

Apple CocoaTextArchitecture.pdf Guide Manuel

Apple sur Fnac.com

 - Pour voir la liste complète des manuels APPLE, cliquez ici

TELECHARGER LE PDF sur :

http://developer.apple.com/library/mac/documentation/TextFonts/Conceptual/CocoaTextArchitecture/CocoaTextArchitecture.pdf

Commander un produit Apple sur Fnac.com

[image:][image:][image:][image:][image:]

Voir également d'autres Guides et documentation APPLE :

Apple-InstrumentsUserGuide.pdf-manuel

Apple-Logic-Pro-9-TDM-Guide-manuel

Apple-macbook_air_users_guide.pdf-manuel

Apple-macbook_air-13-inch_mid-2012-qs_ta.pdf-manuel

Apple-AppStoreMarketingGuidelines-JP.pdf-Japon-manuel

Apple-macbook_pro_retina_qs_ta.pdf-manuel

Apple-ipad_user_guide_tu.pdf-manuel

Apple-ipad_user_guide_th.pdf-manuel

Apple-iphone_user_guide_gr.pdf-manuel

Apple-Nike_Plus_iPod_Sensor_UG_2A.pdf-manuel

Apple-ipad_manual_del_usuario.pdf-manuel

Apple-ipad_uzivatelska_prirucka.pdf-manuel

Apple-ipad_wifi_informations_importantes.pdf-manuel

Apple-Xsan_2_Admin_Guide_v2.3.pdf-manuel

Apple-macbook_pro-13-inch-late-2012-quick_start.pdf-manuel

Apple-CocoaDrawingGuide.pdf-manuel

Apple-Cryptographic-Services-Guide-manuel

Apple-Resource-Programming-Guide-manuel

AppleSafariVisualEffectsProgGuide.pdf-manuel

/Apple-WorkingWithUSB.pdf-manuel

Apple-macbook_pro-retina-mid-2012-important_product_info_f.pdf-manuel

Apple-iOS_Security_May12.pdf-manue

Apple-Mac-Pro-2008-Performance-and-Productivity-for-Creative-Pros

Apple-iPod_shuffle_4thgen_Manuale_utente.pdf-Italie-Manuel

Apple-KernelProgramming.pdf-manuel

Apple-Core-Data-Model-Versioning-and-Data-Migration-Programming-Guide-manuel

Apple-RED_Workflows_with_Final_Cut_Pro_X.pdf-manuel

Apple-Transitioning-to-ARC-Release-Notes-manuel

Apple-iTunes-Connect-Sales-and-Trends-Guide-manuel

Apple-App-Sandbox-Design-Guide-manuel

Apple-String-Programming-Guide-manuel

Apple-Secure-Coding-Guide-manuel

Apple_AirPort_Networks_Early2009.pdf-manuel

Apple-TimeCapsule_SetupGuide_TA.pdf-manuel

Apple-time_capsule_4th_gen_setup.pdf-manuel

Apple-TimeCapsule_SetupGuide.pdf-manuel

Apple-TimeCapsule_SetupGuide_CH.pdf-Chinois-manuel

Apple-CodeSigningGuide.pdf-manuel

Apple-ViewControllerPGforiOS.pdf-manuel

Apple-KeyValueObserving.pdf-manuel

Apple-mac_mini-late-2012-quick_start.pdf-manuel

Apple-OS-X-Mountain-Lion-Core-Technologies-Overview-June-2012-manuel

Apple-OS-X-Server-Product-Overview-June-2012-manuel

Apple-Apple_Server_Diagnostics_UG_109.pdf-manuel

Apple-PackageMaker_UserGuide.pdf-manuel

Apple-Instrumentos_y_efectos_de_Logic_Studio.pdf-Manuel

Apple-ipod_nano_kayttoopas.pdf-Finlande-Manuel

Apple_ProRes_White_Paper_October_2012.pdf-Manuel

Apple-wp_osx_configuration_profiles.pdf-Manuel

Apple-UsingiTunesProducerFreeBooks.pdf-Manuel

Apple-ipad_manual_do_usuario.pdf-Portugais-Manuel

Apple-Instruments_et_effets_Logic_Studio.pdf-Manuel

