Trigger The PWM module has a Special Event Trigger that allows ADC conversions to be synchronized to the PWM time base. The ADC sampling and conversion time may be programmed to occur at any point within the PWM period. The Special Event Trigger allows the user to minimize the delay between the time when ADC conversion results are acquired and the time when the duty cycle value is updated. The PWM Special Event Trigger has an SFR named SEVTCMP, and five control bits to control its operation. The PTMR value for which a Special Event Trigger should occur is loaded into the SEVTCMP register. When the PWM time base is in an Up/Down Count mode, an additional control bit is required to specify the counting phase for the Special Event Trigger. The count phase is selected using the SEVTDIR control bit in the SEVTCMP SFR. If the SEVTDIR bit is cleared, the Special Event Trigger will occur on the upward counting cycle of the PWM time base. If the SEVTDIR bit is set, the Special Event Trigger will occur on the downward count cycle of the PWM time base. The SEVTDIR control bit has no effect unless the PWM time base is configured for an Up/Down Count mode. 15.14.1 SPECIAL EVENT TRIGGER POSTSCALER The PWM Special Event Trigger has a postscaler that allows a 1:1 to 1:16 postscale ratio. The postscaler is configured by writing the SEVOPS<3:0> control bits in the PWMCON2 SFR. The special event output postscaler is cleared on the following events: • Any write to the SEVTCMP register • Any device Reset 15.15 PWM Operation During CPU Sleep Mode The Fault A and Fault B input pins have the ability to wake the CPU from Sleep mode. The PWM module generates an interrupt if either of the Fault pins is driven low while in Sleep. 15.16 PWM Operation During CPU Idle Mode The PTCON SFR contains a PTSIDL control bit. This bit determines if the PWM module will continue to operate or stop when the device enters Idle mode. If PTSIDL = 0, the module will continue to operate. If PTSIDL = 1, the module will stop operation as long as the CPU remains in Idle mode.dsPIC33F DS70165E-page 184 Preliminary © 2007 Microchip Technology Inc. REGISTER 15-1: PTCON: PWM TIME BASE CONTROL REGISTER R/W-0 U-0 R/W-0 U-0 U-0 U-0 U-0 U-0 PTEN — PTSIDL — — — — — bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 PTOPS<3:0> PTCKPS<1:0> PTMOD<1:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 PTEN: PWM Time Base Timer Enable bit 1 = PWM time base is on 0 = PWM time base is off bit 14 Unimplemented: Read as ‘0’ bit 13 PTSIDL: PWM Time Base Stop in Idle Mode bit 1 = PWM time base halts in CPU Idle mode 0 = PWM time base runs in CPU Idle mode bit 12-8 Unimplemented: Read as ‘0’ bit 7-4 PTOPS<3:0>: PWM Time Base Output Postscale Select bits 1111 = 1:16 postscale • • 0001 = 1:2 postscale 0000 = 1:1 postscale bit 3-2 PTCKPS<1:0>: PWM Time Base Input Clock Prescale Select bits 11 = PWM time base input clock period is 64 TCY (1:64 prescale) 10 = PWM time base input clock period is 16 TCY (1:16 prescale) 01 = PWM time base input clock period is 4 TCY (1:4 prescale) 00 = PWM time base input clock period is TCY (1:1 prescale) bit 1-0 PTMOD<1:0>: PWM Time Base Mode Select bits 11 =PWM time base operates in a Continuous Up/Down Count mode with interrupts for double PWM updates 10 =PWM time base operates in a Continuous Up/Down Count mode 01 =PWM time base operates in Single Pulse mode 00 =PWM time base operates in a Free-Running mode© 2007 Microchip Technology Inc. Preliminary DS70165E-page 185 dsPIC33F REGISTER 15-2: PTMR: PWM TIMER COUNT VALUE REGISTER R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 PTDIR PTMR<14:8> bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 PTMR<7:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 PTDIR: PWM Time Base Count Direction Status bit (read-only) 1 = PWM time base is counting down 0 = PWM time base is counting up bit 14-0 PTMR <14:0>: PWM Time Base Register Count Value bits REGISTER 15-3: PTPER: PWM TIME BASE PERIOD REGISTER U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 — PTPER<14:8> bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 PTPER<7:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as ‘0’ bit 14-0 PTPER<14:0>: PWM Time Base Period Value bitsdsPIC33F DS70165E-page 186 Preliminary © 2007 Microchip Technology Inc. REGISTER 15-4: SEVTCMP: SPECIAL EVENT COMPARE REGISTER R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 SEVTDIR (1) SEVTCMP<14:8> (2) bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 SEVTCMP<7:0> (2) bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 SEVTDIR: Special Event Trigger Time Base Direction bit (1) 1 = A Special Event Trigger will occur when the PWM time base is counting downwards 0 = A Special Event Trigger will occur when the PWM time base is counting upwards bit 14-0 SEVTCMP<14:0>: Special Event Compare Value bits (2) Note 1: SEVTDIR is compared with PTDIR (PTMR<15>) to generate the Special Event Trigger. 2: SEVTCMP<14:0> is compared with PTMR<14:0> to generate the Special Event Trigger.© 2007 Microchip Technology Inc. Preliminary DS70165E-page 187 dsPIC33F REGISTER 15-5: PWMCON1: PWM CONTROL REGISTER 1 U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 — — — — PMOD4 PMOD3 PMOD2 PMOD1 bit 15 bit 8 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 PEN4H (1) PEN3H (1) PEN2H (1) PEN1H (1) PEN4L (1) PEN3L (1) PEN2L (1) PEN1L (1) bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-12 Unimplemented: Read as ‘0’ bit 11-8 PMOD<4:1>: PWM I/O Pair Mode bits 1 = PWM I/O pin pair is in the Independent PWM Output mode 0 = PWM I/O pin pair is in the Complementary Output mode bit 7-4 PEN4H:PEN1H: PWMxH I/O Enable bits (1) 1 = PWMxH pin is enabled for PWM output 0 = PWMxH pin disabled, I/O pin becomes general purpose I/O bit 3-0 PEN4L:PEN1L: PWMxL I/O Enable bits (1) 1 = PWMxL pin is enabled for PWM output 0 = PWMxL pin disabled, I/O pin becomes general purpose I/O Note 1: Reset condition of the PENxH and PENxL bits depends on the value of the PWMPIN Configuration bit in the FPOR Configuration register.dsPIC33F DS70165E-page 188 Preliminary © 2007 Microchip Technology Inc. REGISTER 15-6: PWMCON2: PWM CONTROL REGISTER 2 U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 — — — — SEVOPS<3:0> bit 15 bit 8 U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 — — — — — IUE OSYNC UDIS bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-12 Unimplemented: Read as ‘0’ bit 11-8 SEVOPS<3:0>: PWM Special Event Trigger Output Postscale Select bits 1111 = 1:16 postscale • • 0001 = 1:2 postscale 0000 = 1:1 postscale bit 7-3 Unimplemented: Read as ‘0’ bit 2 IUE: Immediate Update Enable bit 1 = Updates to the active PDC registers are immediate 0 = Updates to the active PDC registers are synchronized to the PWM time base bit 1 OSYNC: Output Override Synchronization bit 1 = Output overrides via the OVDCON register are synchronized to the PWM time base 0 = Output overrides via the OVDCON register occur on next TCY boundary bit 0 UDIS: PWM Update Disable bit 1 = Updates from Duty Cycle and Period Buffer registers are disabled 0 = Updates from Duty Cycle and Period Buffer registers are enabled© 2007 Microchip Technology Inc. Preliminary DS70165E-page 189 dsPIC33F REGISTER 15-7: DTCON1: DEAD-TIME CONTROL REGISTER 1 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 DTBPS<1:0> DTB<5:0> bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 DTAPS<1:0> DTA<5:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-14 DTBPS<1:0>: Dead-Time Unit B Prescale Select bits 11 = Clock period for Dead-Time Unit B is 8 TCY 10 = Clock period for Dead-Time Unit B is 4 TCY 01 = Clock period for Dead-Time Unit B is 2 TCY 00 = Clock period for Dead-Time Unit B is TCY bit 13-8 DTB<5:0>: Unsigned 6-bit Dead-Time Value for Dead-Time Unit B bits bit 7-6 DTAPS<1:0>: Dead-Time Unit A Prescale Select bits 11 = Clock period for Dead-Time Unit A is 8 TCY 10 = Clock period for Dead-Time Unit A is 4 TCY 01 = Clock period for Dead-Time Unit A is 2 TCY 00 = Clock period for Dead-Time Unit A is TCY bit 5-0 DTA<5:0>: Unsigned 6-bit Dead-Time Value for Dead-Time Unit A bitsdsPIC33F DS70165E-page 190 Preliminary © 2007 Microchip Technology Inc. REGISTER 15-8: DTCON2: DEAD-TIME CONTROL REGISTER 2 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 — — — — — — — — bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 DTS4A DTS4I DTS3A DTS3I DTS2A DTS2I DTS1A DTS1I bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-8 Unimplemented: Read as ‘0’ bit 7 DTS4A: Dead-Time Select for PWM4 Signal Going Active bit 1 = Dead time provided from Unit B 0 = Dead time provided from Unit A bit 6 DTS4I: Dead-Time Select for PWM4 Signal Going Inactive bit 1 = Dead time provided from Unit B 0 = Dead time provided from Unit A bit 5 DTS3A: Dead-Time Select for PWM3 Signal Going Active bit 1 = Dead time provided from Unit B 0 = Dead time provided from Unit A bit 4 DTS3I: Dead-Time Select for PWM3 Signal Going Inactive bit 1 = Dead time provided from Unit B 0 = Dead time provided from Unit A bit 3 DTS2A: Dead-Time Select for PWM2 Signal Going Active bit 1 = Dead time provided from Unit B 0 = Dead time provided from Unit A bit 2 DTS2I: Dead-Time Select for PWM2 Signal Going Inactive bit 1 = Dead time provided from Unit B 0 = Dead time provided from Unit A bit 1 DTS1A: Dead-Time Select for PWM1 Signal Going Active bit 1 = Dead time provided from Unit B 0 = Dead time provided from Unit A bit 0 DTS1I: Dead-Time Select for PWM1 Signal Going Inactive bit 1 = Dead time provided from Unit B 0 = Dead time provided from Unit A© 2007 Microchip Technology Inc. Preliminary DS70165E-page 191 dsPIC33F REGISTER 15-9: FLTACON: FAULT A CONTROL REGISTER R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 FAOV4H FAOV4L FAOV3H FAOV3L FAOV2H FAOV2L FAOV1H FAOV1L bit 15 bit 8 R/W-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 FLTAM — — — FAEN4 FAEN3 FAEN2 FAEN1 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-8 FAOVxH<4:1>:FAOVxL<4:1>: Fault Input A PWM Override Value bits 1 = The PWM output pin is driven active on an external Fault input event 0 = The PWM output pin is driven inactive on an external Fault input event bit 7 FLTAM: Fault A Mode bit 1 = The Fault A input pin functions in the Cycle-by-Cycle mode 0 = The Fault A input pin latches all control pins to the programmed states in FLTACON<15:8> bit 6-4 Unimplemented: Read as ‘0’ bit 3 FAEN4: Fault Input A Enable bit 1 = PWM4H/PWM4L pin pair is controlled by Fault Input A 0 = PWM4H/PWM4L pin pair is not controlled by Fault Input A bit 2 FAEN3: Fault Input A Enable bit 1 = PWM3H/PWM3L pin pair is controlled by Fault Input A 0 = PWM3H/PWM3L pin pair is not controlled by Fault Input A bit 1 FAEN2: Fault Input A Enable bit 1 = PWM2H/PWM2L pin pair is controlled by Fault Input A 0 = PWM2H/PWM2L pin pair is not controlled by Fault Input A bit 0 FAEN1: Fault Input A Enable bit 1 = PWM1H/PWM1L pin pair is controlled by Fault Input A 0 = PWM1H/PWM1L pin pair is not controlled by Fault Input AdsPIC33F DS70165E-page 192 Preliminary © 2007 Microchip Technology Inc. REGISTER 15-10: FLTBCON: FAULT B CONTROL REGISTER R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 FBOV4H FBOV4L FBOV3H FBOV3L FBOV2H FBOV2L FBOV1H FBOV1L bit 15 bit 8 R/W-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 FLTBM — — — FBEN4 (1) FBEN3 (1) FBEN2 (1) FBEN1 (1) bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-8 FBOVxH<4:1>:FBOVxL<4:1>: Fault Input B PWM Override Value bits 1 = The PWM output pin is driven active on an external Fault input event 0 = The PWM output pin is driven inactive on an external Fault input event bit 7 FLTBM: Fault B Mode bit 1 = The Fault B input pin functions in the Cycle-by-Cycle mode 0 = The Fault B input pin latches all control pins to the programmed states in FLTBCON<15:8> bit 6-4 Unimplemented: Read as ‘0’ bit 3 FBEN4: Fault Input B Enable bit (1) 1 = PWM4H/PWM4L pin pair is controlled by Fault Input B 0 = PWM4H/PWM4L pin pair is not controlled by Fault Input B bit 2 FBEN3: Fault Input B Enable bit (1) 1 = PWM3H/PWM3L pin pair is controlled by Fault Input B 0 = PWM3H/PWM3L pin pair is not controlled by Fault Input B bit 1 FBEN2: Fault Input B Enable bit (1) 1 = PWM2H/PWM2L pin pair is controlled by Fault Input B 0 = PWM2H/PWM2L pin pair is not controlled by Fault Input B bit 0 FBEN1: Fault Input B Enable bit (1) 1 = PWM1H/PWM1L pin pair is controlled by Fault Input B 0 = PWM1H/PWM1L pin pair is not controlled by Fault Input B Note 1: Fault A pin has priority over Fault B pin, if enabled.© 2007 Microchip Technology Inc. Preliminary DS70165E-page 193 dsPIC33F REGISTER 15-11: OVDCON: OVERRIDE CONTROL REGISTER R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 POVD4H POVD4L POVD3H POVD3L POVD2H POVD2L POVD1H POVD1L bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 POUT4H POUT4L POUT3H POUT3L POUT2H POUT2L POUT1H POUT1L bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-8 POVDxH<4:1>:POVDxL<4:1>: PWM Output Override bits 1 = Output on PWMx I/O pin is controlled by the PWM generator 0 = Output on PWMx I/O pin is controlled by the value in the corresponding POUTxH:POUTxL bit bit 7-0 POUTxH<4:1>:POUTxL<4:1>: PWM Manual Output bits 1 = PWMx I/O pin is driven active when the corresponding POVDxH:POVDxL bit is cleared 0 = PWMx I/O pin is driven inactive when the corresponding POVDxH:POVDxL bit is cleareddsPIC33F DS70165E-page 194 Preliminary © 2007 Microchip Technology Inc. REGISTER 15-12: PDC1: PWM DUTY CYCLE REGISTER 1 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 PDC1<15:8> bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 PDC1<7:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-0 PDC1<15:0>: PWM Duty Cycle #1 Value bits REGISTER 15-13: PDC2: PWM DUTY CYCLE REGISTER 2 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 PDC2<15:8> bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 PDC2<7:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-0 PDC2<15:0>: PWM Duty Cycle #2 Value bits© 2007 Microchip Technology Inc. Preliminary DS70165E-page 195 dsPIC33F REGISTER 15-14: PDC3: PWM DUTY CYCLE REGISTER 3 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 PDC3<15:8> bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 PDC3<7:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-0 PDC3<15:0>: PWM Duty Cycle #3 Value bits REGISTER 15-15: PDC4: PWM DUTY CYCLE REGISTER 4 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 PDC4<15:8> bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 PDC4<7:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-0 PDC4<15:0>: PWM Duty Cycle #4 Value bitsdsPIC33F DS70165E-page 196 Preliminary © 2007 Microchip Technology Inc. NOTES:© 2007 Microchip Technology Inc. Preliminary DS70165E-page 197 dsPIC33F 16.0 QUADRATURE ENCODER INTERFACE (QEI) MODULE This section describes the Quadrature Encoder Interface (QEI) module and associated operational modes. The QEI module provides the interface to incremental encoders for obtaining mechanical position data. The operational features of the QEI include: • Three input channels for two phase signals and index pulse • 16-bit up/down position counter • Count direction status • Position Measurement (x2 and x4) mode • Programmable digital noise filters on inputs • Alternate 16-bit Timer/Counter mode • Quadrature Encoder Interface interrupts These operating modes are determined by setting the appropriate bits, QEIM<2:0> (QEICON<10:8>). Figure 16-1 depicts the Quadrature Encoder Interface block diagram. FIGURE 16-1: QUADRATURE ENCODER INTERFACE BLOCK DIAGRAM Note: This data sheet summarizes the features of this group of dsPIC33F devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the “dsPIC30F Family Reference Manual” (DS70046). 16-bit Up/Down Counter Comparator/ Max Count Register QEA INDX 0 1 Up/Down Existing Pin Logic UPDN 3 QEB QEIM<2:0> Mode Select 3 (POSCNT) (MAXCNT) PCDOUT QEIIF Event Flag Reset Equal 2 TCY 1 0 TQCS TQCKPS<1:0> 2 Q D Q CK TQGATE QEIM<2:0> 1 0 Sleep Input 0 1 UPDN_SRC QEICON<11> Zero Detect Synchronize Det 1, 8, 64, 256 Prescaler Quadrature Encoder Interface Logic Programmable Digital Filter Programmable Digital Filter Programmable Digital FilterdsPIC33F DS70165E-page 198 Preliminary © 2007 Microchip Technology Inc. 16.1 Quadrature Encoder Interface Logic A typical incremental (a.k.a. optical) encoder has three outputs: Phase A, Phase B and an index pulse. These signals are useful and often required in position and speed control of ACIM and SR motors. The two channels, Phase A (QEA) and Phase B (QEB), have a unique relationship. If Phase A leads Phase B, then the direction (of the motor) is deemed positive or forward. If Phase A lags Phase B, then the direction (of the motor) is deemed negative or reverse. A third channel, termed index pulse, occurs once per revolution and is used as a reference to establish an absolute position. The index pulse coincides with Phase A and Phase B, both low. 16.2 16-bit Up/Down Position Counter Mode The 16-bit up/down counter counts up or down on every count pulse, which is generated by the difference of the Phase A and Phase B input signals. The counter acts as an integrator whose count value is proportional to position. The direction of the count is determined by the UPDN signal which is generated by the Quadrature Encoder Interface logic. 16.2.1 POSITION COUNTER ERROR CHECKING Position counter error checking in the QEI is provided for and indicated by the CNTERR bit (QEICON<15>). The error checking only applies when the position counter is configured for Reset on the Index Pulse modes (QEIM<2:0> = 110 or 100). In these modes, the contents of the POSCNT register are compared with the values (0xFFFF or MAXCNT + 1, depending on direction). If these values are detected, an error condition is generated by setting the CNTERR bit and a QEI counter error interrupt is generated. The QEI counter error interrupt can be disabled by setting the CEID bit (DFLTCON<8>). The position counter continues to count encoder edges after an error has been detected. The POSCNT register continues to count up/down until a natural rollover/underflow. No interrupt is generated for the natural rollover/underflow event. The CNTERR bit is a read/write bit and is reset in software by the user. 16.2.2 POSITION COUNTER RESET The Position Counter Reset Enable bit, POSRES (QEI<2>), controls whether the position counter is reset when the index pulse is detected. This bit is only applicable when QEIM<2:0> = 100 or 110. If the POSRES bit is set to ‘1’, then the position counter is reset when the index pulse is detected. If the POSRES bit is set to ‘0’, then the position counter is not reset when the index pulse is detected. The position counter will continue counting up or down, and will be reset on the rollover or underflow condition. The interrupt is still generated on the detection of the index pulse and not on the position counter overflow/ underflow. 16.2.3 COUNT DIRECTION STATUS As mentioned in the previous section, the QEI logic generates a UPDN signal, based upon the relationship between Phase A and Phase B. In addition to the output pin, the state of this internal UPDN signal is supplied to an SFR bit, UPDN (QEICON<11>), as a read-only bit. To place the state of this signal on an I/O pin, the SFR bit, PCDOUT (QEICON<6>), must be set to ‘1’. 16.3 Position Measurement Mode There are two measurement modes which are supported and are termed x2 and x4. These modes are selected by the QEIM<2:0> mode select bits located in SFR QEICON<10:8>. When control bits, QEIM<2:0> = 100 or 101, the x2 Measurement mode is selected and the QEI logic only looks at the Phase A input for the position counter increment rate. Every rising and falling edge of the Phase A signal causes the position counter to be incremented or decremented. The Phase B signal is still utilized for the determination of the counter direction, just as in the x4 Measurement mode. Within the x2 Measurement mode, there are two variations of how the position counter is reset: 1. Position counter reset by detection of index pulse, QEIM<2:0> = 100. 2. Position counter reset by match with MAXCNT, QEIM<2:0> = 101. When control bits, QEIM<2:0> = 110 or 111, the x4 Measurement mode is selected and the QEI logic looks at both edges of the Phase A and Phase B input signals. Every edge of both signals causes the position counter to increment or decrement. Within the x4 Measurement mode, there are two variations of how the position counter is reset: 1. Position counter reset by detection of index pulse, QEIM<2:0> = 110. 2. Position counter reset by match with MAXCNT, QEIM<2:0> = 111. The x4 Measurement mode provides for finer resolution data (more position counts) for determining motor position.© 2007 Microchip Technology Inc. Preliminary DS70165E-page 199 dsPIC33F 16.4 Programmable Digital Noise Filters The digital noise filter section is responsible for rejecting noise on the incoming capture or quadrature signals. Schmitt Trigger inputs and a 3-clock cycle delay filter combine to reject low-level noise and large, short duration noise spikes that typically occur in noise prone applications, such as a motor system. The filter ensures that the filtered output signal is not permitted to change until a stable value has been registered for three consecutive clock cycles. For the QEA, QEB and INDX pins, the clock divide frequency for the digital filter is programmed by bits, QECK<2:0> (DFLTCON<6:4>), and are derived from the base instruction cycle, TCY. To enable the filter output for channels QEA, QEB and INDX, the QEOUT bit must be ‘1’. The filter network for all channels is disabled on POR. 16.5 Alternate 16-bit Timer/Counter When the QEI module is not configured for the QEI mode, QEIM<2:0> = 001, the module can be configured as a simple 16-bit timer/counter. The setup and control of the auxiliary timer is accomplished through the QEICON SFR register. This timer functions identically to Timer1. The QEA pin is used as the timer clock input. When configured as a timer, the POSCNT register serves as the Timer Count register and the MAXCNT register serves as the Period register. When a Timer/ Period register match occur, the QEI interrupt flag will be asserted. The only exception between the general purpose timers and this timer is the added feature of external up/down input select. When the UPDN pin is asserted high, the timer will increment up. When the UPDN pin is asserted low, the timer will be decremented. The UPDN control/status bit (QEICON<11>) can be used to select the count direction state of the Timer register. When UPDN = 1, the timer will count up. When UPDN = 0, the timer will count down. In addition, control bit UPDN_SRC, (QEICON<0>), determines whether the timer count direction state is based on the logic state written into the UPDN control/ status bit (QEICON<11>) or the QEB pin state. When UPDN_SRC = 1, the timer count direction is controlled from the QEB pin. Likewise, when UPDN_SRC = 0, the timer count direction is controlled by the UPDN bit. 16.6 QEI Module Operation During CPU Sleep Mode 16.6.1 QEI OPERATION DURING CPU SLEEP MODE The QEI module will be halted during the CPU Sleep mode. 16.6.2 TIMER OPERATION DURING CPU SLEEP MODE During CPU Sleep mode, the timer will not operate because the internal clocks are disabled. 16.7 QEI Module Operation During CPU Idle Mode Since the QEI module can function as a Quadrature Encoder Interface, or as a 16-bit timer, the following section describes operation of the module in both modes. 16.7.1 QEI OPERATION DURING CPU IDLE MODE When the CPU is placed in the Idle mode, the QEI module will operate if QEISIDL (QEICON<13>) = 0. This bit defaults to a logic ‘0’ upon executing POR. For halting the QEI module during the CPU Idle mode, QEISIDL should be set to ‘1’. Note: Changing the operational mode (i.e., from QEI to timer or vice versa) will not affect the Timer/Position Count register contents. Note: This timer does not support the External Asynchronous Counter mode of operation. If using an external clock source, the clock will automatically be synchronized to the internal instruction cycle.dsPIC33F DS70165E-page 200 Preliminary © 2007 Microchip Technology Inc. 16.7.2 TIMER OPERATION DURING CPU IDLE MODE When the CPU is placed in the Idle mode and the QEI module is configured in the 16-bit Timer mode, the 16-bit timer will operate if QEISIDL (QEICON<13>) = 0. This bit defaults to a logic ‘0’ upon executing POR. For halting the timer module during the CPU Idle mode, QEISIDL should be set to ‘1’. If the QEISIDL bit is cleared, the timer will function normally as if the CPU Idle mode had not been entered. 16.8 Quadrature Encoder Interface Interrupts The Quadrature Encoder Interface has the ability to generate an interrupt on occurrence of the following events: • Interrupt on 16-bit up/down position counter rollover/underflow • Detection of qualified index pulse or if CNTERR bit is set • Timer period match event (overflow/underflow) • Gate accumulation event The QEI Interrupt Flag bit, QEIIF, is asserted upon occurrence of any of the above events. The QEIIF bit must be cleared in software. QEIIF is located in the IFS3 register. Enabling an interrupt is accomplished via the respective enable bit, QEIIE. The QEIIE bit is located in the IEC3 register. 16.9 Control and Status Registers The QEI module has four user-accessible registers. The registers are accessible in either Byte or Word mode. These registers are: • Control/Status Register (QEICON) – This register allows control of the QEI operation and status flags indicating the module state. • Digital Filter Control Register (DFLTCON) – This register allows control of the digital input filter operation. • Position Count Register (POSCNT) – This location allows reading and writing of the 16-bit position counter. • Maximum Count Register (MAXCNT) – The MAXCNT register holds a value that will be compared to the POSCNT counter in some operations. Note: The POSCNT register allows byte accesses, however, reading the register in byte mode may result in partially updated values in subsequent reads. Either use Word mode reads/writes or ensure that the counter is not counting during byte operations.© 2007 Microchip Technology Inc. Preliminary DS70165E-page 201 dsPIC33F REGISTER 16-1: QEICON: QEI CONTROL REGISTER R/W-0 U-0 R/W-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0 CNTERR — QEISIDL INDEX UPDN QEIM<2:0> bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 SWPAB PCDOUT TQGATE TQCKPS<1:0> POSRES TQCS UPDN_SRC bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 CNTERR: Count Error Status Flag bit 1 = Position count error has occurred 0 = No position count error has occurred (CNTERR flag only applies when QEIM<2:0> = ‘110’ or ‘100’) bit 14 Unimplemented: Read as ‘0’ bit 13 QEISIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode bit 12 INDEX: Index Pin State Status bit (Read-Only) 1 = Index pin is High 0 = Index pin is Low bit 11 UPDN: Position Counter Direction Status bit 1 = Position Counter Direction is positive (+) 0 = Position Counter Direction is negative (-) (Read-only bit when QEIM<2:0> = ‘1XX’) (Read/Write bit when QEIM<2:0> = ‘001’) bit 10-8 QEIM<2:0>: Quadrature Encoder Interface Mode Select bits 111 = Quadrature Encoder Interface enabled (x4 mode) with position counter reset by match (MAXCNT) 110 = Quadrature Encoder Interface enabled (x4 mode) with Index Pulse reset of position counter 101 = Quadrature Encoder Interface enabled (x2 mode) with position counter reset by match (MAXCNT) 100 = Quadrature Encoder Interface enabled (x2 mode) with Index Pulse reset of position counter 011 = Unused (Module disabled) 010 = Unused (Module disabled) 001 = Starts 16-bit Timer 000 = Quadrature Encoder Interface/Timer off bit 7 SWPAB: Phase A and Phase B Input Swap Select bit 1 = Phase A and Phase B inputs swapped 0 = Phase A and Phase B inputs not swapped bit 6 PCDOUT: Position Counter Direction State Output Enable bit 1 = Position Counter Direction Status Output Enable (QEI logic controls state of I/O pin) 0 = Position Counter Direction Status Output Disabled (Normal I/O pin operation) bit 5 TQGATE: Timer Gated Time Accumulation Enable bit 1 = Timer gated time accumulation enabled 0 = Timer gated time accumulation disableddsPIC33F DS70165E-page 202 Preliminary © 2007 Microchip Technology Inc. bit 4-3 TQCKPS<1:0>: Timer Input Clock Prescale Select bits 11 = 1:256 prescale value 10 = 1:64 prescale value 01 = 1:8 prescale value 00 = 1:1 prescale value (Prescaler utilized for 16-bit Timer mode only) bit 2 POSRES: Position Counter Reset Enable bit 1 = Index Pulse resets Position Counter 0 = Index Pulse does not reset Position Counter (Bit only applies when QEIM<2:0> = 100 or 110) bit 1 TQCS: Timer Clock Source Select bit 1 = External clock from pin QEA (on the rising edge) 0 = Internal clock (TCY) bit 0 UPDN_SRC: Position Counter Direction Selection Control bit 1 = QEB pin State Defines Position Counter Direction 0 = Control/Status bit, UPDN (QEICON<11>), Defines Timer Counter (POSCNT) direction Note: When configured for QEI mode, control bit is a ‘don’t care’. REGISTER 16-1: QEICON: QEI CONTROL REGISTER (CONTINUED)© 2007 Microchip Technology Inc. Preliminary DS70165E-page 203 dsPIC33F REGISTER 16-2: DFLTCON: DIGITAL FILTER CONTROL REGISTER U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 — — — — — IMV<2:0> CEID bit 15 bit 8 R/W-0 R/W-0 U-0 U-0 U-0 U-0 QEOUT QECK<2:0> — — — — bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-11 Unimplemented: Read as ‘0’ bit 10-9 IMV<1:0>: Index Match Value bits – These bits allow the user to specify the state of the QEA and QEB input pins during an Index pulse when the POSCNT register is to be reset. In 4X Quadrature Count Mode: IMV1= Required State of Phase B input signal for match on index pulse IMV0= Required State of Phase A input signal for match on index pulse In 2X Quadrature Count Mode: IMV1= Selects Phase input signal for Index state match (0 = Phase A, 1 = Phase B) IMV0= Required State of the selected Phase input signal for match on index pulse bit 8 CEID: Count Error Interrupt Disable bit 1 = Interrupts due to count errors are disabled 0 = Interrupts due to count errors are enabled bit 7 QEOUT: QEA/QEB/INDX Pin Digital Filter Output Enable bit 1 = Digital filter outputs enabled 0 = Digital filter outputs disabled (normal pin operation) bit 6-4 QECK<2:0>: QEA/QEB/INDX Digital Filter Clock Divide Select Bits 111 = 1:256 Clock Divide 110 = 1:128 Clock Divide 101 = 1:64 Clock Divide 100 = 1:32 Clock Divide 011 = 1:16 Clock Divide 010 = 1:4 Clock Divide 001 = 1:2 Clock Divide 000 = 1:1 Clock Divide bit 3-0 Unimplemented: Read as ‘0’dsPIC33F DS70165E-page 204 Preliminary © 2007 Microchip Technology Inc. NOTES:© 2007 Microchip Technology Inc. Preliminary DS70165E-page 205 dsPIC33F 17.0 SERIAL PERIPHERAL INTERFACE (SPI) The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, ADC, etc. The SPI module is compatible with SPI and SIOP from Motorola® . Each SPI module consists of a 16-bit shift register, SPIxSR (where x = 1 or 2), used for shifting data in and out, and a buffer register, SPIxBUF. A control register, SPIxCON, configures the module. Additionally, a status register, SPIxSTAT, indicates various status conditions. The serial interface consists of 4 pins: SDIx (serial data input), SDOx (serial data output), SCKx (shift clock input or output), and SSx (active low slave select). In Master mode operation, SCK is a clock output but in Slave mode, it is a clock input. A series of eight (8) or sixteen (16) clock pulses shift out bits from the SPIxSR to SDOx pin and simultaneously shift in data from SDIx pin. An interrupt is generated when the transfer is complete and the corresponding interrupt flag bit (SPI1IF or SPI2IF) is set. This interrupt can be disabled through an interrupt enable bit (SPI1IE or SPI2IE). The receive operation is double-buffered. When a complete byte is received, it is transferred from SPIxSR to SPIxBUF. If the receive buffer is full when new data is being transferred from SPIxSR to SPIxBUF, the module will set the SPIROV bit indicating an overflow condition. The transfer of the data from SPIxSR to SPIxBUF will not be completed and the new data will be lost. The module will not respond to SCL transitions while SPIROV is ‘1’, effectively disabling the module until SPIxBUF is read by user software. Transmit writes are also double-buffered. The user writes to SPIxBUF. When the master or slave transfer is completed, the contents of the shift register (SPIxSR) are moved to the receive buffer. If any transmit data has been written to the buffer register, the contents of the transmit buffer are moved to SPIxSR. The received data is thus placed in SPIxBUF and the transmit data in SPIxSR is ready for the next transfer. To set up the SPI module for the Master mode of operation: 1. If using interrupts: a) Clear the SPIxIF bit in the respective IFSn register. b) Set the SPIxIE bit in the respective IECn register. c) Write the SPIxIP bits in the respective IPCn register to set the interrupt priority. 2. Write the desired settings to the SPIxCON register with MSTEN (SPIxCON1<5>) = 1. 3. Clear the SPIROV bit (SPIxSTAT<6>). 4. Enable SPI operation by setting the SPIEN bit (SPIxSTAT<15>). 5. Write the data to be transmitted to the SPIxBUF register. Transmission (and reception) will start as soon as data is written to the SPIxBUF register. To set up the SPI module for the Slave mode of operation: 1. Clear the SPIxBUF register. 2. If using interrupts: a) Clear the SPIxIF bit in the respective IFSn register. b) Set the SPIxIE bit in the respective IECn register. c) Write the SPIxIP bits in the respective IPCn register to set the interrupt priority. 3. Write the desired settings to the SPIxCON1 and SPIxCON2 registers with MSTEN (SPIxCON1<5>) = 0. 4. Clear the SMP bit. 5. If the CKE bit is set, then the SSEN bit (SPIxCON1<7>) must be set to enable the SSx pin. 6. Clear the SPIROV bit (SPIxSTAT<6>). 7. Enable SPI operation by setting the SPIEN bit (SPIxSTAT<15>). The SPI module generates an interrupt indicating completion of a byte or word transfer, as well as a separate interrupt for all SPI error conditions. Note: This data sheet summarizes the features of this group of dsPIC33F devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the “dsPIC30F Family Reference Manual” (DS70046). Note: In this section, the SPI modules are referred to together as SPIx, or separately as SPI1 and SPI2. Special Function Registers will follow a similar notation. For example, SPIxCON refers to the control register for the SPI1 or SPI2 module. Note: Both the transmit buffer (SPIxTXB) and the receive buffer (SPIxRXB) are mapped to the same register address, SPIxBUF. Do not perform read-modify-write operations (such as bit-oriented instructions) on the SPIxBUF register. Note: Both SPI1 and SPI2 can trigger a DMA data transfer. If SPI1 or SPI2 is selected as the DMA IRQ source, a DMA transfer occurs when the SPI1IF or SPI2IF bit gets set as a result of an SPI1 or SPI2 byte or word transfer. dsPIC33F DS70165E-page 206 Preliminary © 2007 Microchip Technology Inc. FIGURE 17-1: SPI MODULE BLOCK DIAGRAM Internal Data Bus SDIx SDOx SSx SCKx SPIxSR bit 0 Shift Control Edge Select Primary FCY 1:1/4/16/64 Enable Prescaler Sync SPIxBUF Control Transfer Transfer Read SPIxBUF Write SPIxBUF 16 SPIxCON1<1:0> SPIxCON1<4:2> Master Clock Clock Control Secondary Prescaler 1:1 to 1:8 SPIxRXB SPIxTXB© 2007 Microchip Technology Inc. Preliminary DS70165E-page 207 dsPIC33F FIGURE 17-2: SPI MASTER/SLAVE CONNECTION FIGURE 17-3: SPI MASTER, FRAME MASTER CONNECTION DIAGRAM FIGURE 17-4: SPI MASTER, FRAME SLAVE CONNECTION DIAGRAM Serial Receive Buffer (SPIxRXB) MSb LSb SDIx SDOx PROCESSOR 2 (SPI Slave) SCKx SSx (1) Serial Transmit Buffer (SPIxTXB) Serial Receive Buffer (SPIxRXB) Shift Register (SPIxSR) MSb LSb SDOx SDIx PROCESSOR 1 (SPI Master) Serial Clock (SSEN (SPIxCON1<7>) = 1 and MSTEN (SPIxCON1<5>) = 0) Note 1:Using the SSx pin in Slave mode of operation is optional. 2: User must write transmit data to/read received data from SPIxBUF. The SPIxTXB and SPIxRXB registers are memory mapped to SPIxBUF. SCKx Serial Transmit Buffer (SPIxTXB) (MSTEN (SPIxCON1<5>) = 1) SPI Buffer (SPIxBUF) (2) SPI Buffer (SPIxBUF) (2) Shift Register (SPIxSR) SDOx SDIx dsPIC33F Serial Clock SSx SCKx Frame Sync Pulse SDIx SDOx PROCESSOR 2 SSx SCKx (SPI Slave, Frame Slave) SDOx SDIx dsPIC33F Serial Clock SSx SCKx Frame Sync Pulse SDIx SDOx PROCESSOR 2 SSx SCKx (SPI Master, Frame Slave)dsPIC33F DS70165E-page 208 Preliminary © 2007 Microchip Technology Inc. FIGURE 17-5: SPI SLAVE, FRAME MASTER CONNECTION DIAGRAM FIGURE 17-6: SPI SLAVE, FRAME SLAVE CONNECTION DIAGRAM EQUATION 17-1: RELATIONSHIP BETWEEN DEVICE AND SPI CLOCK SPEED TABLE 17-1: SAMPLE SCKx FREQUENCIES FCY = 40 MHz Secondary Prescaler Settings 1:1 2:1 4:1 6:1 8:1 Primary Prescaler Settings 1:1 Invalid Invalid 10000 6666.67 5000 4:1 10000 5000 2500 1666.67 1250 16:1 2500 1250 625 416.67 312.50 64:1 625 312.5 156.25 104.17 78.125 FCY = 5 MHz Primary Prescaler Settings 1:1 5000 2500 1250 833 625 4:1 1250 625 313 208 156 16:1 313 156 78 52 39 64:1 78 39 20 13 10 Note: SCKx frequencies shown in kHz. SDOx SDIx dsPIC33F Serial Clock SSx SCKx Frame Sync Pulse SDIx SDOx PROCESSOR 2 SSx SCKx (SPI Slave, Frame Slave) SDOx SDIx dsPIC33F Serial Clock SSx SCKx Frame Sync Pulse SDIx SDOx PROCESSOR 2 SSx SCKx (SPI Master, Frame Slave) Primary Prescaler * Secondary Prescaler FCY FSCK = © 2007 Microchip Technology Inc. Preliminary DS70165E-page 209 dsPIC33F REGISTER 17-1: SPIxSTAT: SPIx STATUS AND CONTROL REGISTER R/W-0 U-0 R/W-0 U-0 U-0 U-0 U-0 U-0 SPIEN — SPISIDL — — — — — bit 15 bit 8 U-0 R/C-0 U-0 U-0 U-0 U-0 R-0 R-0 — SPIROV — — — — SPITBF SPIRBF bit 7 bit 0 Legend: C = Clearable bit R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 SPIEN: SPIx Enable bit 1 = Enables module and configures SCKx, SDOx, SDIx and SSx as serial port pins 0 = Disables module bit 14 Unimplemented: Read as ‘0’ bit 13 SPISIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode bit 12-7 Unimplemented: Read as ‘0’ bit 6 SPIROV: Receive Overflow Flag bit 1 = A new byte/word is completely received and discarded. The user software has not read the previous data in the SPIxBUF register. 0 = No overflow has occurred bit 5-2 Unimplemented: Read as ‘0’ bit 1 SPITBF: SPIx Transmit Buffer Full Status bit 1 = Transmit not yet started, SPIxTXB is full 0 = Transmit started, SPIxTXB is empty Automatically set in hardware when CPU writes SPIxBUF location, loading SPIxTXB. Automatically cleared in hardware when SPIx module transfers data from SPIxTXB to SPIxSR. bit 0 SPIRBF: SPIx Receive Buffer Full Status bit 1 = Receive complete, SPIxRXB is full 0 = Receive is not complete, SPIxRXB is empty Automatically set in hardware when SPIx transfers data from SPIxSR to SPIxRXB. Automatically cleared in hardware when core reads SPIxBUF location, reading SPIxRXB.dsPIC33F DS70165E-page 210 Preliminary © 2007 Microchip Technology Inc. REGISTER 17-2: SPIXCON1: SPIx CONTROL REGISTER 1 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 — — — DISSCK DISSDO MODE16 SMP CKE (1) bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 SSEN CKP MSTEN SPRE<2:0> PPRE<1:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-13 Unimplemented: Read as ‘0’ bit 12 DISSCK: Disable SCKx pin bit (SPI Master modes only) 1 = Internal SPI clock is disabled, pin functions as I/O 0 = Internal SPI clock is enabled bit 11 DISSDO: Disable SDOx pin bit 1 = SDOx pin is not used by module; pin functions as I/O 0 = SDOx pin is controlled by the module bit 10 MODE16: Word/Byte Communication Select bit 1 = Communication is word-wide (16 bits) 0 = Communication is byte-wide (8 bits) bit 9 SMP: SPIx Data Input Sample Phase bit Master mode: 1 = Input data sampled at end of data output time 0 = Input data sampled at middle of data output time Slave mode: SMP must be cleared when SPIx is used in Slave mode. bit 8 CKE: SPIx Clock Edge Select bit (1) 1 = Serial output data changes on transition from active clock state to Idle clock state (see bit 6) 0 = Serial output data changes on transition from Idle clock state to active clock state (see bit 6) bit 7 SSEN: Slave Select Enable bit (Slave mode) 1 = SSx pin used for Slave mode 0 = SSx pin not used by module. Pin controlled by port function. bit 6 CKP: Clock Polarity Select bit 1 = Idle state for clock is a high level; active state is a low level 0 = Idle state for clock is a low level; active state is a high level bit 5 MSTEN: Master Mode Enable bit 1 = Master mode 0 = Slave mode bit 4-2 SPRE<2:0>: Secondary Prescale bits (Master mode) 111 = Secondary prescale 1:1 110 = Secondary prescale 2:1 ... 000 = Secondary prescale 8:1 bit 1-0 PPRE<1:0>: Primary Prescale bits (Master mode) 11 = Primary prescale 1:1 10 = Primary prescale 4:1 01 = Primary prescale 16:1 00 = Primary prescale 64:1 Note 1: The CKE bit is not used in the Framed SPI modes. The user should program this bit to ‘0’ for the Framed SPI modes (FRMEN = 1).© 2007 Microchip Technology Inc. Preliminary DS70165E-page 211 dsPIC33F REGISTER 17-3: SPIxCON2: SPIx CONTROL REGISTER 2 R/W-0 R/W-0 R/W-0 U-0 U-0 U-0 U-0 U-0 FRMEN SPIFSD FRMPOL — — — — — bit 15 bit 8 U-0 U-0 U-0 U-0 U-0 U-0 R/W-0 U-0 — — — — — — FRMDLY — bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 FRMEN: Framed SPIx Support bit 1 = Framed SPIx support enabled (SSx pin used as frame sync pulse input/output) 0 = Framed SPIx support disabled bit 14 SPIFSD: Frame Sync Pulse Direction Control bit 1 = Frame sync pulse input (slave) 0 = Frame sync pulse output (master) bit 13 FRMPOL: Frame Sync Pulse Polarity bit 1 = Frame sync pulse is active-high 0 = Frame sync pulse is active-low bit 12-2 Unimplemented: Read as ‘0’ bit 1 FRMDLY: Frame Sync Pulse Edge Select bit 1 = Frame sync pulse coincides with first bit clock 0 = Frame sync pulse precedes first bit clock bit 0 Unimplemented: This bit must not be set to ‘1’ by the user application.dsPIC33F DS70165E-page 212 Preliminary © 2007 Microchip Technology Inc. NOTES:© 2007 Microchip Technology Inc. Preliminary DS70165E-page 213 dsPIC33F 18.0 INTER-INTEGRATED CIRCUIT (I 2 C) The Inter-Integrated Circuit (I 2 C) module provides complete hardware support for both Slave and MultiMaster modes of the I 2 C serial communication standard, with a 16-bit interface. The dsPIC33F devices have up to two I 2 C interface modules, denoted as I2C1 and I2C2. Each I 2 C module has a 2-pin interface: the SCLx pin is clock and the SDAx pin is data. Each I 2 C module ‘x’ (x = 1 or 2) offers the following key features: • I 2 C interface supporting both master and slave operation. • I 2 C Slave mode supports 7 and 10-bit address. • I 2 C Master mode supports 7 and 10-bit address. • I 2 C port allows bidirectional transfers between master and slaves. • Serial clock synchronization for I 2 C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control). • I 2 C supports multi-master operation; detects bus collision and will arbitrate accordingly. 18.1 Operating Modes The hardware fully implements all the master and slave functions of the I 2 C Standard and Fast mode specifications, as well as 7 and 10-bit addressing. The I 2 C module can operate either as a slave or a master on an I 2 C bus. The following types of I 2 C operation are supported: • I 2 C slave operation with 7-bit address • I 2 C slave operation with 10-bit address • I 2 C master operation with 7 or 10-bit address For details about the communication sequence in each of these modes, please refer to the “dsPIC30F Family Reference Manual”. 18.2 I 2 C Registers I2CxCON and I2CxSTAT are control and status registers, respectively. The I2CxCON register is readable and writable. The lower six bits of I2CxSTAT are read-only. The remaining bits of the I2CSTAT are read/write. I2CxRSR is the shift register used for shifting data, whereas I2CxRCV is the buffer register to which data bytes are written, or from which data bytes are read. I2CxRCV is the receive buffer. I2CxTRN is the transmit register to which bytes are written during a transmit operation. The I2CxADD register holds the slave address. A status bit, ADD10, indicates 10-bit Address mode. The I2CxBRG acts as the Baud Rate Generator (BRG) reload value. In receive operations, I2CxRSR and I2CxRCV together form a double-buffered receiver. When I2CxRSR receives a complete byte, it is transferred to I2CxRCV and an interrupt pulse is generated. 18.3 I 2 C Interrupts The I 2 C module generates two interrupt flags, MI2CxIF (I 2 C Master Events Interrupt Flag) and SI2CxIF (I 2 C Slave Events Interrupt Flag). A separate interrupt is generated for all I 2 C error conditions. 18.4 Baud Rate Generator In I 2 C Master mode, the reload value for the BRG is located in the I2CxBRG register. When the BRG is loaded with this value, the BRG counts down to ‘0’ and stops until another reload has taken place. If clock arbitration is taking place, for instance, the BRG is reloaded when the SCLx pin is sampled high. As per the I 2 C standard, FSCL may be 100 kHz or 400 kHz. However, the user can specify any baud rate up to 1 MHz. I2CxBRG values of ‘0’ or ‘1’ are illegal. EQUATION 18-1: SERIAL CLOCK RATE Note: This data sheet summarizes the features of this group of dsPIC33F devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the “dsPIC30F Family Reference Manual” (DS70046). I2CxBRG = FCY FCY FSCL 1,111,111 ( – ) – 1dsPIC33F DS70165E-page 214 Preliminary © 2007 Microchip Technology Inc. FIGURE 18-1: I 2 C™ BLOCK DIAGRAM (X = 1 OR 2) Internal Data Bus SCLx SDAx Shift Match Detect I2CxADD Start and Stop Bit Detect Clock Address Match Clock Stretching I2CxTRN LSb Shift Clock BRG Down Counter Reload Control TCY/2 Start and Stop Bit Generation Acknowledge Generation Collision Detect I2CxCON I2CxSTAT Control Logic Read LSb Write Read I2CxBRG I2CxRSR Write Read Write Read Write Read Write Read Write Read I2CxMSK I2CxRCV© 2007 Microchip Technology Inc. Preliminary DS70165E-page 215 dsPIC33F 18.5 I 2 C Module Addresses The I2CxADD register contains the Slave mode addresses. The register is a 10-bit register. If the A10M bit (I2CxCON<10>) is ‘0’, the address is interpreted by the module as a 7-bit address. When an address is received, it is compared to the 7 Least Significant bits of the I2CxADD register. If the A10M bit is ‘1’, the address is assumed to be a 10-bit address. When an address is received, it will be compared with the binary value, ‘11110 A9 A8’ (where A9 and A8 are two Most Significant bits of I2CxADD). If that value matches, the next address will be compared with the Least Significant 8 bits of I2CxADD, as specified in the 10-bit addressing protocol. TABLE 18-1: 7-BIT I 2 C™ SLAVE ADDRESSES SUPPORTED BY dsPIC33F 18.6 Slave Address Masking The I2CxMSK register (Register 18-3) designates address bit positions as “don’t care” for both 7-bit and 10-bit Address modes. Setting a particular bit location (= 1) in the I2CxMSK register, causes the slave module to respond, whether the corresponding address bit value is a ‘0’ or ‘1’. For example, when I2CxMSK is set to ‘00100000’, the slave module will detect both addresses, ‘0000000’ and ‘00100000’. To enable address masking, the IPMI (Intelligent Peripheral Management Interface) must be disabled by clearing the IPMIEN bit (I2CxCON<11>). 18.7 IPMI Support The control bit, IPMIEN, enables the module to support the Intelligent Peripheral Management Interface (IPMI). When this bit is set, the module accepts and acts upon all addresses. 18.8 General Call Address Support The general call address can address all devices. When this address is used, all devices should, in theory, respond with an Acknowledgement. The general call address is one of eight addresses reserved for specific purposes by the I 2 C protocol. It consists of all ‘0’s with R_W = 0. The general call address is recognized when the General Call Enable (GCEN) bit is set (I2CxCON<7> = 1). When the interrupt is serviced, the source for the interrupt can be checked by reading the contents of the I2CxRCV to determine if the address was device-specific or a general call address. 18.9 Automatic Clock Stretch In Slave modes, the module can synchronize buffer reads and write to the master device by clock stretching. 18.9.1 TRANSMIT CLOCK STRETCHING Both 10-bit and 7-bit Transmit modes implement clock stretching by asserting the SCLREL bit after the falling edge of the ninth clock, if the TBF bit is cleared, indicating the buffer is empty. In Slave Transmit modes, clock stretching is always performed, irrespective of the STREN bit. The user’s ISR must set the SCLREL bit before transmission is allowed to continue. By holding the SCLx line low, the user has time to service the ISR and load the contents of the I2CxTRN before the master device can initiate another transmit sequence. 18.9.2 RECEIVE CLOCK STRETCHING The STREN bit in the I2CxCON register can be used to enable clock stretching in Slave Receive mode. When the STREN bit is set, the SCLx pin will be held low at the end of each data receive sequence. The user’s ISR must set the SCLREL bit before reception is allowed to continue. By holding the SCLx line low, the user has time to service the ISR and read the contents of the I2CxRCV before the master device can initiate another receive sequence. This will prevent buffer overruns from occurring. 18.10 Software Controlled Clock Stretching (STREN = 1) When the STREN bit is ‘1’, the SCLREL bit may be cleared by software to allow software to control the clock stretching. If the STREN bit is ‘0’, a software write to the SCLREL bit will be disregarded and have no effect on the SCLREL bit. 0x00 General call address or Start byte 0x01-0x03 Reserved 0x04-0x07 Hs mode Master codes 0x08-0x77 Valid 7-bit addresses 0x78-0x7b Valid 10-bit addresses (lower 7 bits) 0x7c-0x7f ReserveddsPIC33F DS70165E-page 216 Preliminary © 2007 Microchip Technology Inc. 18.11 Slope Control The I 2 C standard requires slope control on the SDAx and SCLx signals for Fast mode (400 kHz). The control bit, DISSLW, enables the user to disable slew rate control if desired. It is necessary to disable the slew rate control for 1 MHz mode. 18.12 Clock Arbitration Clock arbitration occurs when the master deasserts the SCLx pin (SCLx allowed to float high) during any receive, transmit or Restart/Stop condition. When the SCLx pin is allowed to float high, the Baud Rate Generator (BRG) is suspended from counting until the SCLx pin is actually sampled high. When the SCLx pin is sampled high, the Baud Rate Generator is reloaded with the contents of I2CxBRG and begins counting. This ensures that the SCLx high time will always be at least one BRG rollover count in the event that the clock is held low by an external device. 18.13 Multi-Master Communication, Bus Collision and Bus Arbitration Multi-Master mode support is achieved by bus arbitration. When the master outputs address/data bits onto the SDAx pin, arbitration takes place when the master outputs a ‘1’ on SDAx by letting SDAx float high while another master asserts a ‘0’. When the SCLx pin floats high, data should be stable. If the expected data on SDAx is a ‘1’ and the data sampled on the SDAx pin = 0, then a bus collision has taken place. The master will set the I 2 C master events interrupt flag and reset the master portion of the I 2 C port to its Idle state.© 2007 Microchip Technology Inc. Preliminary DS70165E-page 217 dsPIC33F REGISTER 18-1: I2CxCON: I2Cx CONTROL REGISTER R/W-0 U-0 R/W-0 R/W-1 HC R/W-0 R/W-0 R/W-0 R/W-0 I2CEN — I2CSIDL SCLREL IPMIEN A10M DISSLW SMEN bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 HC R/W-0 HC R/W-0 HC R/W-0 HC R/W-0 HC GCEN STREN ACKDT ACKEN RCEN PEN RSEN SEN bit 7 bit 0 Legend: U = Unimplemented bit, read as ‘0’ R = Readable bit W = Writable bit HS = Set in hardware HC = Cleared in hardware -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 I2CEN: I2Cx Enable bit 1 = Enables the I2Cx module and configures the SDAx and SCLx pins as serial port pins 0 = Disables the I2Cx module. All I 2 C pins are controlled by port functions. bit 14 Unimplemented: Read as ‘0’ bit 13 I2CSIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters an Idle mode 0 = Continue module operation in Idle mode bit 12 SCLREL: SCLx Release Control bit (when operating as I 2 C slave) 1 = Release SCLx clock 0 = Hold SCLx clock low (clock stretch) If STREN = 1: Bit is R/W (i.e., software may write ‘0’ to initiate stretch and write ‘1’ to release clock). Hardware clear at beginning of slave transmission. Hardware clear at end of slave reception. If STREN = 0: Bit is R/S (i.e., software may only write ‘1’ to release clock). Hardware clear at beginning of slave transmission. bit 11 IPMIEN: Intelligent Peripheral Management Interface (IPMI) Enable bit 1 = IPMI mode is enabled; all addresses Acknowledged 0 = IPMI mode disabled bit 10 A10M: 10-bit Slave Address bit 1 = I2CxADD is a 10-bit slave address 0 = I2CxADD is a 7-bit slave address bit 9 DISSLW: Disable Slew Rate Control bit 1 = Slew rate control disabled 0 = Slew rate control enabled bit 8 SMEN: SMBus Input Levels bit 1 = Enable I/O pin thresholds compliant with SMBus specification 0 = Disable SMBus input thresholds bit 7 GCEN: General Call Enable bit (when operating as I 2 C slave) 1 = Enable interrupt when a general call address is received in the I2CxRSR (module is enabled for reception) 0 = General call address disabled bit 6 STREN: SCLx Clock Stretch Enable bit (when operating as I 2 C slave) Used in conjunction with SCLREL bit. 1 = Enable software or receive clock stretching 0 = Disable software or receive clock stretchingdsPIC33F DS70165E-page 218 Preliminary © 2007 Microchip Technology Inc. bit 5 ACKDT: Acknowledge Data bit (when operating as I 2 C master, applicable during master receive) Value that will be transmitted when the software initiates an Acknowledge sequence. 1 = Send NACK during Acknowledge 0 = Send ACK during Acknowledge bit 4 ACKEN: Acknowledge Sequence Enable bit (when operating as I 2 C master, applicable during master receive) 1 = Initiate Acknowledge sequence on SDAx and SCLx pins and transmit ACKDT data bit. Hardware clear at end of master Acknowledge sequence. 0 = Acknowledge sequence not in progress bit 3 RCEN: Receive Enable bit (when operating as I 2 C master) 1 = Enables Receive mode for I 2 C. Hardware clear at end of eighth bit of master receive data byte. 0 = Receive sequence not in progress bit 2 PEN: Stop Condition Enable bit (when operating as I 2 C master) 1 = Initiate Stop condition on SDAx and SCLx pins. Hardware clear at end of master Stop sequence. 0 = Stop condition not in progress bit 1 RSEN: Repeated Start Condition Enable bit (when operating as I 2 C master) 1 = Initiate Repeated Start condition on SDAx and SCLx pins. Hardware clear at end of master Repeated Start sequence. 0 = Repeated Start condition not in progress bit 0 SEN: Start Condition Enable bit (when operating as I 2 C master) 1 = Initiate Start condition on SDAx and SCLx pins. Hardware clear at end of master Start sequence. 0 = Start condition not in progress REGISTER 18-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)© 2007 Microchip Technology Inc. Preliminary DS70165E-page 219 dsPIC33F REGISTER 18-2: I2CxSTAT: I2Cx STATUS REGISTER R-0 HSC R-0 HSC U-0 U-0 U-0 R/C-0 HS R-0 HSC R-0 HSC ACKSTAT TRSTAT — — — BCL GCSTAT ADD10 bit 15 bit 8 R/C-0 HS R/C-0 HS R-0 HSC R/C-0 HSC R/C-0 HSC R-0 HSC R-0 HSC R-0 HSC IWCOL I2COV D_A P S R_W RBF TBF bit 7 bit 0 Legend: U = Unimplemented bit, read as ‘0’ R = Readable bit W = Writable bit HS = Set in hardware HSC = Hardware set/cleared -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 ACKSTAT: Acknowledge Status bit (when operating as I 2 C master, applicable to master transmit operation) 1 = NACK received from slave 0 = ACK received from slave Hardware set or clear at end of slave Acknowledge. bit 14 TRSTAT: Transmit Status bit (when operating as I 2 C master, applicable to master transmit operation) 1 = Master transmit is in progress (8 bits + ACK) 0 = Master transmit is not in progress Hardware set at beginning of master transmission. Hardware clear at end of slave Acknowledge. bit 13-11 Unimplemented: Read as ‘0’ bit 10 BCL: Master Bus Collision Detect bit 1 = A bus collision has been detected during a master operation 0 = No collision Hardware set at detection of bus collision. bit 9 GCSTAT: General Call Status bit 1 = General call address was received 0 = General call address was not received Hardware set when address matches general call address. Hardware clear at Stop detection. bit 8 ADD10: 10-bit Address Status bit 1 = 10-bit address was matched 0 = 10-bit address was not matched Hardware set at match of 2nd byte of matched 10-bit address. Hardware clear at Stop detection. bit 7 IWCOL: Write Collision Detect bit 1 = An attempt to write the I2CxTRN register failed because the I 2 C module is busy 0 = No collision Hardware set at occurrence of write to I2CxTRN while busy (cleared by software). bit 6 I2COV: Receive Overflow Flag bit 1 = A byte was received while the I2CxRCV register is still holding the previous byte 0 = No overflow Hardware set at attempt to transfer I2CxRSR to I2CxRCV (cleared by software). bit 5 D_A: Data/Address bit (when operating as I 2 C slave) 1 = Indicates that the last byte received was data 0 = Indicates that the last byte received was device address Hardware clear at device address match. Hardware set by reception of slave byte. bit 4 P: Stop bit 1 = Indicates that a Stop bit has been detected last 0 = Stop bit was not detected last Hardware set or clear when Start, Repeated Start or Stop detected.dsPIC33F DS70165E-page 220 Preliminary © 2007 Microchip Technology Inc. bit 3 S: Start bit 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last Hardware set or clear when Start, Repeated Start or Stop detected. bit 2 R_W: Read/Write Information bit (when operating as I 2 C slave) 1 = Read – indicates data transfer is output from slave 0 = Write – indicates data transfer is input to slave Hardware set or clear after reception of I 2 C device address byte. bit 1 RBF: Receive Buffer Full Status bit 1 = Receive complete, I2CxRCV is full 0 = Receive not complete, I2CxRCV is empty Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV. bit 0 TBF: Transmit Buffer Full Status bit 1 = Transmit in progress, I2CxTRN is full 0 = Transmit complete, I2CxTRN is empty Hardware set when software writes I2CxTRN. Hardware clear at completion of data transmission. REGISTER 18-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)© 2007 Microchip Technology Inc. Preliminary DS70165E-page 221 dsPIC33F REGISTER 18-3: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER U-0 U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0 — — — — — — AMSK9 AMSK8 bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 AMSK7 AMSK6 AMSK5 AMSK4 AMSK3 AMSK2 AMSK1 AMSK0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-10 Unimplemented: Read as ‘0’ bit 9-0 AMSKx: Mask for Address bit x Select bit 1 = Enable masking for bit x of incoming message address; bit match not required in this position 0 = Disable masking for bit x; bit match required in this positiondsPIC33F DS70165E-page 222 Preliminary © 2007 Microchip Technology Inc. NOTES:© 2007 Microchip Technology Inc. Preliminary DS70165E-page 223 dsPIC33F 19.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART) The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the dsPIC33F device family. The UART is a fullduplex asynchronous system that can communicate with peripheral devices, such as personal computers, LIN, RS-232 and RS-485 interfaces. The module also supports a hardware flow control option with the UxCTS and UxRTS pins and also includes an IrDA® encoder and decoder. The primary features of the UART module are: • Full-Duplex, 8 or 9-bit Data Transmission through the UxTX and UxRX pins • Even, Odd or No Parity Options (for 8-bit data) • One or Two Stop bits • Hardware Flow Control Option with UxCTS and UxRTS pins • Fully Integrated Baud Rate Generator with 16-bit Prescaler • Baud Rates Ranging from 1 Mbps to 15 bps at 16 MIPS • 4-deep First-In-First-Out (FIFO) Transmit Data Buffer • 4-Deep FIFO Receive Data Buffer • Parity, Framing and Buffer Overrun Error Detection • Support for 9-bit mode with Address Detect (9th bit = 1) • Transmit and Receive Interrupts • A Separate Interrupt for all UART Error Conditions • Loopback mode for Diagnostic Support • Support for Sync and Break Characters • Supports Automatic Baud Rate Detection • IrDA Encoder and Decoder Logic • 16x Baud Clock Output for IrDA Support A simplified block diagram of the UART is shown in Figure 19-1. The UART module consists of the key important hardware elements: • Baud Rate Generator • Asynchronous Transmitter • Asynchronous Receiver FIGURE 19-1: UART SIMPLIFIED BLOCK DIAGRAM Note: This data sheet summarizes the features of this group of dsPIC33F devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the “dsPIC30F Family Reference Manual” (DS70046). Note 1: Both UART1 and UART2 can trigger a DMA data transfer. If U1TX, U1RX, U2TX or U2RX is selected as a DMA IRQ source, a DMA transfer occurs when the U1TXIF, U1RXIF, U2TXIF or U2RXIF bit gets set as a result of a UART1 or UART2 transmission or reception. 2: If DMA transfers are required, the UART TX/RX FIFO buffer must be set to a size of 1 byte/word (i.e., UTXISEL<1:0> = 00 and URXISEL<1:0> = 00). UxRX Hardware Flow Control UART Receiver UART Transmitter UxTX UxCTS BCLK Baud Rate Generator UxRTS IrDA®dsPIC33F DS70165E-page 224 Preliminary © 2007 Microchip Technology Inc. 19.1 UART Baud Rate Generator (BRG) The UART module includes a dedicated 16-bit Baud Rate Generator. The BRGx register controls the period of a free-running 16-bit timer. Equation 19-1 shows the formula for computation of the baud rate with BRGH = 0. EQUATION 19-1: UART BAUD RATE WITH BRGH = 0 Example 19-1 shows the calculation of the baud rate error for the following conditions: • FCY = 4 MHz • Desired Baud Rate = 9600 The maximum baud rate (BRGH = 0) possible is FCY/16 (for BRGx = 0), and the minimum baud rate possible is FCY/(16 * 65536). Equation 19-2 shows the formula for computation of the baud rate with BRGH = 1. EQUATION 19-2: UART BAUD RATE WITH BRGH = 1 The maximum baud rate (BRGH = 1) possible is FCY/4 (for BRGx = 0), and the minimum baud rate possible is FCY/(4 * 65536). Writing a new value to the BRGx register causes the BRG timer to be reset (cleared). This ensures the BRG does not wait for a timer overflow before generating the new baud rate. EXAMPLE 19-1: BAUD RATE ERROR CALCULATION (BRGH = 0) Note: FCY denotes the instruction cycle clock frequency (FOSC/2). Baud Rate = FCY 16 • (BRGx + 1) FCY 16 • Baud Rate BRGx = – 1 Note: FCY denotes the instruction cycle clock frequency (FOSC/2). Baud Rate = FCY 4 • (BRGx + 1) FCY 4 • Baud Rate BRGx = – 1 Desired Baud Rate = FCY/(16 (BRGx + 1)) Solving for BRGx Value: BRGx = ((FCY/Desired Baud Rate)/16) – 1 BRGx = ((4000000/9600)/16) – 1 BRGx = 25 Calculated Baud Rate = 4000000/(16 (25 + 1)) = 9615 Error = (Calculated Baud Rate – Desired Baud Rate) Desired Baud Rate = (9615 – 9600)/9600 = 0.16% © 2007 Microchip Technology Inc. Preliminary DS70165E-page 225 dsPIC33F 19.2 Transmitting in 8-bit Data Mode 1. Set up the UART: a) Write appropriate values for data, parity and Stop bits. b) Write appropriate baud rate value to the BRGx register. c) Set up transmit and receive interrupt enable and priority bits. 2. Enable the UART. 3. Set the UTXEN bit (causes a transmit interrupt). 4. Write data byte to lower byte of UxTXREG word. The value will be immediately transferred to the Transmit Shift Register (TSR) and the serial bit stream will start shifting out with the next rising edge of the baud clock. 5. Alternately, the data byte may be transferred while UTXEN = 0, and then the user may set UTXEN. This will cause the serial bit stream to begin immediately because the baud clock will start from a cleared state. 6. A transmit interrupt will be generated as per interrupt control bits, UTXISEL<1:0>. 19.3 Transmitting in 9-bit Data Mode 1. Set up the UART (as described in Section 19.2 “Transmitting in 8-bit Data Mode”). 2. Enable the UART. 3. Set the UTXEN bit (causes a transmit interrupt). 4. Write UxTXREG as a 16-bit value only. 5. A word write to UxTXREG triggers the transfer of the 9-bit data to the TSR. Serial bit stream will start shifting out with the first rising edge of the baud clock. 6. A transmit interrupt will be generated as per the setting of control bits, UTXISEL<1:0>. 19.4 Break and Sync Transmit Sequence The following sequence will send a message frame header made up of a Break, followed by an auto-baud Sync byte. 1. Configure the UART for the desired mode. 2. Set UTXEN and UTXBRK – sets up the Break character. 3. Load the UxTXREG register with a dummy character to initiate transmission (value is ignored). 4. Write 0x55 to UxTXREG – loads Sync character into the transmit FIFO. 5. After the Break has been sent, the UTXBRK bit is reset by hardware. The Sync character now transmits. 19.5 Receiving in 8-bit or 9-bit Data Mode 1. Set up the UART (as described in Section 19.2 “Transmitting in 8-bit Data Mode”). 2. Enable the UART. 3. A receive interrupt will be generated when one or more data characters have been received as per interrupt control bits, URXISEL<1:0>. 4. Read the OERR bit to determine if an overrun error has occurred. The OERR bit must be reset in software. 5. Read UxRXREG. The act of reading the UxRXREG character will move the next character to the top of the receive FIFO, including a new set of PERR and FERR values. 19.6 Flow Control Using UxCTS and UxRTS Pins UARTx Clear to Send (UxCTS) and Request to Send (UxRTS) are the two hardware controlled active-low pins that are associated with the UART module. These two pins allow the UART to operate in Simplex and Flow Control modes. They are implemented to control the transmission and the reception between the Data Terminal Equipment (DTE). The UEN<1:0> bits in the UxMODE register configures these pins. 19.7 Infrared Support The UART module provides two types of infrared UART support: • IrDA clock output to support external IrDA encoder and decoder device (legacy module support) • Full implementation of the IrDA encoder and decoder. 19.7.1 EXTERNAL IrDA SUPPORT – IrDA CLOCK OUTPUT To support external IrDA encoder and decoder devices, the BCLK pin (same as the UxRTS pin) can be configured to generate the 16x baud clock. With UEN<1:0> = 11, the BCLK pin will output the 16x baud clock if the UART module is enabled; it can be used to support the IrDA codec chip. 19.7.2 BUILT-IN IrDA ENCODER AND DECODER The UART has full implementation of the IrDA encoder and decoder as part of the UART module. The built-in IrDA encoder and decoder functionality is enabled using the IREN bit (UxMODE<12>). When enabled (IREN = 1), the receive pin (UxRX) acts as the input from the infrared receiver. The transmit pin (UxTX) acts as the output to the infrared transmitter.dsPIC33F DS70165E-page 226 Preliminary © 2007 Microchip Technology Inc. REGISTER 19-1: UxMODE: UARTx MODE REGISTER R/W-0 U-0 R/W-0 R/W-0 R/W-0 U-0 R/W-0 (2) R/W-0 (2) UARTEN — USIDL IREN (1) RTSMD — UEN<1:0> bit 15 bit 8 R/W-0 HC R/W-0 R/W-0 HC R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 WAKE LPBACK ABAUD URXINV BRGH PDSEL<1:0> STSEL bit 7 bit 0 Legend: HC = Hardware cleared R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 UARTEN: UARTx Enable bit 1 = UARTx is enabled; all UARTx pins are controlled by UARTx as defined by UEN<1:0> 0 = UARTx is disabled; all UARTx pins are controlled by port latches; UARTx power consumption minimal bit 14 Unimplemented: Read as ‘0’ bit 13 USIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode. 0 = Continue module operation in Idle mode bit 12 IREN: IrDA Encoder and Decoder Enable bit (1) 1 = IrDA encoder and decoder enabled 0 = IrDA encoder and decoder disabled bit 11 RTSMD: Mode Selection for UxRTS Pin bit 1 = UxRTS pin in Simplex mode 0 = UxRTS pin in Flow Control mode bit 10 Unimplemented: Read as ‘0’ bit 9-8 UEN<1:0>: UARTx Enable bits 11 =UxTX, UxRX and BCLK pins are enabled and used; UxCTS pin controlled by port latches 10 =UxTX, UxRX, UxCTS and UxRTS pins are enabled and used 01 =UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin controlled by port latches 00 =UxTX and UxRX pins are enabled and used; UxCTS and UxRTS/BCLK pins controlled by port latches bit 7 WAKE: Wake-up on Start bit Detect During Sleep Mode Enable bit 1 = UARTx will continue to sample the UxRX pin; interrupt generated on falling edge; bit cleared in hardware on following rising edge 0 = No wake-up enabled bit 6 LPBACK: UARTx Loopback Mode Select bit 1 = Enable Loopback mode 0 = Loopback mode is disabled bit 5 ABAUD: Auto-Baud Enable bit 1 = Enable baud rate measurement on the next character – requires reception of a Sync field (55h); cleared in hardware upon completion 0 = Baud rate measurement disabled or completed bit 4 URXINV: Receive Polarity Inversion bit 1 = UxRX Idle state is ‘0’ 0 = UxRX Idle state is ‘1’ Note 1: This feature is only available for the 16x BRG mode (BRGH = 0). 2: Bit availability depends on pin availability.© 2007 Microchip Technology Inc. Preliminary DS70165E-page 227 dsPIC33F bit 3 BRGH: High Baud Rate Enable bit 1 = BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode) 0 = BRG generates 16 clocks per bit period (16x baud clock, Standard mode) bit 2-1 PDSEL<1:0>: Parity and Data Selection bits 11 = 9-bit data, no parity 10 = 8-bit data, odd parity 01 = 8-bit data, even parity 00 = 8-bit data, no parity bit 0 STSEL: Stop Bit Selection bit 1 = Two Stop bits 0 = One Stop bit REGISTER 19-1: UxMODE: UARTx MODE REGISTER (CONTINUED) Note 1: This feature is only available for the 16x BRG mode (BRGH = 0). 2: Bit availability depends on pin availability.dsPIC33F DS70165E-page 228 Preliminary © 2007 Microchip Technology Inc. REGISTER 19-2: UxSTA: UARTx STATUS AND CONTROL REGISTER R/W-0 R/W-0 R/W-0 U-0 R/W-0 HC R/W-0 R-0 R-1 UTXISEL1 UTXINV (1) UTXISEL0 — UTXBRK UTXEN UTXBF TRMT bit 15 bit 8 R/W-0 R/W-0 R/W-0 R-1 R-0 R-0 R/C-0 R-0 URXISEL<1:0> ADDEN RIDLE PERR FERR OERR URXDA bit 7 bit 0 Legend: HC = Hardware cleared R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15,13 UTXISEL<1:0>: Transmission Interrupt Mode Selection bits 11 =Reserved; do not use 10 =Interrupt when a character is transferred to the Transmit Shift Register, and as a result, the transmit buffer becomes empty 01 =Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit operations are completed 00 =Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at least one character open in the transmit buffer) bit 14 UTXINV: IrDA Encoder Transmit Polarity Inversion bit (1) 1 = IrDA encoded, UxTX Idle state is ‘1’ 0 = IrDA encoded, UxTX Idle state is ‘0’ bit 12 Unimplemented: Read as ‘0’ bit 11 UTXBRK: Transmit Break bit 1 = Send Sync Break on next transmission – Start bit, followed by twelve ‘0’ bits, followed by Stop bit; cleared by hardware upon completion 0 = Sync Break transmission disabled or completed bit 10 UTXEN: Transmit Enable bit 1 = Transmit enabled, UxTX pin controlled by UARTx 0 = Transmit disabled, any pending transmission is aborted and buffer is reset. UxTX pin controlled by port. bit 9 UTXBF: Transmit Buffer Full Status bit (read-only) 1 = Transmit buffer is full 0 = Transmit buffer is not full, at least one more character can be written bit 8 TRMT: Transmit Shift Register Empty bit (read-only) 1 = Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed) 0 = Transmit Shift Register is not empty, a transmission is in progress or queued bit 7-6 URXISEL<1:0>: Receive Interrupt Mode Selection bits 11 =Interrupt is set on UxRSR transfer making the receive buffer full (i.e., has 4 data characters) 10 =Interrupt is set on UxRSR transfer making the receive buffer 3/4 full (i.e., has 3 data characters) 0x =Interrupt is set when any character is received and transferred from the UxRSR to the receive buffer. Receive buffer has one or more characters. bit 5 ADDEN: Address Character Detect bit (bit 8 of received data = 1) 1 = Address Detect mode enabled. If 9-bit mode is not selected, this does not take effect. 0 = Address Detect mode disabled Note 1: Value of bit only affects the transmit properties of the module when the IrDA encoder is enabled (IREN = 1).© 2007 Microchip Technology Inc. Preliminary DS70165E-page 229 dsPIC33F bit 4 RIDLE: Receiver Idle bit (read-only) 1 = Receiver is Idle 0 = Receiver is active bit 3 PERR: Parity Error Status bit (read-only) 1 = Parity error has been detected for the current character (character at the top of the receive FIFO) 0 = Parity error has not been detected bit 2 FERR: Framing Error Status bit (read-only) 1 = Framing error has been detected for the current character (character at the top of the receive FIFO) 0 = Framing error has not been detected bit 1 OERR: Receive Buffer Overrun Error Status bit (read/clear only) 1 = Receive buffer has overflowed 0 = Receive buffer has not overflowed. Clearing a previously set OERR bit (1 → 0 transition) will reset the receiver buffer and the UxRSR to the empty state. bit 0 URXDA: Receive Buffer Data Available bit (read-only) 1 = Receive buffer has data, at least one more character can be read 0 = Receive buffer is empty REGISTER 19-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED) Note 1: Value of bit only affects the transmit properties of the module when the IrDA encoder is enabled (IREN = 1).dsPIC33F DS70165E-page 230 Preliminary © 2007 Microchip Technology Inc. NOTES:© 2007 Microchip Technology Inc. Preliminary DS70165E-page 231 dsPIC33F 20.0 ENHANCED CAN MODULE 20.1 Overview The Enhanced Controller Area Network (ECAN™) module is a serial interface, useful for communicating with other CAN modules or microcontroller devices. This interface/protocol was designed to allow communications within noisy environments. The dsPIC33F devices contain up to two ECAN modules. The CAN module is a communication controller implementing the CAN 2.0 A/B protocol, as defined in the BOSCH specification. The module will support CAN 1.2, CAN 2.0A, CAN 2.0B Passive and CAN 2.0B Active versions of the protocol. The module implementation is a full CAN system. The CAN specification is not covered within this data sheet. The reader may refer to the BOSCH CAN specification for further details. The module features are as follows: • Implementation of the CAN protocol, CAN 1.2, CAN 2.0A and CAN 2.0B • Standard and extended data frames • 0-8 bytes data length • Programmable bit rate up to 1 Mbit/sec • Automatic response to remote transmission requests • Up to 8 transmit buffers with application specified prioritization and abort capability (each buffer may contain up to 8 bytes of data) • Up to 32 receive buffers (each buffer may contain up to 8 bytes of data) • Up to 16 full (standard/extended identifier) acceptance filters • 3 full acceptance filter masks • DeviceNet™ addressing support • Programmable wake-up functionality with integrated low-pass filter • Programmable Loopback mode supports self-test operation • Signaling via interrupt capabilities for all CAN receiver and transmitter error states • Programmable clock source • Programmable link to input capture module (IC2 for both CAN1 and CAN2) for time-stamping and network synchronization • Low-power Sleep and Idle mode The CAN bus module consists of a protocol engine and message buffering/control. The CAN protocol engine handles all functions for receiving and transmitting messages on the CAN bus. Messages are transmitted by first loading the appropriate data registers. Status and errors can be checked by reading the appropriate registers. Any message detected on the CAN bus is checked for errors and then matched against filters to see if it should be received and stored in one of the receive registers. 20.2 Frame Types The CAN module transmits various types of frames which include data messages, or remote transmission requests initiated by the user, as other frames that are automatically generated for control purposes. The following frame types are supported: • Standard Data Frame: A standard data frame is generated by a node when the node wishes to transmit data. It includes an 11-bit Standard Identifier (SID), but not an 18-bit Extended Identifier (EID). • Extended Data Frame: An extended data frame is similar to a standard data frame, but includes an extended identifier as well. • Remote Frame: It is possible for a destination node to request the data from the source. For this purpose, the destination node sends a remote frame with an identifier that matches the identifier of the required data frame. The appropriate data source node will then send a data frame as a response to this remote request. • Error Frame: An error frame is generated by any node that detects a bus error. An error frame consists of two fields: an error flag field and an error delimiter field. • Overload Frame: An overload frame can be generated by a node as a result of two conditions. First, the node detects a dominant bit during interframe space which is an illegal condition. Second, due to internal conditions, the node is not yet able to start reception of the next message. A node may generate a maximum of 2 sequential overload frames to delay the start of the next message. • Interframe Space: Interframe space separates a proceeding frame (of whatever type) from a following data or remote frame. Note: This data sheet summarizes the features of this group of dsPIC33F devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the “dsPIC30F Family Reference Manual” (DS70046).dsPIC33F DS70165E-page 232 Preliminary © 2007 Microchip Technology Inc. FIGURE 20-1: ECAN™ MODULE BLOCK DIAGRAM Message Assembly CAN Protocol Engine CiTX (1) Buffer CiRX (1) RXF14 Filter RXF13 Filter RXF12 Filter RXF11 Filter RXF10 Filter RXF9 Filter RXF8 Filter RXF7 Filter RXF6 Filter RXF5 Filter RXF4 Filter RXF3 Filter RXF2 Filter RXF1 Filter RXF0 Filter Transmit Byte Sequencer RXM1 Mask RXM0 Mask Control Configuration Logic CPU Bus Interrupts TRB0 TX/RX Buffer Control Register DMA Controller RXF15 Filter RXM2 Mask TRB7 TX/RX Buffer Control Register TRB6 TX/RX Buffer Control Register TRB5 TX/RX Buffer Control Register TRB4 TX/RX Buffer Control Register TRB3 TX/RX Buffer Control Register TRB2 TX/RX Buffer Control Register TRB1 TX/RX Buffer Control Register Note 1: i = 1 or 2 refers to a particular ECAN module (ECAN1 or ECAN2).© 2007 Microchip Technology Inc. Preliminary DS70165E-page 233 dsPIC33F 20.3 Modes of Operation The CAN module can operate in one of several operation modes selected by the user. These modes include: • Initialization Mode • Disable Mode • Normal Operation Mode • Listen Only Mode • Listen All Messages Mode • Loopback Mode Modes are requested by setting the REQOP<2:0> bits (CiCTRL1<10:8>). Entry into a mode is Acknowledged by monitoring the OPMODE<2:0> bits (CiCTRL1<7:5>). The module will not change the mode and the OPMODE bits until a change in mode is acceptable, generally during bus Idle time, which is defined as at least 11 consecutive recessive bits. 20.3.1 INITIALIZATION MODE In the Initialization mode, the module will not transmit or receive. The error counters are cleared and the interrupt flags remain unchanged. The programmer will have access to Configuration registers that are access restricted in other modes. The module will protect the user from accidentally violating the CAN protocol through programming errors. All registers which control the configuration of the module can not be modified while the module is on-line. The CAN module will not be allowed to enter the Configuration mode while a transmission is taking place. The Configuration mode serves as a lock to protect the following registers: • All Module Control Registers • Baud Rate and Interrupt Configuration Registers • Bus Timing Registers • Identifier Acceptance Filter Registers • Identifier Acceptance Mask Registers 20.3.2 DISABLE MODE In Disable mode, the module will not transmit or receive. The module has the ability to set the WAKIF bit due to bus activity, however, any pending interrupts will remain and the error counters will retain their value. If the REQOP<2:0> bits (CiCTRL1<10:8>) = 001, the module will enter the Module Disable mode. If the module is active, the module will wait for 11 recessive bits on the CAN bus, detect that condition as an Idle bus, then accept the module disable command. When the OPMODE<2:0> bits (CiCTRL1<7:5>) = 001, that indicates whether the module successfully went into Module Disable mode. The I/O pins will revert to normal I/O function when the module is in the Module Disable mode. The module can be programmed to apply a low-pass filter function to the CiRX input line while the module or the CPU is in Sleep mode. The WAKFIL bit (CiCFG2<14>) enables or disables the filter. 20.3.3 NORMAL OPERATION MODE Normal Operation mode is selected when REQOP<2:0> = 000. In this mode, the module is activated and the I/O pins will assume the CAN bus functions. The module will transmit and receive CAN bus messages via the CiTX and CiRX pins. 20.3.4 LISTEN ONLY MODE If the Listen Only mode is activated, the module on the CAN bus is passive. The transmitter buffers revert to the port I/O function. The receive pins remain inputs. For the receiver, no error flags or Acknowledge signals are sent. The error counters are deactivated in this state. The Listen Only mode can be used for detecting the baud rate on the CAN bus. To use this, it is necessary that there are at least two further nodes that communicate with each other. 20.3.5 LISTEN ALL MESSAGES MODE The module can be set to ignore all errors and receive any message. The Listen All Messages mode is activated by setting REQOP<2:0> = ‘111’. In this mode, the data which is in the message assembly buffer, until the time an error occurred, is copied in the receive buffer and can be read via the CPU interface. 20.3.6 LOOPBACK MODE If the Loopback mode is activated, the module will connect the internal transmit signal to the internal receive signal at the module boundary. The transmit and receive pins revert to their port I/O function. 20.4 Message Reception 20.4.1 RECEIVE BUFFERS The CAN bus module has up to 32 receive buffers, located in DMA RAM. The first 8 buffers need to be configured as receive buffers by clearing the corresponding TX/RX buffer selection (TXENn) bit in a CiTRmnCON register. The overall size of the CAN buffer area in DMA RAM is selectable by the user and is defined by the DMABS<2:0> bits (CiFCTRL<15:13>). The first 16 buffers can be assigned to receive filters, while the rest can be used only as a FIFO buffer. Note: Typically, if the CAN module is allowed to transmit in a particular mode of operation and a transmission is requested immediately after the CAN module has been placed in that mode of operation, the module waits for 11 consecutive recessive bits on the bus before starting transmission. If the user switches to Disable mode within this 11-bit period, then this transmission is aborted and the corresponding TXABT bit is set and TXREQ bit is cleared.dsPIC33F DS70165E-page 234 Preliminary © 2007 Microchip Technology Inc. An additional buffer is always committed to monitoring the bus for incoming messages. This buffer is called the Message Assembly Buffer (MAB). All messages are assembled by the MAB and are transferred to the buffers only if the acceptance filter criterion are met. When a message is received, the RBIF flag (CiINTF<1>) will be set. The user would then need to inspect the CiVEC and/or CiRXFUL1 register to determine which filter and buffer caused the interrupt to get generated. The RBIF bit can only be set by the module when a message is received. The bit is cleared by the user when it has completed processing the message in the buffer. If the RBIE bit is set, an interrupt will be generated when a message is received. 20.4.2 FIFO BUFFER MODE The ECAN module provides FIFO buffer functionality if the buffer pointer for a filter has a value of ‘1111’. In this mode, the results of a hit on that buffer will write to the next available buffer location within the FIFO. The CiFCTRL register defines the size of the FIFO. The FSA<4:0> bits in this register define the start of the FIFO buffers. The end of the FIFO is defined by the DMABS<2:0> bits if DMA is enabled. Thus, FIFO sizes up to 32 buffers are supported. 20.4.3 MESSAGE ACCEPTANCE FILTERS The message acceptance filters and masks are used to determine if a message in the message assembly buffer should be loaded into either of the receive buffers. Once a valid message has been received into the Message Assembly Buffer (MAB), the identifier fields of the message are compared to the filter values. If there is a match, that message will be loaded into the appropriate receive buffer. Each filter is associated with a buffer pointer (FnBP<3:0>), which is used to link the filter to one of 16 receive buffers. The acceptance filter looks at incoming messages for the IDE bit (CiTRBnSID<0>) to determine how to compare the identifiers. If the IDE bit is clear, the message is a standard frame and only filters with the EXIDE bit (CiRXFnSID<3>) clear are compared. If the IDE bit is set, the message is an extended frame, and only filters with the EXIDE bit set are compared. 20.4.4 MESSAGE ACCEPTANCE FILTER MASKS The mask bits essentially determine which bits to apply the filter to. If any mask bit is set to a zero, then that bit will automatically be accepted regardless of the filter bit. There are three programmable acceptance filter masks associated with the receive buffers. Any of these three masks can be linked to each filter by selecting the desired mask in the FnMSK<1:0> bits in the appropriate CiFMSKSELn register. 20.4.5 RECEIVE ERRORS The CAN module will detect the following receive errors: • Cyclic Redundancy Check (CRC) Error • Bit Stuffing Error • Invalid Message Receive Error These receive errors do not generate an interrupt. However, the receive error counter is incremented by one in case one of these errors occur. The RXWAR bit (CiINTF<9>) indicates that the receive error counter has reached the CPU warning limit of 96 and an interrupt is generated. 20.4.6 RECEIVE INTERRUPTS Receive interrupts can be divided into 3 major groups, each including various conditions that generate interrupts: • Receive Interrupt: A message has been successfully received and loaded into one of the receive buffers. This interrupt is activated immediately after receiving the End-of-Frame (EOF) field. Reading the RXnIF flag will indicate which receive buffer caused the interrupt. • Wake-up Interrupt: The CAN module has woken up from Disable mode or the device has woken up from Sleep mode. • Receive Error Interrupts: A receive error interrupt will be indicated by the ERRIF bit. This bit shows that an error condition occurred. The source of the error can be determined by checking the bits in the CAN Interrupt Flag register, CiINTF. - Invalid Message Received: If any type of error occurred during reception of the last message, an error will be indicated by the IVRIF bit. - Receiver Overrun: The RBOVIF bit (CiINTF<2>) indicates that an overrun condition occurred. - Receiver Warning: The RXWAR bit indicates that the receive error counter (RERRCNT<7:0>) has reached the warning limit of 96. - Receiver Error Passive: The RXEP bit indicates that the receive error counter has exceeded the error passive limit of 127 and the module has gone into error passive state.© 2007 Microchip Technology Inc. Preliminary DS70165E-page 235 dsPIC33F 20.5 Message Transmission 20.5.1 TRANSMIT BUFFERS The CAN module has up to eight transmit buffers, located in DMA RAM. These 8 buffers need to be configured as transmit buffers by setting the corresponding TX/RX buffer selection (TXENn or TXENm) bit in a CiTRmnCON register. The overall size of the CAN buffer area in DMA RAM is selectable by the user and is defined by the DMABS<2:0> bits (CiFCTRL<15:13>). Each transmit buffer occupies 16 bytes of data. Eight of the bytes are the maximum 8 bytes of the transmitted message. Five bytes hold the standard and extended identifiers and other message arbitration information. The last byte is unused. 20.5.2 TRANSMIT MESSAGE PRIORITY Transmit priority is a prioritization within each node of the pending transmittable messages. There are four levels of transmit priority. If the TXnPRI<1:0> bits (in CiTRmnCON) for a particular message buffer are set to ‘11’, that buffer has the highest priority. If the TXnPRI<1:0> bits for a particular message buffer are set to ‘10’ or ‘01’, that buffer has an intermediate priority. If the TXnPRI<1:0> bits for a particular message buffer are ‘00’, that buffer has the lowest priority. If two or more pending messages have the same priority, the messages are transmitted in decreasing order of buffer index. 20.5.3 TRANSMISSION SEQUENCE To initiate transmission of the message, the TXREQn bit (in CiTRmnCON) must be set. The CAN bus module resolves any timing conflicts between the setting of the TXREQn bit and the Start-of-Frame (SOF), ensuring that if the priority was changed, it is resolved correctly before the SOF occurs. When TXREQn is set, the TXABTn, TXLARBn and TXERRn flag bits are automatically cleared. Setting the TXREQn bit simply flags a message buffer as enqueued for transmission. When the module detects an available bus, it begins transmitting the message which has been determined to have the highest priority. If the transmission completes successfully on the first attempt, the TXREQn bit is cleared automatically and an interrupt is generated if TXnIE was set. If the message transmission fails, one of the error condition flags will be set and the TXREQn bit will remain set, indicating that the message is still pending for transmission. If the message encountered an error condition during the transmission attempt, the TXERRn bit will be set and the error condition may cause an interrupt. If the message loses arbitration during the transmission attempt, the TXLARBn bit is set. No interrupt is generated to signal the loss of arbitration. 20.5.4 AUTOMATIC PROCESSING OF REMOTE TRANSMISSION REQUESTS If the RTRENn bit (in the CiTRmnCON register) for a particular transmit buffer is set, the hardware automatically transmits the data in that buffer in response to remote transmission requests matching the filter that points to that particular buffer. The user does not need to manually initiate a transmission in this case. 20.5.5 ABORTING MESSAGE TRANSMISSION The system can also abort a message by clearing the TXREQ bit associated with each message buffer. Setting the ABAT bit (CiCTRL1<12>) will request an abort of all pending messages. If the message has not yet started transmission, or if the message started but is interrupted by loss of arbitration or an error, the abort will be processed. The abort is indicated when the module sets the TXABT bit and the TXnIF flag is not automatically set. 20.5.6 TRANSMISSION ERRORS The CAN module will detect the following transmission errors: • Acknowledge Error • Form Error • Bit Error These transmission errors will not necessarily generate an interrupt but are indicated by the transmission error counter. However, each of these errors will cause the transmission error counter to be incremented by one. Once the value of the error counter exceeds the value of 96, the ERRIF (CiINTF<5>) and the TXWAR bit (CiINTF<10>) are set. Once the value of the error counter exceeds the value of 96, an interrupt is generated and the TXWAR bit in the Interrupt Flag register is set.dsPIC33F DS70165E-page 236 Preliminary © 2007 Microchip Technology Inc. 20.5.7 TRANSMIT INTERRUPTS Transmit interrupts can be divided into 2 major groups, each including various conditions that generate interrupts: • Transmit Interrupt: At least one of the three transmit buffers is empty (not scheduled) and can be loaded to schedule a message for transmission. Reading the TXnIF flags will indicate which transmit buffer is available and caused the interrupt. • Transmit Error Interrupts: A transmission error interrupt will be indicated by the ERRIF flag. This flag shows that an error condition occurred. The source of the error can be determined by checking the error flags in the CAN Interrupt Flag register, CiINTF. The flags in this register are related to receive and transmit errors. - Transmitter Warning Interrupt: The TXWAR bit indicates that the transmit error counter has reached the CPU warning limit of 96. - Transmitter Error Passive: The TXEP bit (CiINTF<12>) indicates that the transmit error counter has exceeded the error passive limit of 127 and the module has gone to error passive state. - Bus Off: The TXBO bit (CiINTF<13>) indicates that the transmit error counter has exceeded 255 and the module has gone to the bus off state. 20.6 Baud Rate Setting All nodes on any particular CAN bus must have the same nominal bit rate. In order to set the baud rate, the following parameters have to be initialized: • Synchronization Jump Width • Baud Rate Prescaler • Phase Segments • Length Determination of Phase Segment 2 • Sample Point • Propagation Segment bits 20.6.1 BIT TIMING All controllers on the CAN bus must have the same baud rate and bit length. However, different controllers are not required to have the same master oscillator clock. At different clock frequencies of the individual controllers, the baud rate has to be adjusted by adjusting the number of time quanta in each segment. The nominal bit time can be thought of as being divided into separate non-overlapping time segments. These segments are shown in Figure 20-2. • Synchronization Segment (Sync Seg) • Propagation Time Segment (Prop Seg) • Phase Segment 1 (Phase1 Seg) • Phase Segment 2 (Phase2 Seg) The time segments and also the nominal bit time are made up of integer units of time called time quanta or TQ. By definition, the nominal bit time has a minimum of 8 TQ and a maximum of 25 TQ. Also, by definition, the minimum nominal bit time is 1 μsec corresponding to a maximum bit rate of 1 MHz. FIGURE 20-2: ECAN™ MODULE BIT TIMING Note: Both ECAN1 and ECAN2 can trigger a DMA data transfer. If C1TX, C1RX, C2TX or C2RX is selected as a DMA IRQ source, a DMA transfer occurs when the C1TXIF, C1RXIF, C2TXIF or C2RXIF bit gets set as a result of an ECAN1 or ECAN2 transmission or reception. Input Signal Sync Prop Segment Phase Segment 1 Phase Segment 2 Sync Sample Point TQ© 2007 Microchip Technology Inc. Preliminary DS70165E-page 237 dsPIC33F 20.6.2 PRESCALER SETTING There is a programmable prescaler with integral values ranging from 1 to 64, in addition to a fixed divide-by-2 for clock generation. The time quantum (TQ) is a fixed unit of time derived from the oscillator period and is given by Equation 20-1. EQUATION 20-1: TIME QUANTUM FOR CLOCK GENERATION 20.6.3 PROPAGATION SEGMENT This part of the bit time is used to compensate physical delay times within the network. These delay times consist of the signal propagation time on the bus line and the internal delay time of the nodes. The Prop Seg can be programmed from 1 TQ to 8 TQ by setting the PRSEG<2:0> bits (CiCFG2<2:0>). 20.6.4 PHASE SEGMENTS The phase segments are used to optimally locate the sampling of the received bit within the transmitted bit time. The sampling point is between Phase1 Seg and Phase2 Seg. These segments are lengthened or shortened by resynchronization. The end of the Phase1 Seg determines the sampling point within a bit period. The segment is programmable from 1 TQ to 8 TQ. Phase2 Seg provides delay to the next transmitted data transition. The segment is programmable from 1 TQ to 8 TQ, or it may be defined to be equal to the greater of Phase1 Seg or the information processing time (2 TQ). The Phase1 Seg is initialized by setting bits SEG1PH<2:0> (CiCFG2<5:3>) and Phase2 Seg is initialized by setting SEG2PH<2:0> (CiCFG2<10:8>). The following requirement must be fulfilled while setting the lengths of the phase segments: Prop Seg + Phase1 Seg ≥ Phase2 Seg 20.6.5 SAMPLE POINT The sample point is the point of time at which the bus level is read and interpreted as the value of that respective bit. The location is at the end of Phase1 Seg. If the bit timing is slow and contains many TQ, it is possible to specify multiple sampling of the bus line at the sample point. The level determined by the CAN bus then corresponds to the result from the majority decision of three values. The majority samples are taken at the sample point and twice before with a distance of TQ/2. The CAN module allows the user to choose between sampling three times at the same point or once at the same point, by setting or clearing the SAM bit (CiCFG2<6>). Typically, the sampling of the bit should take place at about 60-70% through the bit time, depending on the system parameters. 20.6.6 SYNCHRONIZATION To compensate for phase shifts between the oscillator frequencies of the different bus stations, each CAN controller must be able to synchronize to the relevant signal edge of the incoming signal. When an edge in the transmitted data is detected, the logic will compare the location of the edge to the expected time (Synchronous Segment). The circuit will then adjust the values of Phase1 Seg and Phase2 Seg. There are two mechanisms used to synchronize. 20.6.6.1 Hard Synchronization Hard synchronization is only done whenever there is a ‘recessive’ to ‘dominant’ edge during bus Idle, indicating the start of a message. After hard synchronization, the bit time counters are restarted with the Sync Seg. Hard synchronization forces the edge which has caused the hard synchronization to lie within the synchronization segment of the restarted bit time. If a hard synchronization is done, there will not be a resynchronization within that bit time. 20.6.6.2 Resynchronization As a result of resynchronization, Phase1 Seg may be lengthened or Phase2 Seg may be shortened. The amount of lengthening or shortening of the phase buffer segment has an upper boundary known as the synchronization jump width, and is specified by the SJW<1:0> bits (CiCFG1<7:6>). The value of the synchronization jump width will be added to Phase1 Seg or subtracted from Phase2 Seg. The resynchronization jump width is programmable between 1 TQ and 4 TQ. The following requirement must be fulfilled while setting the SJW<1:0> bits: Phase2 Seg > Synchronization Jump Width Note: FCAN must not exceed 40 MHz. If CANCKS = 0, then FCY must not exceed 20 MHz. TQ = 2 (BRP<5:0> + 1)/FCAN Note: In the register descriptions that follow, ‘i’ in the register identifier denotes the specific ECAN module (ECAN1 or ECAN2). ‘n’ in the register identifier denotes the buffer, filter or mask number. ‘m’ in the register identifier denotes the word number within a particular CAN data field.dsPIC33F DS70165E-page 238 Preliminary © 2007 Microchip Technology Inc. REGISTER 20-1: CiCTRL1: ECAN CONTROL REGISTER 1 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-1 R/W-0 R/W-0 — — CSIDL ABAT CANCKS REQOP<2:0> bit 15 bit 8 R-1 R-0 R-0 U-0 R/W-0 U-0 U-0 R/W-0 OPMODE<2:0> — CANCAP — — WIN bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-14 Unimplemented: Read as ‘0’ bit 13 CSIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode bit 12 ABAT: Abort All Pending Transmissions bit Signal all transmit buffers to abort transmission. Module will clear this bit when all transmissions are aborted bit 11 CANCKS: CAN Master Clock Select bit 1 = CAN FCAN clock is FCY 0 = CAN FCAN clock is FOSC bit 10-8 REQOP<2:0>: Request Operation Mode bits 000 = Set Normal Operation mode 001 = Set Disable mode 010 = Set Loopback mode 011 = Set Listen Only Mode 100 = Set Configuration mode 101 = Reserved – do not use 110 = Reserved – do not use 111 = Set Listen All Messages mode bit 7-5 OPMODE<2:0>: Operation Mode bits 000 = Module is in Normal Operation mode 001 = Module is in Disable mode 010 = Module is in Loopback mode 011 = Module is in Listen Only mode 100 = Module is in Configuration mode 101 = Reserved 110 = Reserved 111 = Module is in Listen All Messages mode bit 4 Unimplemented: Read as ‘0’ bit 3 CANCAP: CAN Message Receive Timer Capture Event Enable bit 1 = Enable input capture based on CAN message receive 0 = Disable CAN capture bit 2-1 Unimplemented: Read as ‘0’ bit 0 WIN: SFR Map Window Select bit 1 = Use filter window 0 = Use buffer window© 2007 Microchip Technology Inc. Preliminary DS70165E-page 239 dsPIC33F REGISTER 20-2: CiCTRL2: ECAN CONTROL REGISTER 2 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 — — — — — — — — bit 15 bit 8 U-0 U-0 U-0 R-0 R-0 R-0 R-0 R-0 — — — DNCNT<4:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-5 Unimplemented: Read as ‘0’ bit 4-0 DNCNT<4:0>: DeviceNet™ Filter Bit Number bits 10010-11111 = Invalid selection 10001 = Compare up to data byte 3, bit 6 with EID<17> .... 00001 = Compare up to data byte 1, bit 7 with EID<0> 00000 = Do not compare data bytesdsPIC33F DS70165E-page 240 Preliminary © 2007 Microchip Technology Inc. REGISTER 20-3: CiVEC: ECAN INTERRUPT CODE REGISTER U-0 U-0 U-0 R-0 R-0 R-0 R-0 R-0 — — — FILHIT<4:0> bit 15 bit 8 U-0 R-1 R-0 R-0 R-0 R-0 R-0 R-0 — ICODE<6:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-13 Unimplemented: Read as ‘0’ bit 12-8 FILHIT<4:0>: Filter Hit Number bits 10000-11111 = Reserved 01111 = Filter 15 .... 00001 = Filter 1 00000 = Filter 0 bit 7 Unimplemented: Read as ‘0’ bit 6-0 ICODE<6:0>: Interrupt Flag Code bits 1000101-1111111 = Reserved 1000100 = FIFO almost full interrupt 1000011 = Receiver overflow interrupt 1000010 = Wake-up interrupt 1000001 = Error interrupt 1000000 = No interrupt 0010000-0111111 = Reserved 0001111 = RB15 buffer Interrupt .... 0001001 = RB9 buffer interrupt 0001000 = RB8 buffer interrupt 0000111 = TRB7 buffer interrupt 0000110 = TRB6 buffer interrupt 0000101 = TRB5 buffer interrupt 0000100 = TRB4 buffer interrupt 0000011 = TRB3 buffer interrupt 0000010 = TRB2 buffer interrupt 0000001 = TRB1 buffer interrupt 0000000 = TRB0 Buffer interrupt© 2007 Microchip Technology Inc. Preliminary DS70165E-page 241 dsPIC33F REGISTER 20-4: CiFCTRL: ECAN FIFO CONTROL REGISTER R/W-0 R/W-0 R/W-0 U-0 U-0 U-0 U-0 U-0 DMABS<2:0> — — — — — bit 15 bit 8 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 — — — FSA<4:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-13 DMABS<2:0>: DMA Buffer Size bits 111 = Reserved 110 = 32 buffers in DMA RAM 101 = 24 buffers in DMA RAM 100 = 16 buffers in DMA RAM 011 = 12 buffers in DMA RAM 010 = 8 buffers in DMA RAM 001 = 6 buffers in DMA RAM 000 = 4 buffers in DMA RAM bit 12-5 Unimplemented: Read as ‘0’ bit 4-0 FSA<4:0>: FIFO Area Starts with Buffer bits 11111 = RB31 buffer 11110 = RB30 buffer .... 00001 = TRB1 buffer 00000 = TRB0 bufferdsPIC33F DS70165E-page 242 Preliminary © 2007 Microchip Technology Inc. REGISTER 20-5: CiFIFO: ECAN FIFO STATUS REGISTER U-0 U-0 R-0 R-0 R-0 R-0 R-0 R-0 — — FBP<5:0> bit 15 bit 8 U-0 U-0 R-0 R-0 R-0 R-0 R-0 R-0 — — FNRB<5:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-14 Unimplemented: Read as ‘0’ bit 13-8 FBP<5:0>: FIFO Write Buffer Pointer bits 011111 = RB31 buffer 011110 = RB30 buffer .... 000001 = TRB1 buffer 000000 = TRB0 buffer bit 7-6 Unimplemented: Read as ‘0’ bit 5-0 FNRB<5:0>: FIFO Next Read Buffer Pointer bits 011111 = RB31 buffer 011110 = RB30 buffer .... 000001 = TRB1 buffer 000000 = TRB0 buffer© 2007 Microchip Technology Inc. Preliminary DS70165E-page 243 dsPIC33F REGISTER 20-6: CiINTF: ECAN INTERRUPT FLAG REGISTER U-0 U-0 R-0 R-0 R-0 R-0 R-0 R-0 — — TXBO TXBP RXBP TXWAR RXWAR EWARN bit 15 bit 8 R/C-0 R/C-0 R/C-0 U-0 R/C-0 R/C-0 R/C-0 R/C-0 IVRIF WAKIF ERRIF — FIFOIF RBOVIF RBIF TBIF bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-14 Unimplemented: Read as ‘0’ bit 13 TXBO: Transmitter in Error State Bus Off bit bit 12 TXBP: Transmitter in Error State Bus Passive bit bit 11 RXBP: Receiver in Error State Bus Passive bit bit 10 TXWAR: Transmitter in Error State Warning bit bit 9 RXWAR: Receiver in Error State Warning bit bit 8 EWARN: Transmitter or Receiver in Error State Warning bit bit 7 IVRIF: Invalid Message Received Interrupt Flag bit bit 6 WAKIF: Bus Wake-up Activity Interrupt Flag bit bit 5 ERRIF: Error Interrupt Flag bit (multiple sources in CiINTF<13:8> register) bit 4 Unimplemented: Read as ‘0’ bit 3 FIFOIF: FIFO Almost Full Interrupt Flag bit bit 2 RBOVIF: RX Buffer Overflow Interrupt Flag bit bit 1 RBIF: RX Buffer Interrupt Flag bit bit 0 TBIF: TX Buffer Interrupt Flag bitdsPIC33F DS70165E-page 244 Preliminary © 2007 Microchip Technology Inc. REGISTER 20-7: CiINTE: ECAN INTERRUPT ENABLE REGISTER U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 — — — — — — — — bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 IVRIE WAKIE ERRIE — FIFOIE RBOVIE RBIE TBIE bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-8 Unimplemented: Read as ‘0’ bit 7 IVRIE: Invalid Message Received Interrupt Enable bit bit 6 WAKIE: Bus Wake-up Activity Interrupt Flag bit bit 5 ERRIE: Error Interrupt Enable bit bit 4 Unimplemented: Read as ‘0’ bit 3 FIFOIE: FIFO Almost Full Interrupt Enable bit bit 2 RBOVIE: RX Buffer Overflow Interrupt Enable bit bit 1 RBIE: RX Buffer Interrupt Enable bit bit 0 TBIE: TX Buffer Interrupt Enable bit© 2007 Microchip Technology Inc. Preliminary DS70165E-page 245 dsPIC33F REGISTER 20-8: CiEC: ECAN TRANSMIT/RECEIVE ERROR COUNT REGISTER R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 TERRCNT<7:0> bit 15 bit 8 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 RERRCNT<7:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-8 TERRCNT<7:0>: Transmit Error Count bits bit 7-0 RERRCNT<7:0>: Receive Error Count bitsdsPIC33F DS70165E-page 246 Preliminary © 2007 Microchip Technology Inc. REGISTER 20-9: CiCFG1: ECAN BAUD RATE CONFIGURATION REGISTER 1 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 — — — — — — — — bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 SJW<1:0> BRP<5:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-8 Unimplemented: Read as ‘0’ bit 7-6 SJW<1:0>: Synchronization Jump Width bits 11 = Length is 4 x TQ 10 = Length is 3 x TQ 01 = Length is 2 x TQ 00 = Length is 1 x TQ bit 5-0 BRP<5:0>: Baud Rate Prescaler bits 11 1111 = TQ = 2 x 64 x 1/FCAN 00 0010 = TA = 2 x 3 x 1/FCAN 00 0001 = TA = 2 x 2 x 1/FCAN 00 0000 = TQ = 2 x 1 x 1/FCAN© 2007 Microchip Technology Inc. Preliminary DS70165E-page 247 dsPIC33F REGISTER 20-10: CiCFG2: ECAN BAUD RATE CONFIGURATION REGISTER 2 U-0 R/W-x U-0 U-0 U-0 R/W-x R/W-x R/W-x — WAKFIL — — — SEG2PH<2:0> bit 15 bit 8 R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x SEG2PHTS SAM SEG1PH<2:0> PRSEG<2:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as ‘0’ bit 14 WAKFIL: Select CAN bus Line Filter for Wake-up bit 1 = Use CAN bus line filter for wake-up 0 = CAN bus line filter is not used for wake-up bit 13-11 Unimplemented: Read as ‘0’ bit 10-8 SEG2PH<2:0>: Phase Buffer Segment 2 bits 111 = Length is 8 x TQ 000 = Length is 1 x TQ bit 7 SEG2PHTS: Phase Segment 2 Time Select bit 1 = Freely programmable 0 = Maximum of SEG1PH bits or Information Processing Time (IPT), whichever is greater bit 6 SAM: Sample of the CAN bus Line bit 1 = Bus line is sampled three times at the sample point 0 = Bus line is sampled once at the sample point bit 5-3 SEG1PH<2:0>: Phase Buffer Segment 1 bits 111 = Length is 8 x TQ 000 = Length is 1 x TQ bit 2-0 PRSEG<2:0>: Propagation Time Segment bits 111 = Length is 8 x TQ 000 = Length is 1 x TQdsPIC33F DS70165E-page 248 Preliminary © 2007 Microchip Technology Inc. REGISTER 20-11: CiFEN1: ECAN ACCEPTANCE FILTER ENABLE REGISTER R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 FLTEN15 FLTEN14 FLTEN13 FLTEN12 FLTEN11 FLTEN10 FLTEN9 FLTEN8 bit 15 bit 8 R/W-0 R/W-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 FLTEN7 FLTEN6 FLTEN5 FLTEN4 FLTEN3 FLTEN2 FLTEN1 FLTEN0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-0 FLTENn: Enable Filter n to Accept Messages bits 1 = Enable Filter n 0 = Disable Filter n REGISTER 20-12: CiBUFPNT1: ECAN FILTER 0-3 BUFFER POINTER REGISTER R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 F3BP<3:0> F2BP<3:0> bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 F1BP<3:0> F0BP<3:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-12 F3BP<3:0>: RX Buffer Written when Filter 3 Hits bits bit 11-8 F2BP<3:0>: RX Buffer Written when Filter 2 Hits bits bit 7-4 F1BP<3:0>: RX Buffer Written when Filter 1 Hits bits bit 3-0 F0BP<3:0>: RX Buffer Written when Filter 0 Hits bits 1111 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 14 .... 0001 = Filter hits received in RX Buffer 1 0000 = Filter hits received in RX Buffer 0© 2007 Microchip Technology Inc. Preliminary DS70165E-page 249 dsPIC33F REGISTER 20-13: CiBUFPNT2: ECAN FILTER 4-7 BUFFER POINTER REGISTER R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 F7BP<3:0> F6BP<3:0> bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 F5BP<3:0> F4BP<3:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-12 F7BP<3:0>: RX Buffer Written when Filter 7 Hits bits bit 11-8 F6BP<3:0>: RX Buffer Written when Filter 6 Hits bits bit 7-4 F5BP<3:0>: RX Buffer Written when Filter 5 Hits bits bit 3-0 F4BP<3:0>: RX Buffer Written when Filter 4 Hits bits REGISTER 20-14: CiBUFPNT3: ECAN FILTER 8-11 BUFFER POINTER REGISTER R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 F11BP<3:0> F10BP<3:0> bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 F9BP<3:0> F8BP<3:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-12 F11BP<3:0>: RX Buffer Written when Filter 11 Hits bits bit 11-8 F10BP<3:0>: RX Buffer Written when Filter 10 Hits bits bit 7-4 F9BP<3:0>: RX Buffer Written when Filter 9 Hits bits bit 3-0 F8BP<3:0>: RX Buffer Written when Filter 8 Hits bitsdsPIC33F DS70165E-page 250 Preliminary © 2007 Microchip Technology Inc. REGISTER 20-15: CiBUFPNT4: ECAN FILTER 12-15 BUFFER POINTER REGISTER R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 F15BP<3:0> F14BP<3:0> bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 F13BP<3:0> F12BP<3:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-12 F15BP<3:0>: RX Buffer Written when Filter 15 Hits bits bit 11-8 F14BP<3:0>: RX Buffer Written when Filter 14 Hits bits bit 7-4 F13BP<3:0>: RX Buffer Written when Filter 13 Hits bits bit 3-0 F12BP<3:0>: RX Buffer Written when Filter 12 Hits bits© 2007 Microchip Technology Inc. Preliminary DS70165E-page 251 dsPIC33F REGISTER 20-16: CiRXFnSID: ECAN ACCEPTANCE FILTER n STANDARD IDENTIFIER (n = 0, 1, ..., 15) R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x SID10 SID9 SID8 SID7 SID6 SID5 SID4 SID3 bit 15 bit 8 R/W-x R/W-x R/W-x U-0 R/W-x U-0 R/W-x R/W-x SID2 SID1 SID0 — EXIDE — EID17 EID16 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-5 SID<10:0>: Standard Identifier bits 1 = Message address bit SIDx must be ‘1’ to match filter 0 = Message address bit SIDx must be ‘0’ to match filter bit 4 Unimplemented: Read as ‘0’ bit 3 EXIDE: Extended Identifier Enable bit If MIDE = 1 then: 1 = Match only messages with extended identifier addresses 0 = Match only messages with standard identifier addresses If MIDE = 0 then: Ignore EXIDE bit. bit 2 Unimplemented: Read as ‘0’ bit 1-0 EID<17:16>: Extended Identifier bits 1 = Message address bit EIDx must be ‘1’ to match filter 0 = Message address bit EIDx must be ‘0’ to match filter REGISTER 20-17: CiRXFnEID: ECAN ACCEPTANCE FILTER n EXTENDED IDENTIFIER (n = 0, 1, ..., 15) R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x EID15 EID14 EID13 EID12 EID11 EID10 EID9 EID8 bit 15 bit 8 R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x EID7 EID6 EID5 EID4 EID3 EID2 EID1 EID0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-0 EID<15:0>: Extended Identifier bits 1 = Message address bit EIDx must be ‘1’ to match filter 0 = Message address bit EIDx must be ‘0’ to match filterdsPIC33F DS70165E-page 252 Preliminary © 2007 Microchip Technology Inc. REGISTER 20-18: CiFMSKSEL1: ECAN FILTER 7-0 MASK SELECTION REGISTER R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 F7MSK<1:0> F6MSK<1:0> F5MSK<1:0> F4MSK<1:0> bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 F3MSK<1:0> F2MSK<1:0> F1MSK<1:0> F0MSK<1:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-14 F7MSK<1:0>: Mask Source for Filter 7 bit bit 13-12 F6MSK<1:0>: Mask Source for Filter 6 bit bit 11-10 F5MSK<1:0>: Mask Source for Filter 5 bit bit 9-8 F4MSK<1:0>: Mask Source for Filter 4 bit bit 7-6 F3MSK<1:0>: Mask Source for Filter 3 bit bit 5-4 F2MSK<1:0>: Mask Source for Filter 2 bit bit 3-2 F1MSK<1:0>: Mask Source for Filter 1 bit bit 1-0 F0MSK<1:0>: Mask Source for Filter 0 bit 11 = No mask 10 = Acceptance Mask 2 registers contain mask 01 = Acceptance Mask 1 registers contain mask 00 = Acceptance Mask 0 registers contain mask© 2007 Microchip Technology Inc. Preliminary DS70165E-page 253 dsPIC33F REGISTER 20-19: CiRXMnSID: ECAN ACCEPTANCE FILTER MASK n STANDARD IDENTIFIER R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x SID10 SID9 SID8 SID7 SID6 SID5 SID4 SID3 bit 15 bit 8 R/W-x R/W-x R/W-x U-0 R/W-x U-0 R/W-x R/W-x SID2 SID1 SID0 — MIDE — EID17 EID16 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-5 SID<10:0>: Standard Identifier bits 1 = Include bit SIDx in filter comparison 0 = Bit SIDx is don’t care in filter comparison bit 4 Unimplemented: Read as ‘0’ bit 3 MIDE: Identifier Receive Mode bit 1 = Match only message types (standard or extended address) that correspond to EXIDE bit in filter 0 = Match either standard or extended address message if filters match (i.e., if (Filter SID) = (Message SID) or if (Filter SID/EID) = (Message SID/EID)) bit 2 Unimplemented: Read as ‘0’ bit 1-0 EID<17:16>: Extended Identifier bits 1 = Include bit EIDx in filter comparison 0 = Bit EIDx is don’t care in filter comparison REGISTER 20-20: CiRXMnEID: ECAN ACCEPTANCE FILTER MASK n EXTENDED IDENTIFIER R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x EID15 EID14 EID13 EID12 EID11 EID10 EID9 EID8 bit 15 bit 8 R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x EID7 EID6 EID5 EID4 EID3 EID2 EID1 EID0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-0 EID<15:0>: Extended Identifier bits 1 = Include bit EIDx in filter comparison 0 = Bit EIDx is don’t care in filter comparisondsPIC33F DS70165E-page 254 Preliminary © 2007 Microchip Technology Inc. REGISTER 20-21: CiRXFUL1: ECAN RECEIVE BUFFER FULL REGISTER 1 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 RXFUL15 RXFUL14 RXFUL13 RXFUL12 RXFUL11 RXFUL10 RXFUL9 RXFUL8 bit 15 bit 8 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 RXFUL7 RXFUL6 RXFUL5 RXFUL4 RXFUL3 RXFUL2 RXFUL1 RXFUL0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-0 RXFUL<15:0>: Receive Buffer n Full bits 1 = Buffer is full (set by module) 0 = Buffer is empty (clear by application software) REGISTER 20-22: CiRXFUL2: ECAN RECEIVE BUFFER FULL REGISTER 2 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 RXFUL31 RXFUL30 RXFUL29 RXFUL28 RXFUL27 RXFUL26 RXFUL25 RXFUL24 bit 15 bit 8 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 RXFUL23 RXFUL22 RXFUL21 RXFUL20 RXFUL19 RXFUL18 RXFUL17 RXFUL16 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-0 RXFUL<31:16>: Receive Buffer n Full bits 1 = Buffer is full (set by module) 0 = Buffer is empty (clear by application software)© 2007 Microchip Technology Inc. Preliminary DS70165E-page 255 dsPIC33F REGISTER 20-23: CiRXOVF1: ECAN RECEIVE BUFFER OVERFLOW REGISTER 1 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 RXOVF15 RXOVF14 RXOVF13 RXOVF12 RXOVF11 RXOVF10 RXOVF9 RXOVF8 bit 15 bit 8 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 RXOVF7 RXOVF6 RXOVF5 RXOVF4 RXOVF3 RXOVF2 RXOVF1 RXOVF0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-0 RXOVF<15:0>: Receive Buffer n Overflow bits 1 = Module pointed a write to a full buffer (set by module) 0 = Overflow is cleared (clear by application software) REGISTER 20-24: CiRXOVF2: ECAN RECEIVE BUFFER OVERFLOW REGISTER 2 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 RXOVF31 RXOVF30 RXOVF29 RXOVF28 RXOVF27 RXOVF26 RXOVF25 RXOVF24 bit 15 bit 8 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 RXOVF23 RXOVF22 RXOVF21 RXOVF20 RXOVF19 RXOVF18 RXOVF17 RXOVF16 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-0 RXOVF<31:16>: Receive Buffer n Overflow bits 1 = Module pointed a write to a full buffer (set by module) 0 = Overflow is cleared (clear by application software)dsPIC33F DS70165E-page 256 Preliminary © 2007 Microchip Technology Inc. REGISTER 20-25: CiTRmnCON: ECAN TX/RX BUFFER m CONTROL REGISTER (m = 0,2,4,6; n = 1,3,5,7) R/W-0 R-0 R-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0 TXENn TXABTn TXLARBn TXERRn TXREQn RTRENn TXnPRI<1:0> bit 15 bit 8 R/W-0 R-0 R-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0 TXENm TXABTm(1) TXLARBm(1) TXERRm(1) TXREQm RTRENm TXmPRI<1:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-8 See Definition for Bits 7-0, Controls Buffer n bit 7 TXENm: TX/RX Buffer Selection bit 1 = Buffer TRBn is a transmit buffer 0 = Buffer TRBn is a receive buffer bit 6 TXABTm: Message Aborted bit (1) 1 = Message was aborted 0 = Message completed transmission successfully bit 5 TXLARBm: Message Lost Arbitration bit (1) 1 = Message lost arbitration while being sent 0 = Message did not lose arbitration while being sent bit 4 TXERRm: Error Detected During Transmission bit (1) 1 = A bus error occurred while the message was being sent 0 = A bus error did not occur while the message was being sent bit 3 TXREQm: Message Send Request bit Setting this bit to ‘1’ requests sending a message. The bit will automatically clear when the message is successfully sent. Clearing the bit to ‘0’ while set will request a message abort. bit 2 RTRENm: Auto-Remote Transmit Enable bit 1 = When a remote transmit is received, TXREQ will be set 0 = When a remote transmit is received, TXREQ will be unaffected bit 1-0 TXmPRI<1:0>: Message Transmission Priority bits 11 = Highest message priority 10 = High intermediate message priority 01 = Low intermediate message priority 00 = Lowest message priority Note 1: This bit is cleared when TXREQ is set.© 2007 Microchip Technology Inc. Preliminary DS70165E-page 257 dsPIC33F Note: The buffers, SID, EID, DLC, Data Field and Receive Status registers are located in DMA RAM. REGISTER 20-26: CiTRBnSID: ECAN BUFFER n STANDARD IDENTIFIER (n = 0, 1, ..., 31) U-0 U-0 U-0 R/W-x R/W-x R/W-x R/W-x R/W-x — — — SID10 SID9 SID8 SID7 SID6 bit 15 bit 8 R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x SID5 SID4 SID3 SID2 SID1 SID0 SRR IDE bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-13 Unimplemented: Read as ‘0’ bit 12-2 SID<10:0>: Standard Identifier bits bit 1 SRR: Substitute Remote Request bit 1 = Message will request remote transmission 0 = Normal message bit 0 IDE: Extended Identifier bit 1 = Message will transmit extended identifier 0 = Message will transmit standard identifier REGISTER 20-27: CiTRBnEID: ECAN BUFFER n EXTENDED IDENTIFIER (n = 0, 1, ..., 31) U-0 U-0 U-0 U-0 R/W-x R/W-x R/W-x R/W-x — — — — EID17 EID16 EID15 EID14 bit 15 bit 8 R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x EID13 EID12 EID11 EID10 EID9 EID8 EID7 EID6 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-12 Unimplemented: Read as ‘0’ bit 11-0 EID<17:6>: Extended Identifier bitsdsPIC33F DS70165E-page 258 Preliminary © 2007 Microchip Technology Inc. REGISTER 20-28: CiTRBnDLC: ECAN BUFFER n DATA LENGTH CONTROL (n = 0, 1, ..., 31) R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x EID5 EID4 EID3 EID2 EID1 EID0 RTR RB1 bit 15 bit 8 U-0 U-0 U-0 R/W-x R/W-x R/W-x R/W-x R/W-x — — — RB0 DLC3 DLC2 DLC1 DLC0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-10 EID<5:0>: Extended Identifier bits bit 9 RTR: Remote Transmission Request bit 1 = Message will request remote transmission 0 = Normal message bit 8 RB1: Reserved Bit 1 User must set this bit to ‘0’ per CAN protocol. bit 7-5 Unimplemented: Read as ‘0’ bit 4 RB0: Reserved Bit 0 User must set this bit to ‘0’ per CAN protocol. bit 3-0 DLC<3:0>: Data Length Code bits REGISTER 20-29: CiTRBnDm: ECAN BUFFER n DATA FIELD BYTE m (n = 0, 1, ..., 31; m = 0, 1, ..., 7) (1) R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x TRBnDm7 TRBnDm6 TRBnDm5 TRBnDm4 TRBnDm3 TRBnDm2 TRBnDm1 TRBnDm0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7-0 TRnDm<7:0>: Data Field Buffer ‘n’ Byte ‘m’ bits Note 1: The Most Significant Byte contains byte (m + 1) of the buffer.© 2007 Microchip Technology Inc. Preliminary DS70165E-page 259 dsPIC33F REGISTER 20-30: CiTRBnSTAT: ECAN RECEIVE BUFFER n STATUS (n = 0, 1, ..., 31) U-0 U-0 U-0 R/W-x R/W-x R/W-x R/W-x R/W-x — — — FILHIT4 FILHIT3 FILHIT2 FILHIT1 FILHIT0 bit 15 bit 8 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 — — — — — — — — bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-13 Unimplemented: Read as ‘0’ bit 12-8 FILHIT<4:0>: Filter Hit Code bits (only written by module for receive buffers, unused for transmit buffers) Encodes number of filter that resulted in writing this buffer. bit 7-0 Unimplemented: Read as ‘0’dsPIC33F DS70165E-page 260 Preliminary © 2007 Microchip Technology Inc. NOTES: © 2007 Microchip Technology Inc. Preliminary DS70165E-page 261 dsPIC33F 21.0 DATA CONVERTER INTERFACE (DCI) MODULE 21.1 Module Introduction The dsPIC33F Data Converter Interface (DCI) module allows simple interfacing of devices, such as audio coder/decoders (Codecs), ADC and D/A converters. The following interfaces are supported: • Framed Synchronous Serial Transfer (Single or Multi-Channel) • Inter-IC Sound (I 2 S) Interface • AC-Link Compliant mode The DCI module provides the following general features: • Programmable word size up to 16 bits • Supports up to 16 time slots, for a maximum frame size of 256 bits • Data buffering for up to 4 samples without CPU overhead 21.2 Module I/O Pins There are four I/O pins associated with the module. When enabled, the module controls the data direction of each of the four pins. 21.2.1 CSCK PIN The CSCK pin provides the serial clock for the DCI module. The CSCK pin may be configured as an input or output using the CSCKD control bit in the DCICON1 SFR. When configured as an output, the serial clock is provided by the dsPIC33F. When configured as an input, the serial clock must be provided by an external device. 21.2.2 CSDO PIN The Serial Data Output (CSDO) pin is configured as an output only pin when the module is enabled. The CSDO pin drives the serial bus whenever data is to be transmitted. The CSDO pin is tri-stated, or driven to ‘0’, during CSCK periods when data is not transmitted depending on the state of the CSDOM control bit. This allows other devices to place data on the serial bus during transmission periods not used by the DCI module. 21.2.3 CSDI PIN The Serial Data Input (CSDI) pin is configured as an input only pin when the module is enabled. 21.2.3.1 COFS Pin The Codec Frame Synchronization (COFS) pin is used to synchronize data transfers that occur on the CSDO and CSDI pins. The COFS pin may be configured as an input or an output. The data direction for the COFS pin is determined by the COFSD control bit in the DCICON1 register. The DCI module accesses the shadow registers while the CPU is in the process of accessing the memory mapped buffer registers. 21.2.4 BUFFER DATA ALIGNMENT Data values are always stored left justified in the buffers since most Codec data is represented as a signed 2’s complement fractional number. If the received word length is less than 16 bits, the unused Least Significant bits in the Receive Buffer registers are set to ‘0’ by the module. If the transmitted word length is less than 16 bits, the unused LSbs in the Transmit Buffer register are ignored by the module. The word length setup is described in subsequent sections of this document. 21.2.5 TRANSMIT/RECEIVE SHIFT REGISTER The DCI module has a 16-bit shift register for shifting serial data in and out of the module. Data is shifted in/ out of the shift register, MSb first, since audio PCM data is transmitted in signed 2’s complement format. 21.2.6 DCI BUFFER CONTROL The DCI module contains a buffer control unit for transferring data between the shadow buffer memory and the Serial Shift register. The buffer control unit is a simple 2-bit address counter that points to word locations in the shadow buffer memory. For the receive memory space (high address portion of DCI buffer memory), the address counter is concatenated with a ‘0’ in the MSb location to form a 3-bit address. For the transmit memory space (high portion of DCI buffer memory), the address counter is concatenated with a ‘1’ in the MSb location. Note: This data sheet summarizes the features of this group of dsPIC33F devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the “dsPIC30F Family Reference Manual” (DS70046). Note: The DCI buffer control unit always accesses the same relative location in the transmit and receive buffers, so only one address counter is provided.dsPIC33F DS70165E-page 262 Preliminary © 2007 Microchip Technology Inc. FIGURE 21-1: DCI MODULE BLOCK DIAGRAM BCG Control bits 16-bit Data Bus Sample Rate Generator SCKD FSD DCI Buffer Frame Synchronization Generator Control Unit DCI Shift Register Receive Buffer Registers w/Shadow FOSC/4 Word Size Selection bits Frame Length Selection bits DCI Mode Selection bits CSCK COFS CSDI CSDO 15 0 Transmit Buffer Registers w/Shadow © 2007 Microchip Technology Inc. Preliminary DS70165E-page 263 dsPIC33F 21.3 DCI Module Operation 21.3.1 MODULE ENABLE The DCI module is enabled or disabled by setting/ clearing the DCIEN control bit in the DCICON1 SFR. Clearing the DCIEN control bit has the effect of resetting the module. In particular, all counters associated with CSCK generation, frame sync and the DCI buffer control unit are reset. The DCI clocks are shut down when the DCIEN bit is cleared. When enabled, the DCI controls the data direction for the four I/O pins associated with the module. The PORT, LAT and TRIS register values for these I/O pins are overridden by the DCI module when the DCIEN bit is set. It is also possible to override the CSCK pin separately when the bit clock generator is enabled. This permits the bit clock generator to operate without enabling the rest of the DCI module. 21.3.2 WORD SIZE SELECTION BITS The WS<3:0> word size selection bits in the DCICON2 SFR determine the number of bits in each DCI data word. Essentially, the WS<3:0> bits determine the counting period for a 4-bit counter clocked from the CSCK signal. Any data length, up to 16-bits, may be selected. The value loaded into the WS<3:0> bits is one less the desired word length. For example, a 16-bit data word size is selected when WS<3:0> = 1111. 21.3.3 FRAME SYNC GENERATOR The frame sync generator (COFSG) is a 4-bit counter that sets the frame length in data words. The frame sync generator is incremented each time the word size counter is reset (refer to Section 21.3.2 “Word Size Selection Bits”). The period for the frame synchronization generator is set by writing the COFSG<3:0> control bits in the DCICON2 SFR. The COFSG period in clock cycles is determined by the following formula: EQUATION 21-1: COFSG PERIOD Frame lengths, up to 16 data words, may be selected. The frame length in CSCK periods can vary up to a maximum of 256 depending on the word size that is selected. 21.3.4 FRAME SYNC MODE CONTROL BITS The type of frame sync signal is selected using the Frame Synchronization mode control bits (COFSM<1:0>) in the DCICON1 SFR. The following operating modes can be selected: • Multi-Channel mode • I 2 S mode • AC-Link mode (16-bit) • AC-Link mode (20-bit) The operation of the COFSM control bits depends on whether the DCI module generates the frame sync signal as a master device, or receives the frame sync signal as a slave device. The master device in a DSP/Codec pair is the device that generates the frame sync signal. The frame sync signal initiates data transfers on the CSDI and CSDO pins and usually has the same frequency as the data sample rate (COFS). The DCI module is a frame sync master if the COFSD control bit is cleared and is a frame sync slave if the COFSD control bit is set. 21.3.5 MASTER FRAME SYNC OPERATION When the DCI module is operating as a frame sync master device (COFSD = 0), the COFSM mode bits determine the type of frame sync pulse that is generated by the frame sync generator logic. A new COFS signal is generated when the frame sync generator resets to ‘0’. In the Multi-Channel mode, the frame sync pulse is driven high for the CSCK period to initiate a data transfer. The number of CSCK cycles between successive frame sync pulses will depend on the word size and frame sync generator control bits. A timing diagram for the frame sync signal in Multi-Channel mode is shown in Figure 21-2. In the AC-Link mode of operation, the frame sync signal has a fixed period and duty cycle. The AC-Link frame sync signal is high for 16 CSCK cycles and is low for 240 CSCK cycles. A timing diagram with the timing details at the start of an AC-Link frame is shown in Figure 21-3. In the I 2 S mode, a frame sync signal having a 50% duty cycle is generated. The period of the I 2 S frame sync signal in CSCK cycles is determined by the word size and frame sync generator control bits. A new I 2 S data transfer boundary is marked by a high-to-low or a low-to-high transition edge on the COFS pin. Note: These WS<3:0> control bits are used only in the Multi-Channel and I 2 S modes. These bits have no effect in AC-Link mode since the data slot sizes are fixed by the protocol. Note: The COFSG control bits will have no effect in AC-Link mode since the frame length is set to 256 CSCK periods by the protocol. Frame Length = Word Length • (FSG Value + 1)dsPIC33F DS70165E-page 264 Preliminary © 2007 Microchip Technology Inc. 21.3.6 SLAVE FRAME SYNC OPERATION When the DCI module is operating as a frame sync slave (COFSD = 1), data transfers are controlled by the Codec device attached to the DCI module. The COFSM control bits control how the DCI module responds to incoming COFS signals. In the Multi-Channel mode, a new data frame transfer will begin one CSCK cycle after the COFS pin is sampled high (see Figure 21-2). The pulse on the COFS pin resets the frame sync generator logic. In the I 2 S mode, a new data word will be transferred one CSCK cycle after a low-to-high or a high-to-low transition is sampled on the COFS pin. A rising or falling edge on the COFS pin resets the frame sync generator logic. In the AC-Link mode, the tag slot and subsequent data slots for the next frame will be transferred one CSCK cycle after the COFS pin is sampled high. The COFSG and WS bits must be configured to provide the proper frame length when the module is operating in the Slave mode. Once a valid frame sync pulse has been sampled by the module on the COFS pin, an entire data frame transfer will take place. The module will not respond to further frame sync pulses until the data frame transfer has completed. FIGURE 21-2: FRAME SYNC TIMING, MULTI-CHANNEL MODE FIGURE 21-3: FRAME SYNC TIMING, AC-LINK START-OF-FRAME FIGURE 21-4: I 2 S INTERFACE FRAME SYNC TIMING CSCK CSDI/CSDO COFS MSb LSb Tag MSb BIT_CLK CSDO or CSDI SYNC Tag bit 14 S12 LSb S12 bit 1 S12 bit 2 Tag bit 13 MSb LSb MSb LSb CSCK CSDI or CSDO WS Note: A 5-bit transfer is shown here for illustration purposes. The I 2 S protocol does not specify word length – this will be system dependent.© 2007 Microchip Technology Inc. Preliminary DS70165E-page 265 dsPIC33F 21.3.7 BIT CLOCK GENERATOR The DCI module has a dedicated 12-bit time base that produces the bit clock. The bit clock rate (period) is set by writing a non-zero 12-bit value to the BCG<11:0> control bits in the DCICON3 SFR. When the BCG<11:0> bits are set to zero, the bit clock will be disabled. If the BCG<11:0> bits are set to a nonzero value, the bit clock generator is enabled. These bits should be set to ‘0’ and the CSCKD bit set to ‘1’ if the serial clock for the DCI is received from an external device. The formula for the bit clock frequency is given in Equation 21-2. EQUATION 21-2: BIT CLOCK FREQUENCY The required bit clock frequency will be determined by the system sampling rate and frame size. Typical bit clock frequencies range from 16x to 512x the converter sample rate depending on the data converter and the communication protocol that is used. To achieve bit clock frequencies associated with common audio sampling rates, the user will need to select a crystal frequency that has an ‘even’ binary value. Examples of such crystal frequencies are listed in Table 21-1. TABLE 21-1: DEVICE FREQUENCIES FOR COMMON CODEC CSCK FREQUENCIES FBCK = FCY 2 (BCG + 1) • FS (kHz) FCSCK/FS FCSCK (MHz) (1) FOSC (MHZ) PLL FCY (MIPS) BCG (2) 8 256 2.048 8.192 4 8.192 1 12 256 3.072 6.144 8 12.288 1 32 32 1.024 8.192 8 16.384 7 44.1 32 1.4112 5.6448 8 11.2896 3 48 64 3.072 6.144 16 24.576 3 Note 1: When the CSCK signal is applied externally (CSCKD = 1), the external clock high and low times must meet the device timing requirements. 2: When the CSCK signal is applied externally (CSCKD = 1), the BCG<11:0> bits have no effect on the operation of the DCI module.dsPIC33F DS70165E-page 266 Preliminary © 2007 Microchip Technology Inc. 21.3.8 SAMPLE CLOCK EDGE CONTROL BIT The sample clock edge (CSCKE) control bit determines the sampling edge for the CSCK signal. If the CSCK bit is cleared (default), data will be sampled on the falling edge of the CSCK signal. The AC-Link protocols and most Multi-Channel formats require that data be sampled on the falling edge of the CSCK signal. If the CSCK bit is set, data will be sampled on the rising edge of CSCK. The I 2 S protocol requires that data be sampled on the rising edge of the CSCK signal. 21.3.9 DATA JUSTIFICATION CONTROL BIT In most applications, the data transfer begins one CSCK cycle after the COFS signal is sampled active. This is the default configuration of the DCI module. An alternate data alignment can be selected by setting the DJST control bit in the DCICON1 SFR. When DJST = 1, data transfers will begin during the same CSCK cycle when the COFS signal is sampled active. 21.3.10 TRANSMIT SLOT ENABLE BITS The TSCON SFR has control bits that are used to enable up to 16 time slots for transmission. These control bits are the TSE<15:0> bits. The size of each time slot is determined by the WS<3:0> word size selection bits and can vary up to 16 bits. If a transmit time slot is enabled via one of the TSE bits (TSEx = 1), the contents of the current transmit shadow buffer location will be loaded into the DCI Shift register and the DCI buffer control unit is incremented to point to the next location. During an unused transmit time slot, the CSDO pin will drive ‘0’s, or will be tri-stated during all disabled time slots, depending on the state of the CSDOM bit in the DCICON1 SFR. The data frame size in bits is determined by the chosen data word size and the number of data word elements in the frame. If the chosen frame size has less than 16 elements, the additional slot enable bits will have no effect. Each transmit data word is written to the 16-bit transmit buffer as left justified data. If the selected word size is less than 16 bits, then the LSbs of the transmit buffer memory will have no effect on the transmitted data. The user should write ‘0’s to the unused LSbs of each transmit buffer location. 21.3.11 RECEIVE SLOT ENABLE BITS The RSCON SFR contains control bits that are used to enable up to 16 time slots for reception. These control bits are the RSE<15:0> bits. The size of each receive time slot is determined by the WS<3:0> word size selection bits and can vary from 1 to 16 bits. If a receive time slot is enabled via one of the RSE bits (RSEx = 1), the DCI Shift register contents will be written to the current DCI receive shadow buffer location and the buffer control unit will be incremented to point to the next buffer location. Data is not packed in the receive memory buffer locations if the selected word size is less than 16 bits. Each received slot data word is stored in a separate 16-bit buffer location. Data is always stored in a left justified format in the receive memory buffer. 21.3.12 SLOT ENABLE BITS OPERATION WITH FRAME SYNC The TSE and RSE control bits operate in concert with the DCI frame sync generator. In Master mode, a COFS signal is generated whenever the frame sync generator is reset. In Slave mode, the frame sync generator is reset whenever a COFS pulse is received. The TSE and RSE control bits allow up to 16 consecutive time slots to be enabled for transmit or receive. After the last enabled time slot has been transmitted/ received, the DCI will stop buffering data until the next occurring COFS pulse. 21.3.13 SYNCHRONOUS DATA TRANSFERS The DCI buffer control unit will be incremented by one word location whenever a given time slot has been enabled for transmission or reception. In most cases, data input and output transfers will be synchronized, which means that a data sample is received for a given channel at the same time a data sample is transmitted. Therefore, the transmit and receive buffers will be filled with equal amounts of data when a DCI interrupt is generated. In some cases, the amount of data transmitted and received during a data frame may not be equal. As an example, assume a two-word data frame is used. Furthermore, assume that data is only received during slot #0 but is transmitted during slot #0 and slot #1. In this case, the buffer control unit counter would be incremented twice during a data frame, but only one receive register location would be filled with data.© 2007 Microchip Technology Inc. Preliminary DS70165E-page 267 dsPIC33F 21.3.14 BUFFER LENGTH CONTROL The amount of data that is buffered between interrupts is determined by the Buffer Length (BLEN<1:0>) control bits in the DCICON2 SFR. The size of the transmit and receive buffers can vary from 1 to 4 data words using the BLEN control bits. The BLEN control bits are compared to the current value of the DCI buffer control unit address counter. When the 2 LSbs of the DCI address counter match the BLEN<1:0> value, the buffer control unit will be reset to ‘0’. In addition, the contents of the Receive Shadow registers are transferred to the Receive Buffer registers and the contents of the Transmit Buffer registers are transferred to the Transmit Shadow registers. 21.3.15 BUFFER ALIGNMENT WITH DATA FRAMES There is no direct coupling between the position of the AGU Address Pointer and the data frame boundaries. This means that there will be an implied assignment of each transmit and receive buffer that is a function of the BLEN control bits and the number of enabled data slots via the TSE and RSE control bits. As an example, assume that a 4-word data frame is chosen and that we want to transmit on all four time slots in the frame. This configuration would be established by setting the TSE0, TSE1, TSE2 and TSE3 control bits in the TSCON SFR. With this module setup, the TXBUF0 register would naturally be assigned to slot #0, the TXBUF1 register would naturally be assigned to slot #1, and so on. 21.3.16 TRANSMIT STATUS BITS There are two transmit status bits in the DCISTAT SFR. The TMPTY bit is set when the contents of the transmit buffer registers are transferred to the transmit shadow registers. The TMPTY bit may be polled in software to determine when the transmit buffer registers may be written. The TMPTY bit is cleared automatically by the hardware when a write to one of the four transmit buffers occurs. The TUNF bit is read-only and indicates that a transmit underflow has occurred for at least one of the transmit buffer registers that is in use. The TUNF bit is set at the time the transmit buffer registers are transferred to the transmit shadow registers. The TUNF status bit is cleared automatically when the buffer register that underflowed is written by the CPU. 21.3.17 RECEIVE STATUS BITS There are two receive status bits in the DCISTAT SFR. The RFUL status bit is read-only and indicates that new data is available in the receive buffers. The RFUL bit is cleared automatically when all receive buffers in use have been read by the CPU. The ROV status bit is read-only and indicates that a receive overflow has occurred for at least one of the receive buffer locations. A receive overflow occurs when the buffer location is not read by the CPU before new data is transferred from the shadow registers. The ROV status bit is cleared automatically when the buffer register that caused the overflow is read by the CPU. When a receive overflow occurs for a specific buffer location, the old contents of the buffer are overwritten. Note 1: DCI can trigger a DMA data transfer. If DCI is selected as a DMA IRQ source, a DMA transfer occurs when the DCIIF bit gets set as a result of a DCI transmission or reception. 