Apple-ipod_touch_gebruikershandleiding.pdf-Neerlandais-Manuel

AppleiPod_shuffle_4thgen_Manual_del_usuario.pdf-Espagnol-Manuel

Apple-Premiers-contacts-avec-votre-PowerBook-G4-Manuel

Apple_Composite_AV_Cable.pdf-Manuel

Apple-iPod_shuffle_3rdGen_UG_DK.pdf-Danemark-Manuel

Apple-iPod_classic_160GB_Benutzerhandbuch.pdf-Allemand-Manuel

Apple-VoiceOver_GettingStarted-Manuel

Apple-iPod_touch_2.2_Benutzerhandbuch.pdf-Allemand-Manuel

Apple-Apple_TV_Opstillingsvejledning.pdf-Allemand-Manuel

Apple-iPod_shuffle_4thgen_Manuale_utente.pdf-Italie-Manuel

Apple-iphone_prirucka_uzivatela.pdf-Manuel

Apple-Aan-de-slag-Neerlandais-Manuel

Apple-airmac_express-80211n-2nd-gen_setup_guide.pdf-Thailande-Manuel

Apple-ipod_nano_benutzerhandbuch.pdf-Allemand-Manuel

Apple-aperture3.4_101.pdf-Manuel

Apple-Pages09_Anvandarhandbok.pdf-Manuel

Apple-nike_plus_ipod_sensor_ug_la.pdf-Mexique-Manuel

Apple-ResEdit-Reference-For-ResEdit02.1-Manuel

Apple-ipad_guide_de_l_utilisateur.pdf-Manuel

Apple-Compressor-4-Benutzerhandbuch-Allemand-Manuel

Apple-AirPort_Networks_Early2009_DK.pdf-Danemark-Manuel

Apple-MacBook_Pro_Mid2007_2.4_2.2GHz_F.pdf-Manuel

Apple-MacBook_13inch_Mid2010_UG_F.pdf-Manuel

Apple-Xserve-RAID-Presentation-technologique-Janvier-2004-Manuel

Apple-MacBook_Pro_15inch_Mid2010_F.pdf-Manuel

Apple-AirPort_Express-opstillingsvejledning.pdf-Danemark-Manuel

Apple-DEiPod_photo_Benutzerhandbuch_DE0190269.pdf-Allemand-Manuel

Apple-Final-Cut-Pro-X-Logic-Effects-Reference-Manuel

Apple-iPod_touch_2.1_Brugerhandbog.pdf-Danemark-Manuel

Apple-Remote-Desktop-Administratorhandbuch-Version-3.1-Allemand-Manuel

Apple-Qmaster-4-User-Manual-Manuel

Apple-Server_Administration_v10.5.pdf-Manuel

Apple-ipod_classic_features_guide.pdf-Manuel

Apple-Lecteur-Optique-Manuel

Apple-Carte-AirPort-Manuel

Apple-iPhone_Finger_Tips_Guide.pdf-Anglais-Manuel

Apple-Couvercle-Manuel

Apple-battery.cube.pdf-Manuel

Apple-Boitier-de-l-ordinateur-Manuel

Apple-Pile-Interne-Manuel

Apple-atacable.pdf-Manuel

Apple-videocard.pdf-Manuel

Apple-Guide_de_configuration_de_l_Airport_Express_5.1.pdf-Manuel

Apple-iMac_Mid2010_UG_F.pdf-Manuel

Apple-MacBook_13inch_Mid2009_F.pdf-Manuel

Apple-MacBook_Mid2007_UserGuide.F.pdf-Manuel

Apple-Designing_AirPort_Networks_10.5-Windows_F.pdf-Manuel

Apple-Administration_de_QuickTime_Streaming_et_Broadcasting_10.5.pdf-Manuel

Apple-Opstillingsvejledning_til_TimeCapsule.pdf-Danemark-Manuel

Apple-iPod_nano_5th_gen_Benutzerhandbuch.pdf-Manuel

Apple-iOS_Business.pdf-Manuel

Apple-AirPort_Extreme_Installationshandbuch.pdf-Manuel

Apple-Final_Cut_Express_4_Installation_de_votre_logiciel.pdf-Manuel

Apple-MacBook_Pro_15inch_2.53GHz_Mid2009.pdf-Manuel

Apple-Network_Services.pdf-Manuel

Apple-Aperture_Performing_Adjustments_f.pdf-Manuel

Apple-Supplement_au_guide_Premiers_contacts.pdf-Manuel

Apple-Administration_des_images_systeme_et_de_la_mise_a_jour_de_logiciels_10.5.pdf-Manuel

Apple-Mac_OSX_Server_v10.6_Premiers_contacts.pdf-Francais-Manuel

Apple-Designing_AirPort_Networks_10.5-Windows_F.pdf-Manuel

Apple-Mise_a_niveau_et_migration_v10.5.pdf-Manue

Apple-MacBookPro_Late_2007_2.4_2.2GHz_F.pdf-Manuel

Apple-Mac_mini_Late2009_SL_Server_F.pdf-Manuel

Apple-Mac_OS_X_Server_10.5_Premiers_contacts.pdf-Manuel

Apple-iPod_touch_2.0_Guide_de_l_utilisateur_CA.pdf-Manuel

Apple-MacBook_Pro_17inch_Mid2010_F.pdf-Manuel

Apple-Comment_demarrer_Leopard.pdf-Manuel

Apple-iPod_2ndGen_USB_Power_Adapter-FR.pdf-Manuel

Apple-Feuille_de_operations_10.4.pdf-Manuel

Apple-Time_Capsule_Installationshandbuch.pdf-Allemand-Manuel

Apple-F034-2262AXerve-grappe.pdf-Manuel

Apple-Mac_Pro_Early2009_4707_UG_F

Apple-imacg5_17inch_Power_Supply

Apple-Logic_Studio_Installieren_Ihrer_Software_Retail

Apple-IntroductionXserve1.0.1

Apple-Aperture_Getting_Started_d.pdf-Allemand

Apple-getting_started_with_passbook

Apple-iPod_mini_2nd_Gen_UserGuide.pdf-Anglais

Apple-Deploiement-d-iPhone-et-d-iPad-Reseaux-prives-virtuels

Apple-F034-2262AXerve-grappe

Apple-Mac_OS_X_Server_Glossaire_10.5

Apple-FRLogic_Pro_7_Guide_TDM

Apple-iphone_bluetooth_headset_userguide

Apple-Administration_des_services_reseau_10.5

Apple-imacg5_17inch_harddrive

Apple-iPod_nano_4th_gen_Manuale_utente

Apple-iBook-G4-Getting-Started

Apple-XsanGettingStarted

Apple-Mac_mini_UG-Early2006

Apple-Guide_des_fonctionnalites_de_l_iPod_classic

Apple-Guide_de_configuration_d_Xsan_2

Apple-MacBook_Late2006_UsersGuide

Apple-sur-Fnac.com

Apple-Mac_mini_Mid2010_User_Guide_F.pdf-Francais

Apple-PowerBookG3UserManual.PDF.Anglais

Apple-Installation_de_votre_logiciel_Logic_Studio_Retail

Apple-Pages-Guide-de-l-utilisateur

Apple-MacBook_Pro_13inch_Mid2009.pdf.Anglais

Apple-MacBook_Pro_15inch_Mid2009

Apple-Installation_de_votre_logiciel_Logic_Studio_Upgrade

Apple-FRLogic_Pro_7_Guide_TDM

Apple-airportextreme_802.11n_userguide

Apple-iPod_shuffle_3rdGen_UG

Apple-iPod_classic_160GB_User_Guide

Apple-iPod_nano_5th_gen_UserGuide

Apple-ipod_touch_features_guide

Apple-Wireless_Mighty_Mouse_UG

Apple-Advanced-Memory-Management-Programming-Guide

Apple-iOS-App-Programming-Guide

Apple-Concurrency-Programming-Guide

Apple-MainStage-2-User-Manual-Anglais

Apple-iMacG3_2002MultilingualUserGuide

Apple-iBookG3_DualUSBUserGuideMultilingual.PDF.Anglais

Apple-imacG5_20inch_AirPort