2: If DMA transfers are required, the DCI TX/RX buffer must be set to a size of 1 word (i.e., BLEN<1:0> = 00). Note: When more than four time slots are active within a data frame, the user code must keep track of which time slots are to be read/written at each interrupt. In some cases, the alignment between transmit/ receive buffers and their respective slot assignments could be lost. Examples of such cases include an emulation breakpoint or a hardware trap. In these situations, the user should poll the SLOT status bits to determine what data should be loaded into the buffer registers to resynchronize the software with the DCI module. Note: The transmit status bits only indicate status for buffer locations that are used by the module. If the buffer length is set to less than four words, for example, the unused buffer locations will not affect the transmit status bits. Note: The receive status bits only indicate status for buffer locations that are used by the module. If the buffer length is set to less than four words, for example, the unused buffer locations will not affect the transmit status bits.dsPIC33F DS70165E-page 268 Preliminary © 2007 Microchip Technology Inc. 21.3.18 SLOT STATUS BITS The SLOT<3:0> status bits in the DCISTAT SFR indicate the current active time slot. These bits will correspond to the value of the frame sync generator counter. The user may poll these status bits in software when a DCI interrupt occurs to determine what time slot data was last received and which time slot data should be loaded into the TXBUF registers. 21.3.19 CSDO MODE BIT The CSDOM control bit controls the behavior of the CSDO pin during unused transmit slots. A given transmit time slot is unused if it’s corresponding TSEx bit in the TSCON SFR is cleared. If the CSDOM bit is cleared (default), the CSDO pin will be low during unused time slot periods. This mode will be used when there are only two devices attached to the serial bus. If the CSDOM bit is set, the CSDO pin will be tri-stated during unused time slot periods. This mode allows multiple devices to share the same CSDO line in a multi-channel application. Each device on the CSDO line is configured to only transmit data during specific time slots. No two devices will transmit data during the same time slot. 21.3.20 DIGITAL LOOPBACK MODE Digital Loopback mode is enabled by setting the DLOOP control bit in the DCICON1 SFR. When the DLOOP bit is set, the module internally connects the CSDO signal to CSDI. The actual data input on the CSDI I/O pin will be ignored in Digital Loopback mode. 21.3.21 UNDERFLOW MODE CONTROL BIT When an underflow occurs, one of two actions can occur, depending on the state of the Underflow mode (UNFM) control bit in the DCICON1 SFR. If the UNFM bit is cleared (default), the module will transmit ‘0’s on the CSDO pin during the active time slot for the buffer location. In this operating mode, the Codec device attached to the DCI module will simply be fed digital ‘silence’. If the UNFM control bit is set, the module will transmit the last data written to the buffer location. This operating mode permits the user to send continuous data to the Codec device without consuming CPU overhead. 21.4 DCI Module Interrupts The frequency of DCI module interrupts is dependent on the BLEN<1:0> control bits in the DCICON2 SFR. An interrupt to the CPU is generated each time the set buffer length has been reached and a shadow register transfer takes place. A shadow register transfer is defined as the time when the previously written TXBUF values are transferred to the transmit shadow registers and new received values in the receive shadow registers are transferred into the RXBUF registers. 21.5 DCI Module Operation During CPU Sleep and Idle Modes 21.5.1 DCI MODULE OPERATION DURING CPU SLEEP MODE The DCI module has the ability to operate while in Sleep mode and wake the CPU when the CSCK signal is supplied by an external device (CSCKD = 1). The DCI module will generate an asynchronous interrupt when a DCI buffer transfer has completed and the CPU is in Sleep mode. 21.5.2 DCI MODULE OPERATION DURING CPU IDLE MODE If the DCISIDL control bit is cleared (default), the module will continue to operate normally even in Idle mode. If the DCISIDL bit is set, the module will halt when Idle mode is asserted. 21.6 AC-Link Mode Operation The AC-Link protocol is a 256-bit frame with one 16-bit data slot, followed by twelve 20-bit data slots. The DCI module has two operating modes for the AC-Link protocol. These operating modes are selected by the COFSM<1:0> control bits in the DCICON1 SFR. The first AC-Link mode is called ‘16-bit AC-Link mode’ and is selected by setting COFSM<1:0> = 10. The second AC-Link mode is called ‘20-bit AC-Link mode’ and is selected by setting COFSM<1:0> = 11. 21.6.1 16-BIT AC-LINK MODE In the 16-bit AC-Link mode, data word lengths are restricted to 16 bits. Note that this restriction only affects the 20-bit data time slots of the AC-Link protocol. For received time slots, the incoming data is simply truncated to 16 bits. For outgoing time slots, the four Least Significant bits of the data word are set to ‘0’ by the module. This truncation of the time slots limits the ADC and DAC data to 16 bits but permits proper data alignment in the TXBUF and RXBUF registers. Each RXBUF and TXBUF register will contain one data time slot value.© 2007 Microchip Technology Inc. Preliminary DS70165E-page 269 dsPIC33F 21.6.2 20-BIT AC-LINK MODE The 20-bit AC-Link mode allows all bits in the data time slots to be transmitted and received but does not maintain data alignment in the TXBUF and RXBUF registers. The 20-bit AC-Link mode functions similar to the MultiChannel mode of the DCI module, except for the duty cycle of the frame synchronization signal. The AC-Link frame synchronization signal should remain high for 16 CSCK cycles and should be low for the following 240 cycles. The 20-bit mode treats each 256-bit AC-Link frame as sixteen, 16-bit time slots. In the 20-bit AC-Link mode, the module operates as if COFSG<3:0> = 1111 and WS<3:0> = 1111. The data alignment for 20-bit data slots is ignored. For example, an entire AC-Link data frame can be transmitted and received in a packed fashion by setting all bits in the TSCON and RSCON SFRs. Since the total available buffer length is 64 bits, it would take 4 consecutive interrupts to transfer the AC-Link frame. The application software must keep track of the current AC-Link frame segment. 21.7 I 2 S Mode Operation The DCI module is configured for I 2 S mode by writing a value of ‘01’ to the COFSM<1:0> control bits in the DCICON1 SFR. When operating in the I 2 S mode, the DCI module will generate frame synchronization signals with a 50% duty cycle. Each edge of the frame synchronization signal marks the boundary of a new data word transfer. The user must also select the frame length and data word size using the COFSG and WS control bits in the DCICON2 SFR. 21.7.1 I 2 S FRAME AND DATA WORD LENGTH SELECTION The WS and COFSG control bits are set to produce the period for one half of an I 2 S data frame. That is, the frame length is the total number of CSCK cycles required for a left or right data word transfer. The BLEN bits must be set for the desired buffer length. Setting BLEN<1:0> = 01 will produce a CPU interrupt, once per I 2 S frame. 21.7.2 I 2 S DATA JUSTIFICATION As per the I 2 S specification, a data word transfer will, by default, begin one CSCK cycle after a transition of the WS signal. A ‘Most Significant bit left justified’ option can be selected using the DJST control bit in the DCICON1 SFR. If DJST = 1, the I 2 S data transfers will be MSb left justified. The MSb of the data word will be presented on the CSDO pin during the same CSCK cycle as the rising or falling edge of the COFS signal. The CSDO pin is tri-stated after the data word has been sent.dsPIC33F DS70165E-page 270 Preliminary © 2007 Microchip Technology Inc. REGISTER 21-1: DCICON1: DCI CONTROL REGISTER 1 R/W-0 U-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 DCIEN — DCISIDL — DLOOP CSCKD CSCKE COFSD bit 15 bit 8 R/W-0 R/W-0 R/W-0 U-0 U-0 U-0 R/W-0 R/W-0 UNFM CSDOM DJST — — — COFSM<1:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 DCIEN: DCI Module Enable bit 1 = Module is enabled 0 = Module is disabled bit 14 Reserved: Read as ‘0’ bit 13 DCISIDL: DCI Stop in Idle Control bit 1 = Module will halt in CPU Idle mode 0 = Module will continue to operate in CPU Idle mode bit 12 Reserved: Read as ‘0’ bit 11 DLOOP: Digital Loopback Mode Control bit 1 = Digital Loopback mode is enabled. CSDI and CSDO pins internally connected. 0 = Digital Loopback mode is disabled bit 10 CSCKD: Sample Clock Direction Control bit 1 = CSCK pin is an input when DCI module is enabled 0 = CSCK pin is an output when DCI module is enabled bit 9 CSCKE: Sample Clock Edge Control bit 1 = Data changes on serial clock falling edge, sampled on serial clock rising edge 0 = Data changes on serial clock rising edge, sampled on serial clock falling edge bit 8 COFSD: Frame Synchronization Direction Control bit 1 = COFS pin is an input when DCI module is enabled 0 = COFS pin is an output when DCI module is enabled bit 7 UNFM: Underflow Mode bit 1 = Transmit last value written to the transmit registers on a transmit underflow 0 = Transmit ‘0’s on a transmit underflow bit 6 CSDOM: Serial Data Output Mode bit 1 = CSDO pin will be tri-stated during disabled transmit time slots 0 = CSDO pin drives ‘0’s during disabled transmit time slots bit 5 DJST: DCI Data Justification Control bit 1 = Data transmission/reception is begun during the same serial clock cycle as the frame synchronization pulse 0 = Data transmission/reception is begun one serial clock cycle after frame synchronization pulse bit 4-2 Reserved: Read as ‘0’ bit 1-0 COFSM<1:0>: Frame Sync Mode bits 11 = 20-bit AC-Link mode 10 = 16-bit AC-Link mode 01 = I 2 S Frame Sync mode 00 = Multi-Channel Frame Sync mode© 2007 Microchip Technology Inc. Preliminary DS70165E-page 271 dsPIC33F REGISTER 21-2: DCICON2: DCI CONTROL REGISTER 2 U-0 U-0 U-0 U-0 R/W-0 R/W-0 U-0 R/W-0 — — — — BLEN<1:0> — COFSG3 bit 15 bit 8 R/W-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 COFSG<2:0> — WS<3:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-12 Reserved: Read as ‘0’ bit 11-10 BLEN<1:0>: Buffer Length Control bits 11 = Four data words will be buffered between interrupts 10 = Three data words will be buffered between interrupts 01 = Two data words will be buffered between interrupts 00 = One data word will be buffered between interrupts bit 9 Reserved: Read as ‘0’ bit 8-5 COFSG<3:0>: Frame Sync Generator Control bits 1111 = Data frame has 16 words • • • 0010 = Data frame has 3 words 0001 = Data frame has 2 words 0000 = Data frame has 1 word bit 4 Reserved: Read as ‘0’ bit 3-0 WS<3:0>: DCI Data Word Size bits 1111 = Data word size is 16 bits • • • 0100 = Data word size is 5 bits 0011 = Data word size is 4 bits 0010 = Invalid Selection. Do not use. Unexpected results may occur. 0001 = Invalid Selection. Do not use. Unexpected results may occur. 0000 = Invalid Selection. Do not use. Unexpected results may occur.dsPIC33F DS70165E-page 272 Preliminary © 2007 Microchip Technology Inc. REGISTER 21-3: DCICON3: DCI CONTROL REGISTER 3 U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 — — — — BCG<11:8> bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 BCG<7:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-12 Reserved: Read as ‘0’ bit 11-0 BCG<11:0>: DCI bit Clock Generator Control bits© 2007 Microchip Technology Inc. Preliminary DS70165E-page 273 dsPIC33F REGISTER 21-4: DCISTAT: DCI STATUS REGISTER U-0 U-0 U-0 U-0 R-0 R-0 R-0 R-0 — — — — SLOT<3:0> bit 15 bit 8 U-0 U-0 U-0 U-0 R-0 R-0 R-0 R-0 — — — — ROV RFUL TUNF TMPTY bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-12 Reserved: Read as ‘0’ bit 11-8 SLOT<3:0>: DCI Slot Status bits 1111 = Slot #15 is currently active • • • 0010 = Slot #2 is currently active 0001 = Slot #1 is currently active 0000 = Slot #0 is currently active bit 7-4 Reserved: Read as ‘0’ bit 3 ROV: Receive Overflow Status bit 1 = A receive overflow has occurred for at least one receive register 0 = A receive overflow has not occurred bit 2 RFUL: Receive Buffer Full Status bit 1 = New data is available in the receive registers 0 = The receive registers have old data bit 1 TUNF: Transmit Buffer Underflow Status bit 1 = A transmit underflow has occurred for at least one transmit register 0 = A transmit underflow has not occurred bit 0 TMPTY: Transmit Buffer Empty Status bit 1 = The transmit registers are empty 0 = The transmit registers are not emptydsPIC33F DS70165E-page 274 Preliminary © 2007 Microchip Technology Inc. REGISTER 21-5: RSCON: DCI RECEIVE SLOT CONTROL REGISTER R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 RSE15 RSE14 RSE13 RSE12 RSE11 RSE10 RSE9 RSE8 bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 RSE7 RSE6 RSE5 RSE4 RSE3 RSE2 RSE1 RSE0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-0 RSE<15:0>: Receive Slot Enable bits 1 = CSDI data is received during the individual time slot n 0 = CSDI data is ignored during the individual time slot n REGISTER 21-6: TSCON: DCI TRANSMIT SLOT CONTROL REGISTER R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 TSE15 TSE14 TSE13 TSE12 TSE11 TSE10 TSE9 TSE8 bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 TSE7 TSE6 TSE5 TSE4 TSE3 TSE2 TSE1 TSE0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-0 TSE<15:0>: Transmit Slot Enable Control bits 1 = Transmit buffer contents are sent during the individual time slot n 0 = CSDO pin is tri-stated or driven to logic ‘0’, during the individual time slot, depending on the state of the CSDOM bit© 2007 Microchip Technology Inc. Preliminary DS70165E-page 275 dsPIC33F 22.0 10-BIT/12-BIT ANALOG-TO-DIGITAL CONVERTER (ADC) The dsPIC33F devices have up to 32 ADC input channels. These devices also have up to 2 ADC modules (ADCx, where ‘x’ = 1 or 2), each with its own set of Special Function Registers. The AD12B bit (ADxCON1<10>) allows each of the ADC modules to be configured by the user as either a 10-bit, 4-sample/hold ADC (default configuration) or a 12-bit, 1-sample/hold ADC. 22.1 Key Features The 10-bit ADC configuration has the following key features: • Successive Approximation (SAR) conversion • Conversion speeds of up to 1.1 Msps • Up to 32 analog input pins • External voltage reference input pins • Simultaneous sampling of up to four analog input pins • Automatic Channel Scan mode • Selectable conversion trigger source • Selectable Buffer Fill modes • Four result alignment options (signed/unsigned, fractional/integer) • Operation during CPU Sleep and Idle modes The 12-bit ADC configuration supports all the above features, except: • In the 12-bit configuration, conversion speeds of up to 500 ksps are supported • There is only 1 sample/hold amplifier in the 12-bit configuration, so simultaneous sampling of multiple channels is not supported. Depending on the particular device pinout, the ADC can have up to 32 analog input pins, designated AN0 through AN31. In addition, there are two analog input pins for external voltage reference connections. These voltage reference inputs may be shared with other analog input pins. The actual number of analog input pins and external voltage reference input configuration will depend on the specific device. Refer to the device data sheet for further details. A block diagram of the ADC is shown in Figure 22-1. 22.2 ADC Initialization The following configuration steps should be performed. 1. Configure the ADC module: a) Select port pins as analog inputs (ADxPCFGH<15:0> or ADxPCFGL<15:0>) b) Select voltage reference source to match expected range on analog inputs (ADxCON2<15:13>) c) Select the analog conversion clock to match desired data rate with processor clock (ADxCON3<5:0>) d) Determine how many S/H channels will be used (ADxCON2<9:8> and ADxPCFGH<15:0> or ADxPCFGL<15:0>) e) Select the appropriate sample/conversion sequence (ADxCON1<7:5> and ADxCON3<12:8>) f) Select how conversion results are presented in the buffer (ADxCON1<9:8>) g) Turn on ADC module (ADxCON1<15>) 2. Configure ADC interrupt (if required): a) Clear the ADxIF bit b) Select ADC interrupt priority 22.3 ADC and DMA If more than one conversion result needs to be buffered before triggering an interrupt, DMA data transfers can be used. Both ADC1 and ADC2 can trigger a DMA data transfer. If ADC1 or ADC2 is selected as the DMA IRQ source, a DMA transfer occurs when the AD1IF or AD2IF bit gets set as a result of an ADC1 or ADC2 sample conversion sequence. The SMPI<3:0> bits (ADxCON2<5:2>) are used to select how often the DMA RAM buffer pointer is incremented. The ADDMABM bit (ADxCON1<12>) determines how the conversion results are filled in the DMA RAM buffer area being used for ADC. If this bit is set, DMA buffers are written in the order of conversion. The module will provide an address to the DMA channel that is the same as the address used for the non-DMA stand-alone buffer. If the ADDMABM bit is cleared, then DMA buffers are written in Scatter/Gather mode. The module will provide a scatter/gather address to the DMA channel, based on the index of the analog input and the size of the DMA buffer. Note: This data sheet summarizes the features of this group of dsPIC33F devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the “dsPIC30F Family Reference Manual” (DS70046). Note: The ADC module needs to be disabled before modifying the AD12B bit.dsPIC33F DS70165E-page 276 Preliminary © 2007 Microchip Technology Inc. FIGURE 22-1: ADC1 MODULE BLOCK DIAGRAM S/H + - Conversion Conversion Logic VREF+ (1) AVSS AVDD ADC1 Data Format 16-bit ADC Output Bus Interface 00000 00101 00111 01001 11110 11111 00001 00010 00011 00100 00110 01000 01010 01011 AN30 AN31 AN8 AN9 AN10 AN11 AN2 AN4 AN7 AN0 AN3 AN1 AN5 CH1 (2) CH2 (2) CH3 (2) CH0 AN5 AN2 AN11 AN8 VREFAN4 AN1 AN10 AN7 VREFAN3 AN0 AN9 AN6 VREFAN1 VREFVREF- (1) Sample/Sequence Control Sample CH1,CH2, CH3,CH0 Input MUX Control Input Switches S/H + - S/H + - S/H + - AN6 Buffer Result Note 1: VREF+, VREF- inputs may be multiplexed with other analog inputs. See device data sheet for details. 2: Channels 1, 2 and 3 are not applicable for the 12-bit mode of operation.© 2007 Microchip Technology Inc. Preliminary DS70165E-page 277 dsPIC33F FIGURE 22-2: ADC2 MODULE BLOCK DIAGRAM(1) S/H + - Conversion Conversion Logic VREF+ (2) AVSS AVDD ADC2 Data Format 16-bit ADC Output Bus Interface 00000 00101 00111 01001 11110 11111 00001 00010 00011 00100 00110 01000 01010 01011 AN14 AN15 AN8 AN9 AN10 AN11 AN2 AN4 AN7 AN0 AN3 AN1 AN5 CH1 (3) CH2 (3) CH3 (3) CH0 AN5 AN2 AN11 AN8 VREFAN4 AN1 AN10 AN7 VREFAN3 AN0 AN9 AN6 VREFAN1 VREFVREF- (2) Sample/Sequence Control Sample CH1,CH2, CH3,CH0 Input MUX Control Input Switches S/H + - S/H + - S/H + - AN6 Buffer Result Note 1: On devices with two ADC modules, AN0-AN15 can be read by either ADC1, ADC2 or both ADCs. 2: VREF+, VREF- inputs may be multiplexed with other analog inputs. See device data sheet for details. 3: Channels 1, 2 and 3 are not applicable for the 12-bit mode of operation.dsPIC33F DS70165E-page 278 Preliminary © 2007 Microchip Technology Inc. EQUATION 22-1: ADC CONVERSION CLOCK PERIOD FIGURE 22-3: ADC TRANSFER FUNCTION (10-BIT EXAMPLE) FIGURE 22-4: ADC CONVERSION CLOCK PERIOD BLOCK DIAGRAM TAD = TCY(ADCS + 1) ADCS = TAD TCY – 1 10 0000 0010 (= 514) 10 0000 0011 (= 515) 01 1111 1101 (= 509) 01 1111 1110 (= 510) 01 1111 1111 (= 511) 11 1111 1110 (= 1022) 11 1111 1111 (= 1023) 00 0000 0000 (= 0) 00 0000 0001 (= 1) Output Code 10 0000 0000 (= 512) (VINH – VINL) VREFL VREFH – VREFL 1024 VREFH VREFL + 10 0000 0001 (= 513) 512 * (VREFH – VREFL) 1024 VREFL + 1023 * (VREFH – VREFL) 1024 VREFL + 0 1 ADC Internal RC Clock TOSC (1) X2 ADC Conversion Clock Multiplier 1, 2, 3, 4, 5,..., 64 ADxCON3<15> TCY TAD 6 ADxCON3<5:0> 1. Refer to Figure 8-2 for the derivation of FOSC when the PLL is enabled. If the PLL is not used, FOSC is equal to the clock source frequency. Tosc = 1/Fosc.© 2007 Microchip Technology Inc. Preliminary DS70165E-page 279 dsPIC33F REGISTER 22-1: ADxCON1: ADCx CONTROL REGISTER 1 (where x = 1 or 2) R/W-0 U-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 ADON — ADSIDL ADDMABM — AD12B FORM<1:0> bit 15 bit 8 R/W-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 HC,HS R/C-0 HC, HS SSRC<2:0> — SIMSAM ASAM SAMP DONE bit 7 bit 0 Legend: HC = Cleared by hardware HS = Set by hardware R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 ADON: ADC Operating Mode bit 1 = ADC module is operating 0 = ADC is off bit 14 Unimplemented: Read as ‘0’ bit 13 ADSIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode bit 12 ADDMABM: DMA Buffer Build Mode bit 1 = DMA buffers are written in the order of conversion. The module will provide an address to the DMA channel that is the same as the address used for the non-DMA stand-alone buffer. 0 = DMA buffers are written in Scatter/Gather mode. The module will provide a scatter/gather address to the DMA channel, based on the index of the analog input and the size of the DMA buffer. bit 11 Unimplemented: Read as ‘0’ bit 10 AD12B: 10-bit or 12-bit Operation Mode bit 1 = 12-bit, 1-channel ADC operation 0 = 10-bit, 4-channel ADC operation bit 9-8 FORM<1:0>: Data Output Format bits For 10-bit operation: 11 = Signed fractional (DOUT = sddd dddd dd00 0000, where s = .NOT.d<9>) 10 = Fractional (DOUT = dddd dddd dd00 0000) 01 = Signed integer (DOUT = ssss sssd dddd dddd, where s = .NOT.d<9>) 00 = Integer (DOUT = 0000 00dd dddd dddd) For 12-bit operation: 11 = Signed fractional (DOUT = sddd dddd dddd 0000, where s = .NOT.d<11>) 10 = Fractional (DOUT = dddd dddd dddd 0000) 01 = Signed Integer (DOUT = ssss sddd dddd dddd, where s = .NOT.d<11>) 00 = Integer (DOUT = 0000 dddd dddd dddd) bit 7-5 SSRC<2:0>: Sample Clock Source Select bits 111 = Internal counter ends sampling and starts conversion (auto-convert) 110 = Reserved 101 = Reserved 100 = Reserved 011 = MPWM interval ends sampling and starts conversion 010 = GP timer (Timer3 for ADC1, Timer5 for ADC2) compare ends sampling and starts conversion 001 = Active transition on INTx pin ends sampling and starts conversion 000 = Clearing sample bit ends sampling and starts conversion bit 4 Unimplemented: Read as ‘0’dsPIC33F DS70165E-page 280 Preliminary © 2007 Microchip Technology Inc. bit 3 SIMSAM: Simultaneous Sample Select bit (only applicable when CHPS<1:0> = 01 or 1x) When AD12B = 1, SIMSAM is: U-0, Unimplemented, Read as ‘0’ 1 = Samples CH0, CH1, CH2, CH3 simultaneously (when CHPS<1:0> = 1x); or Samples CH0 and CH1 simultaneously (when CHPS<1:0> = 01) 0 = Samples multiple channels individually in sequence bit 2 ASAM: ADC Sample Auto-Start bit 1 = Sampling begins immediately after last conversion. SAMP bit is auto-set. 0 = Sampling begins when SAMP bit is set bit 1 SAMP: ADC Sample Enable bit 1 = ADC sample/hold amplifiers are sampling 0 = ADC sample/hold amplifiers are holding If ASAM = 0, software may write ‘1’ to begin sampling. Automatically set by hardware if ASAM = 1. If SSRC = 000, software may write ‘0’ to end sampling and start conversion. If SSRC ≠ 000, automatically cleared by hardware to end sampling and start conversion. bit 0 DONE: ADC Conversion Status bit 1 = ADC conversion cycle is completed. 0 = ADC conversion not started or in progress Automatically set by hardware when ADC conversion is complete. Software may write ‘0’ to clear DONE status (software not allowed to write ‘1’). Clearing this bit will NOT affect any operation in progress. Automatically cleared by hardware at start of a new conversion. REGISTER 22-1: ADxCON1: ADCx CONTROL REGISTER 1 (CONTINUED)(where x = 1 or 2)© 2007 Microchip Technology Inc. Preliminary DS70165E-page 281 dsPIC33F REGISTER 22-2: ADxCON2: ADCx CONTROL REGISTER 2 (where x = 1 or 2) R/W-0 R/W-0 R/W-0 U-0 U-0 R/W-0 R/W-0 R/W-0 VCFG<2:0> — — CSCNA CHPS<1:0> bit 15 bit 8 R-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 BUFS — SMPI<3:0> BUFM ALTS bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-13 VCFG<2:0>: Converter Voltage Reference Configuration bits bit 12-11 Unimplemented: Read as ‘0’ bit 10 CSCNA: Scan Input Selections for CH0+ during Sample A bit 1 = Scan inputs 0 = Do not scan inputs bit 9-8 CHPS<1:0>: Selects Channels Utilized bits When AD12B = 1, CHPS<1:0> is: U-0, Unimplemented, Read as ‘0’ 1x = Converts CH0, CH1, CH2 and CH3 01 = Converts CH0 and CH1 00 = Converts CH0 bit 7 BUFS: Buffer Fill Status bit (only valid when BUFM = 1) 1 = ADC is currently filling buffer 0x8-0xF, user should access data in 0x0-0x7 0 = ADC is currently filling buffer 0x0-0x7, user should access data in 0x8-0xF bit 6 Unimplemented: Read as ‘0’ bit 5-2 SMPI<3:0>: Selects Increment Rate for DMA Addresses bits or number of sample/conversion operations per interrupt. 1111 = Increments the DMA address or generates interrupt after completion of every 16th sample/conversion operation 1110 = Increments the DMA address or generates interrupt after completion of every 15th sample/conversion operation • • • 0001 = Increments the DMA address or generates interrupt after completion of every 2nd sample/conversion operation 0000 = Increments the DMA address or generates interrupt after completion of every sample/conversion operation bit 1 BUFM: Buffer Fill Mode Select bit 1 = Starts buffer filling at address 0x0 on first interrupt and 0x8 on next interrupt 0 = Always starts filling buffer at address 0x0 ADREF+ ADREF- 000 AVDD AVSS 001 External VREF+ AVSS 010 AVDD External VREF- 011 External VREF+ External VREF- 1xx AVDD AvssdsPIC33F DS70165E-page 282 Preliminary © 2007 Microchip Technology Inc. bit 0 ALTS: Alternate Input Sample Mode Select bit 1 = Uses channel input selects for Sample A on first sample and Sample B on next sample 0 = Always uses channel input selects for Sample A REGISTER 22-2: ADxCON2: ADCx CONTROL REGISTER 2 (CONTINUED) (where x = 1 or 2)© 2007 Microchip Technology Inc. Preliminary DS70165E-page 283 dsPIC33F REGISTER 22-3: ADxCON3: ADCx CONTROL REGISTER 3 R/W-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 ADRC — — SAMC<4:0> bit 15 bit 8 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 — — ADCS<5:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 ADRC: ADC Conversion Clock Source bit 1 = ADC internal RC clock 0 = Clock derived from system clock bit 14-13 Unimplemented: Read as ‘0’ bit 12-8 SAMC<4:0>: Auto Sample Time bits 11111 = 31 TAD • • • 00001 = 1 TAD 00000 = 0 TAD bit 7-6 Unimplemented: Read as ‘0’ bit 5-0 ADCS<5:0>: ADC Conversion Clock Select bits 111111 = TCY · (ADCS<7:0> + 1) = 64 · TCY = TAD • • • 000010 = TCY · (ADCS<7:0> + 1) = 3 · TCY = TAD 000001 = TCY · (ADCS<7:0> + 1) = 2 · TCY = TAD 000000 = TCY · (ADCS<7:0> + 1) = 1 · TCY = TADdsPIC33F DS70165E-page 284 Preliminary © 2007 Microchip Technology Inc. REGISTER 22-4: ADxCON4: ADCx CONTROL REGISTER 4 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 — — — — — — — — bit 15 bit 8 U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 — — — — — DMABL<2:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-3 Unimplemented: Read as ‘0’ bit 2-0 DMABL<2:0>: Selects Number of DMA Buffer Locations per Analog Input bits 111 = Allocates 128 words of buffer to each analog input 110 = Allocates 64 words of buffer to each analog input 101 = Allocates 32 words of buffer to each analog input 100 = Allocates 16 words of buffer to each analog input 011 = Allocates 8 words of buffer to each analog input 010 = Allocates 4 words of buffer to each analog input 001 = Allocates 2 words of buffer to each analog input 000 = Allocates 1 word of buffer to each analog input© 2007 Microchip Technology Inc. Preliminary DS70165E-page 285 dsPIC33F REGISTER 22-5: ADxCHS123: ADCx INPUT CHANNEL 1, 2, 3 SELECT REGISTER U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 — — — — — CH123NB<1:0> CH123SB bit 15 bit 8 U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 — — — — — CH123NA<1:0> CH123SA bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-11 Unimplemented: Read as ‘0’ bit 10-9 CH123NB<1:0>: Channel 1, 2, 3 Negative Input Select for Sample B bits When AD12B = 1, CHxNB is: U-0, Unimplemented, Read as ‘0’ 11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11 10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative input is VREFbit 8 CH123SB: Channel 1, 2, 3 Positive Input Select for Sample B bit When AD12B = 1, CHxSA is: U-0, Unimplemented, Read as ‘0’ 1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 0 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2 bit 7-3 Unimplemented: Read as ‘0’ bit 2-1 CH123NA<1:0>: Channel 1, 2, 3 Negative Input Select for Sample A bits When AD12B = 1, CHxNA is: U-0, Unimplemented, Read as ‘0’ 11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11 10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative input is VREFbit 0 CH123SA: Channel 1, 2, 3 Positive Input Select for Sample A bit When AD12B = 1, CHxSA is: U-0, Unimplemented, Read as ‘0’ 1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 0 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2dsPIC33F DS70165E-page 286 Preliminary © 2007 Microchip Technology Inc. REGISTER 22-6: ADxCHS0: ADCx INPUT CHANNEL 0 SELECT REGISTER R/W-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 CH0NB — — CH0SB<4:0> bit 15 bit 8 R/W-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 CH0NA — — CH0SA<4:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 CH0NB: Channel 0 Negative Input Select for Sample B bit Same definition as bit 7. bit 14-13 Unimplemented: Read as ‘0’ bit 12-8 CH0SB<4:0>: Channel 0 Positive Input Select for Sample B bits Same definition as bit<4:0>. bit 7 CH0NA: Channel 0 Negative Input Select for Sample A bit 1 = Channel 0 negative input is AN1 0 = Channel 0 negative input is VREFbit 6-5 Unimplemented: Read as ‘0’ bit 4-0 CH0SA<4:0>: Channel 0 Positive Input Select for Sample A bits 11111 = Channel 0 positive input is AN31 11110 = Channel 0 positive input is AN30 • • • 00010 = Channel 0 positive input is AN2 00001 = Channel 0 positive input is AN1 00000 = Channel 0 positive input is AN0© 2007 Microchip Technology Inc. Preliminary DS70165E-page 287 dsPIC33F REGISTER 22-7: ADxCSSH: ADCx INPUT SCAN SELECT REGISTER HIGH (1) R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 CSS31 CSS30 CSS29 CSS28 CSS27 CSS26 CSS25 CSS24 bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 CSS23 CSS22 CSS21 CSS20 CSS19 CSS18 CSS17 CSS16 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-0 CSS<31:16>: ADC Input Scan Selection bits 1 = Select ANx for input scan 0 = Skip ANx for input scan Note 1: On devices without 32 analog inputs, all ADxCSSL bits may be selected by user. However, inputs selected for scan without a corresponding input on device will convert ADREF-. REGISTER 22-8: ADxCSSL: ADCx INPUT SCAN SELECT REGISTER LOW(1) R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 CSS15 CSS14 CSS13 CSS12 CSS11 CSS10 CSS9 CSS8 bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 CSS7 CSS6 CSS5 CSS4 CSS3 CSS2 CSS1 CSS0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-0 CSS<15:0>: ADC Input Scan Selection bits 1 = Select ANx for input scan 0 = Skip ANx for input scan Note 1: On devices without 16 analog inputs, all ADxCSSL bits may be selected by user. However, inputs selected for scan without a corresponding input on device will convert ADREF-.dsPIC33F DS70165E-page 288 Preliminary © 2007 Microchip Technology Inc. REGISTER 22-9: AD1PCFGH: ADC1 PORT CONFIGURATION REGISTER HIGH (1,2) R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 PCFG31 PCFG30 PCFG29 PCFG28 PCFG27 PCFG26 PCFG25 PCFG24 bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 PCFG23 PCFG22 PCFG21 PCFG20 PCFG19 PCFG18 PCFG17 PCFG16 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-0 PCFG<31:16>: ADC Port Configuration Control bits 1 = Port pin in Digital mode, port read input enabled, ADC input multiplexor connected to AVSS 0 = Port pin in Analog mode, port read input disabled, ADC samples pin voltage Note 1: On devices without 32 analog inputs, all PCFG bits are R/W by user. However, PCFG bits are ignored on ports without a corresponding input on device. 2: ADC2 only supports analog inputs AN0-AN15; therefore, no ADC2 port Configuration register exists. REGISTER 22-10: ADxPCFGL: ADCx PORT CONFIGURATION REGISTER LOW(1,2) R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 PCFG15 PCFG14 PCFG13 PCFG12 PCFG11 PCFG10 PCFG9 PCFG8 bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 PCFG7 PCFG6 PCFG5 PCFG4 PCFG3 PCFG2 PCFG1 PCFG0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-0 PCFG<15:0>: ADC Port Configuration Control bits 1 = Port pin in Digital mode, port read input enabled, ADC input multiplexor connected to AVSS 0 = Port pin in Analog mode, port read input disabled, ADC samples pin voltage Note 1: On devices without 16 analog inputs, all PCFG bits are R/W by user. However, PCFG bits are ignored on ports without a corresponding input on device. 2: On devices with two analog-to-digital modules, both AD1PCFGL and AD2PCFGL will affect the configuration of port pins multiplexed with AN0-AN15.© 2007 Microchip Technology Inc. Preliminary DS70165E-page 289 dsPIC33F 23.0 SPECIAL FEATURES dsPIC33F devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are: • Flexible Configuration • Watchdog Timer (WDT) • Code Protection and CodeGuard™ Security • JTAG Boundary Scan Interface • In-Circuit Serial Programming™ (ICSP™) • In-Circuit Emulation 23.1 Configuration Bits The Configuration bits can be programmed (read as ‘0’), or left unprogrammed (read as ‘1’), to select various device configurations. These bits are mapped starting at program memory location 0xF80000. The device Configuration register map is shown in Table 23-1. The individual Configuration bit descriptions for the FBS, FSS, FGS, FOSCSEL, FOSC, FWDT, FPOR and FICD Configuration registers are shown in Table 23-2. Note that address 0xF80000 is beyond the user program memory space. In fact, it belongs to the configuration memory space (0x800000-0xFFFFFF) which can only be accessed using table reads and table writes. The upper byte of all device Configuration registers should always be ‘1111 1111’. This makes them appear to be NOP instructions in the remote event that their locations are ever executed by accident. Since Configuration bits are not implemented in the corresponding locations, writing ‘1’s to these locations has no effect on device operation. To prevent inadvertent configuration changes during code execution, all programmable Configuration bits are write-once. After a bit is initially programmed during a power cycle, it cannot be written to again. Changing a device configuration requires that power to the device be cycled. TABLE 23-1: DEVICE CONFIGURATION REGISTER MAP Note: This data sheet summarizes the features of this group of dsPIC33F devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the “dsPIC30F Family Reference Manual” (DS70046). Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0xF80000 FBS RBS<1:0> — — BSS<2:0> BWRP 0xF80002 FSS RSS<1:0> — — SSS<2:0> SWRP 0xF8004 FGS — — — — — GSS1 GSS0 GWRP 0xF8006 FOSCSEL IESO — TEMP — 0xF8008 FOSC FCKSM<1:0> — — — OSCIOFNC POSCMD<1:0> 0xF800A FWDT FWDTEN WINDIS — WDTPRE WDTPOST<3:0> 0xF800C FPOR PWMPIN (1) HPOL (1) LPOL (1) — — FPWRT<2:0> 0xF800E RESERVED3 Reserved (2) 0xF8010 FUID0 User Unit ID Byte 0 0xF8012 FUID1 User Unit ID Byte 1 0xF8014 FUID2 User Unit ID Byte 2 0xF8016 FUID3 User Unit ID Byte 3 Note 1: On the dsPIC33F General Purpose Family devices (dsPIC33FJXXXGPXXX), these bits are reserved (read as ‘1’ and must be programmed as ‘1’). 2: These reserved bits read as ‘1’ and must be programmed as ‘1’. 3: Unimplemented bits are read as ‘0’. 4: This reserved bit is a read-only copy of the GCP bit.dsPIC33F DS70165E-page 290 Preliminary © 2007 Microchip Technology Inc. TABLE 23-2: dsPIC33F CONFIGURATION BITS DESCRIPTION Bit Field Register Description BWRP FBS Boot Segment Program Flash Write Protection 1 = Boot segment may be written 0 = Boot segment is write-protected BSS<2:0> FBS Boot Segment Program Flash Code Protection Size X11 = No Boot program Flash segment Boot space is 1K IW less VS 110 = Standard security; boot program Flash segment starts at End of VS, ends at 0007FEh 010 = High security; boot program Flash segment starts at End of VS, ends at 0007FEh Boot space is 4K IW less VS 101 = Standard security; boot program Flash segment starts at End of VS, ends at 001FFEh 001 = High security; boot program Flash segment starts at End of VS, ends at 001FFEh Boot space is 8K IW less VS 100 = Standard security; boot program Flash segment starts at End of VS, ends at 003FFEh 000 = High security; boot program Flash segment starts at End of VS, ends at 003FFEh RBS<1:0> FBS Boot Segment RAM Code Protection 10 = No Boot RAM defined 10 = Boot RAM is 128 Bytes 01 = Boot RAM is 256 Bytes 00 = Boot RAM is 1024 Bytes SWRP FSS Secure Segment Program Flash Write Protection 1 = Secure segment may be written 0 = Secure segment is write-protected.© 2007 Microchip Technology Inc. Preliminary DS70165E-page 291 dsPIC33F SSS<2:0> FSS Secure Segment Program Flash Code Protection Size (FOR 128K and 256K DEVICES) X11 = No Secure program Flash segment Secure space is 8K IW less BS 110 = Standard security; secure program Flash segment starts at End of BS, ends at 0x003FFE 010 = High security; secure program Flash segment starts at End of BS, ends at 0x003FFE Secure space is 16K IW less BS 101 = Standard security; secure program Flash segment starts at End of BS, ends at 0x007FFE 001 = High security; secure program Flash segment starts at End of BS, ends at 0x007FFE Secure space is 32K IW less BS 100 = Standard security; secure program Flash segment starts at End of BS, ends at 0x00FFFE 000 = High security; secure program Flash segment starts at End of BS, ends at 0x00FFFE (FOR 64K DEVICES) X11 = No Secure program Flash segment Secure space is 4K IW less BS 110 = Standard security; secure program Flash segment starts at End of BS, ends at 0x001FFE 010 = High security; secure program Flash segment starts at End of BS, ends at 0x001FFE Secure space is 8K IW less BS 101 = Standard security; secure program Flash segment starts at End of BS, ends at 0x003FFE 001 = High security; secure program Flash segment starts at End of BS, ends at 0x003FFE Secure space is 16K IW less BS 100 = Standard security; secure program Flash segment starts at End of BS, ends at 007FFEh 000 = High security; secure program Flash segment starts at End of BS, ends at 0x007FFE RSS<1:0> FSS Secure Segment RAM Code Protection 10 = No Secure RAM defined 10 = Secure RAM is 256 Bytes less BS RAM 01 = Secure RAM is 2048 Bytes less BS RAM 00 = Secure RAM is 4096 Bytes less BS RAM GSS<1:0> FGS General Segment Code-Protect bit 11 = User program memory is not code-protected 10 = Standard security; general program Flash segment starts at End of SS, ends at EOM 0x = High security; general program Flash segment starts at End of SS, ends at EOM TABLE 23-2: dsPIC33F CONFIGURATION BITS DESCRIPTION (CONTINUED) Bit Field Register DescriptiondsPIC33F DS70165E-page 292 Preliminary © 2007 Microchip Technology Inc. GWRP FGS General Segment Write-Protect bit 1 = User program memory is not write-protected 0 = User program memory is write-protected IESO FOSCSEL Two-speed Oscillator Start-up Enable bit 1 = Start-up device with FRC, then automatically switch to the user-selected oscillator source when ready 0 = Start-up device with user-selected oscillator source TEMP FOSCSEL Temperature Protection Enable bit 1 = Temperature protection disabled 0 = Temperature protection enabled FNOSC<2:0> FOSCSEL Initial Oscillator Source Selection bits 111 = Internal Fast RC (FRC) oscillator with postscaler 110 = Internal Fast RC (FRC) oscillator with divide-by-16 101 = LPRC oscillator 100 = Secondary (LP) oscillator 011 = Primary (XT, HS, EC) oscillator with PLL 010 = Primary (XT, HS, EC) oscillator 001 = Internal Fast RC (FRC) oscillator with PLL 000 = FRC oscillator FCKSM<1:0> FOSC Clock Switching Mode bits 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled OSCIOFNC FOSC OSC2 Pin Function bit (except in XT and HS modes) 1 = OSC2 is clock output 0 = OSC2 is general purpose digital I/O pin POSCMD<1:0> FOSC Primary Oscillator Mode Select bits 11 = Primary oscillator disabled 10 = HS Crystal Oscillator mode 01 = XT Crystal Oscillator mode 00 = EC (External Clock) mode FWDTEN FWDT Watchdog Timer Enable bit 1 = Watchdog Timer always enabled (LPRC oscillator cannot be disabled. Clearing the SWDTEN bit in the RCON register will have no effect.) 0 = Watchdog Timer enabled/disabled by user software (LPRC can be disabled by clearing the SWDTEN bit in the RCON register) WINDIS FWDT Watchdog Timer Window Enable bit 1 = Watchdog Timer in Non-Window mode 0 = Watchdog Timer in Window mode WDTPRE FWDT Watchdog Timer Prescaler bit 1 = 1:128 0 = 1:32 WDTPOST FWDT Watchdog Timer Postscaler bits 1111 = 1:32,768 1110 = 1:16,384 . . . 0001 = 1:2 0000 = 1:1 TABLE 23-2: dsPIC33F CONFIGURATION BITS DESCRIPTION (CONTINUED) Bit Field Register Description© 2007 Microchip Technology Inc. Preliminary DS70165E-page 293 dsPIC33F 23.2 On-Chip Voltage Regulator All of the dsPIC33F devices power their core digital logic at a nominal 2.5V. This may create an issue for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, all devices in the dsPIC33F family incorporate an on-chip regulator that allows the device to run its core logic from VDD. The regulator provides power to the core from the other VDD pins. When the regulator is enabled, a low-ESR (less than 5 ohms) capacitor (such as tantalum or ceramic) must be connected to the VDDCORE/VCAP pin (Figure 23-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in TABLE 26-12: “Internal Voltage Regulator Specifications” located in Section 26.1 “DC Characteristics”. On a POR, it takes approximately 20 μs for the on-chip voltage regulator to generate an output voltage. During this time, designated as TSTARTUP, code execution is disabled. TSTARTUP is applied every time the device resumes operation after any power-down. FIGURE 23-1: CONNECTIONS FOR THE ON-CHIP VOLTAGE REGULATOR (1) PWMPIN FPOR Motor Control PWM Module Pin Mode bit 1 = PWM module pins controlled by PORT register at device Reset (tri-stated) 0 = PWM module pins controlled by PWM module at device Reset (configured as output pins) HPOL FPOR Motor Control PWM High Side Polarity bit 1 = PWM module high side output pins have active-high output polarity 0 = PWM module high side output pins have active-low output polarity LPOL FPOR Motor Control PWM Low Side Polarity bit 1 = PWM module low side output pins have active-high output polarity 0 = PWM module low side output pins have active-low output polarity FPWRT<2:0> FPOR Power-on Reset Timer Value Select bits 111 = PWRT = 128 ms 110 = PWRT = 64 ms 101 = PWRT = 32 ms 100 = PWRT = 16 ms 011 = PWRT = 8 ms 010 = PWRT = 4 ms 001 = PWRT = 2 ms 000 = PWRT = Disabled Reserved RESERVED3, FPOR Reserved (either read as ‘1’ and write as ‘1’, or read as ‘0’ and write as ‘0’) — FGS, FOSCSEL, FOSC, FWDT, FPOR Unimplemented (read as ‘0’, write as ‘0’) TABLE 23-2: dsPIC33F CONFIGURATION BITS DESCRIPTION (CONTINUED) Bit Field Register Description Note 1: These are typical operating voltages. Refer to TABLE 26-12: “Internal Voltage Regulator Specifications” located in Section 26.1 “DC Characteristics” for the full operating ranges of VDD and VDDCORE. VDD VDDCORE/VCAP VSS dsPIC33F CF 3.3VdsPIC33F DS70165E-page 294 Preliminary © 2007 Microchip Technology Inc. 23.3 Watchdog Timer (WDT) For dsPIC33F devices, the WDT is driven by the LPRC oscillator. When the WDT is enabled, the clock source is also enabled. The nominal WDT clock source from LPRC is 32 kHz. This feeds a prescaler than can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the WDTPRE Configuration bit. With a 32 kHz input, the prescaler yields a nominal WDT time-out period (TWDT) of 1 ms in 5-bit mode, or 4 ms in 7-bit mode. A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPOST<3:0> Configuration bits (FWDT<3:0>) which allow the selection of a total of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler, time-out periods ranging from 1 ms to 131 seconds can be achieved. The WDT, prescaler and postscaler are reset: • On any device Reset • On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSC bits) or by hardware (i.e., Fail-Safe Clock Monitor) • When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered) • When the device exits Sleep or Idle mode to resume normal operation • By a CLRWDT instruction during normal execution If the WDT is enabled, it will continue to run during Sleep or Idle modes. When the WDT time-out occurs, the device will wake the device and code execution will continue from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE bits (RCON<3,2>) will need to be cleared in software after the device wakes up. The WDT flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software. The WDT is enabled or disabled by the FWDTEN Configuration bit in the FWDT Configuration register. When the FWDTEN Configuration bit is set, the WDT is always enabled. The WDT can be optionally controlled in software when the FWDTEN Configuration bit has been programmed to ‘0’. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user to enable the WDT for critical code segments and disable the WDT during non-critical segments for maximum power savings. FIGURE 23-2: WDT BLOCK DIAGRAM Note: The CLRWDT and PWRSAV instructions clear the prescaler and postscaler counts when executed. Note: If the WINDIS bit (FWDT<6>) is cleared, the CLRWDT instruction should be executed by the application software only during the last 1/4 of the WDT period. This CLRWDT window can be determined by using a timer. If a CLRWDT instruction is executed before this window, a WDT Reset occurs. LPRC Input WDT Overflow Wake from Sleep 32.768 kHz Prescaler Postscaler WDTPRE SWDTEN FWDTEN Reset All Device Resets Sleep or Idle Mode LPRC Control CLRWDT Instr. PWRSAV Instr. WDTPOST<3:0> 1 ms/4 ms Exit Sleep or Idle Mode WDT Counter Transition to New Clock Source© 2007 Microchip Technology Inc. Preliminary DS70165E-page 295 dsPIC33F 23.4 JTAG Interface dsPIC33F devices implement a JTAG interface, which supports boundary scan device testing, as well as in-circuit programming. Detailed information on the interface will be provided in future revisions of the document. 23.5 Code Protection and CodeGuard™ Security The dsPIC33F product families offer the advanced implementation of CodeGuard™ Security. CodeGuard Security enables multiple parties to securely share resources (memory, interrupts and peripherals) on a single chip. This feature helps protect individual Intellectual Property in collaborative system designs. When coupled with software encryption libraries, CodeGuard™ Security can be used to securely update Flash even when multiple IP are resident on the single chip. The code protection features vary depending on the actual dsPIC33F implemented. The following sections provide an overview of these features. The code protection features are controlled by the Configuration registers: FBS, FSS and FGS. 23.6 In-Circuit Serial Programming dsPIC33F family digital signal controllers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data and three other lines for power, ground and the programming sequence. This allows customers to manufacture boards with unprogrammed devices and then program the digital signal controller just before shipping the product. This also allows the most recent firmware or a custom firmware, to be programmed. Please refer to the “dsPIC33F Flash Programming Specification” (DS70152) document for details about ICSP. Any 1 out of 3 pairs of programming clock/data pins may be used: • PGC1/EMUC1 and PGD1/EMUD1 • PGC2/EMUC2 and PGD2/EMUD2 • PGC3/EMUC3 and PGD3/EMUD3 23.7 In-Circuit Debugger When MPLAB® ICD 2 is selected as a debugger, the in-circuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the EMUCx (Emulation/Debug Clock) and EMUDx (Emulation/Debug Data) pin functions. Any 1 out of 3 pairs of debugging clock/data pins may be used: • PGC1/EMUC1 and PGD1/EMUD1 • PGC2/EMUC2 and PGD2/EMUD2 • PGC3/EMUC3 and PGD3/EMUD3 To use the in-circuit debugger function of the device, the design must implement ICSP connections to MCLR, VDD, VSS, PGC, PGD and the EMUDx/EMUCx pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins. Note: Refer to GodeGuard Security Reference Manual (DS70180) for further information on usage, configuration and operation of CodeGuard Security.dsPIC33F DS70165E-page 296 Preliminary © 2007 Microchip Technology Inc. NOTES:© 2007 Microchip Technology Inc. Preliminary DS70165E-page 297 dsPIC33F 24.0 INSTRUCTION SET SUMMARY The dsPIC33F instruction set is identical to that of the dsPIC30F. Most instructions are a single program memory word (24 bits). Only three instructions require two program memory locations. Each single-word instruction is a 24-bit word, divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction. The instruction set is highly orthogonal and is grouped into five basic categories: • Word or byte-oriented operations • Bit-oriented operations • Literal operations • DSP operations • Control operations Table 24-1 shows the general symbols used in describing the instructions. The dsPIC33F instruction set summary in Table 24-2 lists all the instructions, along with the status flags affected by each instruction. Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands: • The first source operand which is typically a register ‘Wb’ without any address modifier • The second source operand which is typically a register ‘Ws’ with or without an address modifier • The destination of the result which is typically a register ‘Wd’ with or without an address modifier However, word or byte-oriented file register instructions have two operands: • The file register specified by the value ‘f’ • The destination, which could either be the file register ‘f’ or the W0 register, which is denoted as ‘WREG’ Most bit-oriented instructions (including simple rotate/ shift instructions) have two operands: • The W register (with or without an address modifier) or file register (specified by the value of ‘Ws’ or ‘f’) • The bit in the W register or file register (specified by a literal value or indirectly by the contents of register ‘Wb’) The literal instructions that involve data movement may use some of the following operands: • A literal value to be loaded into a W register or file register (specified by the value of ‘k’) • The W register or file register where the literal value is to be loaded (specified by ‘Wb’ or ‘f’) However, literal instructions that involve arithmetic or logical operations use some of the following operands: • The first source operand which is a register ‘Wb’ without any address modifier • The second source operand which is a literal value • The destination of the result (only if not the same as the first source operand) which is typically a register ‘Wd’ with or without an address modifier The MAC class of DSP instructions may use some of the following operands: • The accumulator (A or B) to be used (required operand) • The W registers to be used as the two operands • The X and Y address space prefetch operations • The X and Y address space prefetch destinations • The accumulator write back destination The other DSP instructions do not involve any multiplication and may include: • The accumulator to be used (required) • The source or destination operand (designated as Wso or Wdo, respectively) with or without an address modifier • The amount of shift specified by a W register ‘Wn’ or a literal value The control instructions may use some of the following operands: • A program memory address • The mode of the table read and table write instructions Note: This data sheet summarizes the features of this group of dsPIC33F devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the “dsPIC30F Family Reference Manual” (DS70046).dsPIC33F DS70165E-page 298 Preliminary © 2007 Microchip Technology Inc. All instructions are a single word, except for certain double-word instructions, which were made doubleword instructions so that all the required information is available in these 48 bits. In the second word, the 8 MSbs are ‘0’s. If this second word is executed as an instruction (by itself), it will execute as a NOP. Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles with the additional instruction cycle(s) executed as a NOP. Notable exceptions are the BRA (unconditional/computed branch), indirect CALL/GOTO, all table reads and writes and RETURN/RETFIE instructions, which are single-word instructions but take two or three cycles. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles. The double-word instructions execute in two instruction cycles. Note: For more details on the instruction set, refer to the “dsPIC30F/33F Programmer’s Reference Manual” (DS70157). TABLE 24-1: SYMBOLS USED IN OPCODE DESCRIPTIONS Field Description #text Means literal defined by “text” (text) Means “content of text” [text] Means “the location addressed by text” { } Optional field or operation Register bit field .b Byte mode selection .d Double-Word mode selection .S Shadow register select .w Word mode selection (default) Acc One of two accumulators {A, B} AWB Accumulator write back destination address register ∈ {W13, [W13]+ = 2} bit4 4-bit bit selection field (used in word addressed instructions) ∈ {0...15} C, DC, N, OV, Z MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero Expr Absolute address, label or expression (resolved by the linker) f File register address ∈ {0x0000...0x1FFF} lit1 1-bit unsigned literal ∈ {0,1} lit4 4-bit unsigned literal ∈ {0...15} lit5 5-bit unsigned literal ∈ {0...31} lit8 8-bit unsigned literal ∈ {0...255} lit10 10-bit unsigned literal ∈ {0...255} for Byte mode, {0:1023} for Word mode lit14 14-bit unsigned literal ∈ {0...16384} lit16 16-bit unsigned literal ∈ {0...65535} lit23 23-bit unsigned literal ∈ {0...8388608}; LSb must be ‘0’ None Field does not require an entry, may be blank OA, OB, SA, SB DSP Status bits: AccA Overflow, AccB Overflow, AccA Saturate, AccB Saturate PC Program Counter Slit10 10-bit signed literal ∈ {-512...511} Slit16 16-bit signed literal ∈ {-32768...32767} Slit6 6-bit signed literal ∈ {-16...16} Wb Base W register ∈ {W0..W15} Wd Destination W register ∈ { Wd, [Wd], [Wd++], [Wd--], [++Wd], [--Wd] } Wdo Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd--], [++Wnd], [--Wnd], [Wnd+Wb] } Wm,Wn Dividend, Divisor working register pair (direct addressing)© 2007 Microchip Technology Inc. Preliminary DS70165E-page 299 dsPIC33F Wm*Wm Multiplicand and Multiplier working register pair for Square instructions ∈ {W4 * W4,W5 * W5,W6 * W6,W7 * W7} Wm*Wn Multiplicand and Multiplier working register pair for DSP instructions ∈ {W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7} Wn One of 16 working registers ∈ {W0..W15} Wnd One of 16 destination working registers ∈ {W0..W15} Wns One of 16 source working registers ∈ {W0..W15} WREG W0 (working register used in file register instructions) Ws Source W register ∈ { Ws, [Ws], [Ws++], [Ws--], [++Ws], [--Ws] } Wso Source W register ∈ { Wns, [Wns], [Wns++], [Wns--], [++Wns], [--Wns], [Wns+Wb] } Wx X data space prefetch address register for DSP instructions ∈ {[W8]+ = 6, [W8]+ = 4, [W8]+ = 2, [W8], [W8]- = 6, [W8]- = 4, [W8]- = 2, [W9]+ = 6, [W9]+ = 4, [W9]+ = 2, [W9], [W9]- = 6, [W9]- = 4, [W9]- = 2, [W9 + W12], none} Wxd X data space prefetch destination register for DSP instructions ∈ {W4..W7} Wy Y data space prefetch address register for DSP instructions ∈ {[W10]+ = 6, [W10]+ = 4, [W10]+ = 2, [W10], [W10]- = 6, [W10]- = 4, [W10]- = 2, [W11]+ = 6, [W11]+ = 4, [W11]+ = 2, [W11], [W11]- = 6, [W11]- = 4, [W11]- = 2, [W11 + W12], none} Wyd Y data space prefetch destination register for DSP instructions ∈ {W4..W7} TABLE 24-1: SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED) Field DescriptiondsPIC33F DS70165E-page 300 Preliminary © 2007 Microchip Technology Inc. TABLE 24-2: INSTRUCTION SET OVERVIEW Base Instr # Assembly Mnemonic Assembly Syntax Description # of Words # of Cycles Status Flags Affected 1 ADD ADD Acc Add Accumulators 1 1 OA,OB,SA,SB ADD f f = f + WREG 1 1 C,DC,N,OV,Z ADD f,WREG WREG = f + WREG 1 1 C,DC,N,OV,Z ADD #lit10,Wn Wd = lit10 + Wd 1 1 C,DC,N,OV,Z ADD Wb,Ws,Wd Wd = Wb + Ws 1 1 C,DC,N,OV,Z ADD Wb,#lit5,Wd Wd = Wb + lit5 1 1 C,DC,N,OV,Z ADD Wso,#Slit4,Acc 16-bit Signed Add to Accumulator 1 1 OA,OB,SA,SB 2 ADDC ADDC f f = f + WREG + (C) 1 1 C,DC,N,OV,Z ADDC f,WREG WREG = f + WREG + (C) 1 1 C,DC,N,OV,Z ADDC #lit10,Wn Wd = lit10 + Wd + (C) 1 1 C,DC,N,OV,Z ADDC Wb,Ws,Wd Wd = Wb + Ws + (C) 1 1 C,DC,N,OV,Z ADDC Wb,#lit5,Wd Wd = Wb + lit5 + (C) 1 1 C,DC,N,OV,Z 3 AND AND f f = f .AND. WREG 1 1 N,Z AND f,WREG WREG = f .AND. WREG 1 1 N,Z AND #lit10,Wn Wd = lit10 .AND. Wd 1 1 N,Z AND Wb,Ws,Wd Wd = Wb .AND. Ws 1 1 N,Z AND Wb,#lit5,Wd Wd = Wb .AND. lit5 1 1 N,Z 4 ASR ASR f f = Arithmetic Right Shift f 1 1 C,N,OV,Z ASR f,WREG WREG = Arithmetic Right Shift f 1 1 C,N,OV,Z ASR Ws,Wd Wd = Arithmetic Right Shift Ws 1 1 C,N,OV,Z ASR Wb,Wns,Wnd Wnd = Arithmetic Right Shift Wb by Wns 1 1 N,Z ASR Wb,#lit5,Wnd Wnd = Arithmetic Right Shift Wb by lit5 1 1 N,Z 5 BCLR BCLR f,#bit4 Bit Clear f 1 1 None BCLR Ws,#bit4 Bit Clear Ws 1 1 None 6 BRA BRA C,Expr Branch if Carry 1 1 (2) None BRA GE,Expr Branch if greater than or equal 1 1 (2) None BRA GEU,Expr Branch if unsigned greater than or equal 1 1 (2) None BRA GT,Expr Branch if greater than 1 1 (2) None BRA GTU,Expr Branch if unsigned greater than 1 1 (2) None BRA LE,Expr Branch if less than or equal 1 1 (2) None BRA LEU,Expr Branch if unsigned less than or equal 1 1 (2) None BRA LT,Expr Branch if less than 1 1 (2) None BRA LTU,Expr Branch if unsigned less than 1 1 (2) None BRA N,Expr Branch if Negative 1 1 (2) None BRA NC,Expr Branch if Not Carry 1 1 (2) None BRA NN,Expr Branch if Not Negative 1 1 (2) None BRA NOV,Expr Branch if Not Overflow 1 1 (2) None BRA NZ,Expr Branch if Not Zero 1 1 (2) None BRA OA,Expr Branch if Accumulator A overflow 1 1 (2) None BRA OB,Expr Branch if Accumulator B overflow 1 1 (2) None BRA OV,Expr Branch if Overflow 1 1 (2) None BRA SA,Expr Branch if Accumulator A saturated 1 1 (2) None BRA SB,Expr Branch if Accumulator B saturated 1 1 (2) None BRA Expr Branch Unconditionally 1 2 None BRA Z,Expr Branch if Zero 1 1 (2) None BRA Wn Computed Branch 1 2 None 7 BSET BSET f,#bit4 Bit Set f 1 1 None BSET Ws,#bit4 Bit Set Ws 1 1 None 8 BSW BSW.C Ws,Wb Write C bit to Ws 1 1 None BSW.Z Ws,Wb Write Z bit to Ws 1 1 None 9 BTG BTG f,#bit4 Bit Toggle f 1 1 None BTG Ws,#bit4 Bit Toggle Ws 1 1 None© 2007 Microchip Technology Inc. Preliminary DS70165E-page 301 dsPIC33F 10 BTSC BTSC f,#bit4 Bit Test f, Skip if Clear 1 1 (2 or 3) None BTSC Ws,#bit4 Bit Test Ws, Skip if Clear 1 1 (2 or 3) None 11 BTSS BTSS f,#bit4 Bit Test f, Skip if Set 1 1 (2 or 3) None BTSS Ws,#bit4 Bit Test Ws, Skip if Set 1 1 (2 or 3) None 12 BTST BTST f,#bit4 Bit Test f 1 1 Z BTST.C Ws,#bit4 Bit Test Ws to C 1 1 C BTST.Z Ws,#bit4 Bit Test Ws to Z 1 1 Z BTST.C Ws,Wb Bit Test Ws to C 1 1 C BTST.Z Ws,Wb Bit Test Ws to Z 1 1 Z 13 BTSTS BTSTS f,#bit4 Bit Test then Set f 1 1 Z BTSTS.C Ws,#bit4 Bit Test Ws to C, then Set 1 1 C BTSTS.Z Ws,#bit4 Bit Test Ws to Z, then Set 1 1 Z 14 CALL CALL lit23 Call subroutine 2 2 None CALL Wn Call indirect subroutine 1 2 None 15 CLR CLR f f = 0x0000 1 1 None CLR WREG WREG = 0x0000 1 1 None CLR Ws Ws = 0x0000 1 1 None CLR Acc,Wx,Wxd,Wy,Wyd,AWB Clear Accumulator 1 1 OA,OB,SA,SB 16 CLRWDT CLRWDT Clear Watchdog Timer 1 1 WDTO,Sleep 17 COM COM f f = f 1 1 N,Z COM f,WREG WREG = f 1 1 N,Z COM Ws,Wd Wd = Ws 1 1 N,Z 18 CP CP f Compare f with WREG 1 1 C,DC,N,OV,Z CP Wb,#lit5 Compare Wb with lit5 1 1 C,DC,N,OV,Z CP Wb,Ws Compare Wb with Ws (Wb – Ws) 1 1 C,DC,N,OV,Z 19 CP0 CP0 f Compare f with 0x0000 1 1 C,DC,N,OV,Z CP0 Ws Compare Ws with 0x0000 1 1 C,DC,N,OV,Z 20 CPB CPB f Compare f with WREG, with Borrow 1 1 C,DC,N,OV,Z CPB Wb,#lit5 Compare Wb with lit5, with Borrow 1 1 C,DC,N,OV,Z CPB Wb,Ws Compare Wb with Ws, with Borrow (Wb – Ws – C) 1 1 C,DC,N,OV,Z 21 CPSEQ CPSEQ Wb, Wn Compare Wb with Wn, skip if = 1 1 (2 or 3) None 22 CPSGT CPSGT Wb, Wn Compare Wb with Wn, skip if > 1 1 (2 or 3) None 23 CPSLT CPSLT Wb, Wn Compare Wb with Wn, skip if < 1 1 (2 or 3) None 24 CPSNE CPSNE Wb, Wn Compare Wb with Wn, skip if ≠ 1 1 (2 or 3) None 25 DAW DAW Wn Wn = decimal adjust Wn 1 1 C 26 DEC DEC f f = f – 1 1 1 C,DC,N,OV,Z DEC f,WREG WREG = f – 1 1 1 C,DC,N,OV,Z DEC Ws,Wd Wd = Ws – 1 1 1 C,DC,N,OV,Z 27 DEC2 DEC2 f f = f – 2 1 1 C,DC,N,OV,Z DEC2 f,WREG WREG = f – 2 1 1 C,DC,N,OV,Z DEC2 Ws,Wd Wd = Ws – 2 1 1 C,DC,N,OV,Z 28 DISI DISI #lit14 Disable Interrupts for k instruction cycles 1 1 None TABLE 24-2: INSTRUCTION SET OVERVIEW (CONTINUED) Base Instr # Assembly Mnemonic Assembly Syntax Description # of Words # of Cycles Status Flags AffecteddsPIC33F DS70165E-page 302 Preliminary © 2007 Microchip Technology Inc. 29 DIV DIV.S Wm,Wn Signed 16/16-bit Integer Divide 1 18 N,Z,C,OV DIV.SD Wm,Wn Signed 32/16-bit Integer Divide 1 18 N,Z,C,OV DIV.U Wm,Wn Unsigned 16/16-bit Integer Divide 1 18 N,Z,C,OV DIV.UD Wm,Wn Unsigned 32/16-bit Integer Divide 1 18 N,Z,C,OV 30 DIVF DIVF Wm,Wn Signed 16/16-bit Fractional Divide 1 18 N,Z,C,OV 31 DO DO #lit14,Expr Do code to PC + Expr, lit14 + 1 times 2 2 None DO Wn,Expr Do code to PC + Expr, (Wn) + 1 times 2 2 None 32 ED ED Wm*Wm,Acc,Wx,Wy,Wxd Euclidean Distance (no accumulate) 1 1 OA,OB,OAB, SA,SB,SAB 33 EDAC EDAC Wm*Wm,Acc,Wx,Wy,Wxd Euclidean Distance 1 1 OA,OB,OAB, SA,SB,SAB 34 EXCH EXCH Wns,Wnd Swap Wns with Wnd 1 1 None 35 FBCL FBCL Ws,Wnd Find Bit Change from Left (MSb) Side 1 1 C 36 FF1L FF1L Ws,Wnd Find First One from Left (MSb) Side 1 1 C 37 FF1R FF1R Ws,Wnd Find First One from Right (LSb) Side 1 1 C 38 GOTO GOTO Expr Go to address 2 2 None GOTO Wn Go to indirect 1 2 None 39 INC INC f f = f + 1 1 1 C,DC,N,OV,Z INC f,WREG WREG = f + 1 1 1 C,DC,N,OV,Z INC Ws,Wd Wd = Ws + 1 1 1 C,DC,N,OV,Z 40 INC2 INC2 f f = f + 2 1 1 C,DC,N,OV,Z INC2 f,WREG WREG = f + 2 1 1 C,DC,N,OV,Z INC2 Ws,Wd Wd = Ws + 2 1 1 C,DC,N,OV,Z 41 IOR IOR f f = f .IOR. WREG 1 1 N,Z IOR f,WREG WREG = f .IOR. WREG 1 1 N,Z IOR #lit10,Wn Wd = lit10 .IOR. Wd 1 1 N,Z IOR Wb,Ws,Wd Wd = Wb .IOR. Ws 1 1 N,Z IOR Wb,#lit5,Wd Wd = Wb .IOR. lit5 1 1 N,Z 42 LAC LAC Wso,#Slit4,Acc Load Accumulator 1 1 OA,OB,OAB, SA,SB,SAB 43 LNK LNK #lit14 Link Frame Pointer 1 1 None 44 LSR LSR f f = Logical Right Shift f 1 1 C,N,OV,Z LSR f,WREG WREG = Logical Right Shift f 1 1 C,N,OV,Z LSR Ws,Wd Wd = Logical Right Shift Ws 1 1 C,N,OV,Z LSR Wb,Wns,Wnd Wnd = Logical Right Shift Wb by Wns 1 1 N,Z LSR Wb,#lit5,Wnd Wnd = Logical Right Shift Wb by lit5 1 1 N,Z 45 MAC MAC Wm*Wn,Acc,Wx,Wxd,Wy,Wyd, AWB Multiply and Accumulate 1 1 OA,OB,OAB, SA,SB,SAB MAC Wm*Wm,Acc,Wx,Wxd,Wy,Wyd Square and Accumulate 1 1 OA,OB,OAB, SA,SB,SAB 46 MOV MOV f,Wn Move f to Wn 1 1 None MOV f Move f to f 1 1 N,Z MOV f,WREG Move f to WREG 1 1 N,Z MOV #lit16,Wn Move 16-bit literal to Wn 1 1 None MOV.b #lit8,Wn Move 8-bit literal to Wn 1 1 None MOV Wn,f Move Wn to f 1 1 None MOV Wso,Wdo Move Ws to Wd 1 1 None MOV WREG,f Move WREG to f 1 1 N,Z MOV.D Wns,Wd Move Double from W(ns):W(ns + 1) to Wd 1 2 None MOV.D Ws,Wnd Move Double from Ws to W(nd + 1):W(nd) 1 2 None 47 MOVSAC MOVSAC Acc,Wx,Wxd,Wy,Wyd,AWB Prefetch and store accumulator 1 1 None TABLE 24-2: INSTRUCTION SET OVERVIEW (CONTINUED) Base Instr # Assembly Mnemonic Assembly Syntax Description # of Words # of Cycles Status Flags Affected© 2007 Microchip Technology Inc. Preliminary DS70165E-page 303 dsPIC33F 48 MPY MPY Wm*Wn,Acc,Wx,Wxd,Wy,Wyd Multiply Wm by Wn to Accumulator 1 1 OA,OB,OAB, SA,SB,SAB MPY Wm*Wm,Acc,Wx,Wxd,Wy,Wyd Square Wm to Accumulator 1 1 OA,OB,OAB, SA,SB,SAB 49 MPY.N MPY.N Wm*Wn,Acc,Wx,Wxd,Wy,Wyd -(Multiply Wm by Wn) to Accumulator 1 1 None 50 MSC MSC Wm*Wm,Acc,Wx,Wxd,Wy,Wyd, AWB Multiply and Subtract from Accumulator 1 1 OA,OB,OAB, SA,SB,SAB 51 MUL MUL.SS Wb,Ws,Wnd {Wnd + 1, Wnd} = signed(Wb) * signed(Ws) 1 1 None MUL.SU Wb,Ws,Wnd {Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws) 1 1 None MUL.US Wb,Ws,Wnd {Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws) 1 1 None MUL.UU Wb,Ws,Wnd {Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws) 1 1 None MUL.SU Wb,#lit5,Wnd {Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5) 1 1 None MUL.UU Wb,#lit5,Wnd {Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5) 1 1 None MUL f W3:W2 = f * WREG 1 1 None 52 NEG NEG Acc Negate Accumulator 1 1 OA,OB,OAB, SA,SB,SAB NEG f f = f + 1 1 1 C,DC,N,OV,Z NEG f,WREG WREG = f + 1 1 1 C,DC,N,OV,Z NEG Ws,Wd Wd = Ws + 1 1 1 C,DC,N,OV,Z 53 NOP NOP No Operation 1 1 None NOPR No Operation 1 1 None 54 POP POP f Pop f from Top-of-Stack (TOS) 1 1 None POP Wdo Pop from Top-of-Stack (TOS) to Wdo 1 1 None POP.D Wnd Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1) 1 2 None POP.S Pop Shadow Registers 1 1 All 55 PUSH PUSH f Push f to Top-of-Stack (TOS) 1 1 None PUSH Wso Push Wso to Top-of-Stack (TOS) 1 1 None PUSH.D Wns Push W(ns):W(ns + 1) to Top-of-Stack (TOS) 1 2 None PUSH.S Push Shadow Registers 1 1 None 56 PWRSAV PWRSAV #lit1 Go into Sleep or Idle mode 1 1 WDTO,Sleep 57 RCALL RCALL Expr Relative Call 1 2 None RCALL Wn Computed Call 1 2 None 58 REPEAT REPEAT #lit14 Repeat Next Instruction lit14 + 1 times 1 1 None REPEAT Wn Repeat Next Instruction (Wn) + 1 times 1 1 None 59 RESET RESET Software device Reset 1 1 None 60 RETFIE RETFIE Return from interrupt 1 3 (2) None 61 RETLW RETLW #lit10,Wn Return with literal in Wn 1 3 (2) None 62 RETURN RETURN Return from Subroutine 1 3 (2) None 63 RLC RLC f f = Rotate Left through Carry f 1 1 C,N,Z RLC f,WREG WREG = Rotate Left through Carry f 1 1 C,N,Z RLC Ws,Wd Wd = Rotate Left through Carry Ws 1 1 C,N,Z 64 RLNC RLNC f f = Rotate Left (No Carry) f 1 1 N,Z RLNC f,WREG WREG = Rotate Left (No Carry) f 1 1 N,Z RLNC Ws,Wd Wd = Rotate Left (No Carry) Ws 1 1 N,Z 65 RRC RRC f f = Rotate Right through Carry f 1 1 C,N,Z RRC f,WREG WREG = Rotate Right through Carry f 1 1 C,N,Z RRC Ws,Wd Wd = Rotate Right through Carry Ws 1 1 C,N,Z TABLE 24-2: INSTRUCTION SET OVERVIEW (CONTINUED) Base Instr # Assembly Mnemonic Assembly Syntax Description # of Words # of Cycles Status Flags AffecteddsPIC33F DS70165E-page 304 Preliminary © 2007 Microchip Technology Inc. 66 RRNC RRNC f f = Rotate Right (No Carry) f 1 1 N,Z RRNC f,WREG WREG = Rotate Right (No Carry) f 1 1 N,Z RRNC Ws,Wd Wd = Rotate Right (No Carry) Ws 1 1 N,Z 67 SAC SAC Acc,#Slit4,Wdo Store Accumulator 1 1 None SAC.R Acc,#Slit4,Wdo Store Rounded Accumulator 1 1 None 68 SE SE Ws,Wnd Wnd = sign-extended Ws 1 1 C,N,Z 69 SETM SETM f f = 0xFFFF 1 1 None SETM WREG WREG = 0xFFFF 1 1 None SETM Ws Ws = 0xFFFF 1 1 None 70 SFTAC SFTAC Acc,Wn Arithmetic Shift Accumulator by (Wn) 1 1 OA,OB,OAB, SA,SB,SAB SFTAC Acc,#Slit6 Arithmetic Shift Accumulator by Slit6 1 1 OA,OB,OAB, SA,SB,SAB 71 SL SL f f = Left Shift f 1 1 C,N,OV,Z SL f,WREG WREG = Left Shift f 1 1 C,N,OV,Z SL Ws,Wd Wd = Left Shift Ws 1 1 C,N,OV,Z SL Wb,Wns,Wnd Wnd = Left Shift Wb by Wns 1 1 N,Z SL Wb,#lit5,Wnd Wnd = Left Shift Wb by lit5 1 1 N,Z 72 SUB SUB Acc Subtract Accumulators 1 1 OA,OB,OAB, SA,SB,SAB SUB f f = f – WREG 1 1 C,DC,N,OV,Z SUB f,WREG WREG = f – WREG 1 1 C,DC,N,OV,Z SUB #lit10,Wn Wn = Wn – lit10 1 1 C,DC,N,OV,Z SUB Wb,Ws,Wd Wd = Wb – Ws 1 1 C,DC,N,OV,Z SUB Wb,#lit5,Wd Wd = Wb – lit5 1 1 C,DC,N,OV,Z 73 SUBB SUBB f f = f – WREG – (C) 1 1 C,DC,N,OV,Z SUBB f,WREG WREG = f – WREG – (C) 1 1 C,DC,N,OV,Z SUBB #lit10,Wn Wn = Wn – lit10 – (C) 1 1 C,DC,N,OV,Z SUBB Wb,Ws,Wd Wd = Wb – Ws – (C) 1 1 C,DC,N,OV,Z SUBB Wb,#lit5,Wd Wd = Wb – lit5 – (C) 1 1 C,DC,N,OV,Z 74 SUBR SUBR f f = WREG – f 1 1 C,DC,N,OV,Z SUBR f,WREG WREG = WREG – f 1 1 C,DC,N,OV,Z SUBR Wb,Ws,Wd Wd = Ws – Wb 1 1 C,DC,N,OV,Z SUBR Wb,#lit5,Wd Wd = lit5 – Wb 1 1 C,DC,N,OV,Z 75 SUBBR SUBBR f f = WREG – f – (C) 1 1 C,DC,N,OV,Z SUBBR f,WREG WREG = WREG – f – (C) 1 1 C,DC,N,OV,Z SUBBR Wb,Ws,Wd Wd = Ws – Wb – (C) 1 1 C,DC,N,OV,Z SUBBR Wb,#lit5,Wd Wd = lit5 – Wb – (C) 1 1 C,DC,N,OV,Z 76 SWAP SWAP.b Wn Wn = nibble swap Wn 1 1 None SWAP Wn Wn = byte swap Wn 1 1 None 77 TBLRDH TBLRDH Ws,Wd Read Prog<23:16> to Wd<7:0> 1 2 None 78 TBLRDL TBLRDL Ws,Wd Read Prog<15:0> to Wd 1 2 None 79 TBLWTH TBLWTH Ws,Wd Write Ws<7:0> to Prog<23:16> 1 2 None 80 TBLWTL TBLWTL Ws,Wd Write Ws to Prog<15:0> 1 2 None 81 ULNK ULNK Unlink Frame Pointer 1 1 None 82 XOR XOR f f = f .XOR. WREG 1 1 N,Z XOR f,WREG WREG = f .XOR. WREG 1 1 N,Z XOR #lit10,Wn Wd = lit10 .XOR. Wd 1 1 N,Z XOR Wb,Ws,Wd Wd = Wb .XOR. Ws 1 1 N,Z XOR Wb,#lit5,Wd Wd = Wb .XOR. lit5 1 1 N,Z 83 ZE ZE Ws,Wnd Wnd = Zero-extend Ws 1 1 C,Z,N TABLE 24-2: INSTRUCTION SET OVERVIEW (CONTINUED) Base Instr # Assembly Mnemonic Assembly Syntax Description # of Words # of Cycles Status Flags Affected© 2007 Microchip Technology Inc. Preliminary DS70165E-page 305 dsPIC33F 25.0 DEVELOPMENT SUPPORT The PIC® microcontrollers are supported with a full range of hardware and software development tools: • Integrated Development Environment - MPLAB® IDE Software • Assemblers/Compilers/Linkers - MPASMTM Assembler - MPLAB C18 and MPLAB C30 C Compilers - MPLINKTM Object Linker/ MPLIBTM Object Librarian - MPLAB ASM30 Assembler/Linker/Library • Simulators - MPLAB SIM Software Simulator • Emulators - MPLAB ICE 2000 In-Circuit Emulator - MPLAB ICE 4000 In-Circuit Emulator • In-Circuit Debugger - MPLAB ICD 2 • Device Programmers - PICSTART® Plus Development Programmer - MPLAB PM3 Device Programmer - PICkit™ 2 Development Programmer • Low-Cost Demonstration and Development Boards and Evaluation Kits 25.1 MPLAB Integrated Development Environment Software The MPLAB IDE software brings an ease of software development previously unseen in the 8/16-bit microcontroller market. The MPLAB IDE is a Windows® operating system-based application that contains: • A single graphical interface to all debugging tools - Simulator - Programmer (sold separately) - Emulator (sold separately) - In-Circuit Debugger (sold separately) • A full-featured editor with color-coded context • A multiple project manager • Customizable data windows with direct edit of contents • High-level source code debugging • Visual device initializer for easy register initialization • Mouse over variable inspection • Drag and drop variables from source to watch windows • Extensive on-line help • Integration of select third party tools, such as HI-TECH Software C Compilers and IAR C Compilers The MPLAB IDE allows you to: • Edit your source files (either assembly or C) • One touch assemble (or compile) and download to PIC MCU emulator and simulator tools (automatically updates all project information) • Debug using: - Source files (assembly or C) - Mixed assembly and C - Machine code MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.dsPIC33F DS70165E-page 306 Preliminary © 2007 Microchip Technology Inc. 25.2 MPASM Assembler The MPASM Assembler is a full-featured, universal macro assembler for all PIC MCUs. The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel® standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging. The MPASM Assembler features include: • Integration into MPLAB IDE projects • User-defined macros to streamline assembly code • Conditional assembly for multi-purpose source files • Directives that allow complete control over the assembly process 25.3 MPLAB C18 and MPLAB C30 C Compilers The MPLAB C18 and MPLAB C30 Code Development Systems are complete ANSI C compilers for Microchip’s PIC18 family of microcontrollers and the dsPIC30, dsPIC33 and PIC24 family of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use not found with other compilers. For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger. 25.4 MPLINK Object Linker/ MPLIB Object Librarian The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script. The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications. The object linker/library features include: • Efficient linking of single libraries instead of many smaller files • Enhanced code maintainability by grouping related modules together • Flexible creation of libraries with easy module listing, replacement, deletion and extraction 25.5 MPLAB ASM30 Assembler, Linker and Librarian MPLAB ASM30 Assembler produces relocatable machine code from symbolic assembly language for dsPIC30F devices. MPLAB C30 C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include: • Support for the entire dsPIC30F instruction set • Support for fixed-point and floating-point data • Command line interface • Rich directive set • Flexible macro language • MPLAB IDE compatibility 25.6 MPLAB SIM Software Simulator The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC® DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers. The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C18 and MPLAB C30 C Compilers, and the MPASM and MPLAB ASM30 Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool. © 2007 Microchip Technology Inc. Preliminary DS70165E-page 307 dsPIC33F 25.7 MPLAB ICE 2000 High-Performance In-Circuit Emulator The MPLAB ICE 2000 In-Circuit Emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PIC microcontrollers. Software control of the MPLAB ICE 2000 In-Circuit Emulator is advanced by the MPLAB Integrated Development Environment, which allows editing, building, downloading and source debugging from a single environment. The MPLAB ICE 2000 is a full-featured emulator system with enhanced trace, trigger and data monitoring features. Interchangeable processor modules allow the system to be easily reconfigured for emulation of different processors. The architecture of the MPLAB ICE 2000 In-Circuit Emulator allows expansion to support new PIC microcontrollers. The MPLAB ICE 2000 In-Circuit Emulator system has been designed as a real-time emulation system with advanced features that are typically found on more expensive development tools. The PC platform and Microsoft® Windows® 32-bit operating system were chosen to best make these features available in a simple, unified application. 