Apple-Guide_de_l_utilisateur_de_Mac_Pro_Early_2008

Apple-Installation_de_votre_logiciel_Logic_Express_8

Apple-iMac_Guide_de_l_utilisateur_Mid2007

Apple-imacg5_20inch_OpticalDrive

Apple-FCP6_Formats_de_diffusion_et_formats_HD

Apple-prise_en_charge_des_surfaces_de_controle_logic_pro_8

Apple-Aperture_Quick_Reference_f

Apple-Shake_4_User_Manual

Apple-aluminumAppleKeyboard_wireless2007_UserGuide

Apple-ipod_shuffle_features_guide

Apple-Color-User-Manual

Apple-XsanGettingStarted

Apple-Migration_10.4_2e_Ed

Apple-MacBook_Air_SuperDrive

Apple-MacBook_Late2007-f

ApplePowerMacG5_(Early_2005)_UserGuide

Apple-iSightUserGuide

Apple-MacBook_Pro_Early_2008_Guide_de_l_utilisateur

Apple-Nouvelles-fonctionnalites-aperture-1.5

Apple-premiers_contacts_2e_ed_10.4.pdf-Mac-OS-X-Server

Apple-premiers_contacts_2e_ed_10.4

Apple-eMac_2005UserGuide

Apple-imacg5_20inch_Inverter

Apple-Keynote2_UserGuide.pdf-Japon

Apple-Welcome_to_Tiger.pdf-Japon

Apple-XsanAdminGuide_j.pdf-Japon

Apple-PowerBookG4_UG_15GE.PDF-Japon

Apple-Xsan_Migration.pdf-Japon

Apple-Xserve_Intel_DIY_TopCover_JA.pdf-Japon

Apple-iPod_nano_6thgen_User_Guide_J.pdf-Japon

Apple-Aperture_Photography_Fundamentals.pdf-Japon

Apple-nikeipod_users_guide.pdf-Japon

Apple-QuickTime71_UsersGuide.pdf-Japon

Apple-iMacG5_iSight_UG.pdf-Japon

Apple-Aperture_Performing_Adjustments_j.pdf-Japon

Apple-iMacG5_17inch_HardDrive.pdf-Japon

Apple-iPod_shuffle_Features_Guide_J.pdf-Japon

Apple-MacBook_Air_User_Guide.pdf-Japon

Apple-MacBook_UsersGuide.pdf-Japon

Apple-iPad_iOS4_Brukerhandbok.pdf-Norge-Norvege

Apple-Apple_AirPort_Networks_Early2009_H.pd-Norge-Norvege

Apple-iPod_classic_120GB_no.pdf-Norge-Norvege

Apple-StoreKitGuide.pdf-Japon

Apple-Xserve_Intel_DIY_ExpansionCardRiser_JA.pdf-Japon

Apple-iMacG5_Battery.pdf-Japon

Apple-Logic_Pro_8_Getting_Started.pdf-Japon

Apple-PowerBook-handbok-Norge-Norveg

Apple-iWork09_formler_og_funksjoner.pdf-Norge-Norvege

Apple-MacBook_Pro_15inch_Mid2010_H.pdf-Norge-Norvege

Apple-MacPro_HardDrive_DIY.pdf-Japon

Apple-iPod_Fifth_Gen_Funksjonsoversikt.pdf-Norge-Norvege

Apple-MacBook_13inch_white_Early2009_H.pdf-Norge-Norvege

Apple-GarageBand_09_Komme_i_gang.pdf-Norge-Norvege

Apple-MacBook_Pro_15inch_Mid2009_H.pdf-Norge-Norvege

Apple-imac_mid2011_ug_h.pdf-Norge-Norvege

Apple-iDVD_08_Komme_i_gang.pdf-Norge-Norvege