25.8 MPLAB ICE 4000 High-Performance In-Circuit Emulator The MPLAB ICE 4000 In-Circuit Emulator is intended to provide the product development engineer with a complete microcontroller design tool set for high-end PIC MCUs and dsPIC DSCs. Software control of the MPLAB ICE 4000 In-Circuit Emulator is provided by the MPLAB Integrated Development Environment, which allows editing, building, downloading and source debugging from a single environment. The MPLAB ICE 4000 is a premium emulator system, providing the features of MPLAB ICE 2000, but with increased emulation memory and high-speed performance for dsPIC30F and PIC18XXXX devices. Its advanced emulator features include complex triggering and timing, and up to 2 Mb of emulation memory. The MPLAB ICE 4000 In-Circuit Emulator system has been designed as a real-time emulation system with advanced features that are typically found on more expensive development tools. The PC platform and Microsoft Windows 32-bit operating system were chosen to best make these features available in a simple, unified application. 25.9 MPLAB ICD 2 In-Circuit Debugger Microchip’s In-Circuit Debugger, MPLAB ICD 2, is a powerful, low-cost, run-time development tool, connecting to the host PC via an RS-232 or high-speed USB interface. This tool is based on the Flash PIC MCUs and can be used to develop for these and other PIC MCUs and dsPIC DSCs. The MPLAB ICD 2 utilizes the in-circuit debugging capability built into the Flash devices. This feature, along with Microchip’s In-Circuit Serial Programming TM (ICSPTM ) protocol, offers costeffective, in-circuit Flash debugging from the graphical user interface of the MPLAB Integrated Development Environment. This enables a designer to develop and debug source code by setting breakpoints, single stepping and watching variables, and CPU status and peripheral registers. Running at full speed enables testing hardware and applications in real time. MPLAB ICD 2 also serves as a development programmer for selected PIC devices. 25.10 MPLAB PM3 Device Programmer The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an SD/MMC card for file storage and secure data applications.dsPIC33F DS70165E-page 308 Preliminary © 2007 Microchip Technology Inc. 25.11 PICSTART Plus Development Programmer The PICSTART Plus Development Programmer is an easy-to-use, low-cost, prototype programmer. It connects to the PC via a COM (RS-232) port. MPLAB Integrated Development Environment software makes using the programmer simple and efficient. The PICSTART Plus Development Programmer supports most PIC devices in DIP packages up to 40 pins. Larger pin count devices, such as the PIC16C92X and PIC17C76X, may be supported with an adapter socket. The PICSTART Plus Development Programmer is CE compliant. 25.12 PICkit 2 Development Programmer The PICkit™ 2 Development Programmer is a low-cost programmer with an easy-to-use interface for programming many of Microchip’s baseline, mid-range and PIC18F families of Flash memory microcontrollers. The PICkit 2 Starter Kit includes a prototyping development board, twelve sequential lessons, software and HI-TECH’s PICC™ Lite C compiler, and is designed to help get up to speed quickly using PIC ® microcontrollers. The kit provides everything needed to program, evaluate and develop applications using Microchip’s powerful, mid-range Flash memory family of microcontrollers. 25.13 Demonstration, Development and Evaluation Boards A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification. The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory. The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications. In addition to the PICDEM™ and dsPICDEM™ demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ ® security ICs, CAN, IrDA® , PowerSmart® battery management, SEEVAL® evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more. Check the Microchip web page (www.microchip.com) and the latest “Product Selector Guide” (DS00148) for the complete list of demonstration, development and evaluation kits.© 2007 Microchip Technology Inc. Preliminary DS70165E-page 309 dsPIC33F 26.0 ELECTRICAL CHARACTERISTICS This section provides an overview of dsPIC33F electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available. Absolute maximum ratings for the dsPIC33F family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied. Absolute Maximum Ratings (Note 1) Ambient temperature under bias...............................................................................................................-40°C to +85°C Storage temperature .............................................................................................................................. -65°C to +150°C Voltage on VDD with respect to VSS ......................................................................................................... -0.3V to +4.0V Voltage on any combined analog and digital pin and MCLR, with respect to VSS ......................... -0.3V to (VDD + 0.3V) Voltage on any digital-only pin with respect to VSS .................................................................................. -0.3V to +5.6V Voltage on VDDCORE with respect to VSS ................................................................................................ 2.25V to 2.75V Maximum current out of VSS pin ...........................................................................................................................300 mA Maximum current into VDD pin (Note 2)................................................................................................................250 mA Maximum output current sunk by any I/O pin (Note 3) .............................................................................................4 mA Maximum output current sourced by any I/O pin (Note 3)........................................................................................4 mA Maximum current sunk by all ports .......................................................................................................................200 mA Maximum current sourced by all ports (Note 2)....................................................................................................200 mA Note 1: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. 2: Maximum allowable current is a function of device maximum power dissipation (see Table 26-2). 3: Exceptions are CLKOUT, which is able to sink/source 25 mA, and the VREF+, VREF-, SCLx, SDAx, PGCx and PGDx pins, which are able to sink/source 12 mA.dsPIC33F DS70165E-page 310 Preliminary © 2007 Microchip Technology Inc. 26.1 DC Characteristics TABLE 26-1: OPERATING MIPS VS. VOLTAGE Characteristic VDD Range (in Volts) Temp Range (in °C) Max MIPS dsPIC33F DC5 3.0-3.6V -40°C to +85°C 40 TABLE 26-2: THERMAL OPERATING CONDITIONS Rating Symbol Min Typ Max Unit dsPIC33F Operating Junction Temperature Range TJ -40 — +125 °C Operating Ambient Temperature Range TA -40 — +85 °C Power Dissipation: Internal chip power dissipation: PINT = VDD x (IDD – Σ IOH) PD PINT + PI/O W I/O Pin Power Dissipation: I/O = Σ ({VDD – VOH} x IOH) + Σ (VOL x IOL) Maximum Allowed Power Dissipation PDMAX (TJ – TA)/θJA W TABLE 26-3: THERMAL PACKAGING CHARACTERISTICS Characteristic Symbol Typ Max Unit Notes Package Thermal Resistance, 100-pin TQFP (14x14x1 mm) θJA 48.4 — °C/W 1 Package Thermal Resistance, 100-pin TQFP (12x12x1 mm) θJA 52.3 — °C/W 1 Package Thermal Resistance, 80-pin TQFP (12x12x1 mm) θJA 38.7 — °C/W 1 Package Thermal Resistance, 64-pin TQFP (10x10x1 mm) θJA 38.3 — °C/W 1 Note 1: Junction to ambient thermal resistance, Theta-JA (θJA) numbers are achieved by package simulations. TABLE 26-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS DC CHARACTERISTICS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for Industrial Param No. Symbol Characteristic Min Typ (1) Max Units Conditions Operating Voltage DC10 Supply Voltage VDD 3.0 — 3.6 V DC12 VDR RAM Data Retention Voltage (2) — 2.8 — V DC16 VPOR VDD Start Voltage to ensure internal Power-on Reset signal — VSS — V DC17 SVDD VDD Rise Rate to ensure internal Power-on Reset signal 0.05 — — V/ms 0-3.3V in 0.1s 0-2.5V in 60 ms Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. 2: This is the limit to which VDD can be lowered without losing RAM data.© 2007 Microchip Technology Inc. Preliminary DS70165E-page 311 dsPIC33F TABLE 26-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD) DC CHARACTERISTICS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for Industrial Parameter No. Typical (1) Max Units Conditions Operating Current (IDD) (2) DC20a 27 — mA +25°C 3.3V 10 MIPS DC20b 26 — mA +85°C DC21a 33 — mA +25°C 3.3V 16 MIPS DC21b 32 — mA +85°C DC22a 44 — mA +25°C 3.3V 20 MIPS DC22b 43 — mA +85°C DC23a 60 — mA +25°C 3.3V 30 MIPS DC23b 58 — mA +85°C DC24a 74 — mA +25°C 3.3V 40 MIPS DC24b 72 — mA +85°C Note 1: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. 2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows: OSC1 driven with external square wave from rail to rail. All I/O pins are configured as inputs and pulled to VSS. MCLR = VDD, WDT and FSCM are disabled. CPU, SRAM, program memory and data memory are operational. No peripheral modules are operating; however, every peripheral is being clocked (PMD bits are all zeroed).dsPIC33F DS70165E-page 312 Preliminary © 2007 Microchip Technology Inc. TABLE 26-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE) DC CHARACTERISTICS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for Industrial Parameter No. Typical (1) Max Units Conditions Idle Current (IIDLE): Core OFF Clock ON Base Current (2) DC40a TBD — mA +25°C 3.3V 10 MIPS DC40b TBD — mA +85°C DC41a TBD — mA +25°C 3.3V 16 MIPS DC41b TBD — mA +85°C DC42a TBD — mA +25°C 3.3V 20 MIPS DC42b TBD — mA +85°C DC43a TBD — mA +25°C 3.3V 30 MIPS DC43b TBD — mA +85°C DC44a 16.5 — mA +25°C 3.3V 40 MIPS DC44b 16 — mA +85°C Legend: TBD = To Be Determined Note 1: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. 2: Base IIDLE current is measured with core off, clock on and all modules turned off. Peripheral Module Disable SFR registers are zeroed. All I/O pins are configured as inputs and pulled to VSS. TABLE 26-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD) DC CHARACTERISTICS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for Industrial Parameter No. Typical (1) Max Units Conditions Power-Down Current (IPD) (2) DC60a 200 — μA +25°C 3.3V Base Power-Down Current (3,4) DC60b TBD — μA +85°C DC61a TBD — μA +25°C 3.3V Watchdog Timer Current: ΔIWDT (3) DC61b TBD — μA +85°C Legend: TBD = To Be Determined Note 1: Data in the Typical column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. 2: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and pulled to VSS. WDT, etc., are all switched off. 3: The Δ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current. 4: These currents are measured on the device containing the most memory in this family.© 2007 Microchip Technology Inc. Preliminary DS70165E-page 313 dsPIC33F TABLE 26-8: DC CHARACTERISTICS: DOZE CURRENT (IDOZE) DC CHARACTERISTICS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for Industrial Parameter No. Typical (1) Max Doze Ratio Units Conditions DC70a 42 — 1:2 mA 25°C 3.3V 40 MIPS DC70f 26 — 1:64 DC70g 25 — 1:128 DC71a 41 — 1:2 mA 85°C DC71f 25 — 1:64 DC71g 24 — 1:128 Note 1: Data in the Typical column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.dsPIC33F DS70165E-page 314 Preliminary © 2007 Microchip Technology Inc. TABLE 26-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS DC CHARACTERISTICS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for Industrial Param No. Symbol Characteristic Min Typ (1) Max Units Conditions VIL Input Low Voltage DI10 I/O pins VSS — 0.2 VDD V DI15 MCLR VSS — 0.2 VDD V DI16 OSC1 (XT mode) VSS — 0.2 VDD V DI17 OSC1 (HS mode) VSS — 0.2 VDD V DI18 SDAx, SCLx VSS — 0.3 VDD V SMBus disabled DI19 SDAx, SCLx VSS — 0.2 VDD V SMBus enabled VIH Input High Voltage DI20 I/O pins: with analog functions digital-only 0.8 VDD 0.8 VDD — — VDD 5.5 V V DI25 MCLR 0.8 VDD — VDD V DI26 OSC1 (XT mode) 0.7 VDD — VDD V DI27 OSC1 (HS mode) 0.7 VDD — VDD V DI28 SDAx, SCLx 0.7 VDD — VDD V SMBus disabled DI29 SDAx, SCLx 0.8 VDD — VDD V SMBus enabled ICNPU CNx Pull-up Current DI30 50 250 400 μA VDD = 3.3V, VPIN = VSS IIL Input Leakage Current (2)(3) DI50 I/O ports — TBD TBD μA VSS ≤ VPIN ≤ VDD, Pin at high-impedance DI51 Analog Input Pins — TBD TBD μA VSS ≤ VPIN ≤ VDD, Pin at high-impedance DI55 MCLR — TBD TBD μA VSS ≤ VPIN ≤ VDD DI56 OSC1 — TBD TBD μA VSS ≤ VPIN ≤ VDD, XT and HS modes Legend: TBD = To Be Determined Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages. 3: Negative current is defined as current sourced by the pin.© 2007 Microchip Technology Inc. Preliminary DS70165E-page 315 dsPIC33F TABLE 26-12: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS TABLE 26-10: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS DC CHARACTERISTICS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for Industrial Param No. Symbol Characteristic Min Typ (1) Max Units Conditions VOL Output Low Voltage DO10 I/O ports — — 0.4 V IOL = TBD, VDD = 3.3V DO16 OSC2/CLKO — — 0.4 V IOL = TBD, VDD = 3.3V VOH Output High Voltage DO20 I/O ports 2.4 — — V IOH = -3.0 mA, VDD = 3.3V DO26 OSC2/CLKO 2.4 — — V IOH = -1.3 mA, VDD = 3.3V Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. TABLE 26-11: DC CHARACTERISTICS: PROGRAM MEMORY DC CHARACTERISTICS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for Industrial Param No. Symbol Characteristic Min Typ (1) Max Units Conditions Program Flash Memory D130 EP Cell Endurance 100 1000 — E/W -40°C to +85°C D131 VPR VDD for Read VMIN — 3.6 V VMIN = Minimum operating voltage D132B VPEW VDD for Self-Timed Write VMIN — 3.6 V VMIN = Minimum operating voltage D133A TIW Self-Timed Write Cycle Time — 1.5 — ms D134 TRETD Characteristic Retention 20 — — Year Provided no other specifications are violated D135 IDDP Supply Current during Programming — 10 — mA D136 TRW Row Write Time — 1.6 — ms D137 TPE Page Erase Time — 20 — ms D138 TWW Word Write Cycle Time 20 — 40 μs Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Operating Conditions: -40°C < TA < +85°C (unless otherwise stated) Param No. Symbol Characteristics Min Typ Max Units Comments CEFC External Filter Capacitor Value 1 10 — μF Capacitor must be low series resistance (< 5 ohms)dsPIC33F DS70165E-page 316 Preliminary © 2007 Microchip Technology Inc. 26.2 AC Characteristics and Timing Parameters The information contained in this section defines dsPIC33F AC characteristics and timing parameters. TABLE 26-13: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC FIGURE 26-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS TABLE 26-14: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS AC CHARACTERISTICS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for Industrial Operating voltage VDD range as described in Section 26.0 “Electrical Characteristics”. Param No. Symbol Characteristic Min Typ (1) Max Units Conditions DO50 COSC2 OSC2/SOSC2 pin — — 15 pF In XT and HS modes when external clock is used to drive OSC1 DO56 CIO All I/O pins and OSC2 — — 50 pF EC mode DO58 CB SCLx, SDAx — — 400 pF In I 2 C™ mode Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. VDD/2 CL RL Pin Pin VSS VSS CL RL = 464Ω CL = 50 pF for all pins except OSC2 15 pF for OSC2 output Load Condition 1 – for all pins except OSC2 Load Condition 2 – for OSC2© 2007 Microchip Technology Inc. Preliminary DS70165E-page 317 dsPIC33F FIGURE 26-2: EXTERNAL CLOCK TIMING Q1 Q2 Q3 Q4 OSC1 CLKO Q1 Q2 Q3 Q4 OS20 OS25 OS30 OS30 OS41 OS40 OS31 OS31 TABLE 26-15: EXTERNAL CLOCK TIMING REQUIREMENTS AC CHARACTERISTICS Standard Operating Conditions: 2.5V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for Industrial Param No. Symb Characteristic Min Typ (1) Max Units Conditions OS10 FIN External CLKI Frequency (External clocks allowed only in EC and ECPLL modes) 0.8 4 — — 64 8 MHz MHz EC ECPLL Oscillator Crystal Frequency 3 3 10 10 — — — — — 10 10 40 40 33 MHz MHz MHz MHz kHz XT XTPLL HS HSPLL SOSC OS20 TOSC TOSC = 1/FOSC 12.5 — DC ns OS25 TCY Instruction Cycle Time (2) 25 — DC ns OS30 TosL, TosH External Clock in (OSC1) High or Low Time 0.625 x TOSC — — ns EC OS31 TosR, TosF External Clock in (OSC1) Rise or Fall Time — — TBD ns EC OS40 TckR CLKO Rise Time (3) — 6 TBD ns OS41 TckF CLKO Fall Time (3) — 6 TBD ns Legend: TBD = To Be Determined Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. 2: Instruction cycle period (TCY) equals two times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at “min.” values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the “max.” cycle time limit is “DC” (no clock) for all devices. 3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin. dsPIC33F DS70165E-page 318 Preliminary © 2007 Microchip Technology Inc. TABLE 26-16: PLL CLOCK TIMING SPECIFICATIONS (VDD = 3.0V TO 3.6V) AC CHARACTERISTICS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for Industrial Param No. Symbol Characteristic (1) Min Typ (2) Max Units Conditions OS50 FPLLI PLL Voltage Controlled Oscillator (VCO) Input Frequency Range (2) 0.8 — 8 MHz ECPLL, HSPLL, XTPLL modes OS51 FSYS On-Chip VCO System Frequency 100 — 200 MHz OS52 TLOC PLL Start-up Time (Lock Time) TBD 100 TBD μs OS53 DCLK CLKO Stability (Jitter) TBD 1 TBD % Measured over 100 ms period Legend: TBD = To Be Determined Note 1: These parameters are characterized but not tested in manufacturing. 2: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. TABLE 26-17: AC CHARACTERISTICS: INTERNAL RC ACCURACY AC CHARACTERISTICS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for industrial Param No. Characteristic Min Typ Max Units Conditions Internal FRC Accuracy @ 7.3728 MHz (1) F20 FRC TBD — TBD % +25°C VDD = 3.0-3.6V TBD — TBD % -40°C ≤ TA ≤ +85°C VDD = 3.0-3.6V Legend: TBD = To Be Determined Note 1: Frequency calibrated at 25°C and 3.3V. TUN bits can be used to compensate for temperature drift. TABLE 26-18: INTERNAL RC ACCURACY AC CHARACTERISTICS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for Industrial Param No. Characteristic Min Typ Max Units Conditions LPRC @ 32.768 kHz (1) F21 TBD — TBD % +25°C VDD = 3.0-3.6V TBD — TBD % -40°C ≤ TA ≤ +85°C VDD = 3.0-3.6V Legend: TBD = To Be Determined Note 1: Change of LPRC frequency as VDD changes.© 2007 Microchip Technology Inc. Preliminary DS70165E-page 319 dsPIC33F FIGURE 26-3: CLKO AND I/O TIMING CHARACTERISTICS Note: Refer to Figure 26-1 for load conditions. I/O Pin (Input) I/O Pin (Output) DI35 Old Value New Value DI40 DO31 DO32 TABLE 26-19: CLKO AND I/O TIMING REQUIREMENTS AC CHARACTERISTICS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for Industrial Param No. Symbol Characteristic Min Typ (1) Max Units Conditions DO31 TIOR Port Output Rise Time — 10 25 ns — DO32 TIOF Port Output Fall Time — 10 25 ns — DI35 TINP INTx Pin High or Low Time (output) 20 — — ns — DI40 TRBP CNx High or Low Time (input) 2 — — TCY — Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.dsPIC33F DS70165E-page 320 Preliminary © 2007 Microchip Technology Inc. FIGURE 26-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING CHARACTERISTICS VDD MCLR Internal POR PWRT Time-out OSC Time-out Internal Reset Watchdog Timer Reset SY11 SY10 SY20 SY13 I/O Pins SY13 Note: Refer to Figure 26-1 for load conditions. FSCM Delay SY35 SY30 SY12© 2007 Microchip Technology Inc. Preliminary DS70165E-page 321 dsPIC33F TABLE 26-20: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER AND BROWN-OUT RESET TIMING REQUIREMENTS AC CHARACTERISTICS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C Param No. Symbol Characteristic (1) Min Typ (2) Max Units Conditions SY10 TMCL MCLR Pulse Width (low) 2 — — μs -40°C to +85°C SY11 TPWRT Power-up Timer Period 0.75 1.5 3 6 12 24 48 96 1 2 4 8 16 32 64 128 1.25 2.5 5 10 20 40 80 160 ms -40°C to +85°C User programmable SY12 TPOR Power-on Reset Delay 3 10 30 μs -40°C to +85°C SY13 TIOZ I/O High-Impedance from MCLR Low or Watchdog Timer Reset — 0.8 1.0 μs SY20 TWDT1 Watchdog Timer Time-out Period (No Prescaler) 1.8 2.0 2.2 ms VDD = 5V, -40°C to +85°C TWDT2 1.9 2.1 2.3 ms VDD = 3V, -40°C to +85°C SY30 TOST Oscillator Start-up Timer Period — 1024 TOSC — — TOSC = OSC1 period SY35 TFSCM Fail-Safe Clock Monitor Delay — 500 900 μs -40°C to +85°C Note 1: These parameters are characterized but not tested in manufacturing. 2: Data in “Typ” column is at 5V, 25°C unless otherwise stated. 3: Characterized by design but not tested.dsPIC33F DS70165E-page 322 Preliminary © 2007 Microchip Technology Inc. FIGURE 26-5: TIMER1, 2, 3, 4, 5, 6, 7, 8 AND 9 EXTERNAL CLOCK TIMING CHARACTERISTICS TABLE 26-21: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS (1) Note: Refer to Figure 26-1 for load conditions. Tx11 Tx15 Tx10 Tx20 TMRx OS60 TxCK AC CHARACTERISTICS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C Param No. Symbol Characteristic Min Typ Max Units Conditions TA10 TTXH TxCK High Time Synchronous, no prescaler 0.5 TCY + 20 — — ns Must also meet parameter TA15 Synchronous, with prescaler 10 — — ns Asynchronous 10 — — ns TA11 TTXL TxCK Low Time Synchronous, no prescaler 0.5 TCY + 20 — — ns Must also meet parameter TA15 Synchronous, with prescaler 10 — — ns Asynchronous 10 — — ns TA15 TTXP TxCK Input Period Synchronous, no prescaler TCY + 10 — — ns Synchronous, with prescaler Greater of: 20 ns or (TCY + 40)/N — — — N = prescale value (1, 8, 64, 256) Asynchronous 20 — — ns OS60 Ft1 SOSC1/T1CK Oscillator Input frequency Range (oscillator enabled by setting bit TCS (T1CON<1>)) DC — 50 kHz TA20 TCKEXTMRL Delay from External TxCK Clock Edge to Timer Increment 0.5 TCY 1.5 TCY — Note 1: Timer1 is a Type A.© 2007 Microchip Technology Inc. Preliminary DS70165E-page 323 dsPIC33F TABLE 26-22: TIMER2, TIMER4, TIMER6 AND TIMER8 EXTERNAL CLOCK TIMING REQUIREMENTS TABLE 26-23: TIMER3, TIMER5, TIMER7 AND TIMER9 EXTERNAL CLOCK TIMING REQUIREMENTS AC CHARACTERISTICS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C Param No. Symbol Characteristic Min Typ Max Units Conditions TB10 TtxH TxCK High Time Synchronous, no prescaler 0.5 TCY + 20 — — ns Must also meet parameter TB15 Synchronous, with prescaler 10 — — ns TB11 TtxL TxCK Low Time Synchronous, no prescaler 0.5 TCY + 20 — — ns Must also meet parameter TB15 Synchronous, with prescaler 10 — — ns TB15 TtxP TxCK Input Period Synchronous, no prescaler TCY + 10 — — ns N = prescale value Synchronous, (1, 8, 64, 256) with prescaler Greater of: 20 ns or (TCY + 40)/N TB20 TCKEXTMRL Delay from External TxCK Clock Edge to Timer Increment 0.5 TCY — 1.5 TCY — AC CHARACTERISTICS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C Param No. Symbol Characteristic Min Typ Max Units Conditions TC10 TtxH TxCK High Time Synchronous 0.5 TCY + 20 — — ns Must also meet parameter TC15 TC11 TtxL TxCK Low Time Synchronous 0.5 TCY + 20 — — ns Must also meet parameter TC15 TC15 TtxP TxCK Input Period Synchronous, no prescaler TCY + 10 — — ns N = prescale value Synchronous, (1, 8, 64, 256) with prescaler Greater of: 20 ns or (TCY + 40)/N TC20 TCKEXTMRL Delay from External TxCK Clock Edge to Timer Increment 0.5 TCY — 1.5 TCY —dsPIC33F DS70165E-page 324 Preliminary © 2007 Microchip Technology Inc. FIGURE 26-6: TIMERQ (QEI MODULE) EXTERNAL CLOCK TIMING CHARACTERISTICS TABLE 26-24: QEI MODULE EXTERNAL CLOCK TIMING REQUIREMENTS TQ11 TQ15 TQ10 TQ20 QEB POSCNT AC CHARACTERISTICS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C Param No. Symbol Characteristic (1) Min Typ Max Units Conditions TQ10 TtQH TQCK High Time Synchronous, with prescaler TCY + 20 — ns Must also meet parameter TQ15 TQ11 TtQL TQCK Low Time Synchronous, with prescaler TCY + 20 — ns Must also meet parameter TQ15 TQ15 TtQP TQCP Input Period Synchronous, with prescaler 2 * TCY + 40 — ns — TQ20 TCKEXTMRL Delay from External TxCK Clock Edge to Timer Increment 0.5 TCY 1.5 TCY — — Note 1: These parameters are characterized but not tested in manufacturing.© 2007 Microchip Technology Inc. Preliminary DS70165E-page 325 dsPIC33F FIGURE 26-7: INPUT CAPTURE (CAPx) TIMING CHARACTERISTICS TABLE 26-25: INPUT CAPTURE TIMING REQUIREMENTS FIGURE 26-8: OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS TABLE 26-26: OUTPUT COMPARE MODULE TIMING REQUIREMENTS AC CHARACTERISTICS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C Param No. Symbol Characteristic (1) Min Max Units Conditions IC10 TccL ICx Input Low Time No Prescaler 0.5 TCY + 20 — ns With Prescaler 10 — ns IC11 TccH ICx Input High Time No Prescaler 0.5 TCY + 20 — ns With Prescaler 10 — ns IC15 TccP ICx Input Period (2 TCY + 40)/N — ns N = prescale value (1, 4, 16) Note 1: These parameters are characterized but not tested in manufacturing. AC CHARACTERISTICS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C Param No. Symbol Characteristic (1) Min Typ (2) Max Units Conditions OC10 TccF OCx Output Fall Time — — — ns See parameter D032 OC11 TccR OCx Output Rise Time — — — ns See parameter D031 Note 1: These parameters are characterized but not tested in manufacturing. 2: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. ICx IC10 IC11 IC15 Note: Refer to Figure 26-1 for load conditions. OCx OC11 OC10 (Output Compare Note: Refer to Figure 26-1 for load conditions. or PWM Mode)dsPIC33F DS70165E-page 326 Preliminary © 2007 Microchip Technology Inc. FIGURE 26-9: OC/PWM MODULE TIMING CHARACTERISTICS TABLE 26-27: SIMPLE OC/PWM MODE TIMING REQUIREMENTS OCFA/OCFB OCx OC20 OC15 AC CHARACTERISTICS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C Param No. Symbol Characteristic (1) Min Typ (2) Max Units Conditions OC15 TFD Fault Input to PWM I/O Change — — 50 ns — OC20 TFLT Fault Input Pulse Width 50 — — ns — Note 1: These parameters are characterized but not tested in manufacturing. 2: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.© 2007 Microchip Technology Inc. Preliminary DS70165E-page 327 dsPIC33F FIGURE 26-10: MOTOR CONTROL PWM MODULE FAULT TIMING CHARACTERISTICS FIGURE 26-11: MOTOR CONTROL PWM MODULE TIMING CHARACTERISTICS TABLE 26-28: MOTOR CONTROL PWM MODULE TIMING REQUIREMENTS FLTA/B PWMx MP30 MP20 PWMx MP11 MP10 Note: Refer to Figure 26-1 for load conditions. AC CHARACTERISTICS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C Param No. Symbol Characteristic (1) Min Typ (2) Max Units Conditions MP10 TFPWM PWM Output Fall Time — — — ns See parameter D032 MP11 TRPWM PWM Output Rise Time — — — ns See parameter D031 MP20 TFD Fault Input ↓ to PWM I/O Change — — 50 ns — MP30 TFH Minimum Pulse Width 50 — — ns — Note 1: These parameters are characterized but not tested in manufacturing. 2: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.dsPIC33F DS70165E-page 328 Preliminary © 2007 Microchip Technology Inc. FIGURE 26-12: QEA/QEB INPUT CHARACTERISTICS TABLE 26-29: QUADRATURE DECODER TIMING REQUIREMENTS TQ30 TQ35 TQ31 QEA (input) TQ30 TQ35 TQ31 QEB (input) TQ36 QEB Internal TQ41 TQ40 AC CHARACTERISTICS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C Param No. Symbol Characteristic (1) Typ (2) Max Units Conditions TQ30 TQUL Quadrature Input Low Time 6 TCY — ns — TQ31 TQUH Quadrature Input High Time 6 TCY — ns — TQ35 TQUIN Quadrature Input Period 12 TCY — ns — TQ36 TQUP Quadrature Phase Period 3 TCY — ns — TQ40 TQUFL Filter Time to Recognize Low, with Digital Filter 3 * N * TCY — ns N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 3) TQ41 TQUFH Filter Time to Recognize High, with Digital Filter 3 * N * TCY — ns N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 3) Note 1: These parameters are characterized but not tested in manufacturing. 2: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. 3: N = Index Channel Digital Filter Clock Divide Select bits. Refer to Section 16. “Quadrature Encoder Interface (QEI)” in the “dsPIC30F Family Reference Manual” (DS70046). © 2007 Microchip Technology Inc. Preliminary DS70165E-page 329 dsPIC33F FIGURE 26-13: QEI MODULE INDEX PULSE TIMING CHARACTERISTICS TABLE 26-30: QEI INDEX PULSE TIMING REQUIREMENTS QEA (input) Ungated Index QEB (input) TQ55 Index Internal Position Counter Reset TQ50 TQ51 AC CHARACTERISTICS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C Param No. Symbol Characteristic (1) Min Max Units Conditions TQ50 TqIL Filter Time to Recognize Low, with Digital Filter 3 * N * TCY — ns N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 2) TQ51 TqiH Filter Time to Recognize High, with Digital Filter 3 * N * TCY — ns N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 2) TQ55 Tqidxr Index Pulse Recognized to Position Counter Reset (ungated index) 3 TCY — ns — Note 1: These parameters are characterized but not tested in manufacturing. 2: Alignment of index pulses to QEA and QEB is shown for position counter Reset timing only. Shown for forward direction only (QEA leads QEB). Same timing applies for reverse direction (QEA lags QEB) but index pulse recognition occurs on falling edge.dsPIC33F DS70165E-page 330 Preliminary © 2007 Microchip Technology Inc. FIGURE 26-14: SPIx MODULE MASTER MODE (CKE = 0) TIMING CHARACTERISTICS TABLE 26-31: SPIx MASTER MODE (CKE = 0) TIMING REQUIREMENTS SCKx (CKP = 0) SCKx (CKP = 1) SDOx SDIx SP11 SP10 SP40 SP41 SP35 SP20 SP21 SP21 SP20 MSb LSb Bit 14 - - - - - -1 MSb In Bit 14 - - - -1 LSb In SP31 SP30 Note: Refer to Figure 26-1 for load conditions. AC CHARACTERISTICS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C Param No. Symbol Characteristic (1) Min Typ (2) Max Units Conditions SP10 TscL SCKx Output Low Time (3) TCY/2 — — ns — SP11 TscH SCKx Output High Time (3) TCY/2 — — ns — SP20 TscF SCKx Output Fall Time (4) — — — ns See parameter D032 SP21 TscR SCKx Output Rise Time (4) — — — ns See parameter D031 SP30 TdoF SDOx Data Output Fall Time (4) — — — ns See parameter D032 SP31 TdoR SDOx Data Output Rise Time (4) — — — ns See parameter D031 SP35 TscH2doV, TscL2doV SDOx Data Output Valid after SCKx Edge — — 30 ns — SP40 TdiV2scH, TdiV2scL Setup Time of SDIx Data Input to SCKx Edge 20 — — ns — SP41 TscH2diL, TscL2diL Hold Time of SDIx Data Input to SCKx Edge 20 — — ns — Note 1: These parameters are characterized but not tested in manufacturing. 2: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. 3: The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not violate this specification. 4: Assumes 50 pF load on all SPIx pins.© 2007 Microchip Technology Inc. Preliminary DS70165E-page 331 dsPIC33F FIGURE 26-15: SPIx MODULE MASTER MODE (CKE = 1) TIMING CHARACTERISTICS TABLE 26-32: SPIx MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS SCKX (CKP = 0) SCKX (CKP = 1) SDOX SDIX SP36 SP30,SP31 SP35 MSb MSb In Bit 14 - - - - - -1 Bit 14 - - - -1 LSb In LSb Note: Refer to Figure 26-1 for load conditions. SP11 SP10 SP21 SP20 SP20 SP21 SP40 SP41 AC CHARACTERISTICS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C Param No. Symbol Characteristic (1) Min Typ (2) Max Units Conditions SP10 TscL SCKx Output Low Time (3) TCY/2 — — ns — SP11 TscH SCKx Output High Time (3) TCY/2 — — ns — SP20 TscF SCKx Output Fall Time (4) — — — ns See parameter D032 SP21 TscR SCKx Output Rise Time (4) — — — ns See parameter D031 SP30 TdoF SDOx Data Output Fall Time (4) — — — ns See parameter D032 SP31 TdoR SDOx Data Output Rise Time (4) — — — ns See parameter D031 SP35 TscH2doV, TscL2doV SDOx Data Output Valid after SCKx Edge — — — ns — SP36 TdoV2sc, TdoV2scL SDOx Data Output Setup to First SCKx Edge 30 — — ns — SP40 TdiV2scH, TdiV2scL Setup Time of SDIx Data Input to SCKx Edge 20 — — ns — SP41 TscH2diL, TscL2diL Hold Time of SDIx Data Input to SCKx Edge 20 — — ns — Note 1: These parameters are characterized but not tested in manufacturing. 2: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. 3: The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not violate this specification. 4: Assumes 50 pF load on all SPIx pins.dsPIC33F DS70165E-page 332 Preliminary © 2007 Microchip Technology Inc. FIGURE 26-16: SPIx MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS SSX SCKX (CKP = 0) SCKX (CKP = 1) SDOX SP50 SP40 SP41 SP30,SP31 SP51 SP35 MSb LSb Bit 14 - - - - - -1 MSb In Bit 14 - - - -1 LSb In SP52 SP72 SP73 SP73 SP72 SP71 SP70 Note: Refer to Figure 26-1 for load conditions. SDIX TABLE 26-33: SPIx MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS AC CHARACTERISTICS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C Param No. Symbol Characteristic (1) Min Typ (2) Max Units Conditions SP70 TscL SCKx Input Low Time 30 — — ns — SP71 TscH SCKx Input High Time 30 — — ns — SP72 TscF SCKx Input Fall Time (3) — 10 25 ns — SP73 TscR SCKx Input Rise Time (3) — 10 25 ns — SP30 TdoF SDOx Data Output Fall Time (3) — — — ns See parameter D032 SP31 TdoR SDOx Data Output Rise Time (3) — — — ns See parameter D031 SP35 TscH2doV , TscL2doV SDOx Data Output Valid after SCKx Edge — — 30 ns — SP40 TdiV2scH, TdiV2scL Setup Time of SDIx Data Input to SCKx Edge 20 — — ns — SP41 TscH2diL, TscL2diL Hold Time of SDIx Data Input to SCKx Edge 20 — — ns — SP50 TssL2scH, TssL2scL SSx ↓ to SCKx ↑ or SCKx Input 120 — — ns — SP51 TssH2doZ SSx ↑ to SDOx Output High-Impedance (3) 10 — 50 ns — Note 1: These parameters are characterized but not tested in manufacturing. 2: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. 3: Assumes 50 pF load on all SPIx pins.© 2007 Microchip Technology Inc. Preliminary DS70165E-page 333 dsPIC33F FIGURE 26-17: SPIx MODULE SLAVE MODE (CKE = 1) TIMING CHARACTERISTICS SP52 TscH2ssH TscL2ssH SSx after SCKx Edge 1.5 TCY +40 — — ns — TABLE 26-33: SPIx MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS (CONTINUED) AC CHARACTERISTICS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C Param No. Symbol Characteristic (1) Min Typ (2) Max Units Conditions Note 1: These parameters are characterized but not tested in manufacturing. 2: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. 3: Assumes 50 pF load on all SPIx pins. SSx SCKx (CKP = 0) SCKx (CKP = 1) SDOx SDI SP50 SP60 SDIx SP30,SP31 MSb Bit 14 - - - - - -1 LSb SP51 MSb In Bit 14 - - - -1 LSb In SP35 SP52 SP52 SP72 SP73 SP71 SP70 SP73 SP72 SP40 SP41 Note: Refer to Figure 26-1 for load conditions.dsPIC33F DS70165E-page 334 Preliminary © 2007 Microchip Technology Inc. TABLE 26-34: SPIx MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS AC CHARACTERISTICS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C Param No. Symbol Characteristic (1) Min Typ (2) Max Units Conditions SP70 TscL SCKx Input Low Time 30 — — ns — SP71 TscH SCKx Input High Time 30 — — ns — SP72 TscF SCKx Input Fall Time (3) — 10 25 ns — SP73 TscR SCKx Input Rise Time (3) — 10 25 ns — SP30 TdoF SDOx Data Output Fall Time (3) — — — ns See parameter D032 SP31 TdoR SDOx Data Output Rise Time (3) — — — ns See parameter D031 SP35 TscH2doV , TscL2doV SDOx Data Output Valid after SCKx Edge — — 30 ns — SP40 TdiV2scH, TdiV2scL Setup Time of SDIx Data Input to SCKx Edge 20 — — ns — SP41 TscH2diL, TscL2diL Hold Time of SDIx Data Input to SCKx Edge 20 — — ns — SP50 TssL2scH, TssL2scL SSx ↓ to SCKx ↓ or SCKx ↑ Input 120 — — ns — SP51 TssH2doZ SSx ↑ to SDOX Output High-Impedance (4) 10 — 50 ns — SP52 TscH2ssH TscL2ssH SSx ↑ after SCKx Edge 1.5 TCY + 40 — — ns — SP60 TssL2doV SDOx Data Output Valid after SSx Edge — — 50 ns — Note 1: These parameters are characterized but not tested in manufacturing. 2: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. 3: The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not violate this specification. 4: Assumes 50 pF load on all SPIx pins.© 2007 Microchip Technology Inc. Preliminary DS70165E-page 335 dsPIC33F FIGURE 26-18: I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (MASTER MODE) FIGURE 26-19: I2Cx BUS DATA TIMING CHARACTERISTICS (MASTER MODE) IM31 IM34 SCLx SDAx Start Condition Stop Condition IM30 IM33 Note: Refer to Figure 26-1 for load conditions. IM11 IM10 IM33 IM11 IM10 IM20 IM26 IM25 IM40 IM40 IM45 IM21 SCLx SDAx In SDAx Out Note: Refer to Figure 26-1 for load conditions.dsPIC33F DS70165E-page 336 Preliminary © 2007 Microchip Technology Inc. TABLE 26-35: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE) AC CHARACTERISTICS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C Param No. Symbol Characteristic Min (1) Max Units Conditions IM10 TLO:SCL Clock Low Time 100 kHz mode TCY/2 (BRG + 1) — μs — 400 kHz mode TCY/2 (BRG + 1) — μs — 1 MHz mode (2) TCY/2 (BRG + 1) — μs — IM11 THI:SCL Clock High Time 100 kHz mode TCY/2 (BRG + 1) — μs — 400 kHz mode TCY/2 (BRG + 1) — μs — 1 MHz mode (2) TCY/2 (BRG + 1) — μs — IM20 TF:SCL SDAx and SCLx Fall Time 100 kHz mode — 300 ns CB is specified to be from 10 to 400 pF 400 kHz mode 20 + 0.1 CB 300 ns 1 MHz mode (2) — 100 ns IM21 TR:SCL SDAx and SCLx Rise Time 100 kHz mode — 1000 ns CB is specified to be from 10 to 400 pF 400 kHz mode 20 + 0.1 CB 300 ns 1 MHz mode (2) — 300 ns IM25 TSU:DAT Data Input Setup Time 100 kHz mode 250 — ns — 400 kHz mode 100 — ns 1 MHz mode (2) TBD — ns IM26 THD:DAT Data Input Hold Time 100 kHz mode 0 — ns — 400 kHz mode 0 0.9 μs 1 MHz mode (2) TBD — ns IM30 TSU:STA Start Condition Setup Time 100 kHz mode TCY/2 (BRG + 1) — μs Only relevant for Repeated Start condition 400 kHz mode TCY/2 (BRG + 1) — μs 1 MHz mode (2) TCY/2 (BRG + 1) — μs IM31 THD:STA Start Condition Hold Time 100 kHz mode TCY/2 (BRG + 1) — μs After this period the first clock pulse is generated 400 kHz mode TCY/2 (BRG + 1) — μs 1 MHz mode (2) TCY/2 (BRG + 1) — μs IM33 TSU:STO Stop Condition Setup Time 100 kHz mode TCY/2 (BRG + 1) — μs — 400 kHz mode TCY/2 (BRG + 1) — μs 1 MHz mode (2) TCY/2 (BRG + 1) — μs IM34 THD:STO Stop Condition 100 kHz mode TCY/2 (BRG + 1) — ns — Hold Time 400 kHz mode TCY/2 (BRG + 1) — ns 1 MHz mode (2) TCY/2 (BRG + 1) — ns IM40 TAA:SCL Output Valid From Clock 100 kHz mode — 3500 ns — 400 kHz mode — 1000 ns — 1 MHz mode (2) — — ns — IM45 TBF:SDA Bus Free Time 100 kHz mode 4.7 — μs Time the bus must be free before a new transmission can start 400 kHz mode 1.3 — μs 1 MHz mode (2) TBD — μs IM50 CB Bus Capacitive Loading — 400 pF Legend: TBD = To Be Determined Note 1: BRG is the value of the I 2 C Baud Rate Generator. Refer to Section 21. “Inter-Integrated Circuit (I 2 C™)” in the “dsPIC30F Family Reference Manual” (DS70046). 2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).© 2007 Microchip Technology Inc. Preliminary DS70165E-page 337 dsPIC33F FIGURE 26-20: I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (SLAVE MODE) FIGURE 26-21: I2Cx BUS DATA TIMING CHARACTERISTICS (SLAVE MODE) IS31 IS34 SCLx SDAx Start Condition Stop Condition IS30 IS33 IS30 IS31 IS33 IS11 IS10 IS20 IS26 IS25 IS40 IS40 IS45 IS21 SCLx SDAx In SDAx OutdsPIC33F DS70165E-page 338 Preliminary © 2007 Microchip Technology Inc. TABLE 26-36: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE) AC CHARACTERISTICS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C Param No. Symbol Characteristic Min Max Units Conditions IS10 TLO:SCL Clock Low Time 100 kHz mode 4.7 — μs Device must operate at a minimum of 1.5 MHz 400 kHz mode 1.3 — μs Device must operate at a minimum of 10 MHz 1 MHz mode (1) 0.5 — μs — IS11 THI:SCL Clock High Time 100 kHz mode 4.0 — μs Device must operate at a minimum of 1.5 MHz 400 kHz mode 0.6 — μs Device must operate at a minimum of 10 MHz 1 MHz mode (1) 0.5 — μs — IS20 TF:SCL SDAx and SCLx Fall Time 100 kHz mode — 300 ns CB is specified to be from 10 to 400 pF 400 kHz mode 20 + 0.1 CB 300 ns 1 MHz mode (1) — 100 ns IS21 TR:SCL SDAx and SCLx Rise Time 100 kHz mode — 1000 ns CB is specified to be from 10 to 400 pF 400 kHz mode 20 + 0.1 CB 300 ns 1 MHz mode (1) — 300 ns IS25 TSU:DAT Data Input Setup Time 100 kHz mode 250 — ns — 400 kHz mode 100 — ns 1 MHz mode (1) 100 — ns IS26 THD:DAT Data Input Hold Time 100 kHz mode 0 — ns — 400 kHz mode 0 0.9 μs 1 MHz mode (1) 0 0.3 μs IS30 TSU:STA Start Condition Setup Time 100 kHz mode 4.7 — μs Only relevant for Repeated Start condition 400 kHz mode 0.6 — μs 1 MHz mode (1) 0.25 — μs IS31 THD:STA Start Condition Hold Time 100 kHz mode 4.0 — μs After this period, the first clock pulse is generated 400 kHz mode 0.6 — μs 1 MHz mode (1) 0.25 — μs IS33 TSU:STO Stop Condition Setup Time 100 kHz mode 4.7 — μs — 400 kHz mode 0.6 — μs 1 MHz mode (1) 0.6 — μs IS34 THD:STO Stop Condition Hold Time 100 kHz mode 4000 — ns — 400 kHz mode 600 — ns 1 MHz mode (1) 250 ns IS40 TAA:SCL Output Valid From Clock 100 kHz mode 0 3500 ns — 400 kHz mode 0 1000 ns 1 MHz mode (1) 0 350 ns IS45 TBF:SDA Bus Free Time 100 kHz mode 4.7 — μs Time the bus must be free before a new transmission can start 400 kHz mode 1.3 — μs 1 MHz mode (1) 0.5 — μs IS50 CB Bus Capacitive Loading — 400 pF — Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).© 2007 Microchip Technology Inc. Preliminary DS70165E-page 339 dsPIC33F FIGURE 26-22: DCI MODULE (MULTI-CHANNEL, I 2 S MODES) TIMING CHARACTERISTICS COFS CSCK (SCKE = 0) CSCK (SCKE = 1) CSDO CSDI CS11 CS10 CS40 CS41 CS20 CS21 CS35 CS21 MSb LSb MSb In LSb In CS31 High-Z High-Z 70 CS30 CS51 CS50 CS55 Note: Refer to Figure 26-1 for load conditions. CS20 CS56dsPIC33F DS70165E-page 340 Preliminary © 2007 Microchip Technology Inc. TABLE 26-37: DCI MODULE (MULTI-CHANNEL, I 2 S MODES) TIMING REQUIREMENTS AC CHARACTERISTICS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C Param No. Symbol Characteristic (1) Min Typ (2) Max Units Conditions CS10 TCSCKL CSCK Input Low Time (CSCK pin is an input) TCY/2 + 20 — — ns — CSCK Output Low Time (3) (CSCK pin is an output) 30 — — ns — CS11 TCSCKH CSCK Input High Time (CSCK pin is an input) TCY/2 + 20 — — ns — CSCK Output High Time (3) (CSCK pin is an output) 30 — — ns — CS20 TCSCKF CSCK Output Fall Time (4) (CSCK pin is an output) — 10 25 ns — CS21 TCSCKR CSCK Output Rise Time (4) (CSCK pin is an output) — 10 25 ns — CS30 TCSDOF CSDO Data Output Fall Time (4) — 10 25 ns — CS31 TCSDOR CSDO Data Output Rise Time (4) — 10 25 ns — CS35 TDV Clock Edge to CSDO Data Valid — — 10 ns — CS36 TDIV Clock Edge to CSDO Tri-Stated 10 — 20 ns — CS40 TCSDI Setup Time of CSDI Data Input to CSCK Edge (CSCK pin is input or output) 20 — — ns — CS41 THCSDI Hold Time of CSDI Data Input to CSCK Edge (CSCK pin is input or output) 20 — — ns — CS50 TCOFSF COFS Fall Time (COFS pin is output) — 10 25 ns Note 1 CS51 TCOFSR COFS Rise Time (COFS pin is output) — 10 25 ns Note 1 CS55 TSCOFS Setup Time of COFS Data Input to CSCK Edge (COFS pin is input) 20 — — ns — CS56 THCOFS Hold Time of COFS Data Input to CSCK Edge (COFS pin is input) 20 — — ns — Note 1: These parameters are characterized but not tested in manufacturing. 2: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. 3: The minimum clock period for CSCK is 100 ns. Therefore, the clock generated in Master mode must not violate this specification. 4: Assumes 50 pF load on all DCI pins.© 2007 Microchip Technology Inc. Preliminary DS70165E-page 341 dsPIC33F FIGURE 26-23: DCI MODULE (AC-LINK MODE) TIMING CHARACTERISTICS SYNC BIT_CLK SDOx SDIx CS61 CS60 CS65 CS66 CS80 CS21 MSb In CS75 LSb CS76 (COFS) (CSCK) MSb LSb CS72 CS71 CS70 CS76 CS75 (CSDO) (CSDI) CS62 CS20dsPIC33F DS70165E-page 342 Preliminary © 2007 Microchip Technology Inc. TABLE 26-38: DCI MODULE (AC-LINK MODE) TIMING REQUIREMENTS AC CHARACTERISTICS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C Param No. Symbol Characteristic (1,2) Min Typ (3) Max Units Conditions CS60 TBCLKL BIT_CLK Low Time 36 40.7 45 ns — CS61 TBCLKH BIT_CLK High Time 36 40.7 45 ns — CS62 TBCLK BIT_CLK Period — 81.4 — ns Bit clock is input CS65 TSACL Input Setup Time to Falling Edge of BIT_CLK — — 10 ns — CS66 THACL Input Hold Time from Falling Edge of BIT_CLK — — 10 ns — CS70 TSYNCLO SYNC Data Output Low Time — 19.5 — μs Note 1 CS71 TSYNCHI SYNC Data Output High Time — 1.3 — μs Note 1 CS72 TSYNC SYNC Data Output Period — 20.8 — μs Note 1 CS75 TRACL Rise Time, SYNC, SDATA_OUT — 10 25 ns CLOAD = 50 pF, VDD = 5V CS76 TFACL Fall Time, SYNC, SDATA_OUT — 10 25 ns CLOAD = 50 pF, VDD = 5V CS77 TRACL Rise Time, SYNC, SDATA_OUT — TBD TBD ns CLOAD = 50 pF, VDD = 3V CS78 TFACL Fall Time, SYNC, SDATA_OUT — TBD TBD ns CLOAD = 50 pF, VDD = 3V CS80 TOVDACL Output Valid Delay from Rising Edge of BIT_CLK — — 15 ns — Legend: TBD = To Be Determined Note 1: These parameters are characterized but not tested in manufacturing. 2: These values assume BIT_CLK frequency is 12.288 MHz. 3: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.© 2007 Microchip Technology Inc. Preliminary DS70165E-page 343 dsPIC33F FIGURE 26-24: CAN MODULE I/O TIMING CHARACTERISTICS TABLE 26-39: CAN MODULE I/O TIMING REQUIREMENTS CiTx Pin (output) CA10 CA11 Old Value New Value CA20 CiRx Pin (input) AC CHARACTERISTICS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C Param No. Symbol Characteristic (1) Min Typ (2) Max Units Conditions CA10 TioF Port Output Fall Time — — — ns See parameter D032 CA11 TioR Port Output Rise Time — — — ns See parameter D031 CA20 Tcwf Pulse Width to Trigger CAN Wake-up Filter 500 ns — Note 1: These parameters are characterized but not tested in manufacturing. 2: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. TABLE 26-40: ADC MODULE SPECIFICATIONS AC CHARACTERISTICS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C Param No. Symbol Characteristic Min. Typ Max. Units Conditions Device Supply AD01 AVDD Module VDD Supply Greater of VDD – 0.3 or 3.0 — Lesser of VDD + 0.3 or 3.6 V — AD02 AVSS Module VSS Supply VSS – 0.3 — VSS + 0.3 V — Reference Inputs AD05 VREFH Reference Voltage High AVSS + 1.7 — AVDD V — Legend: TBD = To Be Determined Note 1: The ADC conversion result never decreases with an increase in the input voltage, and has no missing codes. 2: Measurements taken with external VREF+ and VREF- used as the ADC voltage reference.dsPIC33F DS70165E-page 344 Preliminary © 2007 Microchip Technology Inc. AD06 VREFL Reference Voltage Low AVSS — AVDD – 1.7 V — AD07 VREF Absolute Reference Voltage AVSS – 0.3 — AVDD + 0.3 V — AD08 IREF Current Drain — 150 .001 200 1 μA μA ADC operating ADC off Analog Input AD10 VINH-VINL Full-Scale Input Span VREFL VREFH V See Note AD11 VIN Absolute Input Voltage AVSS – 0.3 AVDD + 0.3 V — AD12 — Leakage Current — ±0.001 ±0.610 μA VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5V Source Impedance = 2.5 KΩ AD13 — Leakage Current — ±0.001 ±0.610 μA VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V Source Impedance = 2.5 KΩ AD17 RIN Recommended Impedance of Analog Voltage Source — — 1K 2.5K Ω Ω 10-bit 12-bit ADC Accuracy (12-bit Mode) AD20a Nr Resolution 12 data bits bits AD21a INL Integral Nonlinearity (2) — — <±2 LSb VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V AD22a DNL Differential Nonlinearity (2) — — <±1 LSb VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V AD23a GERR Gain Error (2) TBD TBD ±3 LSb VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V AD24a EOFF Offset Error (2) TBD TBD ±2 LSb VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V AD25a — Monotonicity (1) — — — — Guaranteed Dynamic Performance (12-bit Mode) AD30a THD Total Harmonic Distortion — TBD — dB — AD31a SINAD Signal to Noise and Distortion — TBD — dB — AD32a SFDR Spurious Free Dynamic Range — TBD — dB — AD33a FNYQ Input Signal Bandwidth — — 250 kHz — AD34a ENOB Effective Number of Bits — TBD — bits — ADC Accuracy (10-bit Mode) AD20b Nr Resolution 10 data bits bits AD21b INL Integral Nonlinearity — TBD <±2 LSb VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V TABLE 26-40: ADC MODULE SPECIFICATIONS (CONTINUED) AC CHARACTERISTICS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C Param No. Symbol Characteristic Min. Typ Max. Units Conditions Legend: TBD = To Be Determined Note 1: The ADC conversion result never decreases with an increase in the input voltage, and has no missing codes. 2: Measurements taken with external VREF+ and VREF- used as the ADC voltage reference.© 2007 Microchip Technology Inc. Preliminary DS70165E-page 345 dsPIC33F AD22b DNL Differential Nonlinearity — TBD <±1 LSb VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V AD23b GERR Gain Error TBD TBD ±3 LSb VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V AD24b EOFF Offset Error TBD TBD ±2 LSb VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V AD25b — Monotonicity (1) — — — — Guaranteed Dynamic Performance (10-bit Mode) AD30b THD Total Harmonic Distortion — TBD — dB — AD31b SINAD Signal to Noise and Distortion — TBD — dB — AD32b SFDR Spurious Free Dynamic Range — TBD — dB — AD33b FNYQ Input Signal Bandwidth — — 550 kHz — AD34b ENOB Effective Number of Bits TBD TBD — bits — TABLE 26-40: ADC MODULE SPECIFICATIONS (CONTINUED) AC CHARACTERISTICS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C Param No. Symbol Characteristic Min. Typ Max. Units Conditions Legend: TBD = To Be Determined Note 1: The ADC conversion result never decreases with an increase in the input voltage, and has no missing codes. 2: Measurements taken with external VREF+ and VREF- used as the ADC voltage reference.dsPIC33F DS70165E-page 346 Preliminary © 2007 Microchip Technology Inc. FIGURE 26-25: ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01, SIMSAM = 0, ASAM = 0, SSRC<2:0> = 000) TSAMP AD55 Set SAMP Clear SAMP AD61 ADCLK Instruction SAMP ch0_dischrg ch1_samp AD60 CONV ADxIF Buffer(0) Buffer(1) 1 2 3 4 5 6 8 5 6 7 1 – Software sets ADxCON. SAMP to start sampling. 2 – Sampling starts after discharge period. TSAMP is described in Section 17 in the “dsPIC30F Family Reference Manual”. 3 – Software clears ADxCON. SAMP to start conversion. 4 – Sampling ends, conversion sequence starts. 5 – Convert bit 9. 8 – One TAD for end of conversion. AD50 ch0_samp ch1_dischrg eoc 7 AD55 8 6 – Convert bit 8. 7 – Convert bit 0. Execution© 2007 Microchip Technology Inc. Preliminary DS70165E-page 347 dsPIC33F FIGURE 26-26: ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01, SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111, SAMC<4:0> = 00001) AD55 TSAMP Set ADON ADCLK Instruction SAMP ch0_dischrg ch1_samp CONV ADxIF Buffer(0) Buffer(1) 1 2 3 4 5 6 4 5 6 8 1 – Software sets ADxCON. ADON to start AD operation. 2 – Sampling starts after discharge period. 3 – Convert bit 9. 4 – Convert bit 8. 5 – Convert bit 0. AD50 ch0_samp ch1_dischrg eoc 7 3 AD55 6 – One TAD for end of conversion. 7 – Begin conversion of next channel. 8 – Sample for time specified by SAMC<4:0>. TSAMP TCONV 3 4 Execution TSAMP is described in the “dsPIC30F Family Reference Manual”, Section 17.dsPIC33F DS70165E-page 348 Preliminary © 2007 Microchip Technology Inc. TABLE 26-41: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS AC CHARACTERISTICS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C Param No. Symbol Characteristic Min. Typ (1) Max. Units Conditions Clock Parameters AD50 TAD ADC Clock Period 70 — — ns TCY = 70ns, ADxCON3 in default state AD51 tRC ADC Internal RC Oscillator Period — 250 — ns Conversion Rate AD55 tCONV Conversion Time — 12 TAD — — AD56 FCNV Throughput Rate — — 1.1 Msps AD57 TSAMP Sample Time — 1 TAD — — Timing Parameters AD60 tPCS Conversion Start from Sample Trigger (3) — 1.0 TAD — — Auto-Convert Trigger (SSRC<2:0> = 111) not selected AD61 tPSS Sample Start from Setting Sample (SAMP) bit 0.5 TAD — 1.5 TAD — — AD62 tCSS Conversion Completion to Sample Start (ASAM = 1) (3) — 0.5 TAD — — — AD63 tDPU Time to Stabilize Analog Stage from ADC Off to ADC On (3) — 20 — μs — Note 1: These parameters are characterized but not tested in manufacturing. 2: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures. 3: Characterized by design but not tested.© 2007 Microchip Technology Inc. Preliminary DS70165E-page 349 dsPIC33F FIGURE 26-27: ADC CONVERSION (12-BIT MODE) TIMING CHARACTERISTICS (ASAM = 0, SSRC<2:0> = 000) TSAMP AD55 Set SAMP Clear SAMP AD61 ADCLK Instruction SAMP ch0_dischrg ch0_samp AD60 CONV ADxIF Buffer(0) 1 2 3 4 5 6 7 8 1 – Software sets ADxCON. SAMP to start sampling. 2 – Sampling starts after discharge period. 3 – Software clears ADxCON. SAMP to start conversion. 4 – Sampling ends, conversion sequence starts. 5 – Convert bit 11. 9 – One TAD for end of conversion. AD50 eoc 9 6 – Convert bit 10. 7 – Convert bit 1. 8 – Convert bit 0. Execution TSAMP is described in the “dsPIC30F Family Reference Manual”, Section 17.dsPIC33F DS70165E-page 350 Preliminary © 2007 Microchip Technology Inc. TABLE 26-42: ADC CONVERSION (12-BIT MODE) TIMING REQUIREMENTS) AC CHARACTERISTICS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C Param No. Symbol Characteristic Min. Typ Max. Units Conditions Clock Parameters AD50 TAD ADC Clock Period 133 — — ns TCY = 133ns, ADxCON3 in default state AD51 tRC ADC Internal RC Oscillator Period — 250 — ns Conversion Rate AD55 tCONV Conversion Time — 14 TAD ns AD56 FCNV Throughput Rate — — 500 ksps AD57 TSAMP Sample Time — 1 TAD — ns Timing Parameters AD60 tPCS Conversion Start from Sample Trigger — 1.0 TAD — ns — AD61 tPSS Sample Start from Setting Sample (SAMP) bit 0.5 TAD — 1.5 TAD ns — AD62 tCSS Conversion Completion to Sample Start (ASAM = 1) — — — ns — AD63 tDPU Time to Stabilize Analog Stage from ADC Off to ADC On — 20 — μs — Legend: TBD = To Be Determined Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.© 2007 Microchip Technology Inc. Preliminary DS70165E-page 351 dsPIC33F 27.0 PACKAGING INFORMATION 27.1 Package Marking Information 64-Lead TQFP (10x10x1 mm) XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX YYWWNNN Example dsPIC33FJ 256GP706 0710017 80-Lead TQFP (12x12x1 mm) XXXXXXXXXXXX XXXXXXXXXXXX YYWWNNN Example dsPIC33FJ128 0710017 Legend: XX...X Customer-specific information Y Year code (last digit of calendar year) YY Year code (last 2 digits of calendar year) WW Week code (week of January 1 is week ‘01’) NNN Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) * This package is Pb-free. The Pb-free JEDEC designator ( ) can be found on the outer packaging for this package. Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information. e3 e3 100-Lead TQFP (12x12x1 mm) XXXXXXXXXXXX XXXXXXXXXXXX YYWWNNN Example dsPIC33FJ256 GP710-I/PT 0710017 GP708-I/PT 100-Lead TQFP (14x14x1mm) XXXXXXXXXXXX XXXXXXXXXXXX YYWWNNN Example dsPIC33FJ256 GP710-I/PF 0710017 -I/PT e3 e3 e3 e3dsPIC33F DS70165E-page 352 Preliminary © 2007 Microchip Technology Inc. 27.2 Package Details The following sections give the technical details of the packages. 64-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm Footprint [TQFP] Notes: 1. Pin 1 visual index feature may vary, but must be located within the hatched area. 2. Chamfers at corners are optional; size may vary. 3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side. 4. Dimensioning and tolerancing per ASME Y14.5M. BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only. Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging Units MILLIMETERS Dimension Limits MIN NOM MAX Number of Leads N 64 Lead Pitch e 0.50 BSC Overall Height A – – 1.20 Molded Package Thickness A2 0.95 1.00 1.05 Standoff A1 0.05 – 0.15 Foot Length L 0.45 0.60 0.75 Footprint L1 1.00 REF Foot Angle φ 0° 3.5° 7° Overall Width E 12.00 BSC Overall Length D 12.00 BSC Molded Package Width E1 10.00 BSC Molded Package Length D1 10.00 BSC Lead Thickness c 0.09 – 0.20 Lead Width b 0.17 0.22 0.27 Mold Draft Angle Top α 11° 12° 13° Mold Draft Angle Bottom β 11° 12° 13° D D1 E E1 e b N NOTE 1 1 2 3 NOTE 2 c L A1 L1 A2 A φ β α Microchip Technology Drawing C04-085B© 2007 Microchip Technology Inc. Preliminary DS70165E-page 353 dsPIC33F 80-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm Footprint [TQFP] Notes: 1. Pin 1 visual index feature may vary, but must be located within the hatched area. 2. Chamfers at corners are optional; size may vary. 3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side. 4. Dimensioning and tolerancing per ASME Y14.5M. BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only. Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging Units MILLIMETERS Dimension Limits MIN NOM MAX Number of Leads N 80 Lead Pitch e 0.50 BSC Overall Height A – – 1.20 Molded Package Thickness A2 0.95 1.00 1.05 Standoff A1 0.05 – 0.15 Foot Length L 0.45 0.60 0.75 Footprint L1 1.00 REF Foot Angle φ 0° 3.5° 7° Overall Width E 14.00 BSC Overall Length D 14.00 BSC Molded Package Width E1 12.00 BSC Molded Package Length D1 12.00 BSC Lead Thickness c 0.09 – 0.20 Lead Width b 0.17 0.22 0.27 Mold Draft Angle Top α 11° 12° 13° Mold Draft Angle Bottom β 11° 12° 13° D D1 E E1 e b N NOTE 1 12 3 NOTE 2 A A2 L1 A1 L c α β φ Microchip Technology Drawing C04-092BdsPIC33F DS70165E-page 354 Preliminary © 2007 Microchip Technology Inc. 100-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm Footprint [TQFP] Notes: 1. Pin 1 visual index feature may vary, but must be located within the hatched area. 2. Chamfers at corners are optional; size may vary. 3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side. 4. Dimensioning and tolerancing per ASME Y14.5M. BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only. Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging Units MILLIMETERS Dimension Limits MIN NOM MAX Number of Leads N 100 Lead Pitch e 0.40 BSC Overall Height A – – 1.20 Molded Package Thickness A2 0.95 1.00 1.05 Standoff A1 0.05 – 0.15 Foot Length L 0.45 0.60 0.75 Footprint L1 1.00 REF Foot Angle φ 0° 3.5° 7° Overall Width E 14.00 BSC Overall Length D 14.00 BSC Molded Package Width E1 12.00 BSC Molded Package Length D1 12.00 BSC Lead Thickness c 0.09 – 0.20 Lead Width b 0.13 0.18 0.23 Mold Draft Angle Top α 11° 12° 13° Mold Draft Angle Bottom β 11° 12° 13° D D1 E E1 e b N 123 NOTE 1 NOTE 2 c L A1 L1 A A2 α β φ Microchip Technology Drawing C04-100B© 2007 Microchip Technology Inc. Preliminary DS70165E-page 355 dsPIC33F 100-Lead Plastic Thin Quad Flatpack (PF) – 14x14x1 mm Body, 2.00 mm Footprint [TQFP] Notes: 1. Pin 1 visual index feature may vary, but must be located within the hatched area. 2. Chamfers at corners are optional; size may vary. 3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side. 4. Dimensioning and tolerancing per ASME Y14.5M. BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only. Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging Units MILLIMETERS Dimension Limits MIN NOM MAX Number of Leads N 100 Lead Pitch e 0.50 BSC Overall Height A – – 1.20 Molded Package Thickness A2 0.95 1.00 1.05 Standoff A1 0.05 – 0.15 Foot Length L 0.45 0.60 0.75 Footprint L1 1.00 REF Foot Angle φ 0° 3.5° 7° Overall Width E 16.00 BSC Overall Length D 16.00 BSC Molded Package Width E1 14.00 BSC Molded Package Length D1 14.00 BSC Lead Thickness c 0.09 – 0.20 Lead Width b 0.17 0.22 0.27 Mold Draft Angle Top α 11° 12° 13° Mold Draft Angle Bottom β 11° 12° 13° D D1 e b E1 E N NOTE 1 1 23 NOTE 2 c L A1 L1 A2 A φ β α Microchip Technology Drawing C04-110BdsPIC33F DS70165E-page 356 Preliminary © 2007 Microchip Technology Inc. NOTES:© 2007 Microchip Technology Inc. Preliminary DS70165E-page 357 dsPIC33F APPENDIX A: REVISION HISTORY Revision A (October 2005) • Initial release of this document Revision B (February 2006) • Updated Register descriptions and memory maps • Revised Oscillator section • Updated ADC characteristics • Updated Thermal Packaging characteristics Revision C (March 2006) • Information related to prototype samples removed • Flash memory characteristics updated • Incorrect references to SPI FIFO buffers removed. These buffers are not supported by the dsPIC33F family. • DC Characteristics updated • Device Configuration registers updated Revision D (July 2006) • Added FBS and FSS Device Configuration registers (see Table 23-1) and corresponding bit field descriptions (see Table 23-2). These added registers replaced the former RESERVED1 and RESERVED2 registers. • Added INTTREG Interrupt Control and Status register. (See Section 6.3 “Interrupt Control and Status Registers”. See also Register 6-33.) • Added Core Registers BSRAM and SSRAM (see Section 3.2.8 “Data Ram Protection Feature”) • Clarified Fail-Safe Clock Monitor operation (see Section 8.3 “Fail-Safe Clock Monitor (FSCM)”) • Updated COSC<2:0> and NOSC<2:0> bit configurations in OSCCON register (see Register 8-1) • Updated CLKDIV register bit configurations (see Register 8-2) • Added Word Write Cycle Time parameter (TWW) to Program Flash Memory (see Table 26-11) • Noted exceptions to Absolute Maximum Ratings on I/O pin output current (see Section 26.0 “Electrical Characteristics”) • Added ADC2 Event Trigger for Timer4/5 (Section 12.0 “Timer2/3, Timer4/5, Timer6/7 and Timer8/9”) • Corrected mislabeled 2COV bit in I2CxSTAT register (see Table 18-1) • Added QEI Register descriptions (see Register 16-1 and Register 16-2) • Corrected mislabeled PMOD<4:1> field in PWMCON register (see Register 15-5) • Corrected mislabeled UPDN_SRC bit in QEICON register (see Register 16-1) • Corrected mislabeled I2COV bit in I2CxCON register (see Register 18-1) • Removed AD26a, AD27a, AD28a, AD26b, AD27b, AD28b from Table 26-40 (ADC Module). Revision E (January 2007) • This revision includes updates to the packaging diagrams.dsPIC33F DS70165E-page 358 Preliminary © 2007 Microchip Technology Inc. NOTES:© 2007 Microchip Technology Inc. Preliminary DS70165E-page 359 dsPIC33F INDEX A A/D Converter ................................................................... 275 DMA .......................................................................... 275 Initialization ............................................................... 275 Key Features............................................................. 275 AC Characteristics ............................................................ 316 Internal RC Accuracy................................................ 318 Load Conditions........................................................ 316 AC-Link Mode Operation .................................................. 268 16-bit Mode............................................................... 268 20-bit Mode............................................................... 269 ADC Module ADC11 Register Map .................................................. 55 ADC2 Register Map .................................................... 55 Alternate Vector Table (AIVT)............................................. 87 Arithmetic Logic Unit (ALU)................................................. 33 Assembler MPASM Assembler................................................... 306 Automatic Clock Stretch.................................................... 215 Receive Mode ........................................................... 215 Transmit Mode .......................................................... 215 B Barrel Shifter ....................................................................... 37 Bit-Reversed Addressing .................................................... 70 Example ...................................................................... 71 Implementation ........................................................... 70 Sequence Table (16-Entry)......................................... 71 Block Diagrams 16-bit Timer1 Module ................................................ 161 A/D Module ....................................................... 276, 277 Connections for On-Chip Voltage Regulator............. 293 DCI Module ............................................................... 261 Device Clock..................................................... 149, 151 DSP Engine ................................................................ 34 dsPIC33F .................................................................... 24 dsPIC33F CPU Core................................................... 28 ECAN Module ........................................................... 231 Input Capture ............................................................ 169 Output Compare ....................................................... 173 PLL............................................................................ 151 PWM Module ............................................................ 176 Quadrature Encoder Interface .................................. 197 Reset System.............................................................. 83 Shared Port Structure ............................................... 159 SPI ............................................................................ 206 Timer2 (16-bit) .......................................................... 165 Timer2/3 (32-bit) ....................................................... 164 UART ........................................................................ 223 Watchdog Timer (WDT)............................................ 294 C C Compilers MPLAB C18 .............................................................. 306 MPLAB C30 .............................................................. 306 Clock Switching................................................................. 156 Enabling .................................................................... 156 Sequence.................................................................. 156 Code Examples DMA Sample Initialization Method ............................ 139 Erasing a Program Memory Page............................... 80 Initiating a Programming Sequence............................ 81 Loading Write Buffers ................................................. 81 Port Write/Read ........................................................ 160 PWRSAV Instruction Syntax .................................... 157 Code Protection........................................................ 289, 295 Configuration Bits ............................................................. 289 Description (Table) ................................................... 290 Configuration Register Map.............................................. 289 Configuring Analog Port Pins............................................ 160 CPU Control Register.......................................................... 30 CPU Clocking System ...................................................... 150 Options ..................................................................... 150 Selection................................................................... 150 Customer Change Notification Service............................. 365 Customer Notification Service .......................................... 365 Customer Support............................................................. 365 D Data Accumulators and Adder/Subtractor .......................... 35 Data Space Write Saturation ...................................... 37 Overflow and Saturation ............................................. 35 Round Logic ............................................................... 36 Write Back .................................................................. 36 Data Address Space........................................................... 41 Alignment.................................................................... 41 Memory Map for dsPIC33F Devices with 16 KBs RAM....................................................... 43 Memory Map for dsPIC33F Devices with 30 KBs RAM....................................................... 44 Memory Map for dsPIC33F Devices with 8 KBs RAM......................................................... 42 Near Data Space ........................................................ 41 Software Stack ........................................................... 67 Width .......................................................................... 41 Data Converter Interface (DCI) Module............................ 261 DC Characteristics............................................................ 310 I/O Pin Input Specifications ...................................... 314 I/O Pin Output Specifications.................................... 315 Idle Current (IDOZE) .................................................. 313 Idle Current (IIDLE).................................................... 312 Operating Current (IDD) ............................................ 311 Power-Down Current (IPD)........................................ 312 Program Memory...................................................... 315 Temperature and Voltage Specifications.................. 310 DCI Bit Clock Generator .................................................. 265 Buffer Alignment with Data Frames.......................... 267 Buffer Control ........................................................... 261 Buffer Data Alignment .............................................. 261 Buffer Length Control ............................................... 267 CSDO Mode Bit ........................................................ 268 Data Justification Control Bit .................................... 266 Device Frequencies for Common Codec CSCK Frequencies (Table) .............................. 265 Digital Loopback Mode ............................................. 268 Frame Sync Generator ............................................. 263 Frame Sync Mode Control Bits................................. 263 Interrupts .................................................................. 268 Introduction............................................................... 261 Master Frame Sync Operation ................................. 263 Module Enable.......................................................... 263 Operation.................................................................. 263 Operation During CPU Idle Mode............................. 268 Operation During CPU Sleep Mode ......................... 268 Receive Slot Enable Bits .......................................... 266dsPIC33F DS70165E-page 360 Preliminary © 2007 Microchip Technology Inc. Receive Status Bits...................................................267 Sample Clock Edge Control Bit................................. 266 Slave Frame Sync Operation.................................... 264 Slot Enable Bits Operation with Frame Sync ............ 266 Slot Status Bits.......................................................... 268 Synchronous Data Transfers .................................... 266 Transmit Slot Enable Bits.......................................... 266 Transmit Status Bits.................................................. 267 Transmit/Receive Shift Register ............................... 261 Underflow Mode Control Bit ...................................... 268 Word Size Selection Bits........................................... 263 DCI I/O Pins ......................................................................261 COFS ........................................................................261 CSCK ........................................................................261 CSDI ......................................................................... 261 CSDO........................................................................261 DCI Module Register Map............................................................... 64 Development Support ....................................................... 305 DMA Interrupts and Traps.................................................. 138 Request Source Selection ........................................ 138 DMA Module DMA Register Map...................................................... 56 DMAC Operating Modes ...................................................136 Addressing ................................................................ 137 Byte or Word Transfer...............................................137 Continuous or One-Shot ........................................... 138 Manual Transfer........................................................ 138 Null Data Peripheral Write ........................................ 137 Ping-Pong ................................................................. 138 Transfer Direction ..................................................... 137 DMAC Registers ............................................................... 136 DMAxCNT................................................................. 136 DMAxCON ................................................................ 136 DMAxPAD................................................................. 136 DMAxREQ ................................................................ 136 DMAxSTA ................................................................. 136 DMAxSTB ................................................................. 136 DSP Engine......................................................................... 33 Multiplier......................................................................35 E ECAN Module Baud Rate Setting..................................................... 236 ECAN1 Register Map (C1CTRL1.WIN = 0 or 1) .........58 ECAN1 Register Map (C1CTRL1.WIN = 0) ................ 58 ECAN1 Register Map (C1CTRL1.WIN = 1) ................ 59 ECAN2 Register Map (C2CTRL1.WIN = 0 or 1) .........61 ECAN2 Register Map (C2CTRL1.WIN = 0) .......... 61, 62 Frame Types............................................................. 231 Message Reception .................................................. 233 Message Transmission ............................................. 235 Modes of Operation .................................................. 233 Overview ................................................................... 231 Electrical Characteristics...................................................309 AC ............................................................................. 316 Enhanced CAN Module..................................................... 231 Equations A/D Conversion Clock Period ................................... 278 Bit Clock Frequency.................................................. 265 Calculating the PWM Period ..................................... 172 Calculation for Maximum PWM Resolution............... 172 COFSG Period.......................................................... 263 Device Operating Frequency .................................... 150 PWM Period.............................................................. 178 PWM Resolution....................................................... 178 Relationship Between Device and SPI Clock Speed ..................................................... 208 Serial Clock Rate...................................................... 213 Time Quantum for Clock Generation........................ 237 UART Baud Rate with BRGH = 0 ............................. 224 UART Baud Rate with BRGH = 1 ............................. 224 Errata .................................................................................. 21 F Flash Program Memory ...................................................... 77 Control Registers........................................................ 78 Operations .................................................................. 78 Programming Algorithm.............................................. 80 RTSP Operation ......................................................... 78 Table Instructions ....................................................... 77 Flexible Configuration ....................................................... 289 FSCM Delay for Crystal and PLL Clock Sources................... 86 Device Resets............................................................. 86 I I/O Ports............................................................................ 159 Parallel I/O (PIO) ...................................................... 159 Write/Read Timing.................................................... 160 I 2 C Addresses................................................................. 215 Baud Rate Generator ............................................... 213 General Call Address Support.................................. 215 Interrupts .................................................................. 213 IPMI Support............................................................. 215 Master Mode Operation Clock Arbitration ............................................... 216 Multi-Master Communication, Bus Collision and Bus Arbitration .................... 216 Operating Modes ...................................................... 213 Registers .................................................................. 213 Slave Address Masking ............................................ 215 Slope Control............................................................ 216 Software Controlled Clock Stretching (STREN = 1)..................................................... 215 I 2 C Module I2C1 Register Map...................................................... 53 I2C2 Register Map...................................................... 53 I 2 S Mode Operation .......................................................... 269 Data Justification ...................................................... 269 Frame and Data Word Length Selection .................. 269 In-Circuit Debugger........................................................... 295 In-Circuit Emulation .......................................................... 289 In-Circuit Serial Programming (ICSP)....................... 289, 295 Infrared Support Built-in IrDA Encoder and Decoder........................... 225 External IrDA, IrDA Clock Output ............................. 225 Input Capture Registers .................................................................. 170 Input Change Notification Module..................................... 160 Instruction Addressing Modes ............................................ 67 File Register Instructions ............................................ 67 Fundamental Modes Supported ................................. 68 MAC Instructions ........................................................ 68 MCU Instructions ........................................................ 67 Move and Accumulator Instructions............................ 68 Other Instructions ....................................................... 68 Instruction Set Overview................................................................... 300 Summary .................................................................. 297© 2007 Microchip Technology Inc. Preliminary DS70165E-page 361 dsPIC33F Instruction-Based Power-Saving Modes........................... 157 Idle ............................................................................ 158 Sleep......................................................................... 157 Internal RC Oscillator Use with WDT ........................................................... 294 Internet Address................................................................ 365 Interrupt Control and Status Registers................................ 91 IECx ............................................................................ 91 IFSx............................................................................. 91 INTCON1 .................................................................... 91 INTCON2 .................................................................... 91 IPCx ............................................................................ 91 Interrupt Setup Procedures............................................... 133 Initialization ............................................................... 133 Interrupt Disable........................................................ 133 Interrupt Service Routine .......................................... 133 Trap Service Routine ................................................ 133 Interrupt Vector Table (IVT) ................................................ 87 Interrupts Coincident with Power Save Instructions.......... 158 J JTAG Boundary Scan Interface ........................................ 289 M Memory Organization.......................................................... 39 Microchip Internet Web Site.............................................. 365 Modes of Operation Disable ...................................................................... 233 Initialization ............................................................... 233 Listen All Messages.................................................. 233 Listen Only................................................................ 233 Loopback .................................................................. 233 Normal Operation...................................................... 233 Modulo Addressing ............................................................. 68 Applicability................................................................. 70 Operation Example ..................................................... 69 Start and End Address................................................ 69 W Address Register Selection .................................... 69 Motor Control PWM .......................................................... 175 Motor Control PWM Module 8-Output Register Map................................................ 52 MPLAB ASM30 Assembler, Linker, Librarian ................... 306 MPLAB ICD 2 In-Circuit Debugger ................................... 307 MPLAB ICE 2000 High-Performance Universal In-Circuit Emulator .................................................... 307 MPLAB ICE 4000 High-Performance Universal In-Circuit Emulator .................................................... 307 MPLAB Integrated Development Environment Software.................................................................... 305 MPLAB PM3 Device Programmer .................................... 307 MPLINK Object Linker/MPLIB Object Librarian ................ 306 N NVM Module Register Map............................................................... 66 O Open-Drain Configuration ................................................. 160 Output Compare ............................................................... 171 Registers................................................................... 174 P Packaging ......................................................................... 351 Details....................................................................... 352 Marking ..................................................................... 351 Peripheral Module Disable (PMD) .................................... 158 PICSTART Plus Development Programmer..................... 308 Pinout I/O Descriptions (table)............................................ 25 PMD Module Register Map .............................................................. 66 POR and Long Oscillator Start-up Times ........................... 86 PORTA Register Map .............................................................. 64 PORTB Register Map .............................................................. 64 PORTC Register Map .............................................................. 65 PORTD Register Map .............................................................. 65 PORTE Register Map .............................................................. 65 PORTF Register Map .............................................................. 65 PORTG Register Map .............................................................. 66 Power-Saving Features .................................................... 157 Clock Frequency and Switching ............................... 157 Program Address Space..................................................... 39 Construction ............................................................... 72 Data Access from Program Memory Using Program Space Visibility.................................... 75 Data Access from Program Memory Using Table Instructions ............................................... 74 Data Access from, Address Generation ..................... 73 Memory Map............................................................... 39 Table Read Instructions TBLRDH ............................................................. 74 TBLRDL.............................................................. 74 Visibility Operation...................................................... 75 Program Memory Interrupt Vector........................................................... 40 Organization ............................................................... 40 Reset Vector............................................................... 40 Pulse-Width Modulation Mode.......................................... 172 PWM Center-Aligned.......................................................... 179 Complementary Mode .............................................. 180 Complementary Output Mode .................................. 181 Duty Cycle ................................................................ 172 Edge-Aligned ............................................................ 178 Independent Output Mode........................................ 181 Operation During CPU Idle Mode............................. 183 Operation During CPU Sleep Mode ......................... 183 Output Override ........................................................ 181 Output Override Synchronization ............................. 182 Period ............................................................... 172, 178 Single Pulse Mode.................................................... 181 PWM Dead-Time Generators ........................................... 180 Assignment............................................................... 181 Ranges ..................................................................... 181 Selection Bits (table)................................................. 181 PWM Duty Cycle Comparison Units ..................................................... 179 Immediate Updates .................................................. 179 Register Buffers........................................................ 179 PWM Fault Pins................................................................ 182 Enable Bits ............................................................... 182 Fault States .............................................................. 182 Input Modes.............................................................. 183 Cycle-by-Cycle ................................................. 183 Latched............................................................. 183dsPIC33F DS70165E-page 362 Preliminary © 2007 Microchip Technology Inc. Priority....................................................................... 182 PWM Output and Polarity Control ..................................... 182 Output Pin Control .................................................... 182 PWM Special Event Trigger.............................................. 183 Postscaler ................................................................. 183 PWM Time Base ............................................................... 177 Continuous Up/Down Count Modes..........................177 Double Update Mode ................................................ 178 Free-Running Mode .................................................. 177 Postscaler ................................................................. 178 Prescaler................................................................... 178 Single-Shot Mode ..................................................... 177 PWM Update Lockout ....................................................... 183 Q QEI 16-bit Up/Down Position Counter Mode.................... 198 Alternate 16-bit Timer/Counter.................................. 199 Count Direction Status .............................................. 198 Error Checking .......................................................... 198 Interrupts................................................................... 200 Logic ......................................................................... 198 Operation During CPU Idle Mode ............................. 199 Operation During CPU Sleep Mode..........................199 Position Measurement Mode .................................... 198 Programmable Digital Noise Filters ..........................199 Timer Operation During CPU Idle Mode ................... 200 Timer Operation During CPU Sleep Mode................ 199 Quadrature Encoder Interface (QEI)................................. 197 Quadrature Encoder Interface (QEI) Module Register Map............................................................... 53 R Reader Response ............................................................. 366 Registers ADxCHS0 (ADCx Input Channel 0 Select................. 285 ADxCHS123 (ADCx Input Channel 1, 2, 3 Select) ... 284 ADxCON1 (ADCx Control 1)..................................... 279 ADxCON2 (ADCx Control 2)..................................... 281 ADxCON3 (ADCx Control 3)..................................... 282 ADxCON4 (ADCx Control 4)..................................... 283 ADxCSSH (ADCx Input Scan Select High)............... 286 ADxCSSL (ADCx Input Scan Select Low) ................ 286 ADxPCFGH (ADCx Port Configuration High)............ 287 ADxPCFGL (ADCx Port Configuration Low)............. 287 CiBUFPNT1 (ECAN Filter 0-3 Buffer Pointer)........... 248 CiBUFPNT2 (ECAN Filter 4-7 Buffer Pointer)........... 249 CiBUFPNT3 (ECAN Filter 8-11 Buffer Pointer).........249 CiBUFPNT4 (ECAN Filter 12-15 Buffer Pointer).......250 CiCFG1 (ECAN Baud Rate Configuration 1) ............ 246 CiCFG2 (ECAN Baud Rate Configuration 2) ............ 247 CiCTRL1 (ECAN Control 1) ...................................... 238 CiCTRL2 (ECAN Control 2) ...................................... 239 CiEC (ECAN Transmit/Receive Error Count)............ 245 CiFCTRL (ECAN FIFO Control)................................ 241 CiFEN1 (ECAN Acceptance Filter Enable) ............... 248 CiFIFO (ECAN FIFO Status)..................................... 242 CiFMSKSEL1 (ECAN Filter 7-0 Mask Selection)...... 252 CiINTE (ECAN Interrupt Enable) ..............................244 CiINTF (ECAN Interrupt Flag)................................... 243 CiRXFnEID (ECAN Acceptance Filter n Extended Identifier)........................................... 251 CiRXFnSID (ECAN Acceptance Filter n Standard Identifier) ........................................... 251 CiRXFUL1 (ECAN Receive Buffer Full 1) ................. 254 CiRXFUL2 (ECAN Receive Buffer Full 2) ................. 254 CiRXMnEID (ECAN Acceptance Filter Mask n Extended Identifier) .......................................... 253 CiRXMnSID (ECAN Acceptance Filter Mask n Standard Identifier) ........................................... 253 CiRXOVF1 (ECAN Receive Buffer Overflow 1)........ 255 CiRXOVF2 (ECAN Receive Buffer Overflow 2)........ 255 CiTRBnDLC (ECAN Buffer n Data Length Control).. 258 CiTRBnDm (ECAN Buffer n Data Field Byte m)....... 258 CiTRBnEID (ECAN Buffer n Extended Identifier) ..... 257 CiTRBnSID (ECAN Buffer n Standard Identifier)...... 257 CiTRBnSTAT (ECAN Receive Buffer n Status)........ 259 CiTRmnCON (ECAN TX/RX Buffer m Control) ........ 256 CiVEC (ECAN Interrupt Code).................................. 240 CLKDIV (Clock Divisor) ............................................ 153 CORCON (Core Control)...................................... 32, 92 DCICON1 (DCI Control 1) ........................................ 270 DCICON2 (DCI Control 2) ........................................ 271 DCICON3 (DCI Control 3) ........................................ 272 DCISTAT (DCI Status).............................................. 273 DFLTCON (QEI Control)........................................... 203 DMACS0 (DMA Controller Status 0)......................... 144 DMACS1 (DMA Controller Status 1)......................... 146 DMAxCNT (DMA Channel x Transfer Count)........... 143 DMAxCON (DMA Channel x Control)....................... 140 DMAxPAD (DMA Channel x Peripheral Address) .... 143 DMAxREQ (DMA Channel x IRQ Select) ................. 141 DMAxSTA (DMA Channel x RAM Start Address A) . 142 DMAxSTB (DMA Channel x RAM Start Address B) . 142 DSADR (Most Recent DMA RAM Address) ............. 147 DTCON1 (Dead-Time Control 1) .............................. 189 DTCON2 (Dead-Time Control 2) .............................. 190 FLTACON (Fault A Control)...................................... 191 FLTBCON (Fault B Control)...................................... 192 I2CxCON (I2Cx Control)........................................... 217 I2CxMSK (I2Cx Slave Mode Address Mask)............ 221 I2CxSTAT (I2Cx Status) ........................................... 219 ICxCON (Input Capture x Control)............................ 170 IEC0 (Interrupt Enable Control 0) ............................. 105 IEC1 (Interrupt Enable Control 1) ............................. 107 IEC2 (Interrupt Enable Control 2) ............................. 109 IEC3 (Interrupt Enable Control 3) ............................. 111 IEC4 (Interrupt Enable Control 4) ............................. 113 IFS0 (Interrupt Flag Status 0) ..................................... 96 IFS1 (Interrupt Flag Status 1) ..................................... 98 IFS2 (Interrupt Flag Status 2) ................................... 100 IFS3 (Interrupt Flag Status 3) ................................... 102 IFS4 (Interrupt Flag Status 4) ................................... 104 INTCON1 (Interrupt Control 1).................................... 93 INTCON2 (Interrupt Control 2).................................... 95 INTTREG Interrupt Control and Status Register ...... 132 IPC0 (Interrupt Priority Control 0) ............................. 114 IPC1 (Interrupt Priority Control 1) ............................. 115 IPC10 (Interrupt Priority Control 10) ......................... 124 IPC11 (Interrupt Priority Control 11) ......................... 125 IPC12 (Interrupt Priority Control 12) ......................... 126 IPC13 (Interrupt Priority Control 13) ......................... 127 IPC14 (Interrupt Priority Control 14) ......................... 128 IPC15 (Interrupt Priority Control 15) ......................... 129 IPC16 (Interrupt Priority Control 16) ......................... 130 IPC17 (Interrupt Priority Control 17) ......................... 131 IPC2 (Interrupt Priority Control 2) ............................. 116 IPC3 (Interrupt Priority Control 3) ............................. 117 IPC4 (Interrupt Priority Control 4) ............................. 118 IPC5 (Interrupt Priority Control 5) ............................. 119 IPC6 (Interrupt Priority Control 6) ............................. 120© 2007 Microchip Technology Inc. Preliminary DS70165E-page 363 dsPIC33F IPC7 (Interrupt Priority Control 7) ............................. 121 IPC8 (Interrupt Priority Control 8) ............................. 122 IPC9 (Interrupt Priority Control 9) ............................. 123 NVMCOM (Flash Memory Control)............................. 79 OCxCON (Output Compare x Control) ..................... 174 OSCCON (Oscillator Control) ................................... 152 OSCTUN (FRC Oscillator Tuning) ............................ 155 OVDCON (Override Control) .................................... 193 PDC1 (PWM Duty Cycle 1)....................................... 194 PDC2 (PWM Duty Cycle 2)....................................... 194 PDC3 (PWM Duty Cycle 3)....................................... 195 PDC4 (PWM Duty Cycle 4)....................................... 195 PLLFBD (PLL Feedback Divisor).............................. 154 PTCON (PWM Time Base Control) .......................... 184 PTMR (PWM Timer Count Value)............................. 185 PTPER (PWM Time Base Period) ............................ 185 PWMCON1 (PWM Control 1) ................................... 187 PWMCON2 (PWM Control 2) ................................... 188 QEICON (QEI Control).............................................. 201 RCON (Reset Control)................................................ 84 RSCON (DCI Receive Slot Control).......................... 274 SEVTCMP (Special Event Compare) ....................... 186 SPIxCON1 (SPIx Control 1)...................................... 210 SPIxCON2 (SPIx Control 2)...................................... 211 SPIxSTAT (SPIx Status and Control) ....................... 209 SR (CPU Status)................................................... 30, 92 T1CON (Timer1 Control)........................................... 162 TSCON (DCI Transmit Slot Control)......................... 274 TxCON (T2CON, T4CON, T6CON or T8CON Control)................................................ 166 TyCON (T3CON, T5CON, T7CON or T9CON Control)................................................ 167 UxMODE (UARTx Mode).......................................... 226 UxSTA (UARTx Status and Control)......................... 228 Reset Clock Source Selection............................................... 85 Special Function Register Reset States ..................... 86 Times .......................................................................... 85 Reset Sequence ................................................................. 87 Resets................................................................................. 83 S Serial Peripheral Interface (SPI) ....................................... 205 Setup for Continuous Output Pulse Generation................ 171 Setup for Single Output Pulse Generation........................ 171 Software Simulator (MPLAB SIM)..................................... 306 Software Stack Pointer, Frame Pointer CALLL Stack Frame.................................................... 67 Special Features of the CPU ............................................ 289 SPI Master, Frame Master Connection ........................... 207 Master/Slave Connection.......................................... 207 Slave, Frame Master Connection ............................. 208 Slave, Frame Slave Connection ............................... 208 SPI Module SPI1 Register Map...................................................... 54 SPI2 Register Map...................................................... 54 Symbols Used in Opcode Descriptions............................. 298 System Control Register Map............................................................... 66 T Temperature and Voltage Specifications AC ............................................................................. 316 Timer1............................................................................... 161 Timer2/3, Timer4/5, Timer6/7 and Timer8/9 ..................... 163 Timing Characteristics CLKO and I/O ........................................................... 319 Timing Diagrams 10-bit A/D Conversion (CHPS = 01, SIMSAM = 0, ASAM = 0, SSRC = 000).................................. 346 10-bit A/D Conversion (CHPS = 01, SIMSAM = 0, ASAM = 1, SSRC = 111, SAMC = 00001).......................................................... 347 12-bit A/D Conversion (ASAM = 0, SSRC = 000)..... 349 CAN I/O .................................................................... 343 Center-Aligned PWM................................................ 179 DCI AC-Link Mode.................................................... 341 DCI Multi -Channel, I 2 S Modes ................................ 339 Dead-Time................................................................ 180 ECAN Bit .................................................................. 236 Edge-Aligned PWM .................................................. 178 External Clock .......................................................... 317 Frame Sync, AC-Link Start-of-Frame ....................... 264 Frame Sync, Multi-Channel Mode ............................ 264 I2Cx Bus Data (Master Mode) .................................. 335 I2Cx Bus Data (Slave Mode) .................................... 337 I2Cx Bus Start/Stop Bits (Master Mode)................... 335 I2Cx Bus Start/Stop Bits (Slave Mode)..................... 337 I 2 S Interface Frame Sync ......................................... 264 Input Capture (CAPx) ............................................... 325 Motor Control PWM .................................................. 327 Motor Control PWM Fault ......................................... 327 OC/PWM .................................................................. 326 Output Compare (OCx) ............................................ 325 QEA/QEB Input ........................................................ 328 QEI Module Index Pulse........................................... 329 Reset, Watchdog Timer, Oscillator Start-up Timer and Power-up Timer............................... 320 SPIx Master Mode (CKE = 0) ................................... 330 SPIx Master Mode (CKE = 1) ................................... 331 SPIx Slave Mode (CKE = 0) ..................................... 332 SPIx Slave Mode (CKE = 1) ..................................... 333 Timer1, 2, 3, 4, 5, 6, 7, 8, 9 External Clock .............. 322 TimerQ (QEI Module) External Clock ....................... 324 Timing Requirements CLKO and I/O ........................................................... 319 DCI AC-Link Mode.................................................... 342 DCI Multi-Channel, I 2 S Modes ................................. 340 External Clock .......................................................... 317 Input Capture............................................................ 325 Timing Specifications 10-bit A/D Conversion Requirements ....................... 348 12-bit A/D Conversion Requirements ....................... 350 CAN I/O Requirements............................................. 343 I2Cx Bus Data Requirements (Master Mode)........... 336 I2Cx Bus Data Requirements (Slave Mode)............. 338 Motor Control PWM Requirements........................... 327 Output Compare Requirements................................ 325 PLL Clock ................................................................. 318 QEI External Clock Requirements............................ 324 QEI Index Pulse Requirements ................................ 329 Quadrature Decoder Requirements ......................... 328 Reset, Watchdog Timer, Oscillator Start-up Timer, Power-up Timer and Brown-out Reset Requirements......................................... 321 Simple OC/PWM Mode Requirements ..................... 326 SPIx Master Mode (CKE = 0) Requirements............ 330 SPIx Master Mode (CKE = 1) Requirements............ 331 SPIx Slave Mode (CKE = 0) Requirements.............. 332 SPIx Slave Mode (CKE = 1) Requirements.............. 334 Timer1 External Clock Requirements....................... 322dsPIC33F DS70165E-page 364 Preliminary © 2007 Microchip Technology Inc. Timer2, Timer4, Timer6 and Timer8 External Clock Requirements.......................................... 323 Timer3, Timer5, Timer7 and Timer9 External Clock Requirements.......................................... 323 U UART Baud Rate Generator (BRG)...............................................224 Break and Sync Transmit Sequence ........................ 225 Flow Control Using UxCTS and UxRTS Pins............ 225 Receiving in 8-bit or 9-bit Data Mode........................ 225 Transmitting in 8-bit Data Mode................................ 225 Transmitting in 9-bit Data Mode................................ 225 UART Module UART1 Register Map.................................................. 54 UART2 Register Map.................................................. 54 V Voltage Regulator (On-Chip)............................................. 293 W Watchdog Timer (WDT) ............................................ 289, 294 Programming Considerations ................................... 294 WWW Address.................................................................. 365 WWW, On-Line Support...................................................... 21© 2007 Microchip Technology Inc. Preliminary DS70165E-page 365 dsPIC33F THE MICROCHIP WEB SITE Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information: • Product Support – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software • General Technical Support – Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing • Business of Microchip – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives CUSTOMER CHANGE NOTIFICATION SERVICE Microchip’s customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest. To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions. CUSTOMER SUPPORT Users of Microchip products can receive assistance through several channels: • Distributor or Representative • Local Sales Office • Field Application Engineer (FAE) • Technical Support Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document. Technical support is available through the web site at: http://support.microchip.comdsPIC33F DS70165E-page 366 Preliminary © 2007 Microchip Technology Inc. READER RESPONSE It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150. Please list the following information, and use this outline to provide us with your comments about this document. To: Technical Publications Manager RE: Reader Response Total Pages Sent ________ From: Name Company Address City / State / ZIP / Country Telephone: (_______) _________ - _________ Application (optional): Would you like a reply? Y N Device: Literature Number: Questions: FAX: (______) _________ - _________ dsPIC33F DS70165E 1. What are the best features of this document? 2. How does this document meet your hardware and software development needs? 3. Do you find the organization of this document easy to follow? If not, why? 4. What additions to the document do you think would enhance the structure and subject? 5. What deletions from the document could be made without affecting the overall usefulness? 6. Is there any incorrect or misleading information (what and where)? 7. How would you improve this document?© 2007 Microchip Technology Inc. Preliminary DS70165E-page 367 dsPIC33F PRODUCT IDENTIFICATION SYSTEM To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office. Architecture: 33 = 16-bit Digital Signal Controller Flash Memory Family: FJ = Flash program memory, 3.3V Product Group: GP2 = General purpose family GP3 = General purpose family GP5 = General purpose family GP7 = General purpose family MC5 = Motor control family MC7 = Motor control family Pin Count: 06 = 64-pin 08 = 80-pin 10 = 100-pin Temperature Range: I = -40°C to +85°C (Industrial) Package: PT = 10x10 or 12x12 mmTQFP (Thin Quad Flatpack) PF = 14x14 mmTQFP (Thin Quad Flatpack) Examples: a) dsPIC33FJ256GP710I/PT: General-purpose dsPIC33, 64 KB program memory, 100-pin, Industrial temp., TQFP package. b) dsPIC33FJ64MC706I/PT-ES: Motor-control dsPIC33, 64 KB program memory, 64-pin, Industrial temp., TQFP package, Engineering Sample. Microchip Trademark Architecture Flash Memory Family Program Memory Size (KB) Product Group Pin Count Temperature Range Package Pattern dsPIC 33 FJ 256 GP7 10 T I / PT - XXX Tape and Reel Flag (if applicable)DS70165E-page 368 Preliminary © 2007 Microchip Technology Inc. AMERICAS Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455 Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088 Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075 Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924 Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260 Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387 Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445 Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509 ASIA/PACIFIC Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Habour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104 China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889 China - Fuzhou Tel: 86-591-8750-3506 Fax: 86-591-8750-3521 China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205 China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066 China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393 China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760 China - Shunde Tel: 86-757-2839-5507 Fax: 86-757-2839-5571 China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118 China - Xian Tel: 86-29-8833-7250 Fax: 86-29-8833-7256 ASIA/PACIFIC India - Bangalore Tel: 91-80-4182-8400 Fax: 91-80-4182-8422 India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632 India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513 Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122 Korea - Gumi Tel: 82-54-473-4301 Fax: 82-54-473-4302 Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934 Malaysia - Penang Tel: 60-4-646-8870 Fax: 60-4-646-5086 Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069 Singapore Tel: 65-6334-8870 Fax: 65-6334-8850 Taiwan - Hsin Chu Tel: 886-3-572-9526 Fax: 886-3-572-6459 Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803 Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102 Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350 EUROPE Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829 France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44 Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781 Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340 Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820 WORLDWIDE SALES AND SERVICE 12/08/06  2003 Microchip Technology Inc. DS21117A-page 1 M MCP6S21/2/6/8 Features • Multiplexed Inputs: 1, 2, 6 or 8 channels • 8 Gain Selections: - +1, +2, +4, +5, +8, +10, +16 or +32 V/V • Serial Peripheral Interface (SPI™) • Rail-to-Rail Input and Output • Low Gain Error: ±1% (max) • Low Offset: ±275 µV (max) • High Bandwidth: 2 to 12 MHz (typ) • Low Noise: 10 nV/√Hz @ 10 kHz (typ) • Low Supply Current: 1.0 mA (typ) • Single Supply: 2.5V to 5.5V Typical Applications • A/D Converter Driver • Multiplexed Analog Applications • Data Acquisition • Industrial Instrumentation • Test Equipment • Medical Instrumentation Package Types Description The Microchip Technology Inc. MCP6S21/2/6/8 are analog Programmable Gain Amplifiers (PGA). They can be configured for gains from +1 V/V to +32 V/V and the input multiplexer can select one of up to eight channels through an SPI port. The serial interface can also put the PGA into shutdown to conserve power. These PGAs are optimized for high speed, low offset voltage and single-supply operation with rail-to-rail input and output capability. These specifications support single supply applications needing flexible performance or multiple inputs. The one channel MCP6S21 and the two channel MCP6S22 are available in 8-pin PDIP, SOIC and MSOP packages. The six channel MCP6S26 is available in 14-pin PDIP, SOIC and TSSOP packages. The eight channel MCP6S28 is available in 16-pin PDIP and SOIC packages. All parts are fully specified from -40°C to +85°C. Block Diagram VREF CH0 VSS SI SCK 1 2 3 4 8 7 6 5 VDD CS VOUT CH1 CH0 CH2 CS SI 1 2 3 4 14 13 12 11 VREF VSS VOUT 5 6 7 10 9 8 CH3 SCK VDD CH5 CH4 CH0 VOUT CH1 VSS CS 1 2 3 4 16 15 14 13 SI SCK 5 6 7 12 11 10 CH2 CH4 CH7 VDD CH5 8 9 SO CH6 CH3 SO CH1 CH0 VSS SI SCK 1 2 3 4 8 7 6 5 VDD CS VOUT MCP6S21 PDIP, SOIC, MSOP MCP6S26 PDIP, SOIC, TSSOP MCP6S28 PDIP, SOIC MCP6S22 PDIP, SOIC, MSOP VREF VOUT VREF VDD CS SI SO SCK CH1 CH0 CH3 CH2 CH5 CH4 CH7 CH6 VSS 8 RF RG MUX SPI™ Logic POR Gain Switches + - Resistor Ladder (RLAD) Single-Ended, Rail-to-Rail I/O, Low Gain PGAMCP6S21/2/6/8 DS21117A-page 2  2003 Microchip Technology Inc. 1.0 ELECTRICAL CHARACTERISTICS Absolute Maximum Ratings † VDD - VSS .........................................................................7.0V All inputs and outputs....................... VSS - 0.3V to VDD +0.3V Difference Input voltage ........................................ |VDD - VSS| Output Short Circuit Current...................................continuous Current at Input Pin .............................................................±2 mA Current at Output and Supply Pins ................................ ±30 mA Storage temperature .....................................-65°C to +150°C Junction temperature ..................................................+150°C ESD protection on all pins (HBM;MM).................. ≥ 2 kV; 200V † Notice: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. PIN FUNCTION TABLE Name Function VOUT Analog Output CH0-CH7 Analog Inputs VSS Negative Power Supply VDD Positive Power Supply SCK SPI Clock Input SI SPI Serial Data Input SO SPI Serial Data Output CS SPI Chip Select VREF External Reference Pin DC CHARACTERISTICS Electrical Specifications: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to +5.5V, VSS = GND, VREF = VSS, G = +1 V/V, Input = CH0 = (0.3V)/G, CH1 to CH7 = 0.3V, RL = 10 kΩ to VDD/2, SI and SCK are tied low and CS is tied high. Parameters Sym Min Typ Max Units Conditions Amplifier Input Input Offset Voltage VOS -275 — +275 µV G = +1, VDD = 4.0V Input Offset Voltage Drift ∆VOS /∆TA — ±4 — µV/°C TA = -40 to +85°C Power Supply Rejection Ratio PSRR 70 85 — dB G = +1 (Note 1) Input Bias Current IB — ±1 — pA CHx = VDD/2 Input Bias Current over Temperature IB — — 250 pA TA = -40 to +85°C, CHx = VDD/2 Input Impedance ZIN — 10 13 ||15 — Ω||pF Input Voltage Range VIVR VSS−0.3 — VDD+0.3 V Amplifier Gain Nominal Gains G — 1 to 32 — V/V +1, +2, +4, +5, +8, +10, +16 or +32 DC Gain Error G = +1 gE -0.1 — +0.1 % VOUT ≈ 0.3V to VDD − 0.3V G ≥ +2 gE -1.0 — +1.0 % VOUT ≈ 0.3V to VDD − 0.3V DC Gain Drift G = +1 ∆G/∆TA — ±0.0002 — %/°C TA = -40 to +85°C G ≥ +2 ∆G/∆TA — ±0.0004 — %/°C TA = -40 to +85°C Internal Resistance RLAD 3.4 4.9 6.4 kΩ (Note 1) Internal Resistance over Temperature ∆RLAD/∆TA — +0.028 — %/°C (Note 1) TA = -40 to +85°C Amplifier Output DC Output Non-linearity G = +1 VONL — ±0.003 — % of FSR VOUT = 0.3V to VDD − 0.3V, VDD = 5.0V G ≥ +2 VONL — ±0.001 — % of FSR VOUT = 0.3V to VDD − 0.3V, VDD = 5.0V Maximum Output Voltage Swing VOH, VOL VSS+20 — VDD-100 mV G ≥ +2; 0.5V output overdrive VSS+60 — VDD-60 G ≥ +2; 0.5V output overdrive, VREF = VDD/2 Short-Circuit Current IO(SC) — ±30 — mA Note 1: RLAD (RF + RG in Figure 4-1) connects VREF , VOUT and the inverting input of the internal amplifier. The MCP6S22 has VREF tied internally to VSS, so VSS is coupled to the internal amplifier and the PSRR spec describes PSRR+ only. We recommend the MCP6S22’s VSS pin be tied directly to ground to avoid noise problems. 2: IQ includes current in RLAD (typically 60 µA at VOUT = 0.3V). Both IQ and IQ_SHDN exclude digital switching currents. 3: The output goes Hi-Z and the registers reset to their defaults; see Section 5.4, “Power-On Reset”. 2003 Microchip Technology Inc. DS21117A-page 3 MCP6S21/2/6/8 Power Supply Supply Voltage VDD 2.5 — 5.5 V Quiescent Current IQ 0.5 1.0 1.35 mA IO = 0 (Note 2) Quiescent Current, Shutdown mode IQ_SHDN — 0.5 1.0 µA IO = 0 (Note 2) Power-On Reset POR Trip Voltage VPOR 1.2 1.7 2.2 V (Note 3) POR Trip Voltage Drift ∆VPOR/∆T — -3.0 — mV/°C TA = -40°C to+85°C DC CHARACTERISTICS (CONTINUED) Electrical Specifications: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to +5.5V, VSS = GND, VREF = VSS, G = +1 V/V, Input = CH0 = (0.3V)/G, CH1 to CH7 = 0.3V, RL = 10 kΩ to VDD/2, SI and SCK are tied low and CS is tied high. Parameters Sym Min Typ Max Units Conditions Note 1: RLAD (RF + RG in Figure 4-1) connects VREF , VOUT and the inverting input of the internal amplifier. The MCP6S22 has VREF tied internally to VSS , so VSS is coupled to the internal amplifier and the PSRR spec describes PSRR+ only. We recommend the MCP6S22’s VSS pin be tied directly to ground to avoid noise problems. 2: IQ includes current in RLAD (typically 60 µA at VOUT = 0.3V). Both IQ and IQ_SHDN exclude digital switching currents. 3: The output goes Hi-Z and the registers reset to their defaults; see Section 5.4, “Power-On Reset”. AC CHARACTERISTICS Electrical Specifications: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to +5.5V, VSS = GND, VREF = VSS, G = +1 V/V, Input = CH0 =(0.3V)/G, CH1 to CH7=0.3V, RL = 10 kΩ to VDD/2, CL = 60 pF, SI and SCK are tied low, and CS is tied high. Parameters Sym Min Typ Max Units Conditions Frequency Response -3 dB Bandwidth BW — 2 to 12 — MHz All gains; VOUT < 100 mVP-P (Note 1) Gain Peaking GPK — 0 — dB All gains; VOUT < 100 mVP-P Total Harmonic Distortion plus Noise f = 1 kHz, G = +1 V/V THD+N — 0.0015 — % VOUT = 1.5V ± 1.0VPK, VDD = 5.0V, BW = 22 kHz f = 1 kHz, G = +4 V/V THD+N — 0.0058 — % VOUT = 1.5V ± 1.0VPK, VDD = 5.0V, BW = 22 kHz f = 1 kHz, G = +16 V/V THD+N — 0.023 — % VOUT = 1.5V ± 1.0VPK, VDD = 5.0V, BW = 22 kHz f = 20 kHz, G = +1 V/V THD+N — 0.0035 — % VOUT = 1.5V ± 1.0VPK, VDD = 5.0V, BW = 80 kHz f = 20 kHz, G = +4 V/V THD+N — 0.0093 — % VOUT = 1.5V ± 1.0VPK, VDD = 5.0V, BW = 80 kHz f = 20 kHz, G = +16 V/V THD+N — 0.036 — % VOUT = 1.5V ± 1.0VPK, VDD = 5.0V, BW = 80 kHz Step Response Slew Rate SR — 4.0 — V/µs G = 1, 2 — 11 — V/µs G = 4, 5, 8, 10 — 22 — V/µs G = 16, 32 Noise Input Noise Voltage Eni — 3.2 — µVP-P f = 0.1 Hz to 10 kHz (Note 2) — 26 — f = 0.1 Hz to 200 kHz (Note 2) Input Noise Voltage Density eni — 10 — nV/√Hz f = 10 kHz (Note 2) Input Noise Current Density ini — 4 — fA/√Hz f = 10 kHz Note 1: See Table 4-1 for a list of typical numbers. 2: Eni and eni include ladder resistance noise. See Figure 2-33 for eni vs. G data.MCP6S21/2/6/8 DS21117A-page 4  2003 Microchip Technology Inc. DIGITAL CHARACTERISTICS Electrical Specifications: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to +5.5V, VSS = GND, VREF = VSS , G = +1 V/V, Input = CH0 = (0.3V)/G, CH1 to CH7 = 0.3V, RL = 10 kΩ to VDD/2, CL = 60 pF, SI and SCK are tied low, and CS is tied high. Parameters Sym Min Typ Max Units Conditions SPI Inputs (CS, SI, SCK) Logic Threshold, Low VIL 0 — 0.3VDD V Input Leakage Current I IL -1.0 — +1.0 µA Logic Threshold, High VIH 0.7VDD — VDD V Amplifier Output Leakage Current — -1.0 — +1.0 µA In Shutdown mode SPI Output (SO, for MCP6S26 and MCP6S28) Logic Threshold, Low VOL VSS — VSS+0.4 V IOL = 2.1 mA, VDD = 5V Logic Threshold, High VOH VDD-0.5 — VDD V IOH = -400 µA SPI Timing Pin Capacitance CPIN — 10 — pF All digital I/O pins Input Rise/Fall Times (CS, SI, SCK) tRFI — — 2 µs Note 1 Output Rise/Fall Times (SO) tRFO — 5 — ns MCP6S26 and MCP6S28 CS high time tCSH 40 — — ns SCK edge to CS fall setup time tCS0 10 — — ns SCK edge when CS is high CS fall to first SCK edge setup time tCSSC 40 — — ns SCK Frequency fSCK — — 10 MHz VDD = 5V (Note 2) SCK high time tHI 40 — — ns SCK low time tLO 40 — — ns SCK last edge to CS rise setup time tSCCS 30 — — ns CS rise to SCK edge setup time tCS1 100 — — ns SCK edge when CS is high SI set-up time tSU 40 — — ns SI hold time tHD 10 — — ns SCK to SO valid propagation delay tDO — — 80 ns MCP6S26 and MCP6S28 CS rise to SO forced to zero tSOZ — — 80 ns MCP6S26 and MCP6S28 Channel and Gain Select Timing Channel Select Time tCH — 1.5 — µs CHx = 0.6V, CHy =0.3V, G = 1, CHx to CHy select CS = 0.7VDD to VOUT 90% point Gain Select Time tG — 1 — µs CHx = 0.3V, G = 5 to G = 1 select, CS = 0.7VDD to VOUT 90% point Shutdown Mode Timing Out of Shutdown mode (CS goes high) to Amplifier Output Turn-on Time tON — 3.5 10 µs CS = 0.7VDD to VOUT 90% point Into Shutdown mode (CS goes high) to Amplifier Output High-Z Turn-off Time tOFF — 1.5 — µs CS = 0.7VDD to VOUT 90% point POR Timing Power-On Reset power-up time tRPU — 30 — µs VDD = VPOR - 0.1V to VPOR + 0.1V, 50% VDD to 90% VOUT point Power-On Reset power-down time tRPD — 10 — µs VDD = VPOR + 0.1V to VPOR - 0.1V, 50% VDD to 90% VOUT point Note 1: Not tested in production. Set by design and characterization. 2: When using the device in the daisy chain configuration, maximum clock frequency is determined by a combination of propagation delay time (tDO ≤ 80 ns), data input setup time (tSU ≥ 40 ns), SCK high time (tHI ≥ 40 ns), and SCK rise and fall times of 5 ns. Maximum fSCK is, therefore, ≈ 5.8 MHz. 2003 Microchip Technology Inc. DS21117A-page 5 MCP6S21/2/6/8 TEMPERATURE CHARACTERISTICS FIGURE 1-1: Channel Select Timing Diagram. FIGURE 1-2: PGA Shutdown timing diagram (must enter correct commands before CS goes high). FIGURE 1-3: Gain Select Timing Diagram. FIGURE 1-4: POR power-up and powerdown timing diagram. Electrical Specifications: Unless otherwise indicated, VDD = +2.5V to +5.5V, VSS = GND. Parameters Sym Min Typ Max Units Conditions Temperature Ranges Specified Temperature Range TA -40 — +85 °C Operating Temperature Range TA -40 — +125 °C (Note Note:) Storage Temperature Range TA -65 — +150 °C Thermal Package Resistances Thermal Resistance, 8L-PDIP θ JA — 85 — °C/W Thermal Resistance, 8L-SOIC θ JA — 163 — °C/W Thermal Resistance, 8L-MSOP θJA — 206 — °C/W Thermal Resistance, 14L-PDIP θ JA — 70 — °C/W Thermal Resistance, 14L-SOIC θ JA — 120 — °C/W Thermal Resistance, 14L-TSSOP θJA — 100 — °C/W Thermal Resistance, 16L-PDIP θ JA — 70 — °C/W Thermal Resistance, 16L-SOIC θ JA — 90 — °C/W Note 1: The MCP6S21/2/6/8 family of PGAs operates over this extended temperature range, but with reduced performance. Operation in this range must not cause TJ to exceed the Maximum Junction Temperature (150°C). CS VOUT tCH 0.6V 0.3V CS tOFF VOUT tON Hi-Z Hi-Z ISS 500 nA (typ) 1.0 mA (typ) 0.3V CS VOUT tG 1.5V 0.3V VDD tRPD VOUT tRPU Hi-Z Hi-Z VPOR - 0.1V VPOR - 0.1V VPOR + 0.1V 0.3V ISS 500 nA (typ) 1.0 mA (typ)MCP6S21/2/6/8 DS21117A-page 6  2003 Microchip Technology Inc. FIGURE 1-5: Detailed SPI Serial Interface Timing, SPI 0,0 mode. FIGURE 1-6: Detailed SPI Serial Interface Timing, SPI 1,1 mode. CS SCK SI tSU tHD tCSSC tSCCS tCSH SO (first 16 bits out are always zeros) tDO tSOZ tLO tHI 1/fSCK tCS0 tCS1 CS SCK SI tSU tHD tCSSC tSCCS SO (first 16 bits out are always zeros) tDO tSOZ tHI tLO 1/fSCK tCS1 tCSH tCS0 2003 Microchip Technology Inc. DS21117A-page 7 MCP6S21/2/6/8 1.1 DC Output Voltage Specs / Model 1.1.1 IDEAL MODEL The ideal PGA output voltage (VOUT) is: EQUATION (see Figure 1-7). This equation holds when there are no gain or offset errors and when the VREF pin is tied to a low impedance source (<< 0.1Ω) at ground potential (VSS = 0V). 1.1.2 LINEAR MODEL The PGA’s linear region of operation, including offset and gain errors, is modeled by the line VO_linear , shown in Figure 1-7. EQUATION The endpoints of this line are at VO_ideal = 0.3V and VDD-0.3V. The gain and offset specifications referred to in the electrical specifications are related to Figure 1-7, as follows: EQUATION FIGURE 1-7: Output Voltage Model with the standard condition VREF = VSS = 0V. 1.1.3 OUTPUT NON-LINEARITY Figure 1-8 shows the Integral Non-Linearity (INL) of the output voltage. EQUATION The output non-linearity specification in the electrical specifications is related to Figure 1-8 by: EQUATION FIGURE 1-8: Output Voltage INL with the standard condition VREF = VSS = 0V. VO_ideal GV IN = V REF V SS = = 0V where: G is the nominal gain VO_linear G 1 g E ( ) + V IN 0.3V VOS = ( ) – + + 0.3V V REF V SS = = 0V g E 100% V 2 V 1 – G VDD ( ) – 0.6V = -------------------------------------- VOS V 1 G 1 g E ( ) + = ------------------------- G T A ∆ ⁄ ∆ g E ∆ T A ∆ = ---------- G +1 = 0 0 0.3 VDD-0.3 VDD VOUT VOUT (V) VIN (V) 0.3 VDD - 0.3 VDD G G G V1 VO_ideal VO_linear V2 INL VOUT VO_linear = – VONL max V 4 V 3 { } , VDD – 0.6V = --------------------------------- 0 V3 V4 INL (V) VIN (V) 0.3 VDD - 0.3 VDD G G G 0MCP6S21/2/6/8 DS21117A-page 8  2003 Microchip Technology Inc. 1.1.4 DIFFERENT VREF CONDITIONS Some of the plots in Section 2.0, “Typical Performance Curves”, have the conditions VREF = VDD/2 or VREF = VDD. The equations and figures above are easily modified for these conditions. The ideal VOUT becomes: EQUATION The complete linear model is: EQUATION where the new VIN endpoints are: EQUATION The equations for extracting the specifications do not change. VO_ideal V REF G V IN V REF = + ( ) – VDD V REF V SS ≥ > = 0V VO_linear G 1 g E ( ) + V IN V IN_L VOS = ( ) – + + 0.3V V IN_L 0.3V V REF – G V REF + = ------------------------------ V IN_R VDD – 0.3V V REF – G V REF + = ----------------------------------------------- 2003 Microchip Technology Inc. DS21117A-page 9 MCP6S21/2/6/8 2.0 TYPICAL PERFORMANCE CURVES Note: Unless otherwise indicated, TA = +25°C, VDD = +5.0V, VSS = GND, VREF = VSS, G= +1 V/V, Input = CH0 = (0.3V)/G, CH1 to CH7 = 0.3V, RL = 10 kΩ to VDD/2, and CL = 60 pF. FIGURE 2-1: DC Gain Error, G = +1. FIGURE 2-2: DC Gain Error, G ≥+2. FIGURE 2-3: Ladder Resistance Drift. FIGURE 2-4: DC Gain Drift, G = +1. FIGURE 2-5: DC Gain Drift, G ≥+2. FIGURE 2-6: Input Offset Voltage, VDD = 4.0V. Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range. 0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20% 22% -0.040 -0.036 -0.032 -0.028 -0.024 -0.020 -0.016 -0.012 -0.008 -0.004 0.000 0.004 DC Gain Error (%) Percentage of Occurrences 420 Samples G = +1 0% 2% 4% 6% 8% 10% 12% 14% 16% 18% -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 DC Gain Error (%) Percentage of Occurrences 420 Samples G t +2 0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20% 22% 0.023 0.024 0.025 0.026 0.027 0.028 0.029 0.030 0.031 Ladder Resistance Drift (%/°C) Percentage of Occurrences 420 Samples TA = -40 to +125°C 0% 2% 4% 6% 8% 10% 12% 14% 16% 18% -0.0006 -0.0005 -0.0004 -0.0003 -0.0002 -0.0001 0.0000 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 DC Gain Drift (%/°C) Percentage of Occurrences 420 Samples G = +1 TA = -40 to +125°C 0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20% 22% 24% -0.0020 -0.0016 -0.0012 -0.0008 -0.0004 0.0000 0.0004 0.0008 0.0012 0.0016 0.0020 DC Gain Drift (%/°C) Percentage of Occurrences 420 Samples G t +2 TA = -40 to +125°C 0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20% -240 -200 -160 -120 -80 -40 0 40 80 120 160 200 240 Input Offset Voltage (µV) Percentage of Occurrences 360 Samples VDD = 4.0 V G = +1MCP6S21/2/6/8 DS21117A-page 10  2003 Microchip Technology Inc. Note: Unless otherwise indicated, TA = +25°C, VDD = +5.0V, VSS = GND, VREF = VSS, G= +1 V/V, Input = CH0 = (0.3V)/G, CH1 to CH7 = 0.3V, RL = 10 kΩ to VDD/2, and CL = 60 pF. FIGURE 2-7: Input Offset Voltage vs. VREF Voltage. FIGURE 2-8: DC Output Non-Linearity vs. Supply Voltage. FIGURE 2-9: Input Noise Voltage Density vs. Frequency. FIGURE 2-10: Input Offset Voltage Drift. FIGURE 2-11: DC Output Non-Linearity vs. Output Swing. FIGURE 2-12: Input Noise Voltage Density vs. Gain. -200 -150 -100 -50 0 50 100 150 200 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VREF Voltage (V) Input Offset Voltage (µV) VDD = +5.5 VDD = +2.5 G = +1 0.00001 0.0001 0.001 0.01 2.5 3.0 3.5 4.0 4.5 5.0 5.5 Power Supply Voltage (V) DC Output Non-Linearity, Input Referred (% of FSR) VONL/G, G = +1 VONL/G, G = +2 VONL/G, G t +4 VOUT = 0.3V to VDD -0.3V 1 10 100 1000 0.1 1 10 100 1000 10000 100000 Frequency (Hz) Input Noise Voltage Density (nV/—Hz) 0.1 1 10 100 1k 10k 100k 0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20% 22% -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 Input Offset Voltage Drift (µV/°C) Percentage of Occurrences 420 Samples TA = -40 to +125°C G = +1 0.0001% 0.0010% 0.0100% 1 10 Output Voltage Swing (VP-P) DC Output Non-Linearity, Input Referred (%) VONL/G, G t +2 VONL/G, G = +1 VDD = +5.5 V 0 1 2 3 4 5 6 7 8 9 10 11 12 1 2 4 5 8 10 16 32 Gain (V/V) Input Noise Voltage Density (nV/—Hz) f = 10 kHz 2003 Microchip Technology Inc. DS21117A-page 11 MCP6S21/2/6/8 Note: Unless otherwise indicated, TA = +25°C, VDD = +5.0V, VSS = GND, VREF = VSS, G= +1 V/V, Input = CH0 = (0.3V)/G, CH1 to CH7 = 0.3V, RL = 10 kΩ to VDD/2, and CL = 60 pF. FIGURE 2-13: PSRR vs. Ambient Temperature. FIGURE 2-14: Input Bias Current vs. Ambient Temperature. FIGURE 2-15: Bandwidth vs. Capacitive Load. FIGURE 2-16: PSRR vs. Frequency. FIGURE 2-17: Input Bias Current vs. Input Voltage. FIGURE 2-18: Gain Peaking vs. Capacitive Load. 70 80 90 100 110 120 -50 -25 0 25 50 75 100 125 Ambient Temperature (°C) Power Supply Rejection Ratio (dB) 1 10 100 1,000 55 65 75 85 95 105 115 125 Ambient Temperature (°C) Input Bias Current (pA) CH0 = VDD VDD = 5.5 V 1 10 100 10 100 1000 Capacitive Load (pF) Bandwidth (MHz) G = +1 G = +4 G = +16 40 50 60 70 80 90 100 10 100 1000 10000 100000 Frequency (Hz) Power Supply Rejection Ratio (dB) VDD = 2.5 V VDD = 5.5 V 10 100 1k 10k 100k Input Referred 1 10 100 1,000 10,000 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 Input Voltage (V) Input Bias Current (pA) TA = +85°C VDD = 5.5 V TA = +125°C 0 1 2 3 4 5 6 7 10 100 1000 Capacitive Load (pF) Gain Peaking (dB) G = +1 G = +4 G = +16MCP6S21/2/6/8 DS21117A-page 12  2003 Microchip Technology Inc. Note: Unless otherwise indicated, TA = +25°C, VDD = +5.0V, VSS = GND, VREF = VSS, G= +1 V/V, Input = CH0 = (0.3V)/G, CH1 to CH7 = 0.3V, RL = 10 kΩ to VDD/2, and CL = 60 pF. FIGURE 2-19: Gain vs. Frequency. FIGURE 2-20: Histogram of Quiescent Current in Shutdown Mode. FIGURE 2-21: Output Voltage Headroom vs. Output Current. FIGURE 2-22: Quiescent Current vs. Supply Voltage. FIGURE 2-23: Quiescent Current in Shutdown Mode vs. Ambient Temperature. FIGURE 2-24: Output Short Circuit Current vs. Supply Voltage. -20 -10 0 10 20 30 40 1.E+05 1.E+06 1.E+07 1.E+08 Frequency (Hz) Gain (dB) G = +2 G = +1 100k 1M 10M 100M G = +32 G = +16 G = +10 G = +8 G = +5 G = +4 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Quiescent Current in Shutdown (µA) Percentage of Occurrences 420 Samples VDD = 5.0 V 1 10 100 0.1 1 10 Output Current Magnitude (mA) Output Voltage Headroom (mV) VDD - VOH and VOL - VSS VDD = +5.5V VDD = +2.5V 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 Supply Voltage (V) Quiescent Current (mA) TA = +125°C TA = +85°C TA = +25°C TA = -40°C 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 -50 -25 0 25 50 75 100 125 Ambient Temperature (°C) Quiescent Current in Shutdown (µA) In Shutdown Mode VDD = 5.0 V 0 5 10 15 20 25 30 35 40 2.5 3.0 3.5 4.0 4.5 5.0 5.5 Power Supply Voltage (V) Output Short Circuit Current (mA) TA = +125°C TA = +85°C TA = +25°C TA = -40°C 2003 Microchip Technology Inc. DS21117A-page 13 MCP6S21/2/6/8 Note: Unless otherwise indicated, TA = +25°C, VDD = +5.0V, VSS = GND, VREF = VSS, G= +1 V/V, Input = CH0 = (0.3V)/G, CH1 to CH7 = 0.3V, RL = 10 kΩ to VDD/2, and CL = 60 pF. FIGURE 2-25: THD plus Noise vs. Frequency, VOUT = 2 VP-P. FIGURE 2-26: Small Signal Pulse Response. FIGURE 2-27: Channel Select Timing. FIGURE 2-28: THD plus Noise vs. Frequency, VOUT = 4 VP-P. FIGURE 2-29: Large Signal Pulse Response. FIGURE 2-30: Gain Select Timing. 0.001 0.01 0.1 1 1.E+02 1.E+03 1.E+04 1.E+05 Frequency (Hz) THD + Noise (%) Measurement BW = 80 kHz VOUT = 2 VP-P VDD = 5.0 V 100 1k 100k 10k G = +4 G = +1 G = +16 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 0.00E+00 2.00E-07 4.00E-07 6.00E-07 8.00E-07 1.00E-06 1.20E-06 1.40E-06 1.60E-06 1.80E-06 2.00E-06 Time (200 ns/div) Output Voltage (10 mV/div) -250 -200 -150 -100 -50 0 50 100 150 200 250 Normalized Input Voltage (50 mV/div) VDD = +5.0V VOUT, G = +1 G = +5 G = +32 GVIN 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.00E+00 5.00E-07 1.00E-06 1.50E-06 2.00E-06 2.50E-06 3.00E-06 3.50E-06 4.00E-06 4.50E-06 5.00E-06 Time (500 ns/div) Output Voltage (V) -20 -15 -10 -5 0 5 10 15 20 Chip Select Voltage (V) 5 0 VOUT (CH0 = 0.6V, G = +1) VOUT (CH1 = 0.3V, G = +1) CS CS 0.001 0.01 0.1 1 1.E+02 1.E+03 1.E+04 1.E+05 Frequency (Hz) THD + Noise (%) Measurement BW = 80 kHz VOUT = 4 VP-P VDD = 5.0 V 100 1k 100k 10k G = +4 G = +1 G = +16 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 0.00E+00 5.00E-07 1.00E-06 1.50E-06 2.00E-06 2.50E-06 3.00E-06 3.50E-06 4.00E-06 4.50E-06 5.00E-06 Time (500 ns/div) Output Voltage (V) -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 Normalized Input Voltage (1V/div) VDD = +5.0V VOUT, G = +1 GVIN G = +5 G = +32 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 0.00E+00 5.00E-07 1.00E-06 1.50E-06 2.00E-06 2.50E-06 3.00E-06 3.50E-06 4.00E-06 4.50E-06 5.00E-06 Time (500 ns/div) Output Voltage (V) -20 -15 -10 -5 0 5 10 15 20 Chip Select Voltage (V) 5 0 VOUT (CH0 = 0.3V, G = +5) VOUT (CH0 = 0.3V, G = +1) CS CSMCP6S21/2/6/8 DS21117A-page 14  2003 Microchip Technology Inc. Note: Unless otherwise indicated, TA = +25°C, VDD = +5.0V, VSS = GND, VREF = VSS, G= +1 V/V, Input = CH0 = (0.3V)/G, CH1 to CH7 = 0.3V, RL = 10 kΩ to VDD/2, and CL = 60 pF. FIGURE 2-31: Output Voltage vs. Shutdown Mode. FIGURE 2-32: POR Trip Voltage. FIGURE 2-33: Output Voltage Swing vs. Frequency. FIGURE 2-34: The MCP6S21/2/6/8 family shows no phase reversal under overdrive. 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0E+00 1.0E-06 2.0E-06 3.0E-06 4.0E-06 5.0E-06 6.0E-06 7.0E-06 8.0E-06 9.0E-06 1.0E-05 Time (1 µs/div) Output Voltage (mV) -25 -20 -15 -10 -5 0 5 10 15 20 25 Chip Select Voltage (V) 5 0 VOUT is "ON" (CH0 = 0.3V, G = +1) Shutdown CS CS Shutdown 0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20% 1.60 1.64 1.68 1.72 1.76 1.80 1.84 1.88 POR Trip Voltage (V) Percentage of Occurrences 420 Samples 0.1 1 10 1.E+04 1.E+05 1.E+06 1.E+07 Frequency (Hz) Output Voltage Swing (VP-P) VDD = 2.5 V VDD = 5.5 V G = +1, +2 G = +4 to +10 G = +16, +32 10k 100k 10M 1M -1 0 1 2 3 4 5 6 0.0E+00 1.0E-03 2.0E-03 3.0E-03 4.0E-03 5.0E-03 6.0E-03 7.0E-03 8.0E-03 9.0E-03 1.0E-02 Time (1 ms/div) Input, Output Voltage (V) VDD = 5.0 V G = +1 V/V VIN VOUT 2003 Microchip Technology Inc. DS21117A-page 15 MCP6S21/2/6/8 3.0 PIN DESCRIPTIONS The descriptions of the pins are listed in Table 3-1. TABLE 3-1: PIN FUNCTION TABLE 3.1 Analog Output The output pin (VOUT) is a low-impedance voltage source. The selected gain (G), selected input (CH0- CH7) and voltage at VREF determine its value. 3.2 Analog Inputs (CH0 thru CH7) The inputs CH0 through CH7 connect to the signal sources. They are high-impedance CMOS inputs with low bias currents. The internal MUX selects which one is amplified to the output. 3.3 External Reference Voltage (VREF ) The VREF pin should be at a voltage between VSS and VDD (the MCP6S22 has VREF tied internally to VSS). The voltage at this pin shifts the output voltage. 3.4 Power Supply (VSS and VDD) The positive power supply pin (VDD) is 2.5V to 5.5V higher than the negative power supply pin (VSS). For normal operation, the other pins are between VSS and VDD. Typically, these parts are used in a single (positive) supply configuration. In this case, VSS is connected to ground and VDD is connected to the supply. VDD will need a local bypass capacitor (0.1 µF) at the VDD pin. It can share a bulk capacitor with nearby analog parts (typically 2.2 µF to 10 µF within 4 inches (100 mm) of the VDD pin. 3.5 Digital Inputs The SPI interface inputs are: Chip Select (CS), Serial Input (SI) and Serial Clock (SCK). These are Schmitttriggered, CMOS logic inputs. 3.6 Digital Output The MCP6S26 and MCP6S28 devices have a SPI interface serial output (SO) pin. This is a CMOS pushpull output and does not ever go High-Z. Once the device is deselected (CS goes high), SO is forced low. This feature supports daisy chaining, as explained in Section 5.3, “Daisy Chain Configuration”. MCP6S21 MCP6S22 MCP6S26 MCP6S28 Symbol Description 1 1 1 1 VOUT Analog Output 2 2 2 2 CH0 Analog Input — 3 3 3 CH1 Analog Input — — 4 4 CH2 Analog Input — — 5 5 CH3 Analog Input — — 6 6 CH4 Analog Input — — 7 7 CH5 Analog Input — — — 8 CH6 Analog Input — — — 9 CH7 Analog Input 3 — 8 10 VREF External Reference Pin 4 4 9 11 VSS Negative Power Supply 5 5 10 12 CS SPI Chip Select 6 6 11 13 SI SPI Serial Data Input — — 12 14 SO SPI Serial Data Output 7 7 13 15 SCK SPI Clock Input 8 8 14 16 VDD Positive Power SupplyMCP6S21/2/6/8 DS21117A-page 16  2003 Microchip Technology Inc. 4.0 ANALOG FUNCTIONS The MCP6S21/2/6/8 family of Programmable Gain Amplifiers (PGA) are based on simple analog building blocks (see Figure 4-1). Each of these blocks will be explained in more detail in the following sub-sections. FIGURE 4-1: PGA Block Diagram. 4.1 Input MUX The MCP6S21 has one input, the MCP6S22 and MCP6S25 have two inputs, the MCP6S26 has six inputs and the MCP6S28 has eight inputs (see Figure 4-1). For the lowest input current, float unused inputs. Tying these pins to a voltage near the used channels also works well. For simplicity, they can be tied to VSS or VDD, but the input current may increase. The one channel MCP6S21 has the lowest input bias current, while the eight channel MCP6S28 has the highest. There is about a 2:1 ratio in IB between these parts. 