Apple-MacBook_Air_11inch_Late2010_UG_H.pdf-Norge-Norvege

Apple-iMac_Mid2010_UG_H.pdf-Norge-Norvege

Apple-MacBook_13inch_Mid2009_H.pdf-Norge-Norvege

/Apple-iPhone_3G_Viktig_produktinformasjon_H-Norge-Norvege

Apple-MacBook_13inch_Mid2010_UG_H.pdf-Norge-Norvege

Apple-macbook_air_13inch_mid2011_ug_no.pdf-Norge-Norvege

Apple-Mac_mini_Early2009_UG_H.pdf-Norge-Norvege

Apple-ipad2_brukerhandbok.pdf-Norge-Norvege

Apple-iPhoto_08_Komme_i_gang.pdf-Norge-Norvege

Apple-MacBook_Air_Brukerhandbok_Late2008.pdf-Norge-Norvege

Apple-Pages09_Brukerhandbok.pdf-Norge-Norvege

Apple-MacBook_13inch_Late2009_UG_H.pdf-Norge-Norvege

Apple-iPhone_3GS_Viktig_produktinformasjon.pdf-Norge-Norvege

Apple-MacBook_13inch_Aluminum_Late2008_H.pdf-Norge-Norvege

Apple-Wireless_Keyboard_Aluminum_2007_H-Norge-Norvege

Apple-NiPod_photo_Brukerhandbok_N0190269.pdf-Norge-Norvege

Apple-MacBook_Pro_13inch_Mid2010_H.pdf-Norge-Norvege

Apple-MacBook_Pro_17inch_Mid2010_H.pdf-Norge-Norvege

Apple-Velkommen_til_Snow_Leopard.pdf-Norge-Norvege.htm

Apple-TimeCapsule_Klargjoringsoversikt.pdf-Norge-Norvege

Apple-iPhone_3GS_Hurtigstart.pdf-Norge-Norvege

Apple-Snow_Leopard_Installeringsinstruksjoner.pdf-Norge-Norvege

Apple-iMacG5_iSight_UG.pdf-Norge-Norvege

Apple-iPod_Handbok_S0342141.pdf-Norge-Norvege

Apple-ipad_brukerhandbok.pdf-Norge-Norvege

Apple-GE_Money_Bank_Handlekonto.pdf-Norge-Norvege

Apple-MacBook_Air_11inch_Late2010_UG_H.pdf-Norge-Norvege

Apple-iPod_nano_6thgen_Brukerhandbok.pdf-Norge-Norvege

Apple-iPod_touch_iOS4_Brukerhandbok.pdf-Norge-Norvege

Apple-MacBook_Air_13inch_Late2010_UG_H.pdf-Norge-Norvege

Apple-MacBook_Pro_15inch_Early2011_H.pdf-Norge-Norvege

Apple-Numbers09_Brukerhandbok.pdf-Norge-Norvege

Apple-Welcome_to_Leopard.pdf-Japon

Apple-PowerMacG5_UserGuide.pdf-Norge-Norvege

Apple-iPod_touch_2.1_Brukerhandbok.pdf-Norge-Norvege

Apple-Boot_Camp_Installering-klargjoring.pdf-Norge-Norvege

Apple-MacOSX10.3_Welcome.pdf-Norge-Norvege

Apple-iPod_shuffle_3rdGen_UG_H.pdf-Norge-Norvege

Apple-iPhone_4_Viktig_produktinformasjon.pdf-Norge-Norvege

Apple_TV_Klargjoringsoversikt.pdf-Norge-Norvege

Apple-iMovie_08_Komme_i_gang.pdf-Norge-Norvege

Apple-iPod_classic_160GB_Brukerhandbok.pdf-Norge-Norvege

Apple-Boot_Camp_Installering_10.6.pdf-Norge-Norvege

Apple-Network-Services-Location-Manager-Veiledning-for-nettverksadministratorer-Norge-Norvege