4.2 Internal Op Amp The internal op amp provides the right combination of bandwidth, accuracy and flexibility. 4.2.1 COMPENSATION CAPACITORS The internal op amp has three compensation capacitors connected to a switching network. They are selected to give good small signal bandwidth at high gains, and good slew rate (full power bandwidth) at low gains. The change in bandwidth as gain changes is between 2 MHz and 12 MHz. Refer to Table 4-1 for more information. TABLE 4-1: GAIN VS. INTERNAL COMPENSATION CAPACITOR MCP6S21–One input (CH0), no SO pin MCP6S22–Two inputs (CH0, CH1), VREF tied internally to VSS, no SO pin MCP6S26–Six inputs (CH0 to CH5) MCP6S28–Eight inputs (CH0 to CH7) VOUT VREF VDD CS SI SO SCK CH1 CH0 CH3 CH2 CH5 CH4 CH7 CH6 VSS 8 RF RG MUX SPI™ Logic POR Gain Switches + - Resistor Ladder (RLAD) Gain (V/V) Internal Compensation Capacitor Typical GBWP (MHz) Typical SR (V/µs) Typical FPBW (MHz) Typical BW (MHz) 1 Large 12 4.0 0.30 12 2 Large 12 4.0 0.30 6 4 Medium 20 11 0.70 10 5 Medium 20 11 0.70 7 8 Medium 20 11 0.70 2.4 10 Medium 20 11 0.70 2.0 16 Small 64 22 1.6 5 32 Small 64 22 1.6 2.0 Note 1: FPBW is the Full Power Bandwidth. These numbers are based on VDD = 5.0V. 2: No changes in DC performance (e.g., VOS) accompany a change in compensation capacitor. 3: BW is the closed-loop, small signal -3 dB bandwidth. 2003 Microchip Technology Inc. DS21117A-page 17 MCP6S21/2/6/8 4.2.2 RAIL-TO-RAIL INPUT The input stage of the internal op amp uses two differential input stages in parallel; one operates at low VIN (input voltage), while the other operates at high VIN. With this topology, the internal inputs can operate to 0.3V past either supply rail. The input offset voltage is measured at both VIN = VSS - 0.3V and VDD + 0.3V to ensure proper operation. The transition between the two input stages occurs when VIN ≈ VDD - 1.5V. For the best distortion and gain linearity, avoid this region of operation. 4.2.3 RAIL-TO-RAIL OUTPUT The Maximum Output Voltage Swing is the maximum swing possible under a particular output load. According to the specification table, the output can reach within 60 mV of either supply rail when RL = 10 kΩ and VREF = VDD/2. See Figure 2-21 for typical performance under other conditions. 4.2.4 INPUT VOLTAGE AND PHASE REVERSAL The amplifier family is designed with CMOS input devices. It is designed to not exhibit phase inversion when the input pins exceed the supply voltages. Figure 2-34 shows an input voltage exceeding both supplies with no resulting phase inversion. The maximum voltage that can be applied to the input pins (CHX) is VSS - 0.3V to VDD + 0.3V. Voltages on the inputs that exceed this absolute maximum rating can cause excessive current to flow in or out of the input pins. Current beyond ±2 mA can cause possible reliability problems. Applications that exceed this rating must be externally limited with an input resistor, as shown in Figure 4-2. FIGURE 4-2: RIN limits the current flow into an input pin. 4.3 Resistor Ladder The resistor ladder shown in Figure 4-1 (RLAD = RF + RG) sets the gain. Placing the gain switches in series with the inverting input reduces the parasitic capacitance, distortion and gain mismatch. RLAD is an additional load on the output of the PGA and causes additional current draw from the supplies. In Shutdown mode, RLAD is still attached to the OUT and VREF pins. Thus, these pins and the internal amplifier’s inverting input are all connected through RLAD and the output is not high-Z (unlike the external op amp). While RLAD contributes to the output noise, its effect is small. Refer to Figure 2-12. 4.4 Shutdown Mode These PGAs use a software shutdown command. When the SPI interface sends a shutdown command, the internal op amp is shut down and its output placed in a high-Z state. The resistive ladder is always connected between VREF and VOUT ; even in shutdown. This means that the output resistance will be on the order of 5 kΩ and there will be a path for output signals to appear at the input. The Power-on Reset (POR) circuitry will temporarily place the part in shutdown when activated. See Section 5.4, “Power-On Reset”, for details. R IN V SS Minimum expected V IN – ( ) 2 mA ≥ ---------------------------------------------------------------------------- R IN Maximum expected V IN ( ) VDD – 2 mA ≥ ------------------------------------------------------------------------------- VIN RIN MCP6S2X VOUT CHXMCP6S21/2/6/8 DS21117A-page 18  2003 Microchip Technology Inc. 5.0 DIGITAL FUNCTIONS The MCP6S21/2/6/8 PGAs use a standard SPI compatible serial interface to receive instructions from a controller. This interface is configured to allow daisy chaining with other SPI devices. There is an internal POR (Power On Reset) that resets the registers under low power conditions. 5.1 SPI Timing Chip Select (CS) toggles low to initiate communication with these devices. The first byte of each SI word (two bytes long) is the instruction byte, which goes into the Instruction Register. The Instruction Register points the second byte to its destination. In a typical application, CS is raised after one word (16 bits) to implement the desired changes. Section 5.3, “Registers”, covers applications using multiple 16-bit words. SO goes low after CS goes high; it has a push-pull output that does not go into a high-Z state. The MCP6S21/2/6/8 devices operate in SPI Modes 0,0 and 1,1. In 0,0 mode, the clock idles in the low state (Figure 5-1) and, in 1,1 mode, the clock idles in the high state (Figure 5-2). In both modes, SI data is loaded into the PGA on the rising edge of SCK and SO data is clocked out on the falling edge of SCK. In 0,0 mode, the falling edge of CS also acts as the first falling edge of SCK (see Figure 5-1). There must be multiples of 16 clocks (SCK) while CS is low or commands will abort (see Section 5.3, “Registers”). FIGURE 5-1: Serial bus sequence for the PGA; SPI 0,0 mode (see Figure 1-5). FIGURE 5-2: Serial bus sequence for the PGA; SPI 1,1 mode (see Figure 1-6). 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 bit 7 CS SCK SI Instruction Byte Data Byte bit 0 bit 7 bit 0 SO (first 16 bits out are always zeros) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 bit 7 CS SCK SI Instruction Byte Data Byte bit 0 bit 7 bit 0 SO (first 16 bits out are always zeros) 2003 Microchip Technology Inc. DS21117A-page 19 MCP6S21/2/6/8 5.2 Registers The analog functions are programmed through the SPI interface using 16-bit words (see Figure 5-1 and Figure 5-2). This data is sent to two of three 8-bit registers: Instruction Register (Register 5-1), Gain Register (Register 5-2) and Channel Register (Register 5-3). The power-up defaults for these three registers are: • Instruction Register: 000x xxx0 • Gain Register: xxxx x000 • Channel Register: xxxx x000 Thus, these devices are initially programmed with the Instruction Register set for NOP (no operation), a gain of +1 V/V and CH0 as the input channel. 5.2.1 INSTRUCTION REGISTER The Instruction Register has 3 command bits and 1 indirect address bit; see Register 5-1. The command bits include a NOP (000) to support daisy chaining (see Section 5.3, “Registers”); the other NOP commands shown should not be used (they are reserved for future use). The device is brought out of Shutdown mode when a valid command, other than NOP or Shutdown, is sent and CS is raised. REGISTER 5-1: INSTRUCTION REGISTER W-0 W-0 W-0 U-x U-x U-x U-x W-0 M2 M1 M0 — — — — A0 bit 7 bit 0 bit 7-5 M2-M0: Command Bits 000 = NOP (Default) (Note 1) 001 = PGA enters Shutdown Mode as soon as a full 16-bit word is sent and CS is raised. (Notes 1 and 2) 010 = Write to register. 011 = NOP (reserved for future use) (Note 1) 1XX = NOP (reserved for future use) (Note 1) bit 4-1 Unimplemented: Read as ‘0’ (reserved for future use) bit 0 A0: Indirect Address Bit 1 = Addresses the Channel Register 0 = Addresses the Gain Register (Default) Note 1: All other bits in the 16-bit word (including A0) are “don’t cares”. 2: The device exits Shutdown mode when a valid command (other than NOP or Shutdown) is sent and CS is raised; that valid command will be executed. Shutdown does not toggle. Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ’1’ = Bit is set ’0’ = Bit is cleared x = Bit is unknownMCP6S21/2/6/8 DS21117A-page 20  2003 Microchip Technology Inc. 5.2.2 SETTING THE GAIN The amplifier can be programmed to produce binary and decimal gain settings between +1 V/V and +32 V/V. Register 5-2 shows the details. At the same time, different compensation capacitors are selected to optimize the bandwidth vs. slew rate trade-off (see Table 4-1). REGISTER 5-2: GAIN REGISTER U-x U-x U-x U-x U-x W-0 W-0 W-0 — — — — — G2 G1 G0 bit 7 bit 0 bit 7-3 Unimplemented: Read as ‘0’ (reserved for future use) bit 2-0 G2-G0: Gain Select Bits 000 = Gain of +1 (Default) 001 = Gain of +2 010 = Gain of +4 011 = Gain of +5 100 = Gain of +8 101 = Gain of +10 110 = Gain of +16 111 = Gain of +32 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ’1’ = Bit is set ’0’ = Bit is cleared x = Bit is unknown 2003 Microchip Technology Inc. DS21117A-page 21 MCP6S21/2/6/8 5.2.3 CHANGING THE CHANNEL If the instruction register is programmed to address the channel register, the multiplexed inputs of the MCP6S22, MCP6S26 and MCP6S28 can be changed per Register 5-3. REGISTER 5-3: CHANNEL REGISTER U-x U-x U-x U-x U-x W-0 W-0 W-0 — — — — — C2 C1 C0 bit 7 bit 0 bit 7-3 Unimplemented: Read as ‘0’ (reserved for future use) bit 2-0 C2-C0: Channel Select Bits MCP6S21 000 = CH0 (Default) 001 = CH0 001 = CH0 011 = CH0 100 = CH0 101 = CH0 110 = CH0 111 = CH0 MCP6S22 CH0 (Default) CH1 CH0 CH1 CH0 CH1 CH0 CH1 MCP6S26 CH0 (Default) CH1 CH2 CH3 CH4 CH5 CH0 CH0 MCP6S28 CH0 (Default) CH1 CH2 CH3 CH4 CH5 CH6 CH7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ’1’ = Bit is set ’0’ = Bit is cleared x = Bit is unknownMCP6S21/2/6/8 DS21117A-page 22  2003 Microchip Technology Inc. 5.2.4 SHUTDOWN COMMAND The software Shutdown command allows the user to put the amplifier into a low power mode (see Register 5-1). In this shutdown mode, most pins are high impedance (Section 4.4, “Shutdown Mode”, and Section 5.1, “SPI Timing”, cover the exceptions at pins VREF, VOUT and SO). Once the PGA has entered shutdown mode, it will remain in this mode until either a valid command is sent to the device (other than NOP or Shutdown), or the device is powered down and back up again. The internal registers maintain their values while in shutdown. Once brought out of shutdown mode, the part comes back to its previous state (see Section 5.4 for exceptions to this rule). This makes it possible to bring the device out of shutdown mode using one command; send a command to select the current channel (or gain) and the device will exit shutdown with the same state that existed before shutdown. 5.3 Daisy Chain Configuration Multiple devices can be connected in a daisy chain configuration by connecting the SO pin from one device to the SI pin on the next device and using common SCK and CS lines (Figure 5-3). This approach reduces PCB layout complexity. The example in Figure 5-3 shows a daisy chain configuration with two devices, although any number of devices can be configured this way. The MCP6S21 and MCP6S22 can only be used at the far end of the daisy chain because they do not have a serial data out (SO) pin. As shown in Figure 5-4 and Figure 5-5, both SI and SO data are sent in 16-bit (2 byte) words. These devices abort any command that is not a multiple of 16 bits. When using the daisy chain configuration, the maximum clock speed possible is reduced to ≈ 5.8 MHz because of the SO pin’s propagation delay (see Electrical Specifications). The internal SPI shift register is automatically loaded with zeros whenever CS goes high (a command is executed). Thus, the first 16-bits out of the SO pin once CS line goes low are always zeros. This means that the first command loaded into the next device in the daisy chain is a NOP. This feature makes it possible to send shorter command and data byte strings when the farthest devices do not need to change. For example, if there were three devices on the chain and only the middle device needed changing, only 32 bytes of data need to be transmitted (for the first and middle devices), and the last device on the chain would receive a NOP when the CS pin is raised to execute the command. FIGURE 5-3: Daisy Chain Configuration. Microcontroller SO CS SCK SI CS SCK SO Device 1 Device 1 00100000 00000000 SO CS SCK SI Device 2 Device 2 00000000 00000000 1. Set CS low. 2. Clock out the instruction and data for Device 2 (16 clocks) to Device 1. 3. Device 1 automatically clocks out all zeros (first 16 clocks) to Device 2. 4. Clock out the instruction and data for Device 1 (16 clocks) to Device 1. 5. Device 1 automatically shifts data from Device 1 to Device 2 (16 clocks). 6. Raise CS. Device 1 01000001 00000111 Device 2 00100000 00000000 PICmicro ® 2003 Microchip Technology Inc. DS21117A-page 23 MCP6S21/2/6/8 FIGURE 5-4: Serial bus sequence for daisy-chain configuration; SPI 0,0 mode. FIGURE 5-5: Serial bus sequence for daisy-chain configuration; SPI 1,1 mode. 1 2 3 4 5 6 7 8 9 10111213141516 bit 7 CS SCK SI Instruction Byte Data Byte bit 0 bit 7 bit 0 SO (first 16 bits out are always zeros) 1 2 3 4 5 6 7 8 9 10111213141516 bit 7 Instruction Byte Data Byte bit 0 bit 7 bit 0 for Device 2 for Device 2 for Device 1 for Device 1 bit 7 Instruction Byte Data Byte bit 0 bit 7 bit 0 for Device 2 for Device 2 1 2 3 4 5 6 7 8 9 10111213141516 bit 7 CS SCK SI Instruction Byte Data Byte bit 0 bit 7 bit 0 SO (first 16 bits out are always zeros) 1 2 3 4 5 6 7 8 9 10111213141516 bit 7 Instruction Byte Data Byte bit 0 bit 7 bit 0 for Device 2 for Device 2 for Device 1 for Device 1 bit 7 Instruction Byte Data Byte bit 0 bit 7 bit 0 for Device 2 for Device 2MCP6S21/2/6/8 DS21117A-page 24  2003 Microchip Technology Inc. 5.4 Power-On Reset If the power supply voltage goes below the POR trip voltage (VDD < VPOR ≈ 1.7V), the internal POR circuit will reset all of the internal registers to their power-up defaults (this is a protection against low power supply voltages). The POR circuit also holds the part in shutdown mode while it is activated. It temporarily overrides the software shutdown status. The POR releases the shutdown circuitry once it is released (VDD > VPOR). A 0.1 µF bypass capacitor mounted as close as possible to the VDD pin provides additional transient immunity.  2003 Microchip Technology Inc. DS21117A-page 25 MCP6S21/2/6/8 6.0 APPLICATIONS INFORMATION 6.1 Changing External Reference Voltage Figure 6-1 shows a MCP6S21 with the VREF pin at 2.5V and VDD = 5.0V. This allows the PGA to amplify signals centered on 2.5V, instead of ground-referenced signals. The voltage reference MCP1525 is buffered by a MCP6021, which gives a low output impedance reference voltage from DC to high frequencies. The source driving the VREF pin should have an output impedance of ≤ 0.1Ω to maintain reasonable gain accuracy. FIGURE 6-1: PGA with Different External Reference Voltage. 6.2 Capacitive Load and Stability Large capacitive loads can cause both stability problems and reduced bandwidth for the MCP6S21/2/6/8 family of PGAs (Figure 2-17 and Figure 2-18). This happens because a large load capacitance decreases the internal amplifier’s phase margin and bandwidth. If the PGA drives a large capacitive load, the circuit in Figure 6-2 can be used. A small series resistor (RISO) at the VOUT improves the phase margin by making the load resistive at high frequencies. It will not, however, improve the bandwidth. FIGURE 6-2: PGA Circuit for Large Capacitive Loads. For CL ≥ 100 pF, a good estimate for RISO is 50Ω. This value can be fine-tuned on the bench. Adjust RISO so that the step response overshoot and frequency response peaking are acceptable at all gains. 6.3 Layout Considerations Good PC board layout techniques will help achieve the performance shown in the Electrical Characteristics and Typical Performance Curves. It will also help minimize EMC (Electro-Magnetic Compatibility) issues. 6.3.1 COMPONENT PLACEMENT Separate circuit functions; digital from analog, low speed from high speed, and low power from high power, as this will reduce crosstalk. Keep sensitive traces short and straight, separating them from interfering components and traces. This is especially important for high frequency (low rise time) signals. Use a 0.1 µF supply bypass capacitor within 0.1 inch (2.5 mm) of the VDD pin. It must connect directly to the ground plane. A multi-layer ceramic chip capacitor, or high-frequency equivalent, works best. 6.3.2 SIGNAL COUPLING The input pins of the MCP6S21/2/6/8 family of operational amplifiers (op amps) are high-impedance. This makes them especially susceptible to capacitively-coupled noise. Using a ground plane helps reduce this problem. When noise is capacitively-coupled, the ground plane provides additional shunt capacitance to ground. When noise is magnetically coupled, the ground plane reduces the mutual inductance between traces. Increasing the separation between traces makes a significant difference. Changing the direction of one of the traces can also reduce magnetic coupling. It may help to locate guard traces next to the victim trace. They should be on both sides of the victim trace and be as close as possible. Connect the guard traces to the ground plane at both ends, and in the middle, of long traces. 6.3.3 HIGH FREQUENCY ISSUES Because the MCP6S21/2/6/8 PGAs reach unity gain near 64 MHz when G = 16 and 32, it is important to use good PCB layout techniques. Any parasitic coupling at high frequency might cause undesired peaking. Filtering high frequency signals (i.e., fast edge rates) can help. To minimize high frequency problems: • Use complete ground and power planes • Use HF, surface mount components • Provide clean supply voltages and bypassing • Keep traces short and straight • Try a linear power supply (e.g., an LDO) VDD VREF MCP6S21 MCP1525 MCP6021 2.5V REF VDD VDD VIN VOUT 1 µF VIN MCP6S2X RISO VOUT CLMCP6S21/2/6/8 DS21117A-page 26  2003 Microchip Technology Inc. 6.4 Typical Applications 6.4.1 GAIN RANGING Figure 6-3 shows a circuit that measures the current IX. It benefits from changing the gain on the PGA. Just as a hand-held multimeter uses different measurement ranges to obtain the best results, this circuit makes it easy to set a high gain for small signals and a low gain for large signals. As a result, the required dynamic range at the PGA’s output is less than at its input (by up to 30 dB). FIGURE 6-3: Wide Dynamic Range Current Measurement Circuit. 6.4.2 SHIFTED GAIN RANGE PGA Figure 6-4 shows a circuit using an MCP6021 at a gain of +10 in front of an MCP6S21. This changes the overall gain range to +10 V/V to +320 V/V (from +1 V/V to +32 V/V). FIGURE 6-4: PGA with Modified Gain Range. It is also easy to shift the gain range to lower gains (see Figure 6-6). The MCP6021 acts as a unity gain buffer, and the resistive voltage divider shifts the gain range down to +0.1 V/V to +3.2 V/V (from +1 V/V to +32 V/V). FIGURE 6-5: PGA with lower gain range. 6.4.3 EXTENDED GAIN RANGE PGA Figure 6-6 gives a +1 V/V to +1024 V/V gain range, which is much greater than the range for a single PGA (+1 V/V to +32 V/V). The first PGA provides input multiplexing capability, while the second PGA only needs one input. These devices can be daisy chained (Section 5.3, “Daisy Chain Configuration”). FIGURE 6-6: PGA with Extended Gain Range. 6.4.4 MULTIPLE SENSOR AMPLIFIER The multiple channel PGAs (except the MCP6S21) allow the user to select which sensor appears on the output (see Figure 6-7). These devices can also change the gain to optimize performance for each sensor. FIGURE 6-7: PGA with Multiple Sensor Inputs. MCP6S2X VOUT IX RS VIN MCP6021 MCP6S21 VOUT 10.0 kΩ 1.11 kΩ + _ VIN MCP6021 MCP6S21 VOUT 10.0 kΩ 1.11 kΩ + _ VIN MCP6S28 MCP6S21 VOUT Sensor # 0 Sensor # 1 Sensor # 5 MCP6S26 VOUT 2003 Microchip Technology Inc. DS21117A-page 27 MCP6S21/2/6/8 6.4.5 EXPANDED INPUT PGA Figure 6-8 shows cascaded MCP6S28s that provide up to 15 input channels. Obviously, Sensors #7-14 have a high total gain range available, as explained in Section 6.4.3, “Extended Gain Range”. These devices can be daisy chained (Section 5.3, “Daisy Chain Configuration”). FIGURE 6-8: PGA with Expanded Inputs. 6.4.6 PICmicro ® MCU WITH EXPANDED INPUT CAPABILITY Figure 6-9 shows an MCP6S28 driving an analog input to a PICmicro ® microcontroller. This greatly expands the input capacity of the microcontroller, while adding the ability to select the appropriate gain for each source. FIGURE 6-9: Expanded Input for a PICmicro Microcontroller. 6.4.7 ADC DRIVER The family of PGA’s is well suited for driving Analog-toDigital Converters (ADC). The binary gains (1, 2, 4, 8, 16 and 32) effectively add five more bits to the input range (see Figure 6-10). This works well for applications needing relative accuracy more than absolute accuracy (e.g., power monitoring). FIGURE 6-10: PGA as an ADC Driver. At low gains, the ADC’s Signal-to-Noise Ratio (SNR) will dominate since the PGAs input noise voltage density is so low (10 nV/√Hz @ 10 kHz, typ.). At high gains, the PGA’s noise will dominate the SNR, but its low noise supports most applications. Again, these PGAs add the flexibility of selecting the best gain for an application. The low pass filter in the block diagram reduces the integrated noise at the MCP6S28’s output and serves as an anti-aliasing filter. This filter may be designed using Microchip’s FilterLab ® software, available at www.microchip.com. Sensors Sensors MCP6S28 MCP6S28 VOUT # 0-6 # 7-14 VIN MCP6S28 PICmicro ® Microcontroller SPI™ VIN MCP6S28 OUT Lowpass Filter 12 MCP3201MCP6S21/2/6/8 DS21117A-page 28  2003 Microchip Technology Inc. 7.0 PACKAGING INFORMATION 7.1 Package Marking Information XXXXXXXX XXXXXNNN YYWW 8-Lead PDIP (300 mil) (MCP6S21, MCP6S22) Example: 8-Lead SOIC (150 mil) (MCP6S21, MCP6S22) Example: XXXXXXXX XXXXYYWW NNN MCP6S21 I/P256 0345 MCP6S21 I/SN0345 256 8-Lead MSOP (MCP6S21, MCP6S22) Example: XXXXX YWWNNN MCP6S21I 345256 Legend: XX...X Customer specific information* YY Year code (last 2 digits of calendar year) WW Week code (week of January 1 is week ‘01’) NNN Alphanumeric traceability code Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line thus limiting the number of available characters for customer specific information. * Standard marking consists of Microchip part number, year code, week code, traceability code (facility code, mask rev#, and assembly code). For marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. 2003 Microchip Technology Inc. DS21117A-page 29 MCP6S21/2/6/8 Package Marking Information (Con’t) 14-Lead PDIP (300 mil) (MCP6S26) Example: 14-Lead SOIC (150 mil) (MCP6S26) Example: XXXXXXXXXXXXXX XXXXXXXXXXXXXX YYWWNNN XXXXXXXXXXX YYWWNNN MCP6S26-I/P XXXXXXXXXXXXXX 0345256 XXXXXXXXXXX MCP6S26ISL 0345256 XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXX NNN YYWW 14-Lead TSSOP (4.4mm) (MCP6S26) Example: MCP6S26IST 256 0345MCP6S21/2/6/8 DS21117A-page 30  2003 Microchip Technology Inc. Package Marking Information (Con’t) 16-Lead PDIP (300 mil) (MCP6S28) Example: 16-Lead SOIC (150 mil) (MCP6S28) Example: XXXXXXXXXXXXXX XXXXXXXXXXXXXX YYWWNNN XXXXXXXXXXXXX YYWWNNN MCP6S28-I/P XXXXXXXXXXXXXX 0345256 XXXXXXXXXXXXX MCP6S28-I/SL 0345256 XXXXXXXXXXXXXXXXXXXXXXXX 2003 Microchip Technology Inc. DS21117A-page 31 MCP6S21/2/6/8 8-Lead Plastic Dual In-line (P) – 300 mil (PDIP) B1 B A1 A L A2 p α E eB β c E1 n D 1 2 Units INCHES* MILLIMETERS Dimension Limits MIN NOM MAX MIN NOM MAX Number of Pins n 8 8 Pitch p .100 2.54 Top to Seating Plane A .140 .155 .170 3.56 3.94 4.32 Molded Package Thickness A2 .115 .130 .145 2.92 3.30 3.68 Base to Seating Plane A1 .015 0.38 Shoulder to Shoulder Width E .300 .313 .325 7.62 7.94 8.26 Molded Package Width E1 .240 .250 .260 6.10 6.35 6.60 Overall Length D .360 .373 .385 9.14 9.46 9.78 Tip to Seating Plane L .125 .130 .135 3.18 3.30 3.43 Lead Thickness c .008 .012 .015 0.20 0.29 0.38 Upper Lead Width B1 .045 .058 .070 1.14 1.46 1.78 Lower Lead Width B .014 .018 .022 0.36 0.46 0.56 Overall Row Spacing § eB .310 .370 .430 7.87 9.40 10.92 Mold Draft Angle Top α 5 10 15 5 10 15 Mold Draft Angle Bottom β 5 10 15 5 10 15 * Controlling Parameter Notes: Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed JEDEC Equivalent: MS-001 Drawing No. C04-018 .010” (0.254mm) per side. § Significant CharacteristicMCP6S21/2/6/8 DS21117A-page 32  2003 Microchip Technology Inc. 8-Lead Plastic Small Outline (SN) – Narrow, 150 mil (SOIC) Foot Angle φ 0 4 8 0 4 8 Mold Draft Angle Bottom β 0 12 15 0 12 15 Mold Draft Angle Top α 0 12 15 0 12 15 Lead Width B .013 .017 .020 0.33 0.42 0.51 Lead Thickness c .008 .009 .010 0.20 0.23 0.25 Foot Length L .019 .025 .030 0.48 0.62 0.76 Chamfer Distance h .010 .015 .020 0.25 0.38 0.51 Overall Length D .189 .193 .197 4.80 4.90 5.00 Molded Package Width E1 .146 .154 .157 3.71 3.91 3.99 Overall Width E .228 .237 .244 5.79 6.02 6.20 Standoff § A1 .004 .007 .010 0.10 0.18 0.25 Molded Package Thickness A2 .052 .056 .061 1.32 1.42 1.55 Overall Height A .053 .061 .069 1.35 1.55 1.75 Pitch p .050 1.27 Number of Pins n 8 8 Dimension Limits MIN NOM MAX MIN NOM MAX Units INCHES* MILLIMETERS 2 1 D n p B E E1 h L β c 45° φ A2 α A A1 * Controlling Parameter Notes: Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010” (0.254mm) per side. JEDEC Equivalent: MS-012 Drawing No. C04-057 § Significant Characteristic 2003 Microchip Technology Inc. DS21117A-page 33 MCP6S21/2/6/8 8-Lead Plastic Micro Small Outline Package (MS) (MSOP) p A A1 A2 D L c Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not Footprint (Reference) F .035 .037 exceed .010" (0.254mm) per side. Notes: Drawing No. C04-111 *Controlling Parameter Mold Draft Angle Top Mold Draft Angle Bottom Foot Angle Lead Width Lead Thickness β α c B φ 7 7 .004 .010 0 .006 .012 (F) β Dimension Limits Overall Height Molded Package Thickness Molded Package Width Overall Length Foot Length Standoff § Overall Width Number of Pins Pitch A L E1 D A1 E A2 .016 .114 .114 .022 .118 .118 .002 .030 .193 .034 MIN p n Units .026 NOM 8 INCHES .039 0.90 0.95 1.00 0.15 0.30 .008 .016 6 0.10 0.25 0 7 7 0.20 0.40 6 MILLIMETERS* 0.65 0.86 3.00 3.00 0.55 4.90 .044 .122 .028 .122 .038 .006 0.40 2.90 2.90 0.05 0.76 MAX MIN NOM 1.18 0.70 3.10 3.10 0.15 0.97 MAX 8 α E1 E B n 1 2 φ § Significant Characteristic .184 .200 4.67 .5.08MCP6S21/2/6/8 DS21117A-page 34  2003 Microchip Technology Inc. 14-Lead Plastic Dual In-line (P) – 300 mil (PDIP) E1 n D 1 2 eB β E c A A1 B B1 L A2 p α Units INCHES* MILLIMETERS Dimension Limits MIN NOM MAX MIN NOM MAX Number of Pins n 14 14 Pitch p .100 2.54 Top to Seating Plane A .140 .155 .170 3.56 3.94 4.32 Molded Package Thickness A2 .115 .130 .145 2.92 3.30 3.68 Base to Seating Plane A1 .015 0.38 Shoulder to Shoulder Width E .300 .313 .325 7.62 7.94 8.26 Molded Package Width E1 .240 .250 .260 6.10 6.35 6.60 Overall Length D .740 .750 .760 18.80 19.05 19.30 Tip to Seating Plane L .125 .130 .135 3.18 3.30 3.43 Lead Thickness c .008 .012 .015 0.20 0.29 0.38 Upper Lead Width B1 .045 .058 .070 1.14 1.46 1.78 Lower Lead Width B .014 .018 .022 0.36 0.46 0.56 Overall Row Spacing § eB .310 .370 .430 7.87 9.40 10.92 Mold Draft Angle Top α 5 10 15 5 10 15 Mold Draft Angle Bottom β 5 10 15 5 10 15 * Controlling Parameter Notes: Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010” (0.254mm) per side. JEDEC Equivalent: MS-001 Drawing No. C04-005 § Significant Characteristic 2003 Microchip Technology Inc. DS21117A-page 35 MCP6S21/2/6/8 14-Lead Plastic Small Outline (SL) – Narrow, 150 mil (SOIC) Foot Angle φ 0 4 8 0 4 8 Mold Draft Angle Bottom β 0 12 15 0 12 15 Mold Draft Angle Top α 0 12 15 0 12 15 Lead Width B .014 .017 .020 0.36 0.42 0.51 Lead Thickness c .008 .009 .010 0.20 0.23 0.25 Foot Length L .016 .033 .050 0.41 0.84 1.27 Chamfer Distance h .010 .015 .020 0.25 0.38 0.51 Overall Length D .337 .342 .347 8.56 8.69 8.81 Molded Package Width E1 .150 .154 .157 3.81 3.90 3.99 Overall Width E .228 .236 .244 5.79 5.99 6.20 Standoff § A1 .004 .007 .010 0.10 0.18 0.25 Molded Package Thickness A2 .052 .056 .061 1.32 1.42 1.55 Overall Height A .053 .061 .069 1.35 1.55 1.75 Pitch p .050 1.27 Number of Pins n 14 14 Dimension Limits MIN NOM MAX MIN NOM MAX Units INCHES* MILLIMETERS 2 1 D p B n E E1 h L c β 45° φ α A A2 A1 * Controlling Parameter Notes: Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010” (0.254mm) per side. JEDEC Equivalent: MS-012 Drawing No. C04-065 § Significant CharacteristicMCP6S21/2/6/8 DS21117A-page 36  2003 Microchip Technology Inc. 14-Lead Plastic Thin Shrink Small Outline (ST) – 4.4 mm (TSSOP) Foot Angle φ 0 4 8 0 4 8 Mold Draft Angle Bottom β 0 5 10 0 5 10 Mold Draft Angle Top α 0 5 10 0 5 10 Lead Width B1 .007 .010 .012 0.19 0.25 0.30 Lead Thickness c .004 .006 .008 0.09 0.15 0.20 Foot Length L .020 .024 .028 0.50 0.60 0.70 Molded Package Length D .193 .197 .201 4.90 5.00 5.10 Molded Package Width E1 .169 .173 .177 4.30 4.40 4.50 Overall Width E .246 .251 .256 6.25 6.38 6.50 Standoff § A1 .002 .004 .006 0.05 0.10 0.15 Molded Package Thickness A2 .033 .035 .037 0.85 0.90 0.95 Overall Height A .043 1.10 Pitch p .026 0.65 Number of Pins n 14 14 Dimension Limits MIN NOM MAX MIN NOM MAX Units INCHES MILLIMETERS* L β c φ 2 1 D n B p E1 E α A1 A2 A * Controlling Parameter Notes: Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .005” (0.127mm) per side. JEDEC Equivalent: MO-153 Drawing No. C04-087 § Significant Characteristic 2003 Microchip Technology Inc. DS21117A-page 37 MCP6S21/2/6/8 16-Lead Plastic Dual In-line (P) – 300 mil (PDIP) Mold Draft Angle Bottom β 5 10 15 5 10 15 Mold Draft Angle Top α 5 10 15 5 10 15 Overall Row Spacing § eB .310 .370 .430 7.87 9.40 10.92 Lower Lead Width B .014 .018 .022 .036 0.46 0.56 Upper Lead Width B1 .045 .058 .070 1.14 1.46 1.78 Lead Thickness c .008 .012 .015 0.20 0.29 0.38 Tip to Seating Plane L .125 .130 .135 3.18 3.30 3.43 Overall Length D .740 .750 .760 18.80 19.05 19.30 Molded Package Width E1 .240 .250 .260 6.10 6.35 6.60 Shoulder to Shoulder Width E .300 .313 .325 7.62 7.94 8.26 Base to Seating Plane A1 .015 0.38 Molded Package Thickness A2 .115 .130 .145 2.92 3.30 3.68 Top to Seating Plane A .140 .155 .170 3.56 3.94 4.32 Pitch p .100 2.54 Number of Pins n 16 16 Dimension Limits MIN NOM MAX MIN NOM MAX Units INCHES* MILLIMETERS 2 1 D n E1 c β eB E α p L A2 B B1 A A1 * Controlling Parameter Notes: Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010” (0.254mm) per side. JEDEC Equivalent: MS-001 Drawing No. C04-017 § Significant CharacteristicMCP6S21/2/6/8 DS21117A-page 38  2003 Microchip Technology Inc. 16-Lead Plastic Small Outline (SL) – Narrow 150 mil (SOIC) Foot Angle φ 0 4 8 0 4 8 Mold Draft Angle Bottom β 0 12 15 0 12 15 Mold Draft Angle Top α 0 12 15 0 12 15 Lead Width B .013 .017 .020 0.33 0.42 0.51 Lead Thickness c .008 .009 .010 0.20 0.23 0.25 Foot Length L .016 .033 .050 0.41 0.84 1.27 Chamfer Distance h .010 .015 .020 0.25 0.38 0.51 Overall Length D .386 .390 .394 9.80 9.91 10.01 Molded Package Width E1 .150 .154 .157 3.81 3.90 3.99 Overall Width E .228 .237 .244 5.79 6.02 6.20 Standoff § A1 .004 .007 .010 0.10 0.18 0.25 Molded Package Thickness A2 .052 .057 .061 1.32 1.44 1.55 Overall Height A .053 .061 .069 1.35 1.55 1.75 Pitch p .050 1.27 Number of Pins n 16 16 Dimension Limits MIN NOM MAX MIN NOM MAX Units INCHES* MILLIMETERS α A2 E1 1 2 L h B n 45° E p D φ β c A1 A * Controlling Parameter Notes: Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010” (0.254mm) per side. JEDEC Equivalent: MS-012 Drawing No. C04-108 § Significant Characteristic 2003 Microchip Technology Inc. DS21117A-page 39 MCP6S21/2/6/8 NOTES: 2002 Microchip Technology Inc. DS21117A-page 39 MCP6S21/2/6/8 PRODUCT IDENTIFICATION SYSTEM To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office. Sales and Support Data Sheets Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following: 1. Your local Microchip sales office 2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277 3. The Microchip Worldwide Site (www.microchip.com) Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using. New Customer Notification System Register on our web site (www.microchip.com/cn) to receive the most current information on our products. PART NO. -X /XX Temperature Package Range Device Device: MCP6S21: One Channel PGA MCP6S21T: One Channel PGA (Tape and Reel for SOIC and MSOP) MCP6S22: Two Channel PGA MCP6S22T: Two Channel PGA (Tape and Reel for SOIC and MSOP) MCP6S26: Six Channel PGA MCP6S26T: Six Channel PGA (Tape and Reel for SOIC and TSSOP) MCP6S28: Eight Channel PGA MCP6S28T: Eight Channel PGA (Tape and Reel for SOIC) Temperature Range: I = -40°C to +85°C Package: MS = Plastic Micro Small Outline (MSOP), 8-lead P = Plastic DIP (300 mil Body), 8, 14, and 16-lead SN = Plastic SOIC, (150 mil Body), 8-lead SL = Plastic SOIC (150 mil Body), 14, 16-lead ST = Plastic TSSOP (4.4mm Body), 14-lead Examples: a) MCP6S21-I/P: One Channel PGA, PDIP package. b) MCP6S21-I/SN: One Channel PGA, SOIC package. c) MCP6S21-I/MS: One Channel PGA, MSOP package. d) MCP6S22-I/MS: Two Channel PGA, MSOP package. e) MCP6S22T-I/MS: Tape and Reel, Two Channel PGA, MSOP package. f) MCP6S26-I/P: Six Channel PGA, PDIP package. g) MCP6S26-I/SN: Six Channel PGA, SOIC package. h) MCP6S26T-I/ST: Tape and Reel, Six Channel PGA, TSSOP package. i) MCP6S28T-I/SL: Tape and Reel, Eight Channel PGA, SOIC package.MCP6S21/2/6/8 DS21117A-page 40  2002 Microchip Technology Inc. NOTES: 2003 Microchip Technology Inc. DS21117A - page 41 Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip’s products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights. Trademarks The Microchip name and logo, the Microchip logo, KEELOQ, MPLAB, PIC, PICmicro, PICSTART, PRO MATE and PowerSmart are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. FilterLab, microID, MXDEV, MXLAB, PICMASTER, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. Accuron, Application Maestro, dsPIC, dsPICDEM, dsPICDEM.net, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, PICC, PICkit, PICDEM, PICDEM.net, PowerCal, PowerInfo, PowerMate, PowerTool, rfLAB, rfPIC, Select Mode, SmartSensor, SmartShunt, SmartTel and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A. All other trademarks mentioned herein are property of their respective companies. © 2003, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved. Printed on recycled paper. Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999 and Mountain View, California in March 2002. The Company’s quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEELOQ ® code hopping devices, Serial EEPROMs, microperipherals, non-volatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001 certified. Note the following details of the code protection feature on Microchip devices: • Microchip products meet the specification contained in their particular Microchip Data Sheet. • Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. • There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. • Microchip is willing to work with the customer who is concerned about the integrity of their code. • Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.” Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.DS21117A-page 42  2003 Microchip Technology Inc. M AMERICAS Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: 480-792-7627 Web Address: http://www.microchip.com Rocky Mountain 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7966 Fax: 480-792-4338 Atlanta 3780 Mansell Road, Suite 130 Alpharetta, GA 30022 Tel: 770-640-0034 Fax: 770-640-0307 Boston 2 Lan Drive, Suite 120 Westford, MA 01886 Tel: 978-692-3848 Fax: 978-692-3821 Chicago 333 Pierce Road, Suite 180 Itasca, IL 60143 Tel: 630-285-0071 Fax: 630-285-0075 Dallas 4570 Westgrove Drive, Suite 160 Addison, TX 75001 Tel: 972-818-7423 Fax: 972-818-2924 Detroit Tri-Atria Office Building 32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334 Tel: 248-538-2250 Fax: 248-538-2260 Kokomo 2767 S. Albright Road Kokomo, Indiana 46902 Tel: 765-864-8360 Fax: 765-864-8387 Los Angeles 18201 Von Karman, Suite 1090 Irvine, CA 92612 Tel: 949-263-1888 Fax: 949-263-1338 San Jose Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408-436-7950 Fax: 408-436-7955 Toronto 6285 Northam Drive, Suite 108 Mississauga, Ontario L4V 1X5, Canada Tel: 905-673-0699 Fax: 905-673-6509 ASIA/PACIFIC Australia Microchip Technology Australia Pty Ltd Marketing Support Division Suite 22, 41 Rawson Street Epping 2121, NSW Australia Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing Microchip Technology Consulting (Shanghai) Co., Ltd., Beijing Liaison Office Unit 915 Bei Hai Wan Tai Bldg. No. 6 Chaoyangmen Beidajie Beijing, 100027, No. China Tel: 86-10-85282100 Fax: 86-10-85282104 China - Chengdu Microchip Technology Consulting (Shanghai) Co., Ltd., Chengdu Liaison Office Rm. 2401-2402, 24th Floor, Ming Xing Financial Tower No. 88 TIDU Street Chengdu 610016, China Tel: 86-28-86766200 Fax: 86-28-86766599 China - Fuzhou Microchip Technology Consulting (Shanghai) Co., Ltd., Fuzhou Liaison Office Unit 28F, World Trade Plaza No. 71 Wusi Road Fuzhou 350001, China Tel: 86-591-7503506 Fax: 86-591-7503521 China - Hong Kong SAR Microchip Technology Hongkong Ltd. Unit 901-6, Tower 2, Metroplaza 223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 China - Shanghai Microchip Technology Consulting (Shanghai) Co., Ltd. Room 701, Bldg. B Far East International Plaza No. 317 Xian Xia Road Shanghai, 200051 Tel: 86-21-6275-5700 Fax: 86-21-6275-5060 China - Shenzhen Microchip Technology Consulting (Shanghai) Co., Ltd., Shenzhen Liaison Office Rm. 1812, 18/F, Building A, United Plaza No. 5022 Binhe Road, Futian District Shenzhen 518033, China Tel: 86-755-82901380 Fax: 86-755-82966626 China - Qingdao Rm. B505A, Fullhope Plaza, No. 12 Hong Kong Central Rd. Qingdao 266071, China Tel: 86-532-5027355 Fax: 86-532-5027205 India Microchip Technology Inc. India Liaison Office Marketing Support Division Divyasree Chambers 1 Floor, Wing A (A3/A4) No. 11, O’Shaugnessey Road Bangalore, 560 025, India Tel: 91-80-2290061 Fax: 91-80-2290062 Japan Microchip Technology Japan K.K. Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa, 222-0033, Japan Tel: 81-45-471- 6166 Fax: 81-45-471-6122 Korea Microchip Technology Korea 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea 135-882 Tel: 82-2-554-7200 Fax: 82-2-558-5934 Singapore Microchip Technology Singapore Pte Ltd. 200 Middle Road #07-02 Prime Centre Singapore, 188980 Tel: 65-6334-8870 Fax: 65-6334-8850 Taiwan Microchip Technology (Barbados) Inc., Taiwan Branch 11F-3, No. 207 Tung Hua North Road Taipei, 105, Taiwan Tel: 886-2-2717-7175 Fax: 886-2-2545-0139 EUROPE Austria Microchip Technology Austria GmbH Durisolstrasse 2 A-4600 Wels Austria Tel: 43-7242-2244-399 Fax: 43-7242-2244-393 Denmark Microchip Technology Nordic ApS Regus Business Centre Lautrup hoj 1-3 Ballerup DK-2750 Denmark Tel: 45 4420 9895 Fax: 45 4420 9910 France Microchip Technology SARL Parc d’Activite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - ler Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Germany Microchip Technology GmbH Steinheilstrasse 10 D-85737 Ismaning, Germany Tel: 49-089-627-144-100 Fax: 49-089-627-144-44 Italy Microchip Technology SRL Via Quasimodo, 12 20025 Legnano (MI) Milan, Italy Tel: 39-0331-742611 Fax: 39-0331-466781 United Kingdom Microchip Ltd. 505 Eskdale Road Winnersh Triangle Wokingham Berkshire, England RG41 5TU Tel: 44 118 921 5869 Fax: 44-118 921-5820 02/12/03 WORLDWIDE SALES AND SERVICE 100260_en_01 © PHOENIX CONTACT - 11/2007 INTERFACE MCR-VDC-UI-B-DC Data Sheet 1 Description The MCR voltage transducer measures DC voltages in several signal ranges from 0 ... ±20 V DC to 0 ... ±660 V DC and converts them to standardized analog signals. DC voltages can be processed with both positive and negative polarity. The input voltage ranges listed at input terminal blocks 1 to 7 can be varied by ±20% using a calibration potentiometer. The voltage transducer is calibrated by default to 0 ... ±24 V input and 0 ... ±10 V output and is ready for operation when delivered. To use the device with other input or output variables, carry out a ZERO/SPAN adjustment using the potentiometer on the front. 1.1 Features – 3-way electrical isolation – True r.m.s. value measurement – Adjustable voltage ranges – ZERO/SPAN adjustment ±20% 1.2 Method of Operation The input circuit divides the DC voltage at terminal blocks 1 to 7. The resulting signal is electrically isolated and transmitted to the output circuit and is available at the output as a standardized analog signal. 1.3 Field of Application When using the voltage transducer, please ensure that the potential difference between terminal blocks 1 to 7 to ground potential PE or terminal block 8 to ground potential PE U does not exceed ±660 V (this condition applies to circuits that are not grounded). In DC voltage networks, this potential difference must not exceed U = ±100 V (this condition applies to circuits that are grounded). When these conditions are met, safe isolation is ensured between input, output, and supply. Make sure you always use the latest documentation. It can be downloaded at www.download.phoenixcontact.com. A conversion table is available on the Internet at www.download.phoenixcontact.com/general/7000_en_00.pdf. This data sheet is valid for all products listed on the following page: Voltage Transducer for DC VoltagesMCR-VDC-UI-B-DC 100260_en_01 PHOENIX CONTACT 2 2 Ordering Data 3 Technical Data Description Type Order No. Pcs./Pck. MCR voltage transducer, for DC voltages from 0 ... ±20 V DC to 0 ... ±660 V DC, output signal ±10 V/±20 mA MCR-VDC-UI-B-DC 2811116 1 Voltage Measuring Input Input voltage range (input resistance) ±550 V DC (550 kΩ) ±370 V DC (370 kΩ) ±250 V DC (250 kΩ) ±170 V DC (170 kΩ) ±120 V DC (120 kΩ) ±80 V DC (80 kΩ) ±54 V DC (54 kΩ) ±36 V DC (36 kΩ) ±24 V DC (24 kΩ) Maximum input voltage ±660 V DC (not grounded) Maximum input voltage ±100 V DC (to ground) When these values are observed, safe isolation (EN 50178/DIN EN 50178/VDE 0160) is ensured between input, output, and supply. Voltage Output Voltage output signal -10 V ... 10 V Maximum voltage output signal ±15 V Load/output load voltage output > 10 kΩ Ripple < 50 mVPP Current Output Current output signal -20 mA ... 20 mA Maximum current output signal ±30 mA Load/output load voltage output < 500 Ω Ripple < 50 mVPP Power Supply Supply voltage range 18.5 V DC ... 30.2 V DC Maximum current consumption < 50 mA General Data Limit frequency (3 dB) 40 Hz Measuring principle True r.m.s. value measurement Maximum transmission error < 1% (of final value) Maximum temperature coefficient < 0.015%/K Zero adjustment ±20% Span adjustment ±20% Step response (10 - 90%) 12 ms Degree of protection IP20MCR-VDC-UI-B-DC 100260_en_01 PHOENIX CONTACT 3 Pollution degree 2 Width x height x length 22.5 mm x 99 mm x 114.5 mm Housing version Polyamide PA, non-reinforced, green General Data (Continued) Connection Data Conductor cross-section, solid 0.2 mm2 ... 2.5 mm2 Conductor cross-section, stranded 0.2 mm2 ... 2.5 mm2 Stripping length 8 mm Safe Isolation Safe isolation According to EN 50178 Test voltage input/output 1.5 kV (50 Hz, 1 min.) Surge voltage category II Ambient Conditions Ambient temperature (operation) -25°C ... +50°C Conformance/Approvals Conformance CE-compliant UL, USA/Canada u Conformance With EMC Directive 89/336/EEC Noise Immunity According to EN 61000-6-2 Electrostatic discharge EN 61000-4-2 8 kV air discharge Electromagnetic HF field Amplitude modulation Pulse modulation EN 61000-4-3 10 V/m 10 V/m Fast transients (burst) EN 61000-4-4 Input/output/supply: 2 kV/5 kHz Surge current loads (surge) EN 61000-4-5 Input/output: 2 kV/42 Ω Supply: 0.5 kV/2 Ω Conducted interference EN 61000-4-6 Input/output/supply: 10 V Noise Emission According to EN 61000-6-4 Noise emission according to EN 61000-6-4 EN 55011 Class AMCR-VDC-UI-B-DC 100260_en_01 PHOENIX CONTACT 4 4 Block Diagram 5 Safety Notes 6 Structure 1 Supply voltage 2 Output 3 Potentiometer for adjustment 4 Inputs 5 Upper part of the housing can be removed to set the jumpers 6 Universal snap-on foot for EN DIN rails 7 Installation The assignment of the connection terminal blocks is shown in the block diagram. The module can be snapped onto all 35 mm DIN rails according to EN 60715. Install the module in suitable housing to meet the requirements for the protection class. Screw Connection Insert the wires in the corresponding connection terminal block. Use a screwdriver to tighten the screw in the opening above the connection terminal block. CAUTION Installation, operation, and maintenance may only be carried out by qualified electricians. When installing and operating the device, the applicable safety directives (including national safety directives), accident prevention regulations, as well as general technical regulations, must be observed. CAUTION: Electrostatic discharge The module contains components that can be damaged or destroyed by electrostatic discharge. When handling the module, observe the necessary safety precautions against electrostatic discharge (ESD) according to EN 61340-5-1 and EN 61340-5-2. + 24VDC + 24VDC IN OUT GND2 GND3 GND2 GND3 OUT U 9 OUT I 1 5 13 11 3 7 15 10 2 6 14 12 4 8 16 GND 1 ±24V ±170V ±36V ±250V ±54V ±370V ±80V ±550V ±120V J J J 5 6 7 8 1 2 3 4 5 6 7 8 MCR-VDC-UI-B-DC Art.-Nr.: 28 11 11 6 GND 2 OUT I APPROBATIONEN / APPROVALS 1 2 3 4 13 14 15 16 OUT U 9 10 11 12 GND 3 +24VDC ±550V ±170V ±370V 50V OUT GN IN 1 0 2 3 ! " 4 OU 9 $ % & 5 J1 8 7 J1 6 J1 OU GN 70V 50V 70V 5 6 7 8 ±250V ±120V GND 1 ± 80V ± 54V/± 36V/± 24V MCR-VDC-UI-B-DC IN OUT POWER U1 GND1 I GND2 GND2 +24V GND2 GND2 +24V U U5 U2 U6 U3 U7 U4 POWER ZERO SPAN 3 5 4 5 1 2 A B B1 B2MCR-VDC-UI-B-DC 100260_en_01 PHOENIX CONTACT 5 8 Configuration 8.1 Selecting the Input Voltage Range 8.2 Opening the Module • Using a screwdriver, release the locked upper part of the housing on both sides 1. The upper part of the housing and the electronics can now be pulled out approximately 3 cm 2. 8.3 Jumper Settings • Place the jumper (J) in the desired setting for the input voltage. • Close the housing again until it engages with a click. WARNING: Risk of electric shock Never carry out work when voltage is present. ATTENTION: Module damage due to excess voltage If the voltage signal exceeds the voltage range specified at the input signal terminal block by more than 15% (for 0 ... ±660 V more than 5%), the input circuit may be damaged. Input Voltage Adjustment Range (±20%) [V DC] Input Terminal Block Jumper/ Setting 0 ... ±550 V (440 ... 660) 1 0 ... 370 V (296 ... 444) 2 0 ... 250 V (200 ... 300) 3 0 ... 170 V (136 ... 204) 4 0 ... 120 V (96 ... 144) 5 0 ... 80 V (64 ... 96) 6 0 ... 54 V (43 ... 65) 7 J1/setting 1 0 ... 36 V (28 ... 43) 7 J1/setting 2 0 ... 24 V (19 ... 29) 7 J1/setting 3 (default setting) 5 6 7 8 1 2 3 4 1 2 ± ± 50V IN 1 2 3 4 5 8 7 6 70V 50V 70V ± IN U1 GND1 U5 U2 U6 U3 U7 U4 1 2 Carry out a ZERO/SPAN adjustment each time the input or output range is changed. HYBRID TV1 PHOENIX CONTACT J 1 2 3 54V 36V 24V J 1 2 3 54V 36V 24VMCR-VDC-UI-B-DC 100260_en_01 PHOENIX CONTACT GmbH & Co. KG • 32823 Blomberg • Germany • Phone: +49 - 52 35 - 30 0 6 PHOENIX CONTACT • P.O.Box 4100 • Harrisburg • PA 17111-0100 • USA • Phone: +717-944-1300 www.phoenixcontact.com 9 ZERO/SPAN Adjustment The module is calibrated by default to 0 ... ±24 V input and 0 ... ±10 V output. There are two potentiometers on the front of the module for the adjustment: – ZERO: Zero point adjustment – SPAN: Final value adjustment 9.1 Zero Point Adjustment (ZERO) • Connect a calibration device to the input terminal blocks (U(1 - 7) and GND1) and specify a voltage of 0 mV. • Set the output signal value using the ZERO potentiometer: – Voltage output (0 … ±10 V): UOUT = 0 V – Current output (0 … ±20 mA): IOUT = 0 mA 9.2 Final Value Adjustment (SPAN) • Use the calibration device to specify the maximum voltage used within the input voltage range (see "Selecting the Input Voltage Range" on page 5). • Set the output signal value (UOUT = 10 V or IOUT = 20 mA) using the SPAN potentiometer. 1 2 3 4 MCR-VDC-UI-B-DC Art.-Nr.: 28 11 11 6 OUT GN 0 ! " OU 9 $ GN MCR-VDC-UI-B-DC IN OUT POWER U1 GND1 I GND2 GND2 +24V GND2 GND2 +24V U U5 U2 U6 U3 U7 U4 POWER ZERO SPAN Potentiometer Allow the module to warm up for 4 minutes before starting the adjustment procedure. October 30, 2007 LM5072 Integrated 100V Power Over Ethernet PD Interface and PWM Controller with Aux Support General Description The LM5072 Powered Device (PD) interface and PulseWidth-Modulation (PWM) controller provides a complete power solution, fully compliant to IEEE 802.3af, for the PD connecting into Power over Ethernet (PoE) networks. This controller integrates all functions necessary to implement both a PD powered interface and DC-DC converter with a minimum number of external components. The LM5072 provides the flexibility for the PD to also accept power from auxiliary sources such as AC adapters in a variety of configurations. The low RDS(ON) PD interface hot swap MOSFET and programmable DC current limit extend the range of LM5072 applications up to twice the power level of 802.3af compliant PD devices. The 100V maximum voltage rating simplifies selection of the transient voltage suppressor that protects the PD from network transients. The LM5072 includes an easy-to-use PWM controller that facilitates the various single-ended power supply topologies including the flyback, forward and buck. The PWM control scheme is based on peak current mode control, which provides inherent advantages including line feed-forward, cycle-by-cycle current limit, and simplified feedback loop compensation. Two versions of the LM5072 provide either an 80% maximum duty cycle (-80 suffix), or a 50% maximum duty cycle (-50 suffix). Features PD Interface ■ Fully Compliant IEEE 802.3af PD Interface ■ Versatile Auxiliary Power Options ■ 9V Minimum Auxiliary Power Operating Range ■ 100V Maximum Input Voltage Rating ■ Programmable DC Current Limit Up To 800mA ■ 100V, 0.7Ω Hot Swap MOSFET ■ Integrated PD Signature Resistor ■ Integrated PoE Input UVLO ■ Programmable Inrush Current Limit ■ PD Classification Capability ■ Power Good Indicator ■ Thermal Shutdown Protection PWM Controller ■ Current Mode PWM Controller ■ 100V Start-up Regulator ■ Error Amplifier with 2% Voltage Reference ■ Supports Isolated and Non-Isolated Applications ■ Programmable Oscillator Frequency ■ Programmable Soft-Start ■ 800 mA Peak Gate Driver ■ 80% Maximum Duty Cycle with Built-in Slope Compensation (-80 device) ■ 50% Maximum Duty Cycle, No Slope Compensation (-50 device) Applications ■ IEEE 802.3af Compliant PoE Powered Devices ■ Non-Compliant, Application Specific Devices ■ Higher Power Ethernet Powered Devices Packages ■ TSSOP-16 EP (Exposed Pad) Simplified Application Diagram 20184601 © 2007 National Semiconductor Corporation 201846 www.national.com LM5072 Integrated 100V Power Over Ethernet PD Interface and PWM Controller with Aux SupportConnection Diagram 20184602 16 Lead TSSOP-EP Ordering Information Order Number Description NSC Package Type / Drawing Supplied As LM5072MH-50 50% Duty Cycle Limit TSSOP-16EP/MXA16A 92 units per rail LM5072MHX-50 50% Duty Cycle Limit TSSOP-16EP/MXA16A 2500 units on tape and reel LM5072MH-80 80% Duty Cycle Limit TSSOP-16EP/MXA16A 92 units per rail LM5072MHX-80 80% Duty Cycle Limit TSSOP-16EP/MXA16A 2500 units on tape and reel www.national.com 2 LM5072Pin Descriptions Pin Number Name Description 1 RT PWM controller oscillator frequency programming pin. 2 SS Soft-start programming pin. 3 VIN Positive supply pin for the PD interface and the internal PWM controller start-up regulator. 4 RCLASS PD classification programming pin. 5 ICL_FAUX Inrush current limit programming pin; also the front auxiliary power enable pin. 6 DCCL PD interface DC current limit programming pin. 7 VEE Negative supply pin for PD interface; connected to PoE and/or front auxiliary power return path. 8 RTN PWM controller power return; connected to the drain of the internal PD interface hot swap MOSFET; should be externally connected to the reference ground of the PWM controller. 9 OUT PWM controller gate driver output pin. 10 VCC PWM controller start-up regulator output pin. 11 nPGOOD PD interface Power Good indicator and delay timer pin; active low state indicates PoE interface is in normal operation. 12 CS PWM controller current sense input pin. 13 RAUX Rear auxiliary power enable pin; can be programmed for auxiliary power dominance over PoE power. 14 FB PWM controller voltage feedback pin and inverting input of the internal error amplifier; connect to ARTN to disable the error amplifier in isolated dc-dc converter applications. 15 COMP Output of the internal error amplifier and control input to the PWM comparator. In isolated applications, COMP is controlled by the secondary side error amplifier via an opto-coupler. 16 ARTN PWM controller reference ground pin; should be shorted externally to the RTN pin as a single point ground connection to improve noise immunity. EP Exposed metal pad on the underside of the device. It is recommended to connect this pad to a PC Board plane connected to the VEE pin to improve heat dissipation. 3 www.national.com LM5072Absolute Maximum Ratings (Note 1) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications. VIN , RTN to VEE (Note 7) -0.3V to 100V RAUX to ARTN -0.3V to 100V ICL_FAUX to VEE -0.3V to 100V DCCL, RCLASS to VEE -0.3V to 7V nPGOOD to ARTN -0.3V to 16V ARTN to RTN -0.3V to 0.3V VCC, OUT to ARTN -0.3V to 16V CS, FB, RT to ARTN -0.3V to 7V COMP, SS to ARTN -0.3V to 5.5V ESD Rating Human Body Model (Note 2) 2000V Lead Soldering Temp. (Note 3) Wave (4 seconds) Infrared (10 seconds) Vapor Phase (75 seconds) 260°C 240°C 219°C Storage Temperature -55°C to 150°C Junction Temperature 150°C Operating Ratings VIN voltage 9V to 70V External voltage applied to VCC 8V to 15V Operating Junction Temperature -40°C to 125°C Electrical Characteristics (Note 4) Specifications in standard type face are for TJ = +25°C and those in boldface type apply over the full operating junction temperature range. Unless otherwise specified: VIN = 48V, FOSC = 250kHz. Symbol Parameter Conditions Min Typ Max Units Detection and Classification VIN Signature Startup Voltage 1.5 V Signature Resistance 23.25 24.5 26 kΩ Signature Resistor Disengage/ Classification Engage VIN Rising 11.0 12.0 12.6 V Hysteresis 1.9 V Classification Current Turn Off VIN Rising 22 23.5 25 V Classification Voltage 1.213 1.25 1.287 V Supply Current During Classification VIN = 17V 0.7 1.1 mA Line Under Voltage Lock-Out UVLO Release VIN Rising 36 38.5 40 V UVLO Lock out VIN Falling 29.5 31.0 32.5 V UVLO Hysteresis 6 V UVLO Filter 300 µs Power Good VDS Required for Power Good Status 1.3 1.5 1.7 V VDS Hysteresis of Power Good Status 0.8 1.0 1.2 V VGS Required for Power Good Status 4.5 5.5 6.5 V Default Delay Time of Loss-of Power Good Status 30 µs nPGOOD current Source 45 55 65 µA nPGOOD Pull Down Resistance 130 250 Ω nPGOOD Threshold 2.3 2.5 2.7 V Hot Swap RDS(ON) Hot Swap MOSFET Resistance 0.7 1.2 Ω Hot Swap MOSFET Leakage 110 µA Default Inrush Current Limit VDS = 4.0V 120 150 180 mA Default DC Current Limit VDS = 4.0V 380 440 510 mA Front Auxiliary DC Current Limit VDS = 4.0V 470 540 610 mA Inrush Current Limit Programming Accuracy VDS = 4.0V -15 15 % DC Current Limit Programming Accuracy VDS = 4.0V -12 12 % www.national.com 4 LM5072Symbol Parameter Conditions Min Typ Max Units Auxiliary Power Option ICL_FAUX Threshold ICL_FAUX Pin Rising 8.1 8.7 9.3 V ICL_FAUX Pull Down Current 50 µA RAUX Lower Threshold (I = 22 µA) RAUX Pin Rising 2.3 2.5 3.0 V RAUX Lower Threshold Hysteresis 0.8 V RAUX Upper Threshold (I = 250 µA) RAUX Pin Rising 5.4 6.0 6.9 V RAUX Lower Threshold Current 16 22 28 µA RAUX Upper Threshold Current 187 250 313 µA VCC Regulator VccReg VCC Regulation (VccReg) 7.4 7.7 8 V VCC Current Limit 15 mA VCC UVLO (Rising) VccReg – 210 mV VccReg – 100 mV mV VCC UVLO (Falling) 5.9 6.2 6.5 V VIN Supply Current VCC = 10V 2.0 mA Supply Current (Icc) VCC = 10V 3 mA VCC Regulator Dropout VIN – VCC (Note 6) 6.5 V Error Amplifier Gain Bandwidth 3 MHz DC Gain 67 dB Input Voltage 1.225 1.275 V COMP Sink Capability 5 10 mA Current Limit ILIM Delay to Output 30 ns Cycle by Cycle Current Limit Threshold Voltage 0.45 0.5 0.55 V Leading Edge Blanking Time 65 ns CS Sink Impedance (clocked) 35 55 Ω Soft-start Soft-start Current Source 8 10 12 µA Oscillator Frequency1 (RT = 26.1 kΩ) 175 200 225 KHz Frequency2 (RT = 8.7 kΩ) 515 580 645 KHz Sync threshold 2.6 3.2 3.8 V PWM Comparator Delay to Output 25 ns Min Duty Cycle 0 % Max Duty Cycle (-80 Device) 75 80 85 % Max Duty Cycle (-50 Device) 47 50 53 % COMP to PWM Comparator Gain 0.33 COMP Open Circuit Voltage 4.3 5.2 6.1 V COMP Short Circuit Current 0.6 1.0 1.4 mA Slope Compensation (LM5072-80 Device Only) Slope Comp Amplitude 70 90 110 mV Output Section Output High Saturation 0.25 0.75 V Output Low Saturation 0.25 0.75 V t r Rise time CLOAD = 1nF 18 ns t f Fall time CLOAD = 1nF 15 ns PDI Thermal Shutdown (Note 5) 5 www.national.com LM5072Symbol Parameter Conditions Min Typ Max Units Thermal Shutdown Temp. 165 °C Thermal Shutdown Hysteresis 25 °C Thermal Resistance θ JA Junction to Ambient MXA package 40 °C/W Note 1: Absolute Maximum Ratings are limits beyond which damage to the device may occur. Operating Ratings are conditions under which operation of the device is intended to be functional. For guaranteed specifications and test conditions, see the Electrical Characteristics. Note 2: The human body model is a 100 pF capacitor discharged through a 1.5 kΩ resistor into each pin. Note 3: For detailed information on soldering the plastic TSSOP package, refer to the Packaging Databook available from National Semiconductor. Note 4: Minimum and Maximum limits are guaranteed through test, design, or statistical correlation using Statistical Quality Control (SQC) methods. Typical values represent the most likely parametric norm at TJ = 25°C, and are provided for reference purpose only. Limits are used to calculate National’s Average Outgoing Quality Level (AOQL). Note 5: Device thermal limitations may limit usable range. Note 6: The VCC regulator is intended for use solely as a bias supply for the LM5072, dropout assumes 3mA of external VCC current. Note 7: During rear auxiliary operation, the RTN pin can be approximately -0.4V with respect to VEE. This is caused by normal internal bias currents, and will not harm the device. Application of external voltage or current must not cause the absolute maximum rating to be exceeded. www.national.com 6 LM5072Typical Performance Characteristics UVLO Threshold vs Temperature 20184603 Default Current Limit vs Temperature 20184604 Inrush Current Limit vs ICL_FAUX Resistor 20184605 DC Current Limit vs. DCCL Resistor 20184606 Programmed DC Current Limit vs Temperature 20184607 Oscillator Frequency vs Temperature 20184608 7 www.national.com LM5072Oscillator Frequency vs RT Resistance 20184609 Error Amplifier Reference Voltage vs Temperature 20184610 VCC vs I CC 20184611 Input Current vs Input Voltage 20184612 Maximum Duty Cycle vs Temperature 20184613 Soft-start Current vs Temperature 20184614 www.national.com 8 LM5072Specialized Block Diagrams 20184615 FIGURE 1. Top Level Block Diagram 9 www.national.com LM507220184616 FIGURE 2. PWM Controller Block Diagram Description of Operation and Applications Information The LM5072 integrates a fully IEEE 802.3af compliant PD interface and PWM controller in a single integrated circuit, providing a complete and low cost power solution for devices that connect to PoE systems. The implementation requires a minimal number of external components. The LM5072’s Hot Swap PD interface provides four major advantages: 1. An input voltage rating up to 100V that allows greater flexibility when selecting a transient surge suppressor to protect the PD from voltage transients encountered in PoE applications. 2. The integration of the PD signature resistor and other functions including programmable inrush current limit, input voltage under-voltage lock-out (UVLO), PD classification, and thermal shutdown simplifies PD implementation. 3. The PD interface and PWM controller accept power from auxiliary sources including AC adapters and solar cells in various configurations and over a wide range of input voltages. Auxiliary power input can be programmed to be dominant over PoE power. 4. DC current limit is programmable and adjustable to support PoE applications requiring input currents up to 700 mA. The LM5072 includes an easy to use PWM controller based on the peak current mode control technique. Current mode control provides inherent advantages such as line voltage feed-forward, cycle-by-cycle current limit, and simplified closed-loop compensation. The controller’s PWM gate driver is capable of sourcing and sinking peak currents of 800 mA to directly drive the power MOSFET switch of the DC-DC converter. The PWM controller also contains a high gain, high bandwidth error amplifier, a high voltage startup bias regulator, a programmable oscillator for a switching frequency between 50 kHz to 500 kHz, a bias supply (VCC ) under-voltage lock-out circuit, and a programmable soft-start circuit. These features greatly simplify the design and implementation of single ended topologies like the flyback, forward and buck. The LM5072 is available in two versions, the LM5072-50 and LM5072-80. As indicated in the suffix of the part number, the maximum duty cycle of each device is limited to 50% and 80%, respectively. Internal PWM controller slope compensation is provided in the LM5072-80 version. www.national.com 10 LM5072Modes of Operation Per the IEEE 802.3af specification, when a PD is connected to a PoE system it transitions through several operating modes in sequence including detection, classification (optional), turn on, normal operation, and power removal. Each operating mode corresponds to a specific PoE voltage range fed through the Ethernet cable. Figure 3 shows the IEEE 802.3af specified sequence of operating modes and the corresponding PD input voltages. Current steering diode-bridges are required for the PD interface to accept all allowable connections and polarities of PoE voltage from the RJ-45 connector (see the example application circuits in Figures 18, 19, 20 and 21). The bridge will cause some reduction of the input voltage sensed by the LM5072. To guarantee full compliance to the specification in all operating modes, the LM5072 takes into account the voltage drop across the bridge diodes and responds appropriately to the voltage received from the PoE cable. Table 1 presents the response in each operating mode to voltages across the VIN and VEE pins. 20184617 FIGURE 3. Sequence of PoE Operating Modes TABLE 1. Operating Modes With Respect To Input Voltage Mode of Operation Voltage from PoE Cable per IEEE 802.3af LM5072 Input Voltage (VIN pin to VEE pin) Detection (Signature) 2.7V to 10.0V 1.5V to 10.0V Classification 14.5V to 20.5V 12V to 23.5V Startup 42V max 38V (UVLO Release, VIN Rising) Normal Operation 57V to 36V 70V to 32V (UVLO, VIN Falling) 11 www.national.com LM5072Detection Signature During detection mode, a PD must present a signature resistance between 23.75 kΩ and 26.25 kΩ to the PoE power sourcing equipment. This signature impedance distinguishes the PD from non-PoE capable equipment to protect the latter from being accidentally damaged by inadvertent application of PoE voltage levels. To simplify the circuit implementation, the LM5072 integrates the 24.5 kΩ signature resistor, as shown in Figure 4. 20184618 FIGURE 4. Detection Circuit With Integrated PD Signature Resistor During detection mode, the voltage across the VIN and VEE pins is less than 10V. Once signature mode is complete, the LM5072 will disengage the signature resistor to reduce power loss in all other modes. Classification Classification is an optional feature of the IEEE802.3af specification. It is primarily used to identify the power requirements of a particular PD device. This feature will allow the PSE to allocate the appropriate available power to each device on the network. Classification is performed by measuring the current flowing into the PD during this mode. IEEE 802.3af specifies five power classes, each corresponding to a unique range of classification current, as presented in Table 2. The LM5072 simplifies the classification implementation by requiring a single external resistor connected between the RCLASS and VEE pins to program the classification current. The resistor value required for each class is also given in Table 2. TABLE 2. Classification Levels and Required External Resistor Value Class PD Max Power Level ICLASS Range LM5072 From To From To RCLASS Value 0 (Default) 0.44W 12.95W 0 mA 4 mA Open 1 0.44W 3.84W 9 mA 12 mA 130Ω 2 3.84W 6.49W 17 mA 20 mA 71.5Ω 3 6.49W 12.95W 26 mA 30 mA 46.4Ω 4 Reserved Reserved 36 mA 44 mA 31.6Ω 20184619 FIGURE 5. PD Classification – Fulfilled With a Single External Resistor Figure 5 shows the LM5072’s implementation of PD classification using an external resistor connected to the RCLASS pin. During classification, the voltage across the VIN and VEE pins is between 13V and 23.5V. In this voltage range, the class resistor RCLASS is engaged by enabling the 1.25V buffer amplifier and MOSFET. After classification is complete, the voltage from the PSE will increase to the normal operating voltage of the PoE system (48V nominal). When VIN rises above 23.5V, the LM5072 will disengage the RCLASS resistor to reduce on-chip power dissipation. The classification feature is disabled when either the front or rear auxiliary power options are selected, as the classification function is not required when power is supplied from an auxiliary source. The classification function is also disabled when the LM5072 reaches the thermal shutdown temperature threshold (nominally 165°C). This may occur if the LM5072 is www.national.com 12 LM5072operated at elevated ambient temperatures and the classification time exceeds the IEEE802.3af limit of 75 ms. When the classification option is not required, simply leave the RCLASS pin open to set the PD to the default Class 0 state. Class 0 requires that the PSE allocate the maximum IEEE802.3af specified power of 15.4 W (12.95 W at the PD input terminals) to the PD. Undervoltage Lockout (UVLO) The LM5072’s internal preset UVLO circuit continuously monitors the PoE input voltage between the VIN and VEE pins. When the VIN voltage rises above 38V nominal, the UVLO circuit will release the hot swap MOSFET and initiate the startup inrush sequence. When the VIN voltage falls below 31V nominal during normal operating mode, the LM5072 disables the PD by shutting off the hot swap MOSFET. 20184620 FIGURE 6. Preset Input UVLO Function Figure 6 illustrates the block diagram of the LM5072 UVLO circuit. This function requires no external components. The UVLO signal can be over-ridden by the front auxiliary power option (see details in the FAUX section) to allow the hot swap MOSFET of the LM5072 to pass power from front auxiliary power sources at voltage levels below the PoE operating voltage. In the rear auxiliary power application (see RAUX section), the auxiliary power source bypasses the hot swap MOSFET and is applied directly to the input of the DC-DC converter. The UVLO function does not need to be over-ridden in this configuration. The PD can draw a maximum current of 400 mA during standard 802.3af PoE operation. This current will cause a voltage drop of up to 8V over a 100m long Ethernet cable. The PD front-end current steering diode bridges may introduce an additional 2V drop. In order to guarantee successful startup at the minimum PoE voltage of 42V, and to continue operation at the minimum requirement of 36V as specified by IEEE 802.3af, these voltage drops must be taken into account. Therefore, the LM5072 UVLO thresholds have been set to 38V on the rising edge of VIN, and 31V on the falling edge of VIN. The 7V nominal hysteresis of the UVLO function, in addition to the inrush current limit (discussed in the next section), prevents false starts and chattering during startup. Inrush Current Limit Programming According to IEEE 802.3af, the input capacitance of the PD power supply must be at least 5 µF (between the VIN and RTN pins). Considering the capacitor tolerance and the effects of voltage and temperature, a nominal capacitor value of at least 10 µF is recommended to ensure 5 µF minimum under all conditions. A greater amount of capacitance may be needed to filter the input ripple of the DC-DC converter. The input capacitors remain discharged during detection and classification modes of the PD interface. The hot swap MOSFET is turned on after the VIN minus VEE voltage difference rises above the UVLO release threshold of 38V nominal. When enabled, the hot swap MOSFET delivers a regulated inrush 13 www.national.com LM5072current to charge the input capacitors of the DC-DC converter. To prevent excessive inrush current, the LM5072 will turn on the hot swap MOSFET in a constant current mode. The default, pre-programmed inrush current of 150 mA can be selected by simply leaving the ICL_FAUX pin open. To adjust the capacitor charging time for a particular application requirement, the inrush limit can be programmed to any value between 150 and 400 mA with an external resistor (RICL ) between the ICL_FAUX and VEE pins, as shown in Figure 7. The relationship between the RICL value and the desired inrush current limit I INRUSH satisfies the following equation: 20184622 FIGURE 7. Input Inrush Limit Programming via RICL The inrush current causes a voltage drop along the PoE Ethernet cable (20Ω maximum) that reduces the input voltage sensed by the LM5072. To avoid erratic turn-on (hiccups), I INRUSH should be programmed such that the input voltage drop due to cable resistance does not exceed the VIN-UVLO hysteresis (6V minimum). DC Current Limit Programming The LM5072 provides a default DC current limit of 440 mA nominal. This default limit can be selected by leaving the DCCL pin open. The LM5072 allows the DC current limit to be programmed within the range from 150 mA to 800 mA. Figure 8 shows the method to program the DC current limit with an external resistor, RDCCL . The relationship between the RDCCL value and the desired DC current limit I DC satisfies the following equation: 20184624 FIGURE 8. Input DC Current Limit Programming via RDCCL The maximum recommended DC current limit is 800 mA. While thermal analysis should be a standard part of the module development process, it may warrant additional attention if the DC current limit is programmed to values in excess of 400 mA. This analysis should include evaluations of the dissipation capability of LM5072 package, heat sinking properties of the PC Board, ambient temperature, and other heat dissipation factors of the operating environment. Power Good and Regulator Startup The Power Good status indicates that the circuit is ready for PWM controller startup to occur. It is established when the input capacitors are fully charged through the hot swap MOSFET. Since the hot swap MOSFET is in series with the input capacitors of the DC-DC converter, its drain-to-source voltage decreases as the charging occurs. Power Good is indicated when the following two conditions are met: the MOSFET drain-to-source voltage drops below 1.5V (with 1V hysteresis), and the gate-to-source voltage is greater than 5V. Circuitry internal to the LM5072 monitors both the drain and gate voltages (see Figure 1), and issues the Power Good status flag by pulling down the nPGOOD pin to a logic low level relative to the ARTN pin. The nPGOOD circuitry consists of a 2.5V comparator, a 130Ω pull down MOSFET, and a 50 µA pull up current source, as shown in Figure 9. Once the Power Good status is established, the nPGOOD pin voltage will be pulled down quickly by the MOSFET, and the PWM controller will start as soon as the nPGOOD pin voltage drops below the 2.5V threshold. www.national.com 14 LM507220184625 FIGURE 9. "Powered-from-PoE" Indictor and Power Good Delay Timer The nPGOOD pin can be configured to perform multiple functions. As shown in Figure 9, it can be used to implement a “Powered from PoE” indicator using an LED with a series current limiting resistor connected to the VCC pin. This may be useful when the auxiliary power source is directly connected to the DC-DC converter stage, a situation known as “RAUX” (see Auxiliary Power Options below). In such a configuration, the nPGOOD pin will be active when the PD is operating from PoE power but not when it is powered from the auxiliary source. However, the “Powered from PoE” indicator is not applicable in systems implementing the front auxiliary power configuration “FAUX” (see Auxiliary Power Options below) because both PoE and auxiliary supply current pass through the hot swap MOSFET. In this configuration, the nPGOOD pin is active when either PoE power or auxiliary power is applied. The designer should ensure that the current drawn by the LED is not more than a few milliamps, as the VCC regulator’s output current is limited to 15 mA and must also supply the LM5072’s bias current and external MOSFET’s gate charging current. Supplying an external VCC that is higher than the regulated level with a bench supply is an easy way to measure VCC load during normal operation. It should also be noted that an external load on the VCC line will increase the dropout voltage of the VCC regulator. This may be a concern when operating from a low voltage rear auxiliary supply. The nPGOOD pin can also be used to implement a delay timer by adding a capacitor from the nPGOOD pin to the ARTN pin. This delay timer will prevent the interruption of the PWM controller’s operation in the event of an intermittent loss of Power Good status. This can be caused by PoE line voltage transients that may occur when switching between normal PoE power and a backup supply system (e.g. a battery or UPS). This condition will create a new “hot swap” event if there is a voltage difference between the backup supply and PoE supply. Since the hot swap MOSFET will likely limit current during such a sudden input voltage change, the nPGOOD pin will momentarily switch to the ”pull up” state. A capacitor on this pin will delay the transition of the nPGOOD pin state in order to provide continuous operation of the PWM controller during such transients. The Power Good filter delay time and capacitor value can be selected with the following equation: For example, selecting 1000 nF for CPGOOD , the delay time will be 50 ms if no LED is used and about 0.83 ms when an LED, drawing 3 mA, is used. The delay required for continued operation will depend on the amplitude of the transient, the DC current limit, the load, and the total amount of input capacitance. Note that this delay does not guarantee continued operation. If the hot swap MOSFET is in current limit for an extended period, it may cause a thermal limit condition. This will result in a complete shutdown of the switching regulator, though no elements in the system will be permanently damaged and normal operation will resume momentarily. The Power Good status will also affect the default DC current limit. Should the sensed drain to source voltage of the hot swap MOSFET (from ARTN to VEE ) exceed 2.5V, the LM5072 will increase the DC current limit from the default 440 mA to 540 mA, thus allowing the PD to continue operation through the transient event. This higher current limit will remain in effect until one of the following events occur: (i) the duration of loss of Power Good status exceeds t PG_Delay , at which time the PWM controller will be disabled, (ii) the increased power dissipation in the hot swap MOSFET causes a thermal limit condition as previously discussed, or (iii) the MOSFET drain to source voltage falls below 1.5V to re-establish Power Good status. Under this condition, the LM5072 will revert back to the default 440 mA DC current limit once Power Good status is restored. Note that if the DC current limit has been programmed externally with RDCCL (see the DC current limit section), the DC current limit will remain at the programmed level even when the Power Good status is lost. Auxiliary Power Options The LM5072 based PD can receive power from auxiliary sources like AC adapters and solar cells in addition to the PoE enabled network. This is a desirable feature when the total system power requirements exceed the PSE’s load capacity. Furthermore, with the auxiliary power option the PD can be used in a standard Ethernet (non-PoE) system. For maximum versatility, the LM5072 accepts two different auxiliary power configurations. The first one, shown in Figure 15 www.national.com LM507210, is the front auxiliary (FAUX) configuration in which the auxiliary source is “diode OR’d” with the PoE potential received from the Ethernet connector. The second configuration, shown in Figure 11, is the rear auxiliary (RAUX) option in which the auxiliary power bypasses the PoE interface and is connected directly to the input of the DC-DC converter through a diode. The FAUX option is desirable if the auxiliary power voltage is similar to the PoE input voltage. However, when the auxiliary supply voltage is much lower than the PoE input voltage, the RAUX option is more favorable because the current from the auxiliary supply is not limited by the hot swap MOSFET DC current limit. A comparison of the FAUX and RAUX options is presented in Table 3. Note the ICL_FAUX and RAUX pins are not reverse voltage protected. If complete reverse protection is desired, series blocking diodes are necessary. 20184627 FIGURE 10. The FAUX Configuration 20184628 FIGURE 11. The RAUX Configuration www.national.com 16 LM5072TABLE 3. Comparison Between FAUX and RAUX Operation Tradeoff FAUX Operation RAUX Operation Hot Swap Protection / Current Limit Protection Automatically provided by the hot swap MOSFET. Requires a series resistor to limit the inrush current during hot swap. Minimum Auxiliary Voltage (at the IC pins) Limited to 18V by the signature detection mode, or by the power requirement (current limit). Only limited by 9V minimum input requirement. Auxiliary Dominance Over PoE Cannot be forced without external components. Can be forced with appropriate RAUX pin configuration. Use of nPGOOD Pin as “Powered from PoE” Indicator Not applicable as power is delivered through the hot swap interface in both PoE and FAUX modes. Supported. Transient Protection Excellent due to active MOSFET current limit. Fair due to passive resistor current limit. The term “Auxiliary Dominance” mentioned in Table 3 means that when the auxiliary power source is connected, it will always power the PD regardless of the state of PoE power. “Aux dominance” is achievable only with the RAUX option, as noted in the table. If the PD is not designed for aux dominance, either the FAUX or RAUX power sources will deliver power to the PD only under the following two conditions: (i) If auxiliary power is applied before PoE power, it will prevent the PD’s detection by the PSE and will supply power indefinitely. This occurs because the PoE input bridge rectifiers will be reverse biased, so no detection signature will be observed. Under this condition, when the auxiliary supply is removed, power will not be maintained because it will take some time for the PSE to perform signature detection and classification before it will supply power. (ii) If auxiliary power is applied after PoE power is already present but has a higher voltage than PoE, it may assume power delivery responsibility. Under the second case, if the supplied voltages are comparable, the load current may be shared inversely proportional to the respective output impedances of each supply. (The output impedance of the PSE supply is increased by the cable series resistance). If PoE power is applied first and has a higher voltage than the non-dominant aux power source, it will continue powering the PD even when the aux power source becomes available. In this case, should PoE power be removed, the auxiliary source will assume power delivery and supply the DC-DC loads without interruption. If either FAUX or RAUX power is supplied prior to PoE power, it will prevent the recognition of the PD by the PSE. Consequently, continuity of power delivery cannot be guaranteed because the PoE supply will not be present when auxiliary power is removed. FAUX Option With the FAUX option, the LM5072 hot swap MOSFET provides inrush and DC current limit protection for the auxiliary power source. To select the FAUX configuration for an auxiliary voltage lower than nominal PoE voltages, the ICL_FAUX pin must be forced above its high threshold to override the VIN UVLO function. Note that when the ICL_FAUX pin is pulled high to override VIN UVLO, it also overrides the inrush current limit programmed by RICL , if present. In this case, the inrush current will revert back to the default 150 mA limit. Pulling up the ICL_FAUX pin will increase the default DC current limit to 540 mA. This increase in DC current limit is necessary because higher current is required to support the PD output power at the lower input potentials observed with auxiliary sources. In cases where the auxiliary supply voltage is comparable to the PoE voltage, there is no need to pull-up the ICL_FAUX pin to override VIN UVLO, and the default DC current limit remains at 440 mA. However, if the DC current limit is externally programmed with RDCCL , the condition of the ICL_FAUX pin will not affect the programmed DC current limit. In other words, programmed DC current limit can be considered a “hard limit” that will not vary in any configuration. RAUX Option The RAUX option is desirable when the auxiliary supply voltage is significantly lower than the PoE voltage or when aux dominance is desired. The inrush and DC current limits of the LM5072 do not protect or limit the RAUX power source, and an additional resistor in the RAUX input path will be needed to provide transient protection. To select the RAUX option without aux dominance, simply pull up the RAUX pin to the auxiliary power supply voltage through a high value resistor. Depending on the auxiliary supply voltage, the resistor value should be selected such that the current flowing into the RAUX pin is approximately 100 µA when the pin is mid-way between the lower and upper RAUX thresholds (approximately 4V). For example, with an 18V non-dominant rear auxiliary supply, the pull up resistor should be: If the PSE load capacity is limited and insufficient, aux dominance will be a desired feature to off load PoE power for other PDs that do not have auxiliary power available. Aux dominance is achieved by pulling the RAUX pin up to the auxiliary supply voltage through a lower value (~5 kΩ) resistor that delivers at least 250 µA into the RAUX pin. When this higher RAUX current level is detected, the LM5072 shuts down the PD interface. In aux dominant mode, the auxiliary power source will supply the PD system as soon as it is applied. PD operation will not be interrupted when the aux power source is connected. The PoE source may or may not actually be removed by the PSE, although the DC current from the network cable is effectively reduced to zero (< 150 µA). IEEE 802.3af requires the AC input impedance to be greater than 2 MΩ to ensure PoE power removal. This condition is not satisfied when the auxiliary power source is applied. The PSE 17 www.national.com LM5072may remove power from a port based on the reduction in DC current. This is commonly known as DC Maintain Power Signature (DC MPS), a common feature in many PSE systems. The high voltage startup regulator of the PWM controller does not have low dropout capability and will not be able to provide VCC when the potential from VIN to RTN is less than 14.5V (no external VCC load). In this case, the auxiliary voltage should supply VCC directly via diode OR-ing to ensure successful startup. When using the RAUX configuration, the positive potential connection of the 0.1 µF signature capacitor should be moved from VIN to RTN/ARTN as shown in Figure 11. This provides a high frequency, low impedance path for the IC's substrate during rear auxiliary operation. Placing the capacitor here will not affect signature mode. It should be noted that rear auxiliary non-dominance does not imply PoE dominance. PoE dominance is difficult to achieve in any PoE system if continuity of power is desired. When the PoE voltage appears, the PSE and PD interface must continue delivering load current in addition to charging the input capacitor bank from the auxiliary voltage to the PoE voltage. The situation is further complicated by the fact that for a given delivered power level, the load current is much higher at the lower input voltages typically used in auxiliary supplies. As is the case during any inrush sequence, very high power is dissipated in the hot swap MOSFET. Consequently, attempting to achieve inrush completion while delivering load current is highly ill advised. Lastly, current delivered to the system may be limited by the PSE, the PD, or both. A Note About FAUX and RAUX Pin False Input State Detection The ICL_FAUX and RAUX pins are used to sense the presence of auxiliary power sources. The input voltage of each pin must remain low when the auxiliary power sources are absent. However, the Or-ing diodes feeding the auxiliary power are not ideal and leak reverse current that can flow from the PoE input to both the ICL_FAUX and RAUX pins. When PoE power is applied, these leakage currents may elevate the potentials of the ICL_FAUX and RAUX pins to false logic states. One of two failure modes may be observed when the power diode feeding the front auxiliary input leaks excessively. First, the current may corrupt the inrush current limit programming, if that feature has been implemented. Second, the leakage current may elevate the voltage on the pin to the ICL_FAUX input threshold, which will force UVLO release. This would certainly interrupt any attempt by the LM5072 PD interface to perform the signature or classification functions. When the power diode that feeds the rear auxiliary input leaks, the false signal could imply a rear auxiliary supply is present. In this case, the internal hot swap MOSFET will be turned off. This would of course block PoE power flow and cause the circuit to prevent startup. This leakage problem at the control input pins can be easily solved. As shown in Figure 12, an additional pull-down resistor (Rpd) across each auxiliary power control input provides a path for the diode leakage current so that it will not create false states on the ICL_FAUX or RAUX pins. 20184629 FIGURE 12. Bypassing Resistor – Prevents False ICL_FAUX and RAUX Pin Signaling High Voltage Startup Regulator The LM5072 contains a startup bias regulator that allows the VIN pin to be connected directly to PoE network voltages as high as 100V. The regulator output is connected to the VCC pin, providing an initial DC bias voltage of 7.7V nominal to start the PWM controller. The regulator is internally current limited to no less than 15 mA to prevent excessive power dissipation. For VCC voltage stability and noise immunity, a capacitor ranging between 0.1 µF to 10 µF is required between the VCC and ARTN pins. Though the current capability of the regulator exceeds the requirements of the IC, no external DC load drawing more than 3 mA should be applied to the output. A small amount of current for a “Powered from PoE” indicator LED (see Power Good section) is acceptable. After the DCDC converter reaches steady state operation, the VCC voltage is typically elevated by an auxiliary winding of the power transformer. The sustained VCC voltage should be greater than 8.1V to guarantee the current supplied by the startup regulator is reduced to zero. Increasing the VCC pin voltage above the regulation level of the startup regulator automatically disables the regulator, thus reducing the power dissipation inside the LM5072. The power savings can be significant as many high voltage MOSFETs require a relatively large amount of gate charge and the gate drive current adds directly to the VCC current draw. A VCC under-voltage lock-out circuit monitors the VCC voltage to prevent the PWM controller from operating as the VCC voltage rises during startup or falls during shutdown. The PWM controller is enabled when the VCC voltage rising edge exceeds 7.6V and disabled when the VCC voltage falling edge drops below 6.25V. Error Amplifier The LM5072 contains a wide-bandwidth, high-gain error amplifier to regulate the output voltage in non-isolated applications. The amplifier’s non-inverting input is set to a fixed reference voltage of 1.25V, while the inverting input is connected to the FB pin. The open-drain output of the amplifier is connected to the COMP pin, which is pulled up internally through a 5 kΩ resistor to an internal 5V bias voltage. Feedback loop compensation can be easily implemented by placing the compensation network, represented by “Zcomp”, between the FB and COMP pins as shown in Figure 13. www.national.com 18 LM507220184630 FIGURE 13. Internal Error Amplifier – Used for Nonisolated Output Applications For isolated applications, the error amplifier function is located on the isolated secondary side. The LM5072’s error amplifier can be disabled by connecting the FB pin to the ARTN pin. As shown in Figure 14, an opto-coupler is normally used to send the feedback signal across the isolation boundary to the COMP pin. The internal pull-up resistor on the COMP pin now serves as the pull-up bias for the opto-coupler transistor. 20184631 FIGURE 14. The Internal Error Amplifier – Bypassed in Isolated Output Applications Current Sense and Limit The LM5072 CS pin senses the transformer primary current signal for current mode control and current limiting of the supply. As shown in Figure 15, the current sense function can be fulfilled by a simple sense resistor RSENSE inserted between the RTN and the source of the primary MOSFET switch. The RSENSE resistor should be non-inductive, and a low pass filter should be used to reject the switching noise on the sensed signal. A simple RC filter using 100Ω and 1 nF is typically sufficient. The filter capacitor must be located close to the CS and ARTN pins. In order to prevent noise propagation and to improve the noise immunity of the current sense, it is very important to minimize the return path of the current sense signal. This is accomplished with direct connection to the ARTN pin and a single point connection to the RTN pin on the PC Board layout. 20184632 FIGURE 15. Current Sense Schemes 20184633 FIGURE 16. Typical Current Sense Waveform Having a Leading Edge Spike The current sense signal is also used for cycle-by-cycle overcurrent protection. When the CS pin signal exceeds 0.5V, the PWM pulse of that cycle will be immediately terminated. The desired cycle-by-cycle over-current protection level is achieved by selecting the proper value of current sense resistor that produces 0.5V at the CS pin. For the LM5072-80, the slope compensation reduces the current limit threshold by about 20% maximum at the 80% maximum duty cycle. The typical current sense waveform as shown in Figure 16 has a spike at the leading edge. This spike is mainly caused by the large gate drive current that flows through the current sense resistor at turn-on (up to 0.8A). The reverse recovery of the rectifier diode on the secondary side and the cross conduction of the primary MOSFET and sync MOSFET (if used) may also contribute to this leading edge spike. With a relatively small external RC filter, this spike can still cause a false over-current condition that terminates the PWM output pulse. To avoid this problem, an internal blanking circuit is provided within the LM5072 as shown in Figure 15. An internal MOSFET is turned on to short the CS pin to ARTN at the end of each cycle. This MOSFET switch remains on for an additional 65ns after the beginning of the next PWM cycle, thus blanking out the leading edge spike on the current sense signal. Soft-Start The LM5072 incorporates a soft-start feature which forces the PWM duty cycle to grow progressively during startup such that the output voltage increases gradually to the steady state level. The soft-start process reduces or prevents both the surge of inrush current and the associated overshoot of the output voltage during startup. The LM5072 achieves soft-start using an internal 10 µA current source to charge an external capacitor connected to the SS pin. The capacitor voltage limits the voltage at the COMP pin which directly controls the PWM duty cycle. The rate of the soft-start ramp can be adjusted by varying the value of the external capacitor. Note that the slope of the supply’s output voltage is influenced by the load condition and the total output capacitance of the supply, as well as the soft-start programming. The supply should be 19 www.national.com LM5072started slowly enough such that the input current is limited below the hot swap MOSFET DC current limit. Gate Driver and Maximum Duty Cycle Limit The LM5072’s gate drive (OUT) pin can source and sink a peak current of 800 mA directly to the gate of the DC-DC converter’s power MOSFET switch. To serve a variety of applications, the LM5072 is available with two options for maximum PWM duty cycle. The LM5072-80 operates at duty cycles up to 80% while the LM5072-50 limits the PWM duty cycle to 50%. Oscillator, Shutdown and Sync Capability The LM5072 requires a single external resistor connected between the RT and ARTN pins to set the oscillator frequency (FOSC ). The RT timing resistor should be located very close to the IC and connected directly to the RT and ARTN pins. The following equation describes the relationship between FOSC and the RT resistor value: The LM5072 can also be synchronized to an external clock signal with a frequency higher than the programmed oscillator frequency determined by the RT resistor. The clock signal should be coupled into the RT pin through a 100 pF capacitor, as shown in Figure 17. Successful synchronization requires the peak voltage of the sync pulse signal to be greater than 3.7V at the RT pin, and pulse width between 15 and 150 ns (set by external components). The RT resistor is always required, whether the oscillator is operated in “free-running” mode or with external synchronization. 20184635 FIGURE 17. Oscillator Synchronization Implementation Special attention should be paid to the relationship between the oscillator frequency and the PWM switching frequency. For the LM5072-50 version, the programmed oscillator frequency is internally divided by two in order to facilitate the 50% duty cycle limit. The PWM output switching frequency is therefore one half of the programmed oscillator frequency. The frequency divider is not used in the LM5072-80 and therefore the PWM output frequency is the same as the oscillator frequency. These relationships also apply to external synchronization frequency versus PWM output frequency. PWM Comparator / Slope Compensation The PWM comparator produces the PWM duty cycle by comparing the current sense ramp signal with an error voltage derived from the error amplifier output. The error amplifier output voltage at the COMP pin is offset by 1.4V and then further attenuated by a 3:1 resistor divider before it is presented to the PWM comparator input. The PWM duty cycle increases with the voltage at the COMP pin. The controller output duty cycle reduces to zero when the COMP pin voltage drops below approximately 1.4V. For duty cycles greater than 50%, current mode control loops are subject to sub-harmonic oscillation. This instability can be eliminated by adding an additional fixed slope voltage ramp signal to the current sense signal. This technique is commonly known as “slope compensation”. For the LM5072-80 version with its maximum duty cycle of 80%, slope compensation is integrated by injecting a 45 μA current ramp from the oscillator into the current sense signal path (see Figure 2). The 45 μA peak ramping current flows through an internal 2 kΩ resistor to produce a fixed voltage ramp at the PWM comparator input. Additional slope compensation may be added by increasing the source impedance of the current sense signal with an external resistor between the CS pin and the source of the current sense signal. The feature is disabled for the LM5072-50 version because the duty cycle is limited to 50% and slope compensation is not required. Thermal Protection The LM5072 includes internal thermal shutdown circuitry to protect the IC in the event the maximum junction temperature is exceeded. This circuit prevents catastrophic overheating due to accidental overload of the hot swap MOSFET or other circuitry. Typically, thermal shutdown is activated at 165°C, causing the hot swap MOSFET and classification regulator to be disabled. The PWM controller is disabled after the PGOOD timer has expired. Thermal limit is not enabled unless the module is being powered through the front end and the hot swap MOSFET is enhanced. VCC current limit provides an adequate level of protection for this 15 mA regulator. The thermal protection is non-latching, therefore after the temperature drops by the 25°C nominal hysteresis, the hot swap MOSFET is re-activated and a soft-start is initiated to restore the LM5072 to normal operation. If the cause of overheating has not been eliminated, the circuit will hiccup in and out of the thermal shutdown mode. PCB Layout Guidelines Before processing the Printed Circuit Board (PCB) layout, the engineer should make all necessary adjustments to the schematic to suite the application. The reader may notice that the LM5072 evaluation board is designed with dual outputs, both FAUX and RAUX power options, and some re-configuration flexibility features (refer to Figure 19). However, many devices can be removed for a particular application. Recommendations on simplifying Figure 19 to suit a given application are as follows: 1. When selecting the FAUX power option only, delete C3, D1, D2, J3, P3, P4, R1, R2, R13, and R29. 2. When selecting the RAUX power option only, delete R30, D3, D7, J2, P1, P2 and R6. 3. When neither FAUX nor RAUX power options are selected, delete all the parts mentioned in (1) and (2) above. 4. When only a single output is required, delete C11 through C14, C17, D8, J6, J7, L2, R10 and Z4. Modify T1 design to delete the unwanted second output winding and increase the copper used for the single output winding. www.national.com 20 LM5072This re-configuration should make use of the spare pins of the transformer. 5. R24 should be deleted from the schematic completely, being replaced by a short connection for an isolated application, or by an open for a non-isolated application. 6. Jumpers P5 and P6 (Figure 20) should be deleted from the schematic completely, being replaced by a short connection for an isolated application, or by an open for a non-isolated application. 7. When the output is non-isolated, delete C20, C22, C25, R7, R11, R16, R17, R24, U2, and U3. Replace C28 with a short connection, and replace P5 and P6 with short connections. 8. One may also modify the number of input and output capacitors to achieve a more optimized design. Consider the following when starting the PCB design: 1. Try to use both sides of the PCB for part placement to facilitate both layout and routing. 2. Place the power components in a pattern that minimizes the lengths of the high current paths on the PCB. 3. Place the LM5072 and its critical peripheral parts closely. Bypass capacitors and transient protection elements should be near the LM5072. 4. Route the critical traces first, including both power and signal traces. Make the length of the trace as short as possible, and avoid excessive use of via holes. 5. Pay attention to grounding issues. Each reference ground should be a copper plane or island. Use via holes if necessary for direct connections of devices to their appropriate return ground plane or island. Identify the following ground returns: Primary power return COM: C4, C5, C6, R14, R15, R29, C3, P4, J3-pins 2 and 3, U1-pin 8, C28, and C29 are all returned to the COM ground plane. Primary control signal return, a ground return island: C19, T1-pin 2, C23, U2-pin 3, R24, C26, C21, and U1- pin 16 are all returned to this island, and the island should be single point connected to the COM ground plane. Secondary power return IGND: T1-pins 6 and 7, C7 through C10, C12 through C17, C28, Z4, J5, and J7 are all returned to the IGND ground plane. Secondary control signal return, a ground return island: R18, U3 and C20 are all returned to this island, and the island should be single point connected to the IGND ground plane. Also consider the following during PCB layout and routing. 1. Place the following power components in each group as close as possible: C4, C5 (if used), the primary winding of T1, Q1, and R14/R15. The high frequency switching current (pulse current) flows through these parts in a loop. The physical area enclosed by the loop should be as small as possible. D5, C7 through C10, and the secondary winding of T1 for the main output. The high frequency switching current for the main output rail flows through these parts in a loop. The physical area enclosed by the loop should be as small as possible. D8, C12 and C13, and the secondary winding of T1 for the second output, if used. The high frequency switching current for the second output rail flows through these parts in a loop. The physical area enclosed by the loop should be as small as possible. L3, C15, C16, J4 and J5 (if posts are used). L3 should also be as close as possible to the capacitor bank consisting of C7 through C10 in order to minimize the conduction losses on the PCB. Ceramic capacitor C15 should be placed directly at the output port. L2, C14, C17, Z4, J6 and J7 (if posts are used) for the second output rail. L2 should also be as close as possible to C12 and C13 in order to minimize the conduction losses on the PCB. Ceramic capacitor C14 should be directly placed at the output port 2. U1 (LM5072) should be placed close to Q1 in the orientation such that the gate drive output pin (OUT, Pin 9) is close to Q1’s gate. 3. (iii) Z2 and C27 must be placed directly across the VIN and VEE pins for best protection against input transients. In a rear auxiliary application, C27 should be removed and C29 should be installed very close to the RTN and VEE pins. 4. C19 should be placed directly across the VCC and ARTN pins. 5. C23 should be placed directly across the CS and ARTN pins. 6. R21 should be placed directly across the RT and ARTN pins. 7. C26 should be placed directly across the SS and ARTN pins. 8. C21 should be placed directly across the nPGOOD and ARTN pins. 9. R25 should be directly routed from the output port. 10. R9 should be directly routed from R14/R15. 11. D6 and Z1 should be placed to achieve the shortest connection from C4 or C5 to the drain pad(s) of Q1 for better snubbing. 12. C2 and R4 should be placed to achieve the shortest connection across D5. 13. Q1, D5, D8, and U1 (LM5072) should be installed on thermal pads having adequate thermal vias down through all PCB Layers and an exposed thermal pad on the other side of the PCB. 14. Avoid spiral trace pattern. 15. Avoid placing switching traces near any traces in the regulator feedback loop. 16. Pay attention to trace width. Try to make the power traces as wide as possible. Conversely, do not make signal traces wider than needed. After the first placement and routing is completed, make necessary modifications to optimize the design. 21 www.national.com LM5072Application Example #1 Figure 18 shows an application example of a single isolated output solution for the PD. Both front auxiliary (FAUX) and rear auxiliary (RAUX) power options are given, although only one option may be needed in practice. Note that for the RAUX option, D2 is only installed when the supply voltage of the auxiliary power source would cause the VIN voltage to be below 14.5V. 20184636 FIGURE 18. PD with Isolated, Single Output Solution Application Example #2 Figure 19 shows an example of an isolated, dual-output solution for the PD. The 3.3V output is tightly regulated while the 5V output is cross-regulated. Both front auxiliary (FAUX) and rear auxiliary (RAUX) power options are given, although only one option may be needed in practice. Note that for the RAUX option, D2 is only installed when the supply voltage of the auxiliary power source is lower than 14.5V. 20184637 FIGURE 19. PD with Isolated, Dual Output Solution www.national.com 22 LM5072Application Example #3: Figure 20 shows an application example of the non-isolated version of Figure 18 . This non-isolated version saves many parts used in the isolated feedback example shown in Figure 18. Similar simplification also applies to the non-isolated version of Figure 19. 20184638 FIGURE 20. PD Solution with Non-Isolated Flyback Topology Application Example #4 Figure 21 shows an application example of a PD solution using the buck topology. Q2, a dual PNP transistor, is employed in the output voltage sensing to achieve temperature compensation for the regulated output. 20184639 FIGURE 21. PD Solution with Buck Topology 23 www.national.com LM5072Physical Dimensions inches (millimeters) unless otherwise noted Package Number MXA16A www.national.com 24 LM5072Notes 25 www.national.com LM5072Notes LM5072 Integrated 100V Power Over Ethernet PD Interface and PWM Controller with Aux Support For more National Semiconductor product information and proven design tools, visit the following Web sites at: Products Design Support Amplifiers www.national.com/amplifiers WEBENCH www.national.com/webench Audio www.national.com/audio Analog University www.national.com/AU Clock Conditioners www.national.com/timing App Notes www.national.com/appnotes Data Converters www.national.com/adc Distributors www.national.com/contacts Displays www.national.com/displays Green Compliance www.national.com/quality/green Ethernet www.national.com/ethernet Packaging www.national.com/packaging Interface www.national.com/interface Quality and Reliability www.national.com/quality LVDS www.national.com/lvds Reference Designs www.national.com/refdesigns Power Management www.national.com/power Feedback www.national.com/feedback Switching Regulators www.national.com/switchers LDOs www.national.com/ldo LED Lighting www.national.com/led PowerWise www.national.com/powerwise Serial Digital Interface (SDI) www.national.com/sdi Temperature Sensors www.national.com/tempsensors Wireless (PLL/VCO) www.national.com/wireless THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION (“NATIONAL”) PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL’S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS. EXCEPT AS PROVIDED IN NATIONAL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. LIFE SUPPORT POLICY NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein: Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness. National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders. Copyright© 2007 National Semiconductor Corporation For the most current product information visit us at www.national.com National Semiconductor Americas Customer Support Center Email: new.feedback@nsc.com Tel: 1-800-272-9959 National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530-85-86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +49 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790 National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560 www.national.com Axial Lead and Cartridge Fuses 407 w w w. l i t t e l f u s e . c o m Ceramic Body 3AB Slo-Blo® Fuse 325/326 Series Ceramic body construction permits higher interrupting ratings and voltage ratings. Ideal for applications where high current loads are expected. ELECTRICAL CHARACTERISTICS: % of Ampere Ampere Opening Rating Rating Time 100% 1/100–30 4 hours, Minimum 135% 1/100–30 1 hour, Maximum 200% 1/100–3.2 5 sec., Min.; 30 sec. Max. 4–30 5 sec., Min.; 60 sec. Max. AGENCY APPROVALS: Listed by Underwriters Laboratories from 1/4 through 10 amperes. Certified by CSA from 1/4 through 30 amperes. Recognized under the component program of Underwriters Laboratories for 12-30A. AGENCY FILE NUMBERS: UL E10480, CSA LR 29862. PATENTED INTERRUPTING RATING: 0.010 - 20A 10,000A @ 125 VAC 25 - 30A 400A @ 125 VAC 0.010 - 3.2A 100A @ 250 VAC 4 - 20A 400A @ 250 VAC ORDERING INFORMATION: 1000 100 10 1 0.1 0.01 10 CURRENT IN AMPERES TIME IN SECONDS 0.05 0.1 1 100 1000 1.0A 1.5A 2.0A 2.5A 3.0A 3.5A 4.0A 5.0A .375A .500A .750A 6.25A 7.0A 8.0A 10.0A 12.0A 15.0A 20.0A 25.0A 30.0A Cartridge Axial Lead Nominal Nominal Catalog Catalog Ampere Voltage Resistance Melting I 2 t Number Number Rating Rating Cold Ohms A2 Sec. 326.010 325.010 1/100 250 3300.0000 0.00148 326.031 325.031 1/32 250 330. 0.0110 326.062 325.062 1/16 250 91.0 0.0276 326.100 325.100 1/10 250 33.3 0.0870 326.125 325.125 1/8 250 22.3 0.100 326.150 325.150 15/100 250 15.3 0.143 326.175 325.175 .175 250 8.84 0.220 326.187 325.187 3/16 250 7.67 0.230 326.200 325.200 2/10 250 6.72 0.213 326.250 325.250 1/4 250 4.40 0.432 326.300 325.300 3/10 250 3.20 0.690 326.375 325.375 3/8 250 2.14 1.20 326.400 325.400 4/10 250 1.92 1.33 326.500 325.500 1/2 250 1.29 2.50 326.600 325.600 6/10 250 0.940 3.90 326.700 325.700 7/10 250 0.716 6.42 326.750 325.750 3/4 250 0.636 7.00 326.800 325.800 8/10 250 0.568 8.20 326 001 325 001 1 250 0.386 16.3 326 01.2 325 01.2 1 2 /10 250 0.284 22.0 326 1.25 325 1.25 1 1 /4 250 0.266 24.0 326 01.5 325 01.5 1 1 /2 250 0.196 40.1 326 01.6 325 01.6 1 6 /10 250 0.175 45.0 326 002 325 002 2 250 0.120 80.0 326 02.5 325 02.5 2 1 /2 250 0.0830 136.0 326 02.8 325 02.8 2 8 /10 250 0.0690 170.0 326 003 325 003 3 250 0.0600 200.0 326 03.2 325 03.2 3 2 /10 250 0.0535 214.0 326 004 325 004 4 250 0.0755 9.71 326 005 325 005 5 250 0.0518 25.0 326 6.25 325 6.25 6 1 /4 250 0.0343 60.4 326 007 325 007 7 250 0.0225 47.3 326 008 325 008 8 250 0.0191 67.1 326 010 325 010 10 250 0.0131 137.0 326 012 325 012 12 250 0.0066 129.0 326 015 325 015 15 250 0.0049 245.0 326 020 325 020 20 250 0.0033 575.0 326 025 325 025 25 125 0.0024 1030.0 326 030 325 030 30 125 0.0019 1690.0 Average Time Current Curves 326 000 Series 325 000 Series 6.35 (.25") 32.385 (1.275") 31.75 (1.25") 6.985 (.275") 38.1 (1.50") TYP. Axial Lead Material: Solder coated copper. 1 100 0.813 (.032") ( -15A) / 1.016 (.040") (20 -30A) ® U L ® ® 11 AXIAL LEAD AND CARTRIDGE FUSES Design and specifi cations are each subject to change without notice. Ask factory for the current technical specifi cations before purchase and/or use. Should a safety concern arise regarding this product, please be sure to contact us immediately. Choke Coils f 6.7 max. 10.5 max. 4.0±1.2 3.0±0.5 f 0.65 3.0±0.1 2-f1.00±0.05 S F ■ Examples Type 06D [Dimensions in mm] (not to scale) Recommended PWB piercing plan Connection Schematic Part No. Inductance (µH) Tolerance (%) Test Freq. (kHz) RDC.() [at 20 °C] ✽✽(Tol.±30 %) (Tol.±20 %) ✽IDC. [at 20 °C] (A)max. ELC06D2R2E 2.2 ±20 10 ✽✽0.026 3.400 ELC06D2R7E 2.7 ✽✽0.028 3.200 ELC06D3R3E 3.3 ✽✽0.027 3.000 ELC06D3R9E 3.9 ✽✽0.030 2.800 ELC06D4R7E 4.7 ✽✽0.033 2.600 ELC06D5R6E 5.6 ✽✽0.035 2.400 ELC06D6R8E 6.8 0.041 2.000 ELC06D8R2E 8.2 0.048 1.800 ELC06D100E 10.0 0.052 1.700 ELC06D120E 12.0 0.054 1.650 ELC06D150E 15.0 0.059 1.500 ELC06D180E 18.0 0.065 1.250 ELC06D220E 22.0 ±10 0.076 1.200 ELC06D270E 27.0 0.083 0.950 ELC06D330E 33.0 0.100 0.900 ELC06D390E 39.0 0.105 0.850 ELC06D470E 47.0 0.120 0.800 ELC06D560E 56.0 0.140 0.750 ELC06D680E 68.0 0.150 0.700 ELC06D820E 82.0 0.210 0.550 ELC06D101E 100.0 0.230 0.500 ELC06D121E 120.0 0.260 0.490 ELC06D151E 150.0 0.370 0.450 ELC06D181E 180.0 0.420 0.400 ELC06D221E 220.0 0.550 0.360 ELC06D271E 270.0 0.650 0.350 ELC06D331E 330.0 0.740 0.300 ELC06D391E 390.0 0.950 0.270 ELC06D471E 470.0 1.080 0.240 ELC06D561E 560.0 1.220 0.220 ELC06D681E 680.0 1.590 0.210 ELC06D821E 820.0 1.760 0.180 ELC06D102E 1000.0 2.490 0.160 ELC06D122E 1200.0 2.760 0.150 ELC06D152E 1500.0 3.240 0.130 ELC06D182E 1800.0 4.560 0.120 ELC06D222E 2200.0 5.180 0.110 ELC06D272E 2700.0 6.080 0.100 ELC06D332E 3300.0 8.800 0.100 ELC06D392E 3900.0 9.470 0.080 ELC06D472E 4700.0 10.900 0.075 ELC06D562E 5600.0 12.300 0.070 ✽ Allowable DC Current: Smaller current value either when the inductance is –10 % or when the case temperature has risen 45 °C. Feb. 2006Design and specifi cations are each subject to change without notice. Ask factory for the current technical specifi cations before purchase and/or use. Should a safety concern arise regarding this product, please be sure to contact us immediately. Choke Coils f9.5 max. 8.9 max. 4.0±1.0 5.0±0.5 2–f0.6 5.0±0.1 2–f1.00±0.05 S F ■ Examples Type 09D Part No. Inductance (µH) Tolerance (%) Test Freq. (kHz) RDC.() [at 20 °C] ✽✽(Tol.±30 %) (Tol.±20 %) ✽IDC. [at 20 °C] (A)max. ELC09D2R2F 2.2 ±20 10 0.012 3.50 ELC09D2R7F 2.7 0.013 3.30 ELC09D3R3F 3.3 0.015 3.20 ELC09D3R9F 3.9 0.016 3.10 ELC09D4R7F 4.7 0.018 3.00 ELC09D5R6F 5.6 0.019 2.90 ELC09D6R8F 6.8 0.021 2.80 ELC09D8R2F 8.2 0.024 2.60 ELC09D100F 10.0 0.027 2.50 ELC09D120F 12.0 0.031 2.30 ELC09D150F 15.0 0.035 2.10 ELC09D180F 18.0 0.038 2.00 ELC09D220F 22.0 ±10 0.051 1.80 ELC09D270F 27.0 0.058 1.60 ELC09D330F 33.0 0.081 1.40 ELC09D390F 39.0 0.087 1.30 ELC09D470F 47.0 0.110 1.20 ELC09D560F 56.0 0.130 1.10 ELC09D680F 68.0 0.140 1.00 ELC09D820F 82.0 0.160 0.90 ELC09D101F 100.0 0.200 0.82 ELC09D121F 120.0 0.250 0.77 ELC09D151F 150.0 0.320 0.74 ELC09D181F 180.0 0.360 0.61 ELC09D221F 220.0 0.410 0.58 ELC09D271F 270.0 0.500 0.52 ELC09D331F 330.0 0.650 0.49 ELC09D391F 390.0 0.860 0.46 ELC09D471F 470.0 0.980 0.39 ELC09D561F 560.0 1.100 0.36 ELC09D681F 680.0 1.400 0.34 ELC09D821F 820.0 1.600 0.30 ELC09D102F 1000.0 2.100 0.28 ELC09D122F 1200.0 2.400 0.23 ELC09D152F 1500.0 2.800 0.21 ELC09D182F 1800.0 3.800 0.19 ELC09D222F 2200.0 4.400 0.17 ELC09D272F 2700.0 6.100 0.16 ELC09D332F 3300.0 7.000 0.14 ELC09D392F 3900.0 8.000 0.13 ELC09D472F 4700.0 11.200 0.12 ELC09D562F 5600.0 12.600 0.11 ELC09D682F 6800.0 14.400 0.10 ELC09D822F 8200.0 16.600 0.09 ELC09D103F 10000.0 18.800 0.08 ✽ Allowable DC Current: Smaller current value either when the inductance is –10 % or when the case temperature has risen 45 °C. [Dimensions in mm] (not to scale) Recommended PWB piercing plan Connection Schematic Feb. 2006Design and specifi cations are each subject to change without notice. Ask factory for the current technical specifi cations before purchase and/or use. Should a safety concern arise regarding this product, please be sure to contact us immediately. Choke Coils f 10.0±0.5 13.0 max. 5.0±0.5 f 0.8 4.0 +1.5 –1.0 15.0 max. 2–f 1.20±0.05 5.0±0.1 S F ■ Examples Type 10D Recommended PWB piercing plan Connection Schematic Part No. Inductance (µH) Tolerance (%) Test Freq. (kHz) RDC.() [at 20 °C] (Tol.±20 %) ✽IDC. [at 20 °C] (A)max. ELC10D2R2E 2.2 ±20 10 0.014 5.90 ELC10D2R7E 2.7 0.015 5.50 ELC10D3R3E 3.3 0.016 5.20 ELC10D3R9E 3.9 0.018 4.80 ELC10D4R7E 4.7 0.019 4.60 ELC10D5R6E 5.6 0.021 4.30 ELC10D6R8E 6.8 0.022 4.20 ELC10D8R2E 8.2 0.024 4.00 ELC10D100E 10.0 0.026 3.90 ELC10D120E 12.0 0.028 3.80 ELC10D150E 15.0 0.033 3.50 ELC10D180E 18.0 0.036 3.40 ELC10D220E 22.0 ±10 0.040 3.20 ELC10D270E 27.0 0.044 3.00 ELC10D330E 33.0 0.051 2.80 ELC10D390E 39.0 0.054 2.70 ELC10D470E 47.0 0.060 2.50 ELC10D560E 56.0 0.067 2.30 ELC10D680E 68.0 0.075 2.10 ELC10D820E 82.0 0.095 1.80 ELC10D101E 100.0 0.110 1.70 ELC10D121E 120.0 0.120 1.60 ELC10D151E 150.0 0.160 1.40 ELC10D181E 180.0 0.180 1.30 ELC10D221E 220.0 0.210 1.10 ELC10D271E 270.0 0.280 1.00 ELC10D331E 330.0 0.320 0.90 ELC10D391E 390.0 0.400 0.80 ELC10D471E 470.0 0.450 0.70 ELC10D561E 560.0 0.560 0.68 ELC10D681E 680.0 0.660 0.64 ELC10D821E 820.0 0.800 0.55 ELC10D102E 1000.0 1.000 0.50 ELC10D122E 1200.0 1.200 0.45 ELC10D152E 1500.0 1.500 0.42 ELC10D182E 1800.0 1.800 0.40 ELC10D222E 2200.0 2.100 0.36 ELC10D272E 2700.0 2.700 0.32 ELC10D332E 3300.0 3.200 0.28 ELC10D392E 3900.0 3.500 0.26 ✽ Allowable DC Current: Smaller current value either when the inductance is –10 % or when the case temperature has risen 45 °C. [Dimensions in mm] (not to scale) Feb. 2006Design and specifi cations are each subject to change without notice. Ask factory for the current technical specifi cations before purchase and/or use. Should a safety concern arise regarding this product, please be sure to contact us immediately. Choke Coils f11.5 max. 13.9 max. 4.0±1.0 5.0±0.5 2–f0.6 5.0±0.1 2–f1.00±0.05 S F Part No. Inductance (µH) Tolerance (%) Test Freq. (kHz) RDC.() [at 20 °C] (Tol.±20 %) ✽IDC. [at 20 °C] (A)max. ELC11D2R2F 2.2 ±20 10 0.013 5.30 ELC11D2R7F 2.7 0.014 5.10 ELC11D3R3F 3.3 0.015 4.90 ELC11D3R9F 3.9 0.016 4.80 ELC11D4R7F 4.7 0.018 4.70 ELC11D5R6F 5.6 0.020 4.60 ELC11D6R8F 6.8 0.022 4.40 ELC11D8R2F 8.2 0.024 3.90 ELC11D100F 10.0 0.029 3.50 ELC11D120F 12.0 0.030 3.40 ELC11D150F 15.0 0.033 3.30 ELC11D180F 18.0 0.037 3.10 ELC11D220F 22.0 ±10 0.040 2.80 ELC11D270F 27.0 0.048 2.70 ELC11D330F 33.0 0.051 2.60 ELC11D390F 39.0 0.057 2.50 ELC11D470F 47.0 0.063 2.30 ELC11D560F 56.0 0.071 2.10 ELC11D680F 68.0 0.082 2.00 ELC11D820F 82.0 0.090 1.90 ELC11D101F 100.0 0.120 1.80 ELC11D121F 120.0 0.160 1.60 ELC11D151F 150.0 0.180 1.40 ELC11D181F 180.0 0.200 1.30 ELC11D221F 220.0 0.230 1.20 ELC11D271F 270.0 0.320 1.10 ELC11D331F 330.0 0.350 1.00 ELC11D391F 390.0 0.400 0.95 ELC11D471F 470.0 0.490 0.82 ELC11D561F 560.0 0.620 0.73 ELC11D681F 680.0 0.780 0.64 ELC11D821F 820.0 0.870 0.62 ELC11D102F 1000.0 1.100 0.57 ELC11D122F 1200.0 1.200 0.52 ELC11D152F 1500.0 1.700 0.43 ELC11D182F 1800.0 2.000 0.40 ELC11D222F 2200.0 2.300 0.38 ELC11D272F 2700.0 2.800 0.34 ELC11D332F 3300.0 3.600 0.31 ELC11D392F 3900.0 4.500 0.29 ELC11D472F 4700.0 5.200 0.26 ELC11D562F 5600.0 6.900 0.23 ELC11D682F 6800.0 7.800 0.21 ELC11D822F 8200.0 10.600 0.18 ELC11D103F 10000.0 11.800 0.16 ■ Examples Type 11D Recommended PWB piercing plan Connection Schematic [Dimensions in mm] (not to scale) ✽ Allowable DC Current: Smaller current value either when the inductance is –10 % or when the case temperature has risen 45 °C. Feb. 2006Design and specifi cations are each subject to change without notice. Ask factory for the current technical specifi cations before purchase and/or use. Should a safety concern arise regarding this product, please be sure to contact us immediately. Choke Coils f0.8 7.5±0.5 16.5max. 3.5±0.8 14.0 max. f12.0±0.5 7.5±0.1 2–f1.20±0.05 S F ✽2 ✽3 9.0±0.1 2–f1.50±0.05 f11.5 max. 13.0 max. 4.5±1.0 fA 0±1.3 9.0±0.1 ✽1 Part No. Inductance (µH) Tolerance (%) Test Freq. (kHz) RDC.() [at 20 °C] (Tol.±20 %) ✽IDC. [at 20 °C] (A)max. ELC12D101E 100 ±10 10 0.150 1.90 ELC12D121E 120 0.170 1.78 ELC12D151E 150 0.190 1.67 ELC12D181E 180 0.210 1.58 ELC12D221E 220 0.230 1.55 ELC12D271E 270 0.270 1.44 ELC12D331E 330 0.300 1.34 ELC12D391E 390 0.330 1.32 ELC12D471E 470 0.380 1.25 ELC12D561E 560 0.420 1.15 ELC12D681E 680 0.460 0.98 ELC12D821E 820 0.650 0.94 ELC12D102E 1000 0.720 0.87 ELC12D122E 1200 0.830 0.86 ELC12D152E 1500 1.270 0.64 ELC12D182E 1800 1.330 0.63 ELC12D222E 2200 1.500 0.60 ELC12D272E 2700 1.890 0.54 ELC12D332E 3300 2.370 0.48 ELC12D392E 3900 2.830 0.45 ELC12D472E 4700 3.190 0.41 ELC12D562E 5600 4.080 0.34 ELC12D682E 6800 5.740 0.29 ELC12D822E 8200 6.340 0.28 ELC12D103E 10000 7.200 0.27 ■ Examples Type 12D ■ Examples Type 11P [Dimensions in mm] (not to scale) Recommended PWB piercing plan [Dimensions in mm] (not to scale) Recommended PWB piercing plan Connection Schematic ✽ Allowable DC Current: Smaller current value either when the inductance is –10 % or when the case temperature has risen 45 °C. The measure of ✽1, ✽2, ✽3 differ depending on the terminal size fA. (The recommended drawing shows the f1.05.) ✽ Allowable DC Current: Smaller current value either when the inductance is –10 % or when the case temperature has risen 45 °C. Part No. Inductance (µH) Tolerance (%) Test Freq. (kHz) RDC.() [at 20 °C] (Tol.±20 %) ✽IDC. [at 20 °C] (A)max. fA Terminal Pin (mm) ELC11PR35 0.35 ±20 10 0.0014 14.0 f1.05 ELC11P0R6 0.60 0.0018 13.0 ELC11P1R0 1.00 0.0023 12.0 ELC11P1R4 1.40 0.0028 11.0 ELC11P1R8 1.80 0.0033 10.0 ELC11P2R4 2.40 0.0038 9.60 ELC11P3R0 3.00 0.0044 9.20 ELC11P3R9 3.90 0.0049 8.60 ELC11P4R7 4.70 0.0055 8.20 ELC11P5R6 5.60 0.0061 7.80 ELC11P6R8 6.80 0.0087 7.40 ELC11P7R8 7.80 0.0094 7.00 f0.90 ELC11P9R1 9.10 0.0124 6.60 ELC11P100 10.0 0.0132 6.30 f0.80 ELC11P120 12.0 0.0140 6.00 Feb. 2006Design and specifi cations are each subject to change without notice. Ask factory for the current technical specifi cations before purchase and/or use. Should a safety concern arise regarding this product, please be sure to contact us immediately. Choke Coils 7.5±0.5 f 1.0 4.5±0.5 23.0 max. f 13.0±0.5 16.0 max. 2–f 1.50±0.05 7.5±0.1 S F [Dimensions in mm] (not to scale) Recommended PWB piercing plan Connection Schematic Part No. Inductance (µH) Tolerance (%) Test Freq. (kHz) RDC.() [at 20 °C] ✽✽(Tol.±30 %) (Tol.±20 %) ✽IDC. [at 20 °C] (A)max. ELC16B3R3L 3.3 ±25 10 ✽✽0.012 8.50 ELC16B3R9L 3.9 ✽✽0.013 8.00 ELC16B4R7L 4.7 ±20 ✽✽0.015 7.80 ELC16B5R6L 5.6 ✽✽0.016 7.40 ELC16B6R8L 6.8 0.018 6.70 ELC16B8R2L 8.2 0.019 6.10 ELC16B100L 10.0 0.022 5.60 ELC16B120L 12.0 0.023 5.50 ELC16B150L 15.0 0.026 5.40 ELC16B180L 18.0 0.028 5.10 ELC16B220L 22.0 ±10 0.031 4.60 ELC16B270L 27.0 0.034 4.30 ELC16B330L 33.0 0.039 4.00 ELC16B390L 39.0 0.042 3.90 ELC16B470L 47.0 0.045 3.80 ELC16B560L 56.0 0.051 3.40 ELC16B680L 68.0 0.057 3.20 ELC16B820L 82.0 0.064 3.00 ELC16B101L 100.0 0.072 2.60 ELC16B121L 120.0 0.080 2.50 ELC16B151L 150.0 0.103 2.20 ELC16B181L 180.0 0.115 2.10 ELC16B221L 220.0 0.130 1.90 ELC16B271L 270.0 0.170 1.60 ELC16B331L 330.0 0.200 1.50 ELC16B391L 390.0 0.250 1.30 ELC16B471L 470.0 0.280 1.20 ELC16B561L 560.0 0.380 1.10 ELC16B681L 680.0 0.430 1.00 ELC16B821L 820.0 0.580 0.88 ELC16B102L 1000.0 0.660 0.85 ELC16B122L 1200.0 0.740 0.82 ELC16B152L 1500.0 0.870 0.74 ELC16B182L 1800.0 1.220 0.60 ELC16B222L 2200.0 1.380 0.57 ELC16B272L 2700.0 1.570 0.54 ELC16B332L 3300.0 2.000 0.47 ELC16B392L 3900.0 2.400 0.42 ELC16B472L 4700.0 3.300 0.36 ELC16B562L 5600.0 3.700 0.34 ELC16B682L 6800.0 4.200 0.32 ELC16B822L 8200.0 5.600 0.28 ELC16B103L 10000.0 6.400 0.26 ✽ Allowable DC Current: Smaller current value either when the inductance is –10 % or when the case temperature has risen 45 °C. ■ Examples Type 16B Feb. 2006Design and specifi cations are each subject to change without notice. Ask factory for the current technical specifi cations before purchase and/or use. Should a safety concern arise regarding this product, please be sure to contact us immediately. Choke Coils f18.0 max. f 16.0 max. 20.0 max. 5.0±1 27.0 max. f 1.0 7.5±0.5 7.5±0.1 2–f 1.50±0.05 S F ■ Examples Type 18B ✽ Allowable DC Current: Smaller current value either when the inductance is –10 % or when the case temperature has risen 45 °C. Part No. Inductance (µH) Tolerance (%) Test Freq. (kHz) RDC.() [at 20 °C] (Tol.±20 %) ✽IDC. [at 20 °C] (A)max. ELC18B3R3L 3.3 ±20 10 0.010 8.50 ELC18B3R9L 3.9 0.011 8.00 ELC18B4R7L 4.7 0.012 7.80 ELC18B5R6L 5.6 0.013 7.40 ELC18B6R8L 6.8 0.015 6.80 ELC18B8R2L 8.2 0.016 6.60 ELC18B100L 10.0 0.017 6.50 ELC18B120L 12.0 0.018 6.00 ELC18B150L 15.0 0.021 5.90 ELC18B180L 18.0 0.022 5.60 ELC18B220L 22.0 ±10 0.025 5.40 ELC18B270L 27.0 0.028 4.80 ELC18B330L 33.0 0.030 4.60 ELC18B390L 39.0 0.033 4.40 ELC18B470L 47.0 0.037 4.30 ELC18B560L 56.0 0.040 4.20 ELC18B680L 68.0 0.046 4.00 ELC18B820L 82.0 0.051 3.70 ELC18B101L 100.0 0.057 3.20 ELC18B121L 120.0 0.065 3.00 ELC18B151L 150.0 0.072 2.70 ELC18B181L 180.0 0.082 2.60 ELC18B221L 220.0 0.090 2.40 ELC18B271L 270.0 0.110 2.20 ELC18B331L 330.0 0.130 1.90 ELC18B391L 390.0 0.150 1.80 ELC18B471L 470.0 0.210 1.60 ELC18B561L 560.0 0.230 1.50 ELC18B681L 680.0 0.260 1.40 ELC18B821L 820.0 0.340 1.30 ELC18B102L 1000.0 0.390 1.10 ELC18B122L 1200.0 0.440 1.00 ELC18B152L 1500.0 0.580 0.85 ELC18B182L 1800.0 0.650 0.84 ELC18B222L 2200.0 0.880 0.75 ELC18B272L 2700.0 1.200 0.68 ELC18B332L 3300.0 1.400 0.60 ELC18B392L 3900.0 1.500 0.57 ELC18B472L 4700.0 1.700 0.55 ELC18B562L 5600.0 2.200 0.46 ELC18B682L 6800.0 2.800 0.45 ELC18B822L 8200.0 3.100 0.41 ELC18B103L 10000.0 3.900 0.36 [Dimensions in mm] (not to scale) Recommended PWB piercing plan Connection Schematic Feb. 2006 CARACTERISTIQUES : Type : Disque dur externe avec lecteur multimédia Interfaces : Disque Dur SATA jusqu’à 500 Go ( logiciel inclus) Types de cartes mémoire : CF I/II, MMC, SD, MS, MD, SM, XD Formats Vidéo : MPEG1/2/MPEG4, XVID, DVIX, AVI, VCD, file.DVD file (*.mpg;*.mpeg,*.dat;*.avi.*.vob) Formats Audio : AC3, MP3 Format Image : JPEG Sorties Vidéo : - Composante YUV - RCA Vidéo composite - SVIDEO - VGA - Sorties Audio : Stéréo RCA (L/R) - Sortie Audio numérique : Coaxial et Optique Fonctions : - Stockage sur disque dur (USB 2.0) - Lecteur vidéo divx, Xvid, MPEG1/2/4 et AVI - Lecteur audio MP3 - Lecteur d’images ou Photo : JPEG - Lecteur de cartes 9 en 1 Accessoires fournis : - 2 x piles AA, Télécommande, Câble A/V, Câble YC, Transformateur alimentation, Câble USB 2.0, Pilotes USB pour Win98, Utilitaire de formatage disque dur jusqu’à 500 Go en Fat 32 Alimentation : - AC 100V~220V ~50/60Hz - 5V 2A, 12V 2A Dimensions : 217 x 160 x 59 Poids : 200g (hors disque dur) Matière : Aluminium Couleur : Noir & Gris Certificats : CE, FCC, N791 VIDEO PHOTO AUDIO TV RoHS Référence : HB3510 www.highbox.fr HBMP3510V1.0LD0607 © 2006 Microchip Technology Inc. DS21358C-page 1 TC1121 Features: • Optional High-Frequency Operation Allows Use of Small Capacitors • Low Operating Current (FC = GND): - 50 μA • High Output Current (100 mA) • Converts a 2.4V to 5.5V Input Voltage to a Corresponding Negative Output Voltage (Inverter mode) • Uses Only 2 Capacitors; No Inductors Required • Selectable Oscillator Frequency: - 10 kHz to 200 kHz • Power-Saving Shutdown Input • Available in 8-Pin MSOP, 8-Pin PDIP and 8-Pin Small Outline (SOIC) Packages Applications: • Laptop Computers • Medical Instruments • Disk Drives • μP-Based Controllers • Process Instrumentation Device Selection Table Package Type General Description: The TC1121 is a charge pump converter with 100 mA output current capability. It converts a 2.4V to 5.5V input to a corresponding negative output voltage. As with all charge pump converters, the TC1121 uses no inductors saving cost, size and EMI. An on-board oscillator operates at a typical frequency of 10 kHz (at V + = 5V) when the frequency control input (FC) is connected to ground. The oscillator frequency increases to 200 kHz when FC is connected to V + , allowing the use of smaller capacitors. Operation at sub-10 kHz frequencies results in lower quiescent NScurrent and is accomplished with the addition of an external capacitor from OSC (pin 7) to ground. The TC1121 also can be driven from an external clock NSconnected OSC. Typical supply current at 10 kHz is 50 μA, and falls to less than 1 μA when the shutdown input is brought low, whether the internal or an external clock is used. The TC1121 is available in 8-pin SOIC, MSOP and PDIP packages. Part Number Package Operating Temp. Range TC1121COA 8-Pin SOIC 0°C to +70°C TC1121CPA 8-Pin PDIP 0°C to +70°C TC1121CUA 8-Pin MSOP 0°C to +70°C TC1121EOA 8-Pin SOIC -40°C to +85°C TC1121EPA 8-Pin PDIP -40°C to +85°C TC1121EUA 8-Pin MSOP -40°C to +85°C TC1121COA TC1121EOA TC1121CUA TC1121EUA SHDN FC CAP+ CAP– 1 2 3 4 8 7 6 5 GND OSC V+ 8-Pin SOIC 8-Pin MSOP VOUT TC1121CPA TC1121EPA SHDN FC CAP+ CAP– 1 2 3 4 8 7 6 5 GND OSC V+ 8-Pin PDIP VOUT 100mA Charge Pump Voltage Converter with ShutdownTC1121 DS21358C-page 2 © 2006 Microchip Technology Inc. Functional Block Diagram SHDN TC1121 OSC Control FC OSC GND V + VOUT Switch Matrix RC Oscillator Logic Circuits C2 CAP + C1 CAP – + – +© 2006 Microchip Technology Inc. DS21358C-page 3 TC1121 1.0 ELECTRICAL CHARACTERISTICS Absolute Maximum Ratings* Supply Voltage (VDD) ...............................................6V OSC, FC, SHDN Input Voltage .....-0.3V to (V + + 0.3V) Output Short Circuit Duration........................... 10 Sec. Package Power Dissipation (TA ≤ 70°C) 8-Pin PDIP ..............................................730 mW 8-Pin SOIC..............................................470 mW 8-Pin MSOP ............................................333 mW Operating Temperature Range C Suffix............................................ 0°C to +70°C E Suffix......................................... -40°C to +85°C Storage Temperature Range..............-65°C to +150°C *Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. TC1121 ELECTRICAL SPECIFICATIONS Electrical Characteristics: TA = 0°C to 70°C (C suffix), -40°C to +85°C (E suffix), V + = 5V ±10% COSC = Open, C1, C2 = 10 μF, FC = V + , SHDN = VIH, typical values are at TA = 25°C unless otherwise noted. Symbol Parameter Min Typ Max Units Test Conditions IDD Active Supply Current — — 50 0.6 100 1 μA mA RL = Open, FC = Open or GND RL = Open, FC = V + ISHUTDOWN Shutdown Supply Current — 0.2 1.0 μA SHDN = 0V V + Supply Voltage 2.4 — 5.5 V VIH SHDN Input Logic High VDD x 0.8 — — V VIL SHDN Input Logic Low — — 0.4 V I IN Input Leakage Current -1 -4 — — 1 4 μA SHDN, OSC FC pin ROUT Output Source Resistance — 12 20 Ω IOUT = 60 mA IOUT Output Current 60 100 VOUT = more negative than -3.75V FOSC Oscillator Frequency 5 100 10 200 — — kHz Pin 7 Open, Pin 1 Open or GND SHDN = VIH, Pin 1 = V + PEFF Power Efficiency — 93 94 — — 97 97 92 — — — % FC = GND for all RL = 2k between V + and VOUT RL = 1kΩ between VOUT and GND IL = 60 mA to GND VEFF Voltage Conversion Efficiency 99 99.9 — % RL = Open Note 1: Connecting any input terminal to voltages greater than V + or less than GND may cause destructive latch-up. It is recommended that no inputs from sources operating from external supplies be applied prior to “power up” of the TC1121.TC1121 DS21358C-page 4 © 2006 Microchip Technology Inc. 2.0 PIN DESCRIPTIONS The descriptions of the pins are listed in Table 2-1. TABLE 2-1: PIN FUNCTION TABLE Pin No. (8-Pin MSOP, PDIP, SOIC) Symbol Description 1 FC Frequency control for internal oscillator, FC = open, FOSC = 10 kHz typ; FC = V + , FOSC = 200 kHz typ; FC has no effect when OSC pin is driven externally. 2 CAP + Charge-pump capacitor, positive terminal. 3 GND Power-supply ground input. 4 CAP – Charge-pump capacitor, negative terminal. 5 OUT Output, negative voltage. 6 SHDN Shutdown. 7 OSC Oscillator control input. An external capacitor can be added to slow the oscillator. Take care to minimize stray capacitance. An external oscillator also may be connected to overdrive OSC. 8 V + Power-supply positive voltage input.© 2006 Microchip Technology Inc. DS21358C-page 5 TC1121 3.0 APPLICATIONS 3.1 Negative Voltage Converter The TC1121 is typically used as a charge-pump voltage inverter. C1 and C2 are the only two external capacitors used in the operating circuit (Figure 3-1). FIGURE 3-1: Charge Pump Inverter The TC1121 is not sensitive to load current changes, although its output is not actively regulated. A typical output source resistance of 11.8Ω means that an input of +5V results in -5V output voltage under light load, and only decreases to -3.8V typ with a 100 mA load. The supplied output current is from capacitor C2 during one-half the charge-pump cycle. This results in a peak-to-peak ripple of: VRIPPLE = IOUT /2(fPUMP) (C2) + IOUT (ESRC2 ) Where fPUMP is 5 kHz (one half the nominal 10 kHz oscillator frequency), and C2 = 150 μF with an ESR of 0.2Ω, ripple is about 90 mV with a 100 mA load current. If C2 is raised to 390 μF, the ripple drops to 45 mV. 3.2 Changing Oscillator Frequency The TC1121’s clock frequency is controlled by four modes: TABLE 3-1: OSCILLATOR FREQUENCY MODES The oscillator runs at 10 kHz (typical) when FC and OSC are not connected. The oscillator frequency is lowered by connecting a capacitor between OSC and GND, but FC can still multiply the frequency by 20 times in this mode. An external clock source that swings within 100 mV of V + and GND may overdrive OSC in the Inverter mode. OSC can be driven by any CMOS logic output. When OSC is overdriven, FC has no effect. Note that the frequency of the signal appearing at CAP + and CAP – is half that of the oscillator. In addition, by lowering the oscillator frequency, the effective output resistance of the charge-pump increases. To compensate for this, the value of the charge-pump capacitors may be increased. Because the 5 kHz output ripple frequency may be low enough to interfere with other circuitry, the oscillator frequency can be increased with the use of the FC pin or an external oscillator. The output ripple frequency is half the selected oscillator frequency. Although the TC1121’s quiescent current will increase if the clock frequency is increased, it allows smaller capacitance values to be used for C1 and C2. 3.3 Capacitor Selection In addition to load current, the following factors affect the TC1121 output voltage drop from its ideal value 1) output resistance, 2) pump (C1) and reservoir (C2) capacitor ESRs and 3) C1 and C2 capacitance. The voltage drop is the load current times the output resistance. The loss in C2 is the load current times C2’s ESR; C1’s loss is larger because it handles currents greater than the load current during charge-pump operation. Therefore, the voltage drop due to C1 is about four times C1’s ESR multiplied by the load current, and a low (or high) ESR capacitor has a greater impact on performance for C1 than for C2. In general, as the TC1121’s pump frequency increases, capacitance values needed to maintain comparable ripple and output resistance diminish proportionately. 4 3 6 7 8 5 2 1 C1 C2 2.4V to 5.5V VOUT TC1121 GND CAP+ OSC CAP – FC VOUT VIN SHDN *SHDN should be tied to VIN if not used. SHDN* + – + – FC OSC Oscillator Frequency Open Open 10 kHz FC = V + Open 200 kHz Open or FC = V + External Capacitor See Typical Operating Characteristics Open External Clock External Clock FrequencyTC1121 DS21358C-page 6 © 2006 Microchip Technology Inc. 3.4 Cascading Devices To produce greater negative magnitudes of the initial supply voltage, the TC1121 may be cascaded (see Figure 3-2). Resulting output resistance is approximately equal to the sum of individual TC1121 ROUT values. The output voltage (where n is an integer representing the number of devices cascaded) is defined by VOUT = -n (VIN). 3.5 Paralleling Devices To reduce output resistance, multiple TC1121s may be paralleled (see Figure 3-3). Each device needs a pump capacitor C1, but the reservoir capacitor C2 serves all devices. The value of C2 should be increased by a factor of n (the number of devices). FIGURE 3-2: Cascading TC1121s to Increase Output Voltage FIGURE 3-3: Paralleling TC1121s to Reduce Output Resistance C1 C1n 4 4 3 2 3 5 8 8 7 5 2 C2 VIN + C2n TC1121 TC1121 GND GND CAP+ OSC CAP+ OSC CAP– CAP– FC FC SHDN VOUT VOUT VIN VOUT VIN SHDN SHDN* SHDN* “1” “n” + + + + *SHDN should be tied to VIN if not used. C1 C1n 4 4 3 2 3 5 8 8 7 5 2 C2 V + IN TC1121 TC1121 GND GND OSC OSC CAP+ CAP+ CAP– CAP– FC FC SHDN VOUT VOUT VIN VIN SHDN SHDN* SHDN* *SHDN should be tied to VIN if not used. “1” “n” + + + 7 OSC ROUT = ROUT (of TC1121)/n(number of devices)© 2006 Microchip Technology Inc. DS21358C-page 7 TC1121 3.6 Combined Positive Supply Multiplication and Negative Voltage Conversion Figure 3-4 shows this dual function circuit, in which capacitors C1 and C2 perform pump and reservoir functions to generate negative voltage. Capacitors C3 and C4 are the respective capacitors for multiplied positive voltage. This particular configuration leads to higher source impedances of the generated supplies due to the finite impedance of the common charge-pump driver. FIGURE 3-4: Combined Positive Multiplier and Negative Converter C1 D1 D2 D1, D2 = 1N4148 4 3 6 8 5 2 C2 C4 C3 VIN + VOUT = (2VIN) – (VFD1 ) – (VFD2 ) TC1121 GND CAP+ OSC CAP– FC SHDN VOUT VIN SHDN* VOUT = VIN – *SHDN should be tied to VIN if not used. + + + +TC1121 DS21358C-page 8 © 2006 Microchip Technology Inc. 4.0 PACKAGING INFORMATION 4.1 Package Marking Information Package marking data not available at this time. 4.2 Taping Form Component Taping Orientation for 8-Pin MSOP Devices Package Carrier Width (W) Pitch (P) Part Per Full Reel Reel Size 8-Pin MSOP 12 mm 8 mm 2500 13 in Carrier Tape, Number of Components Per Reel and Reel Size Pin 1 User Direction of Feed Standard Reel Component Orientation for 713 Suffix Device W P Component Taping Orientation for 8-Pin SOIC (Narrow) Devices Package Carrier Width (W) Pitch (P) Part Per Full Reel Reel Size 8-Pin SOIC (N) 12 mm 8 mm 2500 13 in Carrier Tape, Number of Components Per Reel and Reel Size Standard Reel Component Orientation for 713 Suffix Device Pin 1 User Direction of Feed P W© 2006 Microchip Technology Inc. DS21358C-page 9 TC1121 4.3 Package Dimensions 8-Pin MSOP .122 (3.10) .114 (2.90) .122 (3.10) .114 (2.90) .043 (1.10) Max. .006 (0.15) .002 (0.05) .016 (0.40) .010 (0.25) .197 (5.00) .189 (4.80) .008 (0.20) .005 (0.13) .028 (0.70) .016 (0.40) 6° Max. .026 (0.65) Typ. Pin 1 Dimensions: inches (mm) 3° Min. Pin 1 .260 (6.60) .240 (6.10) .045 (1.14) .030 (0.76) .070 (1.78) .040 (1.02) .400 (10.16) .348 (8.84) .200 (5.08) .140 (3.56) .150 (3.81) .115 (2.92) .110 (2.79) .090 (2.29) .022 (0.56) .015 (0.38) .040 (1.02) .020 (0.51) .015 (0.38) .008 (0.20) .310 (7.87) .290 (7.37) .400 (10.16) .310 (7.87) 8-Pin Plastic DIP Dimensions: inches (mm)TC1121 DS21358C-page 10 © 2006 Microchip Technology Inc. Package Dimensions (Continued) .050 (1.27) Typ. 8° Max. Pin 1 .244 (6.20) .228 (5.79) .157 (3.99) .150 (3.81) .197 (5.00) .189 (4.80) .020 (0.51) .013 (0.33) .010 (0.25) .004 (0.10) .069 (1.75) .053 (1.35) .010 (0.25) .007 (0.18) .050 (1.27) .016 (0.40) 8-Pin SOIC Dimensions: inches (mm)© 2006 Microchip Technology Inc. DS21358C-page 11 TC1121 THE MICROCHIP WEB SITE Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information: • Product Support – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software • General Technical Support – Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing • Business of Microchip – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives CUSTOMER CHANGE NOTIFICATION SERVICE Microchip’s customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest. To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions. CUSTOMER SUPPORT Users of Microchip products can receive assistance through several channels: • Distributor or Representative • Local Sales Office • Field Application Engineer (FAE) • Technical Support • Development Systems Information Line Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document. Technical support is available through the web site at: http://support.microchip.comTC1121 DS21358C-page 12 © 2006 Microchip Technology Inc. READER RESPONSE It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150. Please list the following information, and use this outline to provide us with your comments about this document. To: Technical Publications Manager RE: Reader Response Total Pages Sent ________ From: Name Company Address City / State / ZIP / Country Telephone: (_______) _________ - _________ Application (optional): Would you like a reply? Y N Device: Literature Number: Questions: FAX: (______) _________ - _________ TC1121 DS21358C 1. What are the best features of this document? 2. How does this document meet your hardware and software development needs? 3. Do you find the organization of this document easy to follow? If not, why? 4. What additions to the document do you think would enhance the structure and subject? 5. What deletions from the document could be made without affecting the overall usefulness? 6. Is there any incorrect or misleading information (what and where)? 7. How would you improve this document?© 2006 Microchip Technology Inc. DS21358C-page 13 Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights. Trademarks The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC, and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. Analog-for-the-Digital Age, Application Maestro, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Linear Active Thermistor, Mindi, MiWi, MPASM, MPLIB, MPLINK, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, rfPICDEM, Select Mode, Smart Serial, SmartTel, Total Endurance, UNI/O, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. All other trademarks mentioned herein are property of their respective companies. © 2006, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved. Printed on recycled paper. Note the following details of the code protection feature on Microchip devices: • Microchip products meet the specification contained in their particular Microchip Data Sheet. • Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. • There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. • Microchip is willing to work with the customer who is concerned about the integrity of their code. • Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.” Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act. Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona, Gresham, Oregon and Mountain View, California. The Company’s quality system processes and procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.DS21358C-page 14 © 2006 Microchip Technology Inc. AMERICAS Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com Atlanta Alpharetta, GA Tel: 770-640-0034 Fax: 770-640-0307 Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088 Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075 Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924 Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260 Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387 Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 San Jose Mountain View, CA Tel: 650-215-1444 Fax: 650-961-0286 Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509 ASIA/PACIFIC Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104 China - Chengdu Tel: 86-28-8676-6200 Fax: 86-28-8676-6599 China - Fuzhou Tel: 86-591-8750-3506 Fax: 86-591-8750-3521 China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205 China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066 China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393 China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760 China - Shunde Tel: 86-757-2839-5507 Fax: 86-757-2839-5571 China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118 China - Xian Tel: 86-29-8833-7250 Fax: 86-29-8833-7256 ASIA/PACIFIC India - Bangalore Tel: 91-80-4182-8400 Fax: 91-80-4182-8422 India - New Delhi Tel: 91-11-5160-8631 Fax: 91-11-5160-8632 India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513 Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122 Korea - Gumi Tel: 82-54-473-4301 Fax: 82-54-473-4302 Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934 Malaysia - Penang Tel: 60-4-646-8870 Fax: 60-4-646-5086 Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069 Singapore Tel: 65-6334-8870 Fax: 65-6334-8850 Taiwan - Hsin Chu Tel: 886-3-572-9526 Fax: 886-3-572-6459 Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803 Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102 Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350 EUROPE Austria - Wels Tel: 43-7242-2244-399 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829 France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44 Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781 Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340 Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820 WORLDWIDE SALES AND SERVICE 02/16/06  2003 Microchip Technology Inc. DS21117A-page 1 M MCP6S21/2/6/8 Features • Multiplexed Inputs: 1, 2, 6 or 8 channels • 8 Gain Selections: - +1, +2, +4, +5, +8, +10, +16 or +32 V/V • Serial Peripheral Interface (SPI™) • Rail-to-Rail Input and Output • Low Gain Error: ±1% (max) • Low Offset: ±275 µV (max) • High Bandwidth: 2 to 12 MHz (typ) • Low Noise: 10 nV/√Hz @ 10 kHz (typ) • Low Supply Current: 1.0 mA (typ) • Single Supply: 2.5V to 5.5V Typical Applications • A/D Converter Driver • Multiplexed Analog Applications • Data Acquisition • Industrial Instrumentation • Test Equipment • Medical Instrumentation Package Types Description The Microchip Technology Inc. MCP6S21/2/6/8 are analog Programmable Gain Amplifiers (PGA). They can be configured for gains from +1 V/V to +32 V/V and the input multiplexer can select one of up to eight channels through an SPI port. The serial interface can also put the PGA into shutdown to conserve power. These PGAs are optimized for high speed, low offset voltage and single-supply operation with rail-to-rail input and output capability. These specifications support single supply applications needing flexible performance or multiple inputs. The one channel MCP6S21 and the two channel MCP6S22 are available in 8-pin PDIP, SOIC and MSOP packages. The six channel MCP6S26 is available in 14-pin PDIP, SOIC and TSSOP packages. The eight channel MCP6S28 is available in 16-pin PDIP and SOIC packages. All parts are fully specified from -40°C to +85°C. Block Diagram VREF CH0 VSS SI SCK 1 2 3 4 8 7 6 5 VDD CS VOUT CH1 CH0 CH2 CS SI 1 2 3 4 14 13 12 11 VREF VSS VOUT 5 6 7 10 9 8 CH3 SCK VDD CH5 CH4 CH0 VOUT CH1 VSS CS 1 2 3 4 16 15 14 13 SI SCK 5 6 7 12 11 10 CH2 CH4 CH7 VDD CH5 8 9 SO CH6 CH3 SO CH1 CH0 VSS SI SCK 1 2 3 4 8 7 6 5 VDD CS VOUT MCP6S21 PDIP, SOIC, MSOP MCP6S26 PDIP, SOIC, TSSOP MCP6S28 PDIP, SOIC MCP6S22 PDIP, SOIC, MSOP VREF VOUT VREF VDD CS SI SO SCK CH1 CH0 CH3 CH2 CH5 CH4 CH7 CH6 VSS 8 RF RG MUX SPI™ Logic POR Gain Switches + - Resistor Ladder (RLAD) Single-Ended, Rail-to-Rail I/O, Low Gain PGAMCP6S21/2/6/8 DS21117A-page 2  2003 Microchip Technology Inc. 1.0 ELECTRICAL CHARACTERISTICS Absolute Maximum Ratings † VDD - VSS .........................................................................7.0V All inputs and outputs....................... VSS - 0.3V to VDD +0.3V Difference Input voltage ........................................ |VDD - VSS| Output Short Circuit Current...................................continuous Current at Input Pin .............................................................±2 mA Current at Output and Supply Pins ................................ ±30 mA Storage temperature .....................................-65°C to +150°C Junction temperature ..................................................+150°C ESD protection on all pins (HBM;MM).................. ≥ 2 kV; 200V † Notice: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. PIN FUNCTION TABLE Name Function VOUT Analog Output CH0-CH7 Analog Inputs VSS Negative Power Supply VDD Positive Power Supply SCK SPI Clock Input SI SPI Serial Data Input SO SPI Serial Data Output CS SPI Chip Select VREF External Reference Pin DC CHARACTERISTICS Electrical Specifications: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to +5.5V, VSS = GND, VREF = VSS, G = +1 V/V, Input = CH0 = (0.3V)/G, CH1 to CH7 = 0.3V, RL = 10 kΩ to VDD/2, SI and SCK are tied low and CS is tied high. Parameters Sym Min Typ Max Units Conditions Amplifier Input Input Offset Voltage VOS -275 — +275 µV G = +1, VDD = 4.0V Input Offset Voltage Drift ∆VOS /∆TA — ±4 — µV/°C TA = -40 to +85°C Power Supply Rejection Ratio PSRR 70 85 — dB G = +1 (Note 1) Input Bias Current IB — ±1 — pA CHx = VDD/2 Input Bias Current over Temperature IB — — 250 pA TA = -40 to +85°C, CHx = VDD/2 Input Impedance ZIN — 10 13 ||15 — Ω||pF Input Voltage Range VIVR VSS−0.3 — VDD+0.3 V Amplifier Gain Nominal Gains G — 1 to 32 — V/V +1, +2, +4, +5, +8, +10, +16 or +32 DC Gain Error G = +1 gE -0.1 — +0.1 % VOUT ≈ 0.3V to VDD − 0.3V G ≥ +2 gE -1.0 — +1.0 % VOUT ≈ 0.3V to VDD − 0.3V DC Gain Drift G = +1 ∆G/∆TA — ±0.0002 — %/°C TA = -40 to +85°C G ≥ +2 ∆G/∆TA — ±0.0004 — %/°C TA = -40 to +85°C Internal Resistance RLAD 3.4 4.9 6.4 kΩ (Note 1) Internal Resistance over Temperature ∆RLAD/∆TA — +0.028 — %/°C (Note 1) TA = -40 to +85°C Amplifier Output DC Output Non-linearity G = +1 VONL — ±0.003 — % of FSR VOUT = 0.3V to VDD − 0.3V, VDD = 5.0V G ≥ +2 VONL — ±0.001 — % of FSR VOUT = 0.3V to VDD − 0.3V, VDD = 5.0V Maximum Output Voltage Swing VOH, VOL VSS+20 — VDD-100 mV G ≥ +2; 0.5V output overdrive VSS+60 — VDD-60 G ≥ +2; 0.5V output overdrive, VREF = VDD/2 Short-Circuit Current IO(SC) — ±30 — mA Note 1: RLAD (RF + RG in Figure 4-1) connects VREF , VOUT and the inverting input of the internal amplifier. The MCP6S22 has VREF tied internally to VSS, so VSS is coupled to the internal amplifier and the PSRR spec describes PSRR+ only. We recommend the MCP6S22’s VSS pin be tied directly to ground to avoid noise problems. 2: IQ includes current in RLAD (typically 60 µA at VOUT = 0.3V). Both IQ and IQ_SHDN exclude digital switching currents. 3: The output goes Hi-Z and the registers reset to their defaults; see Section 5.4, “Power-On Reset”. 2003 Microchip Technology Inc. DS21117A-page 3 MCP6S21/2/6/8 Power Supply Supply Voltage VDD 2.5 — 5.5 V Quiescent Current IQ 0.5 1.0 1.35 mA IO = 0 (Note 2) Quiescent Current, Shutdown mode IQ_SHDN — 0.5 1.0 µA IO = 0 (Note 2) Power-On Reset POR Trip Voltage VPOR 1.2 1.7 2.2 V (Note 3) POR Trip Voltage Drift ∆VPOR/∆T — -3.0 — mV/°C TA = -40°C to+85°C DC CHARACTERISTICS (CONTINUED) Electrical Specifications: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to +5.5V, VSS = GND, VREF = VSS, G = +1 V/V, Input = CH0 = (0.3V)/G, CH1 to CH7 = 0.3V, RL = 10 kΩ to VDD/2, SI and SCK are tied low and CS is tied high. Parameters Sym Min Typ Max Units Conditions Note 1: RLAD (RF + RG in Figure 4-1) connects VREF , VOUT and the inverting input of the internal amplifier. The MCP6S22 has VREF tied internally to VSS , so VSS is coupled to the internal amplifier and the PSRR spec describes PSRR+ only. We recommend the MCP6S22’s VSS pin be tied directly to ground to avoid noise problems. 2: IQ includes current in RLAD (typically 60 µA at VOUT = 0.3V). Both IQ and IQ_SHDN exclude digital switching currents. 3: The output goes Hi-Z and the registers reset to their defaults; see Section 5.4, “Power-On Reset”. AC CHARACTERISTICS Electrical Specifications: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to +5.5V, VSS = GND, VREF = VSS, G = +1 V/V, Input = CH0 =(0.3V)/G, CH1 to CH7=0.3V, RL = 10 kΩ to VDD/2, CL = 60 pF, SI and SCK are tied low, and CS is tied high. Parameters Sym Min Typ Max Units Conditions Frequency Response -3 dB Bandwidth BW — 2 to 12 — MHz All gains; VOUT < 100 mVP-P (Note 1) Gain Peaking GPK — 0 — dB All gains; VOUT < 100 mVP-P Total Harmonic Distortion plus Noise f = 1 kHz, G = +1 V/V THD+N — 0.0015 — % VOUT = 1.5V ± 1.0VPK, VDD = 5.0V, BW = 22 kHz f = 1 kHz, G = +4 V/V THD+N — 0.0058 — % VOUT = 1.5V ± 1.0VPK, VDD = 5.0V, BW = 22 kHz f = 1 kHz, G = +16 V/V THD+N — 0.023 — % VOUT = 1.5V ± 1.0VPK, VDD = 5.0V, BW = 22 kHz f = 20 kHz, G = +1 V/V THD+N — 0.0035 — % VOUT = 1.5V ± 1.0VPK, VDD = 5.0V, BW = 80 kHz f = 20 kHz, G = +4 V/V THD+N — 0.0093 — % VOUT = 1.5V ± 1.0VPK, VDD = 5.0V, BW = 80 kHz f = 20 kHz, G = +16 V/V THD+N — 0.036 — % VOUT = 1.5V ± 1.0VPK, VDD = 5.0V, BW = 80 kHz Step Response Slew Rate SR — 4.0 — V/µs G = 1, 2 — 11 — V/µs G = 4, 5, 8, 10 — 22 — V/µs G = 16, 32 Noise Input Noise Voltage Eni — 3.2 — µVP-P f = 0.1 Hz to 10 kHz (Note 2) — 26 — f = 0.1 Hz to 200 kHz (Note 2) Input Noise Voltage Density eni — 10 — nV/√Hz f = 10 kHz (Note 2) Input Noise Current Density ini — 4 — fA/√Hz f = 10 kHz Note 1: See Table 4-1 for a list of typical numbers. 2: Eni and eni include ladder resistance noise. See Figure 2-33 for eni vs. G data.MCP6S21/2/6/8 DS21117A-page 4  2003 Microchip Technology Inc. DIGITAL CHARACTERISTICS Electrical Specifications: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to +5.5V, VSS = GND, VREF = VSS , G = +1 V/V, Input = CH0 = (0.3V)/G, CH1 to CH7 = 0.3V, RL = 10 kΩ to VDD/2, CL = 60 pF, SI and SCK are tied low, and CS is tied high. Parameters Sym Min Typ Max Units Conditions SPI Inputs (CS, SI, SCK) Logic Threshold, Low VIL 0 — 0.3VDD V Input Leakage Current I IL -1.0 — +1.0 µA Logic Threshold, High VIH 0.7VDD — VDD V Amplifier Output Leakage Current — -1.0 — +1.0 µA In Shutdown mode SPI Output (SO, for MCP6S26 and MCP6S28) Logic Threshold, Low VOL VSS — VSS+0.4 V IOL = 2.1 mA, VDD = 5V Logic Threshold, High VOH VDD-0.5 — VDD V IOH = -400 µA SPI Timing Pin Capacitance CPIN — 10 — pF All digital I/O pins Input Rise/Fall Times (CS, SI, SCK) tRFI — — 2 µs Note 1 Output Rise/Fall Times (SO) tRFO — 5 — ns MCP6S26 and MCP6S28 CS high time tCSH 40 — — ns SCK edge to CS fall setup time tCS0 10 — — ns SCK edge when CS is high CS fall to first SCK edge setup time tCSSC 40 — — ns SCK Frequency fSCK — — 10 MHz VDD = 5V (Note 2) SCK high time tHI 40 — — ns SCK low time tLO 40 — — ns SCK last edge to CS rise setup time tSCCS 30 — — ns CS rise to SCK edge setup time tCS1 100 — — ns SCK edge when CS is high SI set-up time tSU 40 — — ns SI hold time tHD 10 — — ns SCK to SO valid propagation delay tDO — — 80 ns MCP6S26 and MCP6S28 CS rise to SO forced to zero tSOZ — — 80 ns MCP6S26 and MCP6S28 Channel and Gain Select Timing Channel Select Time tCH — 1.5 — µs CHx = 0.6V, CHy =0.3V, G = 1, CHx to CHy select CS = 0.7VDD to VOUT 90% point Gain Select Time tG — 1 — µs CHx = 0.3V, G = 5 to G = 1 select, CS = 0.7VDD to VOUT 90% point Shutdown Mode Timing Out of Shutdown mode (CS goes high) to Amplifier Output Turn-on Time tON — 3.5 10 µs CS = 0.7VDD to VOUT 90% point Into Shutdown mode (CS goes high) to Amplifier Output High-Z Turn-off Time tOFF — 1.5 — µs CS = 0.7VDD to VOUT 90% point POR Timing Power-On Reset power-up time tRPU — 30 — µs VDD = VPOR - 0.1V to VPOR + 0.1V, 50% VDD to 90% VOUT point Power-On Reset power-down time tRPD — 10 — µs VDD = VPOR + 0.1V to VPOR - 0.1V, 50% VDD to 90% VOUT point Note 1: Not tested in production. Set by design and characterization. 2: When using the device in the daisy chain configuration, maximum clock frequency is determined by a combination of propagation delay time (tDO ≤ 80 ns), data input setup time (tSU ≥ 40 ns), SCK high time (tHI ≥ 40 ns), and SCK rise and fall times of 5 ns. Maximum fSCK is, therefore, ≈ 5.8 MHz. 2003 Microchip Technology Inc. DS21117A-page 5 MCP6S21/2/6/8 TEMPERATURE CHARACTERISTICS FIGURE 1-1: Channel Select Timing Diagram. FIGURE 1-2: PGA Shutdown timing diagram (must enter correct commands before CS goes high). FIGURE 1-3: Gain Select Timing Diagram. FIGURE 1-4: POR power-up and powerdown timing diagram. Electrical Specifications: Unless otherwise indicated, VDD = +2.5V to +5.5V, VSS = GND. Parameters Sym Min Typ Max Units Conditions Temperature Ranges Specified Temperature Range TA -40 — +85 °C Operating Temperature Range TA -40 — +125 °C (Note Note:) Storage Temperature Range TA -65 — +150 °C Thermal Package Resistances Thermal Resistance, 8L-PDIP θ JA — 85 — °C/W Thermal Resistance, 8L-SOIC θ JA — 163 — °C/W Thermal Resistance, 8L-MSOP θJA — 206 — °C/W Thermal Resistance, 14L-PDIP θ JA — 70 — °C/W Thermal Resistance, 14L-SOIC θ JA — 120 — °C/W Thermal Resistance, 14L-TSSOP θJA — 100 — °C/W Thermal Resistance, 16L-PDIP θ JA — 70 — °C/W Thermal Resistance, 16L-SOIC θ JA — 90 — °C/W Note 1: The MCP6S21/2/6/8 family of PGAs operates over this extended temperature range, but with reduced performance. Operation in this range must not cause TJ to exceed the Maximum Junction Temperature (150°C). CS VOUT tCH 0.6V 0.3V CS tOFF VOUT tON Hi-Z Hi-Z ISS 500 nA (typ) 1.0 mA (typ) 0.3V CS VOUT tG 1.5V 0.3V VDD tRPD VOUT tRPU Hi-Z Hi-Z VPOR - 0.1V VPOR - 0.1V VPOR + 0.1V 0.3V ISS 500 nA (typ) 1.0 mA (typ)MCP6S21/2/6/8 DS21117A-page 6  2003 Microchip Technology Inc. FIGURE 1-5: Detailed SPI Serial Interface Timing, SPI 0,0 mode. FIGURE 1-6: Detailed SPI Serial Interface Timing, SPI 1,1 mode. CS SCK SI tSU tHD tCSSC tSCCS tCSH SO (first 16 bits out are always zeros) tDO tSOZ tLO tHI 1/fSCK tCS0 tCS1 CS SCK SI tSU tHD tCSSC tSCCS SO (first 16 bits out are always zeros) tDO tSOZ tHI tLO 1/fSCK tCS1 tCSH tCS0 2003 Microchip Technology Inc. DS21117A-page 7 MCP6S21/2/6/8 1.1 DC Output Voltage Specs / Model 1.1.1 IDEAL MODEL The ideal PGA output voltage (VOUT) is: EQUATION (see Figure 1-7). This equation holds when there are no gain or offset errors and when the VREF pin is tied to a low impedance source (<< 0.1Ω) at ground potential (VSS = 0V). 1.1.2 LINEAR MODEL The PGA’s linear region of operation, including offset and gain errors, is modeled by the line VO_linear , shown in Figure 1-7. EQUATION The endpoints of this line are at VO_ideal = 0.3V and VDD-0.3V. The gain and offset specifications referred to in the electrical specifications are related to Figure 1-7, as follows: EQUATION FIGURE 1-7: Output Voltage Model with the standard condition VREF = VSS = 0V. 1.1.3 OUTPUT NON-LINEARITY Figure 1-8 shows the Integral Non-Linearity (INL) of the output voltage. EQUATION The output non-linearity specification in the electrical specifications is related to Figure 1-8 by: EQUATION FIGURE 1-8: Output Voltage INL with the standard condition VREF = VSS = 0V. VO_ideal GV IN = V REF V SS = = 0V where: G is the nominal gain VO_linear G 1 g E ( ) + V IN 0.3V VOS = ( ) – + + 0.3V V REF V SS = = 0V g E 100% V 2 V 1 – G VDD ( ) – 0.6V = -------------------------------------- VOS V 1 G 1 g E ( ) + = ------------------------- G T A ∆ ⁄ ∆ g E ∆ T A ∆ = ---------- G +1 = 0 0 0.3 VDD-0.3 VDD VOUT VOUT (V) VIN (V) 0.3 VDD - 0.3 VDD G G G V1 VO_ideal VO_linear V2 INL VOUT VO_linear = – VONL max V 4 V 3 { } , VDD – 0.6V = --------------------------------- 0 V3 V4 INL (V) VIN (V) 0.3 VDD - 0.3 VDD G G G 0MCP6S21/2/6/8 DS21117A-page 8  2003 Microchip Technology Inc. 1.1.4 DIFFERENT VREF CONDITIONS Some of the plots in Section 2.0, “Typical Performance Curves”, have the conditions VREF = VDD/2 or VREF = VDD. The equations and figures above are easily modified for these conditions. The ideal VOUT becomes: EQUATION The complete linear model is: EQUATION where the new VIN endpoints are: EQUATION The equations for extracting the specifications do not change. VO_ideal V REF G V IN V REF = + ( ) – VDD V REF V SS ≥ > = 0V VO_linear G 1 g E ( ) + V IN V IN_L VOS = ( ) – + + 0.3V V IN_L 0.3V V REF – G V REF + = ------------------------------ V IN_R VDD – 0.3V V REF – G V REF + = ----------------------------------------------- 2003 Microchip Technology Inc. DS21117A-page 9 MCP6S21/2/6/8 2.0 TYPICAL PERFORMANCE CURVES Note: Unless otherwise indicated, TA = +25°C, VDD = +5.0V, VSS = GND, VREF = VSS, G= +1 V/V, Input = CH0 = (0.3V)/G, CH1 to CH7 = 0.3V, RL = 10 kΩ to VDD/2, and CL = 60 pF. FIGURE 2-1: DC Gain Error, G = +1. FIGURE 2-2: DC Gain Error, G ≥+2. FIGURE 2-3: Ladder Resistance Drift. FIGURE 2-4: DC Gain Drift, G = +1. FIGURE 2-5: DC Gain Drift, G ≥+2. FIGURE 2-6: Input Offset Voltage, VDD = 4.0V. Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range. 0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20% 22% -0.040 -0.036 -0.032 -0.028 -0.024 -0.020 -0.016 -0.012 -0.008 -0.004 0.000 0.004 DC Gain Error (%) Percentage of Occurrences 420 Samples G = +1 0% 2% 4% 6% 8% 10% 12% 14% 16% 18% -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 DC Gain Error (%) Percentage of Occurrences 420 Samples G t +2 0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20% 22% 0.023 0.024 0.025 0.026 0.027 0.028 0.029 0.030 0.031 Ladder Resistance Drift (%/°C) Percentage of Occurrences 420 Samples TA = -40 to +125°C 0% 2% 4% 6% 8% 10% 12% 14% 16% 18% -0.0006 -0.0005 -0.0004 -0.0003 -0.0002 -0.0001 0.0000 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 DC Gain Drift (%/°C) Percentage of Occurrences 420 Samples G = +1 TA = -40 to +125°C 0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20% 22% 24% -0.0020 -0.0016 -0.0012 -0.0008 -0.0004 0.0000 0.0004 0.0008 0.0012 0.0016 0.0020 DC Gain Drift (%/°C) Percentage of Occurrences 420 Samples G t +2 TA = -40 to +125°C 0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20% -240 -200 -160 -120 -80 -40 0 40 80 120 160 200 240 Input Offset Voltage (µV) Percentage of Occurrences 360 Samples VDD = 4.0 V G = +1MCP6S21/2/6/8 DS21117A-page 10  2003 Microchip Technology Inc. Note: Unless otherwise indicated, TA = +25°C, VDD = +5.0V, VSS = GND, VREF = VSS, G= +1 V/V, Input = CH0 = (0.3V)/G, CH1 to CH7 = 0.3V, RL = 10 kΩ to VDD/2, and CL = 60 pF. FIGURE 2-7: Input Offset Voltage vs. VREF Voltage. FIGURE 2-8: DC Output Non-Linearity vs. Supply Voltage. FIGURE 2-9: Input Noise Voltage Density vs. Frequency. FIGURE 2-10: Input Offset Voltage Drift. FIGURE 2-11: DC Output Non-Linearity vs. Output Swing. FIGURE 2-12: Input Noise Voltage Density vs. Gain. -200 -150 -100 -50 0 50 100 150 200 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VREF Voltage (V) Input Offset Voltage (µV) VDD = +5.5 VDD = +2.5 G = +1 0.00001 0.0001 0.001 0.01 2.5 3.0 3.5 4.0 4.5 5.0 5.5 Power Supply Voltage (V) DC Output Non-Linearity, Input Referred (% of FSR) VONL/G, G = +1 VONL/G, G = +2 VONL/G, G t +4 VOUT = 0.3V to VDD -0.3V 1 10 100 1000 0.1 1 10 100 1000 10000 100000 Frequency (Hz) Input Noise Voltage Density (nV/—Hz) 0.1 1 10 100 1k 10k 100k 0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20% 22% -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 Input Offset Voltage Drift (µV/°C) Percentage of Occurrences 420 Samples TA = -40 to +125°C G = +1 0.0001% 0.0010% 0.0100% 1 10 Output Voltage Swing (VP-P) DC Output Non-Linearity, Input Referred (%) VONL/G, G t +2 VONL/G, G = +1 VDD = +5.5 V 0 1 2 3 4 5 6 7 8 9 10 11 12 1 2 4 5 8 10 16 32 Gain (V/V) Input Noise Voltage Density (nV/—Hz) f = 10 kHz 2003 Microchip Technology Inc. DS21117A-page 11 MCP6S21/2/6/8 Note: Unless otherwise indicated, TA = +25°C, VDD = +5.0V, VSS = GND, VREF = VSS, G= +1 V/V, Input = CH0 = (0.3V)/G, CH1 to CH7 = 0.3V, RL = 10 kΩ to VDD/2, and CL = 60 pF. FIGURE 2-13: PSRR vs. Ambient Temperature. FIGURE 2-14: Input Bias Current vs. Ambient Temperature. FIGURE 2-15: Bandwidth vs. Capacitive Load. FIGURE 2-16: PSRR vs. Frequency. FIGURE 2-17: Input Bias Current vs. Input Voltage. FIGURE 2-18: Gain Peaking vs. Capacitive Load. 70 80 90 100 110 120 -50 -25 0 25 50 75 100 125 Ambient Temperature (°C) Power Supply Rejection Ratio (dB) 1 10 100 1,000 55 65 75 85 95 105 115 125 Ambient Temperature (°C) Input Bias Current (pA) CH0 = VDD VDD = 5.5 V 1 10 100 10 100 1000 Capacitive Load (pF) Bandwidth (MHz) G = +1 G = +4 G = +16 40 50 60 70 80 90 100 10 100 1000 10000 100000 Frequency (Hz) Power Supply Rejection Ratio (dB) VDD = 2.5 V VDD = 5.5 V 10 100 1k 10k 100k Input Referred 1 10 100 1,000 10,000 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 Input Voltage (V) Input Bias Current (pA) TA = +85°C VDD = 5.5 V TA = +125°C 0 1 2 3 4 5 6 7 10 100 1000 Capacitive Load (pF) Gain Peaking (dB) G = +1 G = +4 G = +16MCP6S21/2/6/8 DS21117A-page 12  2003 Microchip Technology Inc. Note: Unless otherwise indicated, TA = +25°C, VDD = +5.0V, VSS = GND, VREF = VSS, G= +1 V/V, Input = CH0 = (0.3V)/G, CH1 to CH7 = 0.3V, RL = 10 kΩ to VDD/2, and CL = 60 pF. FIGURE 2-19: Gain vs. Frequency. FIGURE 2-20: Histogram of Quiescent Current in Shutdown Mode. FIGURE 2-21: Output Voltage Headroom vs. Output Current. FIGURE 2-22: Quiescent Current vs. Supply Voltage. FIGURE 2-23: Quiescent Current in Shutdown Mode vs. Ambient Temperature. FIGURE 2-24: Output Short Circuit Current vs. Supply Voltage. -20 -10 0 10 20 30 40 1.E+05 1.E+06 1.E+07 1.E+08 Frequency (Hz) Gain (dB) G = +2 G = +1 100k 1M 10M 100M G = +32 G = +16 G = +10 G = +8 G = +5 G = +4 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Quiescent Current in Shutdown (µA) Percentage of Occurrences 420 Samples VDD = 5.0 V 1 10 100 0.1 1 10 Output Current Magnitude (mA) Output Voltage Headroom (mV) VDD - VOH and VOL - VSS VDD = +5.5V VDD = +2.5V 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 Supply Voltage (V) Quiescent Current (mA) TA = +125°C TA = +85°C TA = +25°C TA = -40°C 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 -50 -25 0 25 50 75 100 125 Ambient Temperature (°C) Quiescent Current in Shutdown (µA) In Shutdown Mode VDD = 5.0 V 0 5 10 15 20 25 30 35 40 2.5 3.0 3.5 4.0 4.5 5.0 5.5 Power Supply Voltage (V) Output Short Circuit Current (mA) TA = +125°C TA = +85°C TA = +25°C TA = -40°C 2003 Microchip Technology Inc. DS21117A-page 13 MCP6S21/2/6/8 Note: Unless otherwise indicated, TA = +25°C, VDD = +5.0V, VSS = GND, VREF = VSS, G= +1 V/V, Input = CH0 = (0.3V)/G, CH1 to CH7 = 0.3V, RL = 10 kΩ to VDD/2, and CL = 60 pF. FIGURE 2-25: THD plus Noise vs. Frequency, VOUT = 2 VP-P. FIGURE 2-26: Small Signal Pulse Response. FIGURE 2-27: Channel Select Timing. FIGURE 2-28: THD plus Noise vs. Frequency, VOUT = 4 VP-P. FIGURE 2-29: Large Signal Pulse Response. FIGURE 2-30: Gain Select Timing. 0.001 0.01 0.1 1 1.E+02 1.E+03 1.E+04 1.E+05 Frequency (Hz) THD + Noise (%) Measurement BW = 80 kHz VOUT = 2 VP-P VDD = 5.0 V 100 1k 100k 10k G = +4 G = +1 G = +16 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 0.00E+00 2.00E-07 4.00E-07 6.00E-07 8.00E-07 1.00E-06 1.20E-06 1.40E-06 1.60E-06 1.80E-06 2.00E-06 Time (200 ns/div) Output Voltage (10 mV/div) -250 -200 -150 -100 -50 0 50 100 150 200 250 Normalized Input Voltage (50 mV/div) VDD = +5.0V VOUT, G = +1 G = +5 G = +32 GVIN 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.00E+00 5.00E-07 1.00E-06 1.50E-06 2.00E-06 2.50E-06 3.00E-06 3.50E-06 4.00E-06 4.50E-06 5.00E-06 Time (500 ns/div) Output Voltage (V) -20 -15 -10 -5 0 5 10 15 20 Chip Select Voltage (V) 5 0 VOUT (CH0 = 0.6V, G = +1) VOUT (CH1 = 0.3V, G = +1) CS CS 0.001 0.01 0.1 1 1.E+02 1.E+03 1.E+04 1.E+05 Frequency (Hz) THD + Noise (%) Measurement BW = 80 kHz VOUT = 4 VP-P VDD = 5.0 V 100 1k 100k 10k G = +4 G = +1 G = +16 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 0.00E+00 5.00E-07 1.00E-06 1.50E-06 2.00E-06 2.50E-06 3.00E-06 3.50E-06 4.00E-06 4.50E-06 5.00E-06 Time (500 ns/div) Output Voltage (V) -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 Normalized Input Voltage (1V/div) VDD = +5.0V VOUT, G = +1 GVIN G = +5 G = +32 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 0.00E+00 5.00E-07 1.00E-06 1.50E-06 2.00E-06 2.50E-06 3.00E-06 3.50E-06 4.00E-06 4.50E-06 5.00E-06 Time (500 ns/div) Output Voltage (V) -20 -15 -10 -5 0 5 10 15 20 Chip Select Voltage (V) 5 0 VOUT (CH0 = 0.3V, G = +5) VOUT (CH0 = 0.3V, G = +1) CS CSMCP6S21/2/6/8 DS21117A-page 14  2003 Microchip Technology Inc. Note: Unless otherwise indicated, TA = +25°C, VDD = +5.0V, VSS = GND, VREF = VSS, G= +1 V/V, Input = CH0 = (0.3V)/G, CH1 to CH7 = 0.3V, RL = 10 kΩ to VDD/2, and CL = 60 pF. FIGURE 2-31: Output Voltage vs. Shutdown Mode. FIGURE 2-32: POR Trip Voltage. FIGURE 2-33: Output Voltage Swing vs. Frequency. FIGURE 2-34: The MCP6S21/2/6/8 family shows no phase reversal under overdrive. 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0E+00 1.0E-06 2.0E-06 3.0E-06 4.0E-06 5.0E-06 6.0E-06 7.0E-06 8.0E-06 9.0E-06 1.0E-05 Time (1 µs/div) Output Voltage (mV) -25 -20 -15 -10 -5 0 5 10 15 20 25 Chip Select Voltage (V) 5 0 VOUT is "ON" (CH0 = 0.3V, G = +1) Shutdown CS CS Shutdown 0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20% 1.60 1.64 1.68 1.72 1.76 1.80 1.84 1.88 POR Trip Voltage (V) Percentage of Occurrences 420 Samples 0.1 1 10 1.E+04 1.E+05 1.E+06 1.E+07 Frequency (Hz) Output Voltage Swing (VP-P) VDD = 2.5 V VDD = 5.5 V G = +1, +2 G = +4 to +10 G = +16, +32 10k 100k 10M 1M -1 0 1 2 3 4 5 6 0.0E+00 1.0E-03 2.0E-03 3.0E-03 4.0E-03 5.0E-03 6.0E-03 7.0E-03 8.0E-03 9.0E-03 1.0E-02 Time (1 ms/div) Input, Output Voltage (V) VDD = 5.0 V G = +1 V/V VIN VOUT 2003 Microchip Technology Inc. DS21117A-page 15 MCP6S21/2/6/8 3.0 PIN DESCRIPTIONS The descriptions of the pins are listed in Table 3-1. TABLE 3-1: PIN FUNCTION TABLE 3.1 Analog Output The output pin (VOUT) is a low-impedance voltage source. The selected gain (G), selected input (CH0- CH7) and voltage at VREF determine its value. 3.2 Analog Inputs (CH0 thru CH7) The inputs CH0 through CH7 connect to the signal sources. They are high-impedance CMOS inputs with low bias currents. The internal MUX selects which one is amplified to the output. 3.3 External Reference Voltage (VREF ) The VREF pin should be at a voltage between VSS and VDD (the MCP6S22 has VREF tied internally to VSS). The voltage at this pin shifts the output voltage. 3.4 Power Supply (VSS and VDD) The positive power supply pin (VDD) is 2.5V to 5.5V higher than the negative power supply pin (VSS). For normal operation, the other pins are between VSS and VDD. Typically, these parts are used in a single (positive) supply configuration. In this case, VSS is connected to ground and VDD is connected to the supply. VDD will need a local bypass capacitor (0.1 µF) at the VDD pin. It can share a bulk capacitor with nearby analog parts (typically 2.2 µF to 10 µF within 4 inches (100 mm) of the VDD pin. 3.5 Digital Inputs The SPI interface inputs are: Chip Select (CS), Serial Input (SI) and Serial Clock (SCK). These are Schmitttriggered, CMOS logic inputs. 3.6 Digital Output The MCP6S26 and MCP6S28 devices have a SPI interface serial output (SO) pin. This is a CMOS pushpull output and does not ever go High-Z. Once the device is deselected (CS goes high), SO is forced low. This feature supports daisy chaining, as explained in Section 5.3, “Daisy Chain Configuration”. MCP6S21 MCP6S22 MCP6S26 MCP6S28 Symbol Description 1 1 1 1 VOUT Analog Output 2 2 2 2 CH0 Analog Input — 3 3 3 CH1 Analog Input — — 4 4 CH2 Analog Input — — 5 5 CH3 Analog Input — — 6 6 CH4 Analog Input — — 7 7 CH5 Analog Input — — — 8 CH6 Analog Input — — — 9 CH7 Analog Input 3 — 8 10 VREF External Reference Pin 4 4 9 11 VSS Negative Power Supply 5 5 10 12 CS SPI Chip Select 6 6 11 13 SI SPI Serial Data Input — — 12 14 SO SPI Serial Data Output 7 7 13 15 SCK SPI Clock Input 8 8 14 16 VDD Positive Power SupplyMCP6S21/2/6/8 DS21117A-page 16  2003 Microchip Technology Inc. 4.0 ANALOG FUNCTIONS The MCP6S21/2/6/8 family of Programmable Gain Amplifiers (PGA) are based on simple analog building blocks (see Figure 4-1). Each of these blocks will be explained in more detail in the following sub-sections. FIGURE 4-1: PGA Block Diagram. 4.1 Input MUX The MCP6S21 has one input, the MCP6S22 and MCP6S25 have two inputs, the MCP6S26 has six inputs and the MCP6S28 has eight inputs (see Figure 4-1). For the lowest input current, float unused inputs. Tying these pins to a voltage near the used channels also works well. For simplicity, they can be tied to VSS or VDD, but the input current may increase. The one channel MCP6S21 has the lowest input bias current, while the eight channel MCP6S28 has the highest. There is about a 2:1 ratio in IB between these parts. 4.2 Internal Op Amp The internal op amp provides the right combination of bandwidth, accuracy and flexibility. 4.2.1 COMPENSATION CAPACITORS The internal op amp has three compensation capacitors connected to a switching network. They are selected to give good small signal bandwidth at high gains, and good slew rate (full power bandwidth) at low gains. The change in bandwidth as gain changes is between 2 MHz and 12 MHz. Refer to Table 4-1 for more information. TABLE 4-1: GAIN VS. INTERNAL COMPENSATION CAPACITOR MCP6S21–One input (CH0), no SO pin MCP6S22–Two inputs (CH0, CH1), VREF tied internally to VSS, no SO pin MCP6S26–Six inputs (CH0 to CH5) MCP6S28–Eight inputs (CH0 to CH7) VOUT VREF VDD CS SI SO SCK CH1 CH0 CH3 CH2 CH5 CH4 CH7 CH6 VSS 8 RF RG MUX SPI™ Logic POR Gain Switches + - Resistor Ladder (RLAD) Gain (V/V) Internal Compensation Capacitor Typical GBWP (MHz) Typical SR (V/µs) Typical FPBW (MHz) Typical BW (MHz) 1 Large 12 4.0 0.30 12 2 Large 12 4.0 0.30 6 4 Medium 20 11 0.70 10 5 Medium 20 11 0.70 7 8 Medium 20 11 0.70 2.4 10 Medium 20 11 0.70 2.0 16 Small 64 22 1.6 5 32 Small 64 22 1.6 2.0 Note 1: FPBW is the Full Power Bandwidth. These numbers are based on VDD = 5.0V. 2: No changes in DC performance (e.g., VOS) accompany a change in compensation capacitor. 3: BW is the closed-loop, small signal -3 dB bandwidth. 2003 Microchip Technology Inc. DS21117A-page 17 MCP6S21/2/6/8 4.2.2 RAIL-TO-RAIL INPUT The input stage of the internal op amp uses two differential input stages in parallel; one operates at low VIN (input voltage), while the other operates at high VIN. With this topology, the internal inputs can operate to 0.3V past either supply rail. The input offset voltage is measured at both VIN = VSS - 0.3V and VDD + 0.3V to ensure proper operation. The transition between the two input stages occurs when VIN ≈ VDD - 1.5V. For the best distortion and gain linearity, avoid this region of operation. 4.2.3 RAIL-TO-RAIL OUTPUT The Maximum Output Voltage Swing is the maximum swing possible under a particular output load. According to the specification table, the output can reach within 60 mV of either supply rail when RL = 10 kΩ and VREF = VDD/2. See Figure 2-21 for typical performance under other conditions. 4.2.4 INPUT VOLTAGE AND PHASE REVERSAL The amplifier family is designed with CMOS input devices. It is designed to not exhibit phase inversion when the input pins exceed the supply voltages. Figure 2-34 shows an input voltage exceeding both supplies with no resulting phase inversion. The maximum voltage that can be applied to the input pins (CHX) is VSS - 0.3V to VDD + 0.3V. Voltages on the inputs that exceed this absolute maximum rating can cause excessive current to flow in or out of the input pins. Current beyond ±2 mA can cause possible reliability problems. Applications that exceed this rating must be externally limited with an input resistor, as shown in Figure 4-2. FIGURE 4-2: RIN limits the current flow into an input pin. 4.3 Resistor Ladder The resistor ladder shown in Figure 4-1 (RLAD = RF + RG) sets the gain. Placing the gain switches in series with the inverting input reduces the parasitic capacitance, distortion and gain mismatch. RLAD is an additional load on the output of the PGA and causes additional current draw from the supplies. In Shutdown mode, RLAD is still attached to the OUT and VREF pins. Thus, these pins and the internal amplifier’s inverting input are all connected through RLAD and the output is not high-Z (unlike the external op amp). While RLAD contributes to the output noise, its effect is small. Refer to Figure 2-12. 4.4 Shutdown Mode These PGAs use a software shutdown command. When the SPI interface sends a shutdown command, the internal op amp is shut down and its output placed in a high-Z state. The resistive ladder is always connected between VREF and VOUT ; even in shutdown. This means that the output resistance will be on the order of 5 kΩ and there will be a path for output signals to appear at the input. The Power-on Reset (POR) circuitry will temporarily place the part in shutdown when activated. See Section 5.4, “Power-On Reset”, for details. R IN V SS Minimum expected V IN – ( ) 2 mA ≥ ---------------------------------------------------------------------------- R IN Maximum expected V IN ( ) VDD – 2 mA ≥ ------------------------------------------------------------------------------- VIN RIN MCP6S2X VOUT CHXMCP6S21/2/6/8 DS21117A-page 18  2003 Microchip Technology Inc. 5.0 DIGITAL FUNCTIONS The MCP6S21/2/6/8 PGAs use a standard SPI compatible serial interface to receive instructions from a controller. This interface is configured to allow daisy chaining with other SPI devices. There is an internal POR (Power On Reset) that resets the registers under low power conditions. 5.1 SPI Timing Chip Select (CS) toggles low to initiate communication with these devices. The first byte of each SI word (two bytes long) is the instruction byte, which goes into the Instruction Register. The Instruction Register points the second byte to its destination. In a typical application, CS is raised after one word (16 bits) to implement the desired changes. Section 5.3, “Registers”, covers applications using multiple 16-bit words. SO goes low after CS goes high; it has a push-pull output that does not go into a high-Z state. The MCP6S21/2/6/8 devices operate in SPI Modes 0,0 and 1,1. In 0,0 mode, the clock idles in the low state (Figure 5-1) and, in 1,1 mode, the clock idles in the high state (Figure 5-2). In both modes, SI data is loaded into the PGA on the rising edge of SCK and SO data is clocked out on the falling edge of SCK. In 0,0 mode, the falling edge of CS also acts as the first falling edge of SCK (see Figure 5-1). There must be multiples of 16 clocks (SCK) while CS is low or commands will abort (see Section 5.3, “Registers”). FIGURE 5-1: Serial bus sequence for the PGA; SPI 0,0 mode (see Figure 1-5). FIGURE 5-2: Serial bus sequence for the PGA; SPI 1,1 mode (see Figure 1-6). 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 bit 7 CS SCK SI Instruction Byte Data Byte bit 0 bit 7 bit 0 SO (first 16 bits out are always zeros) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 bit 7 CS SCK SI Instruction Byte Data Byte bit 0 bit 7 bit 0 SO (first 16 bits out are always zeros) 2003 Microchip Technology Inc. DS21117A-page 19 MCP6S21/2/6/8 5.2 Registers The analog functions are programmed through the SPI interface using 16-bit words (see Figure 5-1 and Figure 5-2). This data is sent to two of three 8-bit registers: Instruction Register (Register 5-1), Gain Register (Register 5-2) and Channel Register (Register 5-3). The power-up defaults for these three registers are: • Instruction Register: 000x xxx0 • Gain Register: xxxx x000 • Channel Register: xxxx x000 Thus, these devices are initially programmed with the Instruction Register set for NOP (no operation), a gain of +1 V/V and CH0 as the input channel. 5.2.1 INSTRUCTION REGISTER The Instruction Register has 3 command bits and 1 indirect address bit; see Register 5-1. The command bits include a NOP (000) to support daisy chaining (see Section 5.3, “Registers”); the other NOP commands shown should not be used (they are reserved for future use). The device is brought out of Shutdown mode when a valid command, other than NOP or Shutdown, is sent and CS is raised. REGISTER 5-1: INSTRUCTION REGISTER W-0 W-0 W-0 U-x U-x U-x U-x W-0 M2 M1 M0 — — — — A0 bit 7 bit 0 bit 7-5 M2-M0: Command Bits 000 = NOP (Default) (Note 1) 001 = PGA enters Shutdown Mode as soon as a full 16-bit word is sent and CS is raised. (Notes 1 and 2) 010 = Write to register. 011 = NOP (reserved for future use) (Note 1) 1XX = NOP (reserved for future use) (Note 1) bit 4-1 Unimplemented: Read as ‘0’ (reserved for future use) bit 0 A0: Indirect Address Bit 1 = Addresses the Channel Register 0 = Addresses the Gain Register (Default) Note 1: All other bits in the 16-bit word (including A0) are “don’t cares”. 2: The device exits Shutdown mode when a valid command (other than NOP or Shutdown) is sent and CS is raised; that valid command will be executed. Shutdown does not toggle. Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ’1’ = Bit is set ’0’ = Bit is cleared x = Bit is unknownMCP6S21/2/6/8 DS21117A-page 20  2003 Microchip Technology Inc. 5.2.2 SETTING THE GAIN The amplifier can be programmed to produce binary and decimal gain settings between +1 V/V and +32 V/V. Register 5-2 shows the details. At the same time, different compensation capacitors are selected to optimize the bandwidth vs. slew rate trade-off (see Table 4-1). REGISTER 5-2: GAIN REGISTER U-x U-x U-x U-x U-x W-0 W-0 W-0 — — — — — G2 G1 G0 bit 7 bit 0 bit 7-3 Unimplemented: Read as ‘0’ (reserved for future use) bit 2-0 G2-G0: Gain Select Bits 000 = Gain of +1 (Default) 001 = Gain of +2 010 = Gain of +4 011 = Gain of +5 100 = Gain of +8 101 = Gain of +10 110 = Gain of +16 111 = Gain of +32 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ’1’ = Bit is set ’0’ = Bit is cleared x = Bit is unknown 2003 Microchip Technology Inc. DS21117A-page 21 MCP6S21/2/6/8 5.2.3 CHANGING THE CHANNEL If the instruction register is programmed to address the channel register, the multiplexed inputs of the MCP6S22, MCP6S26 and MCP6S28 can be changed per Register 5-3. REGISTER 5-3: CHANNEL REGISTER U-x U-x U-x U-x U-x W-0 W-0 W-0 — — — — — C2 C1 C0 bit 7 bit 0 bit 7-3 Unimplemented: Read as ‘0’ (reserved for future use) bit 2-0 C2-C0: Channel Select Bits MCP6S21 000 = CH0 (Default) 001 = CH0 001 = CH0 011 = CH0 100 = CH0 101 = CH0 110 = CH0 111 = CH0 MCP6S22 CH0 (Default) CH1 CH0 CH1 CH0 CH1 CH0 CH1 MCP6S26 CH0 (Default) CH1 CH2 CH3 CH4 CH5 CH0 CH0 MCP6S28 CH0 (Default) CH1 CH2 CH3 CH4 CH5 CH6 CH7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ’1’ = Bit is set ’0’ = Bit is cleared x = Bit is unknownMCP6S21/2/6/8 DS21117A-page 22  2003 Microchip Technology Inc. 5.2.4 SHUTDOWN COMMAND The software Shutdown command allows the user to put the amplifier into a low power mode (see Register 5-1). In this shutdown mode, most pins are high impedance (Section 4.4, “Shutdown Mode”, and Section 5.1, “SPI Timing”, cover the exceptions at pins VREF, VOUT and SO). Once the PGA has entered shutdown mode, it will remain in this mode until either a valid command is sent to the device (other than NOP or Shutdown), or the device is powered down and back up again. The internal registers maintain their values while in shutdown. Once brought out of shutdown mode, the part comes back to its previous state (see Section 5.4 for exceptions to this rule). This makes it possible to bring the device out of shutdown mode using one command; send a command to select the current channel (or gain) and the device will exit shutdown with the same state that existed before shutdown. 5.3 Daisy Chain Configuration Multiple devices can be connected in a daisy chain configuration by connecting the SO pin from one device to the SI pin on the next device and using common SCK and CS lines (Figure 5-3). This approach reduces PCB layout complexity. The example in Figure 5-3 shows a daisy chain configuration with two devices, although any number of devices can be configured this way. The MCP6S21 and MCP6S22 can only be used at the far end of the daisy chain because they do not have a serial data out (SO) pin. As shown in Figure 5-4 and Figure 5-5, both SI and SO data are sent in 16-bit (2 byte) words. These devices abort any command that is not a multiple of 16 bits. When using the daisy chain configuration, the maximum clock speed possible is reduced to ≈ 5.8 MHz because of the SO pin’s propagation delay (see Electrical Specifications). The internal SPI shift register is automatically loaded with zeros whenever CS goes high (a command is executed). Thus, the first 16-bits out of the SO pin once CS line goes low are always zeros. This means that the first command loaded into the next device in the daisy chain is a NOP. This feature makes it possible to send shorter command and data byte strings when the farthest devices do not need to change. For example, if there were three devices on the chain and only the middle device needed changing, only 32 bytes of data need to be transmitted (for the first and middle devices), and the last device on the chain would receive a NOP when the CS pin is raised to execute the command. FIGURE 5-3: Daisy Chain Configuration. Microcontroller SO CS SCK SI CS SCK SO Device 1 Device 1 00100000 00000000 SO CS SCK SI Device 2 Device 2 00000000 00000000 1. Set CS low. 2. Clock out the instruction and data for Device 2 (16 clocks) to Device 1. 3. Device 1 automatically clocks out all zeros (first 16 clocks) to Device 2. 4. Clock out the instruction and data for Device 1 (16 clocks) to Device 1. 5. Device 1 automatically shifts data from Device 1 to Device 2 (16 clocks). 6. Raise CS. Device 1 01000001 00000111 Device 2 00100000 00000000 PICmicro ® 2003 Microchip Technology Inc. DS21117A-page 23 MCP6S21/2/6/8 FIGURE 5-4: Serial bus sequence for daisy-chain configuration; SPI 0,0 mode. FIGURE 5-5: Serial bus sequence for daisy-chain configuration; SPI 1,1 mode. 1 2 3 4 5 6 7 8 9 10111213141516 bit 7 CS SCK SI Instruction Byte Data Byte bit 0 bit 7 bit 0 SO (first 16 bits out are always zeros) 1 2 3 4 5 6 7 8 9 10111213141516 bit 7 Instruction Byte Data Byte bit 0 bit 7 bit 0 for Device 2 for Device 2 for Device 1 for Device 1 bit 7 Instruction Byte Data Byte bit 0 bit 7 bit 0 for Device 2 for Device 2 1 2 3 4 5 6 7 8 9 10111213141516 bit 7 CS SCK SI Instruction Byte Data Byte bit 0 bit 7 bit 0 SO (first 16 bits out are always zeros) 1 2 3 4 5 6 7 8 9 10111213141516 bit 7 Instruction Byte Data Byte bit 0 bit 7 bit 0 for Device 2 for Device 2 for Device 1 for Device 1 bit 7 Instruction Byte Data Byte bit 0 bit 7 bit 0 for Device 2 for Device 2MCP6S21/2/6/8 DS21117A-page 24  2003 Microchip Technology Inc. 5.4 Power-On Reset If the power supply voltage goes below the POR trip voltage (VDD < VPOR ≈ 1.7V), the internal POR circuit will reset all of the internal registers to their power-up defaults (this is a protection against low power supply voltages). The POR circuit also holds the part in shutdown mode while it is activated. It temporarily overrides the software shutdown status. The POR releases the shutdown circuitry once it is released (VDD > VPOR). A 0.1 µF bypass capacitor mounted as close as possible to the VDD pin provides additional transient immunity.  2003 Microchip Technology Inc. DS21117A-page 25 MCP6S21/2/6/8 6.0 APPLICATIONS INFORMATION 6.1 Changing External Reference Voltage Figure 6-1 shows a MCP6S21 with the VREF pin at 2.5V and VDD = 5.0V. This allows the PGA to amplify signals centered on 2.5V, instead of ground-referenced signals. The voltage reference MCP1525 is buffered by a MCP6021, which gives a low output impedance reference voltage from DC to high frequencies. The source driving the VREF pin should have an output impedance of ≤ 0.1Ω to maintain reasonable gain accuracy. FIGURE 6-1: PGA with Different External Reference Voltage. 6.2 Capacitive Load and Stability Large capacitive loads can cause both stability problems and reduced bandwidth for the MCP6S21/2/6/8 family of PGAs (Figure 2-17 and Figure 2-18). This happens because a large load capacitance decreases the internal amplifier’s phase margin and bandwidth. If the PGA drives a large capacitive load, the circuit in Figure 6-2 can be used. A small series resistor (RISO) at the VOUT improves the phase margin by making the load resistive at high frequencies. It will not, however, improve the bandwidth. FIGURE 6-2: PGA Circuit for Large Capacitive Loads. For CL ≥ 100 pF, a good estimate for RISO is 50Ω. This value can be fine-tuned on the bench. Adjust RISO so that the step response overshoot and frequency response peaking are acceptable at all gains. 6.3 Layout Considerations Good PC board layout techniques will help achieve the performance shown in the Electrical Characteristics and Typical Performance Curves. It will also help minimize EMC (Electro-Magnetic Compatibility) issues. 6.3.1 COMPONENT PLACEMENT Separate circuit functions; digital from analog, low speed from high speed, and low power from high power, as this will reduce crosstalk. Keep sensitive traces short and straight, separating them from interfering components and traces. This is especially important for high frequency (low rise time) signals. Use a 0.1 µF supply bypass capacitor within 0.1 inch (2.5 mm) of the VDD pin. It must connect directly to the ground plane. A multi-layer ceramic chip capacitor, or high-frequency equivalent, works best. 6.3.2 SIGNAL COUPLING The input pins of the MCP6S21/2/6/8 family of operational amplifiers (op amps) are high-impedance. This makes them especially susceptible to capacitively-coupled noise. Using a ground plane helps reduce this problem. When noise is capacitively-coupled, the ground plane provides additional shunt capacitance to ground. When noise is magnetically coupled, the ground plane reduces the mutual inductance between traces. Increasing the separation between traces makes a significant difference. Changing the direction of one of the traces can also reduce magnetic coupling. It may help to locate guard traces next to the victim trace. They should be on both sides of the victim trace and be as close as possible. Connect the guard traces to the ground plane at both ends, and in the middle, of long traces. 6.3.3 HIGH FREQUENCY ISSUES Because the MCP6S21/2/6/8 PGAs reach unity gain near 64 MHz when G = 16 and 32, it is important to use good PCB layout techniques. Any parasitic coupling at high frequency might cause undesired peaking. Filtering high frequency signals (i.e., fast edge rates) can help. To minimize high frequency problems: • Use complete ground and power planes • Use HF, surface mount components • Provide clean supply voltages and bypassing • Keep traces short and straight • Try a linear power supply (e.g., an LDO) VDD VREF MCP6S21 MCP1525 MCP6021 2.5V REF VDD VDD VIN VOUT 1 µF VIN MCP6S2X RISO VOUT CLMCP6S21/2/6/8 DS21117A-page 26  2003 Microchip Technology Inc. 6.4 Typical Applications 6.4.1 GAIN RANGING Figure 6-3 shows a circuit that measures the current IX. It benefits from changing the gain on the PGA. Just as a hand-held multimeter uses different measurement ranges to obtain the best results, this circuit makes it easy to set a high gain for small signals and a low gain for large signals. As a result, the required dynamic range at the PGA’s output is less than at its input (by up to 30 dB). FIGURE 6-3: Wide Dynamic Range Current Measurement Circuit. 6.4.2 SHIFTED GAIN RANGE PGA Figure 6-4 shows a circuit using an MCP6021 at a gain of +10 in front of an MCP6S21. This changes the overall gain range to +10 V/V to +320 V/V (from +1 V/V to +32 V/V). FIGURE 6-4: PGA with Modified Gain Range. It is also easy to shift the gain range to lower gains (see Figure 6-6). The MCP6021 acts as a unity gain buffer, and the resistive voltage divider shifts the gain range down to +0.1 V/V to +3.2 V/V (from +1 V/V to +32 V/V). FIGURE 6-5: PGA with lower gain range. 6.4.3 EXTENDED GAIN RANGE PGA Figure 6-6 gives a +1 V/V to +1024 V/V gain range, which is much greater than the range for a single PGA (+1 V/V to +32 V/V). The first PGA provides input multiplexing capability, while the second PGA only needs one input. These devices can be daisy chained (Section 5.3, “Daisy Chain Configuration”). FIGURE 6-6: PGA with Extended Gain Range. 6.4.4 MULTIPLE SENSOR AMPLIFIER The multiple channel PGAs (except the MCP6S21) allow the user to select which sensor appears on the output (see Figure 6-7). These devices can also change the gain to optimize performance for each sensor. FIGURE 6-7: PGA with Multiple Sensor Inputs. MCP6S2X VOUT IX RS VIN MCP6021 MCP6S21 VOUT 10.0 kΩ 1.11 kΩ + _ VIN MCP6021 MCP6S21 VOUT 10.0 kΩ 1.11 kΩ + _ VIN MCP6S28 MCP6S21 VOUT Sensor # 0 Sensor # 1 Sensor # 5 MCP6S26 VOUT 2003 Microchip Technology Inc. DS21117A-page 27 MCP6S21/2/6/8 6.4.5 EXPANDED INPUT PGA Figure 6-8 shows cascaded MCP6S28s that provide up to 15 input channels. Obviously, Sensors #7-14 have a high total gain range available, as explained in Section 6.4.3, “Extended Gain Range”. These devices can be daisy chained (Section 5.3, “Daisy Chain Configuration”). FIGURE 6-8: PGA with Expanded Inputs. 6.4.6 PICmicro ® MCU WITH EXPANDED INPUT CAPABILITY Figure 6-9 shows an MCP6S28 driving an analog input to a PICmicro ® microcontroller. This greatly expands the input capacity of the microcontroller, while adding the ability to select the appropriate gain for each source. FIGURE 6-9: Expanded Input for a PICmicro Microcontroller. 6.4.7 ADC DRIVER The family of PGA’s is well suited for driving Analog-toDigital Converters (ADC). The binary gains (1, 2, 4, 8, 16 and 32) effectively add five more bits to the input range (see Figure 6-10). This works well for applications needing relative accuracy more than absolute accuracy (e.g., power monitoring). FIGURE 6-10: PGA as an ADC Driver. At low gains, the ADC’s Signal-to-Noise Ratio (SNR) will dominate since the PGAs input noise voltage density is so low (10 nV/√Hz @ 10 kHz, typ.). At high gains, the PGA’s noise will dominate the SNR, but its low noise supports most applications. Again, these PGAs add the flexibility of selecting the best gain for an application. The low pass filter in the block diagram reduces the integrated noise at the MCP6S28’s output and serves as an anti-aliasing filter. This filter may be designed using Microchip’s FilterLab ® software, available at www.microchip.com. Sensors Sensors MCP6S28 MCP6S28 VOUT # 0-6 # 7-14 VIN MCP6S28 PICmicro ® Microcontroller SPI™ VIN MCP6S28 OUT Lowpass Filter 12 MCP3201MCP6S21/2/6/8 DS21117A-page 28  2003 Microchip Technology Inc. 7.0 PACKAGING INFORMATION 7.1 Package Marking Information XXXXXXXX XXXXXNNN YYWW 8-Lead PDIP (300 mil) (MCP6S21, MCP6S22) Example: 8-Lead SOIC (150 mil) (MCP6S21, MCP6S22) Example: XXXXXXXX XXXXYYWW NNN MCP6S21 I/P256 0345 MCP6S21 I/SN0345 256 8-Lead MSOP (MCP6S21, MCP6S22) Example: XXXXX YWWNNN MCP6S21I 345256 Legend: XX...X Customer specific information* YY Year code (last 2 digits of calendar year) WW Week code (week of January 1 is week ‘01’) NNN Alphanumeric traceability code Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line thus limiting the number of available characters for customer specific information. * Standard marking consists of Microchip part number, year code, week code, traceability code (facility code, mask rev#, and assembly code). For marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. 2003 Microchip Technology Inc. DS21117A-page 29 MCP6S21/2/6/8 Package Marking Information (Con’t) 14-Lead PDIP (300 mil) (MCP6S26) Example: 14-Lead SOIC (150 mil) (MCP6S26) Example: XXXXXXXXXXXXXX XXXXXXXXXXXXXX YYWWNNN XXXXXXXXXXX YYWWNNN MCP6S26-I/P XXXXXXXXXXXXXX 0345256 XXXXXXXXXXX MCP6S26ISL 0345256 XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXX NNN YYWW 14-Lead TSSOP (4.4mm) (MCP6S26) Example: MCP6S26IST 256 0345MCP6S21/2/6/8 DS21117A-page 30  2003 Microchip Technology Inc. Package Marking Information (Con’t) 16-Lead PDIP (300 mil) (MCP6S28) Example: 16-Lead SOIC (150 mil) (MCP6S28) Example: XXXXXXXXXXXXXX XXXXXXXXXXXXXX YYWWNNN XXXXXXXXXXXXX YYWWNNN MCP6S28-I/P XXXXXXXXXXXXXX 0345256 XXXXXXXXXXXXX MCP6S28-I/SL 0345256 XXXXXXXXXXXXXXXXXXXXXXXX 2003 Microchip Technology Inc. DS21117A-page 31 MCP6S21/2/6/8 8-Lead Plastic Dual In-line (P) – 300 mil (PDIP) B1 B A1 A L A2 p α E eB β c E1 n D 1 2 Units INCHES* MILLIMETERS Dimension Limits MIN NOM MAX MIN NOM MAX Number of Pins n 8 8 Pitch p .100 2.54 Top to Seating Plane A .140 .155 .170 3.56 3.94 4.32 Molded Package Thickness A2 .115 .130 .145 2.92 3.30 3.68 Base to Seating Plane A1 .015 0.38 Shoulder to Shoulder Width E .300 .313 .325 7.62 7.94 8.26 Molded Package Width E1 .240 .250 .260 6.10 6.35 6.60 Overall Length D .360 .373 .385 9.14 9.46 9.78 Tip to Seating Plane L .125 .130 .135 3.18 3.30 3.43 Lead Thickness c .008 .012 .015 0.20 0.29 0.38 Upper Lead Width B1 .045 .058 .070 1.14 1.46 1.78 Lower Lead Width B .014 .018 .022 0.36 0.46 0.56 Overall Row Spacing § eB .310 .370 .430 7.87 9.40 10.92 Mold Draft Angle Top α 5 10 15 5 10 15 Mold Draft Angle Bottom β 5 10 15 5 10 15 * Controlling Parameter Notes: Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed JEDEC Equivalent: MS-001 Drawing No. C04-018 .010” (0.254mm) per side. § Significant CharacteristicMCP6S21/2/6/8 DS21117A-page 32  2003 Microchip Technology Inc. 8-Lead Plastic Small Outline (SN) – Narrow, 150 mil (SOIC) Foot Angle φ 0 4 8 0 4 8 Mold Draft Angle Bottom β 0 12 15 0 12 15 Mold Draft Angle Top α 0 12 15 0 12 15 Lead Width B .013 .017 .020 0.33 0.42 0.51 Lead Thickness c .008 .009 .010 0.20 0.23 0.25 Foot Length L .019 .025 .030 0.48 0.62 0.76 Chamfer Distance h .010 .015 .020 0.25 0.38 0.51 Overall Length D .189 .193 .197 4.80 4.90 5.00 Molded Package Width E1 .146 .154 .157 3.71 3.91 3.99 Overall Width E .228 .237 .244 5.79 6.02 6.20 Standoff § A1 .004 .007 .010 0.10 0.18 0.25 Molded Package Thickness A2 .052 .056 .061 1.32 1.42 1.55 Overall Height A .053 .061 .069 1.35 1.55 1.75 Pitch p .050 1.27 Number of Pins n 8 8 Dimension Limits MIN NOM MAX MIN NOM MAX Units INCHES* MILLIMETERS 2 1 D n p B E E1 h L β c 45° φ A2 α A A1 * Controlling Parameter Notes: Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010” (0.254mm) per side. JEDEC Equivalent: MS-012 Drawing No. C04-057 § Significant Characteristic 2003 Microchip Technology Inc. DS21117A-page 33 MCP6S21/2/6/8 8-Lead Plastic Micro Small Outline Package (MS) (MSOP) p A A1 A2 D L c Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not Footprint (Reference) F .035 .037 exceed .010" (0.254mm) per side. Notes: Drawing No. C04-111 *Controlling Parameter Mold Draft Angle Top Mold Draft Angle Bottom Foot Angle Lead Width Lead Thickness β α c B φ 7 7 .004 .010 0 .006 .012 (F) β Dimension Limits Overall Height Molded Package Thickness Molded Package Width Overall Length Foot Length Standoff § Overall Width Number of Pins Pitch A L E1 D A1 E A2 .016 .114 .114 .022 .118 .118 .002 .030 .193 .034 MIN p n Units .026 NOM 8 INCHES .039 0.90 0.95 1.00 0.15 0.30 .008 .016 6 0.10 0.25 0 7 7 0.20 0.40 6 MILLIMETERS* 0.65 0.86 3.00 3.00 0.55 4.90 .044 .122 .028 .122 .038 .006 0.40 2.90 2.90 0.05 0.76 MAX MIN NOM 1.18 0.70 3.10 3.10 0.15 0.97 MAX 8 α E1 E B n 1 2 φ § Significant Characteristic .184 .200 4.67 .5.08MCP6S21/2/6/8 DS21117A-page 34  2003 Microchip Technology Inc. 14-Lead Plastic Dual In-line (P) – 300 mil (PDIP) E1 n D 1 2 eB β E c A A1 B B1 L A2 p α Units INCHES* MILLIMETERS Dimension Limits MIN NOM MAX MIN NOM MAX Number of Pins n 14 14 Pitch p .100 2.54 Top to Seating Plane A .140 .155 .170 3.56 3.94 4.32 Molded Package Thickness A2 .115 .130 .145 2.92 3.30 3.68 Base to Seating Plane A1 .015 0.38 Shoulder to Shoulder Width E .300 .313 .325 7.62 7.94 8.26 Molded Package Width E1 .240 .250 .260 6.10 6.35 6.60 Overall Length D .740 .750 .760 18.80 19.05 19.30 Tip to Seating Plane L .125 .130 .135 3.18 3.30 3.43 Lead Thickness c .008 .012 .015 0.20 0.29 0.38 Upper Lead Width B1 .045 .058 .070 1.14 1.46 1.78 Lower Lead Width B .014 .018 .022 0.36 0.46 0.56 Overall Row Spacing § eB .310 .370 .430 7.87 9.40 10.92 Mold Draft Angle Top α 5 10 15 5 10 15 Mold Draft Angle Bottom β 5 10 15 5 10 15 * Controlling Parameter Notes: Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010” (0.254mm) per side. JEDEC Equivalent: MS-001 Drawing No. C04-005 § Significant Characteristic 2003 Microchip Technology Inc. DS21117A-page 35 MCP6S21/2/6/8 14-Lead Plastic Small Outline (SL) – Narrow, 150 mil (SOIC) Foot Angle φ 0 4 8 0 4 8 Mold Draft Angle Bottom β 0 12 15 0 12 15 Mold Draft Angle Top α 0 12 15 0 12 15 Lead Width B .014 .017 .020 0.36 0.42 0.51 Lead Thickness c .008 .009 .010 0.20 0.23 0.25 Foot Length L .016 .033 .050 0.41 0.84 1.27 Chamfer Distance h .010 .015 .020 0.25 0.38 0.51 Overall Length D .337 .342 .347 8.56 8.69 8.81 Molded Package Width E1 .150 .154 .157 3.81 3.90 3.99 Overall Width E .228 .236 .244 5.79 5.99 6.20 Standoff § A1 .004 .007 .010 0.10 0.18 0.25 Molded Package Thickness A2 .052 .056 .061 1.32 1.42 1.55 Overall Height A .053 .061 .069 1.35 1.55 1.75 Pitch p .050 1.27 Number of Pins n 14 14 Dimension Limits MIN NOM MAX MIN NOM MAX Units INCHES* MILLIMETERS 2 1 D p B n E E1 h L c β 45° φ α A A2 A1 * Controlling Parameter Notes: Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010” (0.254mm) per side. JEDEC Equivalent: MS-012 Drawing No. C04-065 § Significant CharacteristicMCP6S21/2/6/8 DS21117A-page 36  2003 Microchip Technology Inc. 14-Lead Plastic Thin Shrink Small Outline (ST) – 4.4 mm (TSSOP) Foot Angle φ 0 4 8 0 4 8 Mold Draft Angle Bottom β 0 5 10 0 5 10 Mold Draft Angle Top α 0 5 10 0 5 10 Lead Width B1 .007 .010 .012 0.19 0.25 0.30 Lead Thickness c .004 .006 .008 0.09 0.15 0.20 Foot Length L .020 .024 .028 0.50 0.60 0.70 Molded Package Length D .193 .197 .201 4.90 5.00 5.10 Molded Package Width E1 .169 .173 .177 4.30 4.40 4.50 Overall Width E .246 .251 .256 6.25 6.38 6.50 Standoff § A1 .002 .004 .006 0.05 0.10 0.15 Molded Package Thickness A2 .033 .035 .037 0.85 0.90 0.95 Overall Height A .043 1.10 Pitch p .026 0.65 Number of Pins n 14 14 Dimension Limits MIN NOM MAX MIN NOM MAX Units INCHES MILLIMETERS* L β c φ 2 1 D n B p E1 E α A1 A2 A * Controlling Parameter Notes: Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .005” (0.127mm) per side. JEDEC Equivalent: MO-153 Drawing No. C04-087 § Significant Characteristic 2003 Microchip Technology Inc. DS21117A-page 37 MCP6S21/2/6/8 16-Lead Plastic Dual In-line (P) – 300 mil (PDIP) Mold Draft Angle Bottom β 5 10 15 5 10 15 Mold Draft Angle Top α 5 10 15 5 10 15 Overall Row Spacing § eB .310 .370 .430 7.87 9.40 10.92 Lower Lead Width B .014 .018 .022 .036 0.46 0.56 Upper Lead Width B1 .045 .058 .070 1.14 1.46 1.78 Lead Thickness c .008 .012 .015 0.20 0.29 0.38 Tip to Seating Plane L .125 .130 .135 3.18 3.30 3.43 Overall Length D .740 .750 .760 18.80 19.05 19.30 Molded Package Width E1 .240 .250 .260 6.10 6.35 6.60 Shoulder to Shoulder Width E .300 .313 .325 7.62 7.94 8.26 Base to Seating Plane A1 .015 0.38 Molded Package Thickness A2 .115 .130 .145 2.92 3.30 3.68 Top to Seating Plane A .140 .155 .170 3.56 3.94 4.32 Pitch p .100 2.54 Number of Pins n 16 16 Dimension Limits MIN NOM MAX MIN NOM MAX Units INCHES* MILLIMETERS 2 1 D n E1 c β eB E α p L A2 B B1 A A1 * Controlling Parameter Notes: Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010” (0.254mm) per side. JEDEC Equivalent: MS-001 Drawing No. C04-017 § Significant CharacteristicMCP6S21/2/6/8 DS21117A-page 38  2003 Microchip Technology Inc. 16-Lead Plastic Small Outline (SL) – Narrow 150 mil (SOIC) Foot Angle φ 0 4 8 0 4 8 Mold Draft Angle Bottom β 0 12 15 0 12 15 Mold Draft Angle Top α 0 12 15 0 12 15 Lead Width B .013 .017 .020 0.33 0.42 0.51 Lead Thickness c .008 .009 .010 0.20 0.23 0.25 Foot Length L .016 .033 .050 0.41 0.84 1.27 Chamfer Distance h .010 .015 .020 0.25 0.38 0.51 Overall Length D .386 .390 .394 9.80 9.91 10.01 Molded Package Width E1 .150 .154 .157 3.81 3.90 3.99 Overall Width E .228 .237 .244 5.79 6.02 6.20 Standoff § A1 .004 .007 .010 0.10 0.18 0.25 Molded Package Thickness A2 .052 .057 .061 1.32 1.44 1.55 Overall Height A .053 .061 .069 1.35 1.55 1.75 Pitch p .050 1.27 Number of Pins n 16 16 Dimension Limits MIN NOM MAX MIN NOM MAX Units INCHES* MILLIMETERS α A2 E1 1 2 L h B n 45° E p D φ β c A1 A * Controlling Parameter Notes: Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010” (0.254mm) per side. JEDEC Equivalent: MS-012 Drawing No. C04-108 § Significant Characteristic 2003 Microchip Technology Inc. DS21117A-page 39 MCP6S21/2/6/8 NOTES: 2002 Microchip Technology Inc. DS21117A-page 39 MCP6S21/2/6/8 PRODUCT IDENTIFICATION SYSTEM To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office. Sales and Support Data Sheets Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following: 1. Your local Microchip sales office 2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277 3. The Microchip Worldwide Site (www.microchip.com) Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using. New Customer Notification System Register on our web site (www.microchip.com/cn) to receive the most current information on our products. PART NO. -X /XX Temperature Package Range Device Device: MCP6S21: One Channel PGA MCP6S21T: One Channel PGA (Tape and Reel for SOIC and MSOP) MCP6S22: Two Channel PGA MCP6S22T: Two Channel PGA (Tape and Reel for SOIC and MSOP) MCP6S26: Six Channel PGA MCP6S26T: Six Channel PGA (Tape and Reel for SOIC and TSSOP) MCP6S28: Eight Channel PGA MCP6S28T: Eight Channel PGA (Tape and Reel for SOIC) Temperature Range: I = -40°C to +85°C Package: MS = Plastic Micro Small Outline (MSOP), 8-lead P = Plastic DIP (300 mil Body), 8, 14, and 16-lead SN = Plastic SOIC, (150 mil Body), 8-lead SL = Plastic SOIC (150 mil Body), 14, 16-lead ST = Plastic TSSOP (4.4mm Body), 14-lead Examples: a) MCP6S21-I/P: One Channel PGA, PDIP package. b) MCP6S21-I/SN: One Channel PGA, SOIC package. c) MCP6S21-I/MS: One Channel PGA, MSOP package. d) MCP6S22-I/MS: Two Channel PGA, MSOP package. e) MCP6S22T-I/MS: Tape and Reel, Two Channel PGA, MSOP package. f) MCP6S26-I/P: Six Channel PGA, PDIP package. g) MCP6S26-I/SN: Six Channel PGA, SOIC package. h) MCP6S26T-I/ST: Tape and Reel, Six Channel PGA, TSSOP package. i) MCP6S28T-I/SL: Tape and Reel, Eight Channel PGA, SOIC package.MCP6S21/2/6/8 DS21117A-page 40  2002 Microchip Technology Inc. NOTES: 2003 Microchip Technology Inc. DS21117A - page 41 Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip’s products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights. Trademarks The Microchip name and logo, the Microchip logo, KEELOQ, MPLAB, PIC, PICmicro, PICSTART, PRO MATE and PowerSmart are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. FilterLab, microID, MXDEV, MXLAB, PICMASTER, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. Accuron, Application Maestro, dsPIC, dsPICDEM, dsPICDEM.net, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, PICC, PICkit, PICDEM, PICDEM.net, PowerCal, PowerInfo, PowerMate, PowerTool, rfLAB, rfPIC, Select Mode, SmartSensor, SmartShunt, SmartTel and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A. All other trademarks mentioned herein are property of their respective companies. © 2003, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved. Printed on recycled paper. Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999 and Mountain View, California in March 2002. The Company’s quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEELOQ ® code hopping devices, Serial EEPROMs, microperipherals, non-volatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001 certified. Note the following details of the code protection feature on Microchip devices: • Microchip products meet the specification contained in their particular Microchip Data Sheet. • Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. • There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. • Microchip is willing to work with the customer who is concerned about the integrity of their code. • Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.” Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.DS21117A-page 42  2003 Microchip Technology Inc. M AMERICAS Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: 480-792-7627 Web Address: http://www.microchip.com Rocky Mountain 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7966 Fax: 480-792-4338 Atlanta 3780 Mansell Road, Suite 130 Alpharetta, GA 30022 Tel: 770-640-0034 Fax: 770-640-0307 Boston 2 Lan Drive, Suite 120 Westford, MA 01886 Tel: 978-692-3848 Fax: 978-692-3821 Chicago 333 Pierce Road, Suite 180 Itasca, IL 60143 Tel: 630-285-0071 Fax: 630-285-0075 Dallas 4570 Westgrove Drive, Suite 160 Addison, TX 75001 Tel: 972-818-7423 Fax: 972-818-2924 Detroit Tri-Atria Office Building 32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334 Tel: 248-538-2250 Fax: 248-538-2260 Kokomo 2767 S. Albright Road Kokomo, Indiana 46902 Tel: 765-864-8360 Fax: 765-864-8387 Los Angeles 18201 Von Karman, Suite 1090 Irvine, CA 92612 Tel: 949-263-1888 Fax: 949-263-1338 San Jose Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408-436-7950 Fax: 408-436-7955 Toronto 6285 Northam Drive, Suite 108 Mississauga, Ontario L4V 1X5, Canada Tel: 905-673-0699 Fax: 905-673-6509 ASIA/PACIFIC Australia Microchip Technology Australia Pty Ltd Marketing Support Division Suite 22, 41 Rawson Street Epping 2121, NSW Australia Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing Microchip Technology Consulting (Shanghai) Co., Ltd., Beijing Liaison Office Unit 915 Bei Hai Wan Tai Bldg. No. 6 Chaoyangmen Beidajie Beijing, 100027, No. China Tel: 86-10-85282100 Fax: 86-10-85282104 China - Chengdu Microchip Technology Consulting (Shanghai) Co., Ltd., Chengdu Liaison Office Rm. 2401-2402, 24th Floor, Ming Xing Financial Tower No. 88 TIDU Street Chengdu 610016, China Tel: 86-28-86766200 Fax: 86-28-86766599 China - Fuzhou Microchip Technology Consulting (Shanghai) Co., Ltd., Fuzhou Liaison Office Unit 28F, World Trade Plaza No. 71 Wusi Road Fuzhou 350001, China Tel: 86-591-7503506 Fax: 86-591-7503521 China - Hong Kong SAR Microchip Technology Hongkong Ltd. Unit 901-6, Tower 2, Metroplaza 223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 China - Shanghai Microchip Technology Consulting (Shanghai) Co., Ltd. Room 701, Bldg. B Far East International Plaza No. 317 Xian Xia Road Shanghai, 200051 Tel: 86-21-6275-5700 Fax: 86-21-6275-5060 China - Shenzhen Microchip Technology Consulting (Shanghai) Co., Ltd., Shenzhen Liaison Office Rm. 1812, 18/F, Building A, United Plaza No. 5022 Binhe Road, Futian District Shenzhen 518033, China Tel: 86-755-82901380 Fax: 86-755-82966626 China - Qingdao Rm. B505A, Fullhope Plaza, No. 12 Hong Kong Central Rd. Qingdao 266071, China Tel: 86-532-5027355 Fax: 86-532-5027205 India Microchip Technology Inc. India Liaison Office Marketing Support Division Divyasree Chambers 1 Floor, Wing A (A3/A4) No. 11, O’Shaugnessey Road Bangalore, 560 025, India Tel: 91-80-2290061 Fax: 91-80-2290062 Japan Microchip Technology Japan K.K. Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa, 222-0033, Japan Tel: 81-45-471- 6166 Fax: 81-45-471-6122 Korea Microchip Technology Korea 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea 135-882 Tel: 82-2-554-7200 Fax: 82-2-558-5934 Singapore Microchip Technology Singapore Pte Ltd. 200 Middle Road #07-02 Prime Centre Singapore, 188980 Tel: 65-6334-8870 Fax: 65-6334-8850 Taiwan Microchip Technology (Barbados) Inc., Taiwan Branch 11F-3, No. 207 Tung Hua North Road Taipei, 105, Taiwan Tel: 886-2-2717-7175 Fax: 886-2-2545-0139 EUROPE Austria Microchip Technology Austria GmbH Durisolstrasse 2 A-4600 Wels Austria Tel: 43-7242-2244-399 Fax: 43-7242-2244-393 Denmark Microchip Technology Nordic ApS Regus Business Centre Lautrup hoj 1-3 Ballerup DK-2750 Denmark Tel: 45 4420 9895 Fax: 45 4420 9910 France Microchip Technology SARL Parc d’Activite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - ler Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Germany Microchip Technology GmbH Steinheilstrasse 10 D-85737 Ismaning, Germany Tel: 49-089-627-144-100 Fax: 49-089-627-144-44 Italy Microchip Technology SRL Via Quasimodo, 12 20025 Legnano (MI) Milan, Italy Tel: 39-0331-742611 Fax: 39-0331-466781 United Kingdom Microchip Ltd. 505 Eskdale Road Winnersh Triangle Wokingham Berkshire, England RG41 5TU Tel: 44 118 921 5869 Fax: 44-118 921-5820 02/12/03 WORLDWIDE SALES AND SERVICE