Apple-iOS_Business_Mar12_FR.pdf

Apple-PCIDualAttachedFDDICard.pdf

Apple-Aperture_Installing_Your_Software_f.pdf

Apple-User_Management_Admin_v10.4.pdf

Apple-Compressor-4-ユーザーズマニュアル Japon

Apple-Network_Services_v10.4.pdf

Apple-iPod_2ndGen_USB_Power_Adapter-DE

Apple-Mail_Service_v10.4.pdf

Apple-AirPort_Express_Opstillingsvejledning_5.1.pdf

Apple-MagSafe_Airline_Adapter.pdf

Apple-L-Apple-Multiple-Scan-20-Display

Apple-Administration_du_service_de_messagerie_10.5.pdf

Apple-System_Image_Admin.pdf

Apple-iMac_Intel-based_Late2006.pdf-Japon

Apple-iPhone_3GS_Finger_Tips_J.pdf-Japon

Apple-Power-Mac-G4-Mirrored-Drive-Doors-Japon

Apple-AirMac-カード取り付け手順-Japon

Apple-iPhone開発ガイド-Japon

Apple-atadrive_pmg4mdd.j.pdf-Japon

Apple-iPod_touch_2.2_User_Guide_J.pdf-Japon

Apple-Mac_OS_X_Server_v10.2.pdf

Apple-AppleCare_Protection_Plan_for_Apple_TV.pdf

Apple_Component_AV_Cable.pdf

Apple-DVD_Studio_Pro_4_Installation_de_votre_logiciel

Apple-Windows_Services

Apple-Motion_3_New_Features_F

Apple-g4mdd-fw800-lowerfan

Apple-MacOSX10.3_Welcome

Apple-Print_Service

Apple-Xserve_Setup_Guide_F

Apple-PowerBookG4_17inch1.67GHzUG

Apple-iMac_Intel-based_Late2006

Apple-Installation_de_votre_logiciel

Apple-guide_des_fonctions_de_l_iPod_nano

Apple-Administration_de_serveur_v10.5

Apple-Mac-OS-X-Server-Premiers-contacts-Pour-la-version-10.3-ou-ulterieure

Apple-boot_camp_install-setup

Apple-iBookG3_14inchUserGuideMultilingual

Apple-mac_pro_server_mid2010_ug_f

Apple-Motion_Supplemental_Documentation

Apple-imac_mid2011_ug_f

Apple-iphone_guide_de_l_utilisateur

Apple-macbook_air_11inch_mid2011_ug_fr

Apple-NouvellesfonctionnalitesdeLogicExpress7.2

Apple-QT_Streaming_Server

Apple-Web_Technologies_Admin

Apple-Mac_Pro_Early2009_4707_UG

Apple-guide_de_l_utilisateur_de_Numbers08

Apple-Decouverte_d_Aperture_2

Apple-Guide_de_configuration_et_d'administration

Apple-mac_integration_basics_fr_106.

Apple-iPod_shuffle_4thgen_Guide_de_l_utilisateur

Apple-ARA_Japan

Apple-081811_APP_iPhone_Japanese_v5.4.pdf-Japan

Apple-Recycle_Contract120919.pdf-Japan

Apple-World_Travel_Adapter_Kit_UG

Apple-iPod_nano_6thgen_User_Guide

Apple-RemoteSupportJP

Apple-Mac_mini_Early2009_UG_F.pdf-Manuel-de-l-utilisateur

Apple-Compressor_3_Batch_Monitor_User_Manual_F.pdf-Manuel-de-l-utilisateur

Apple-Premiers__contacts_avec_iDVD_08

Apple-Mac_mini_Intel_User_Guide.pdf

Apple-Prise_en_charge_des_surfaces_de_controle_Logic_Express_8

Apple-mac_integration_basics_fr_107.pdf

Apple-Final-Cut-Pro-7-Niveau-1-Guide-de-preparation-a-l-examen

Apple-Logic9-examen-prep-fr.pdf-Logic-Pro-9-Niveau-1-Guide-de-preparation-a-l-examen

Apple-aperture_photography_fundamentals.pdf-Manuel-de-l-utilisateu

Apple-emac-memory.pdf-Manuel-de-l-utilisateur

Apple-Apple-Installation-et-configuration-de-votre-Power-Mac-G4

Apple-Guide_de_l_administrateur_d_Xsan_2.pdf

Apple-premiers_contacts_avec_imovie6.pdf

Apple-Tiger_Guide_Installation_et_de_configuration.pdf

Apple-Final-Cut-Pro-7-Level-One-Exam-Preparation-Guide-and-Practice-Exam

Apple-Open_Directory.pdf

Apple-Nike_+_iPod_User_guide

Apple-ard_admin_guide_2.2_fr.pdf

Apple-systemoverviewj.pdf-Japon

Apple-Xserve_TO_J070411.pdf-Japon

Apple-Mac_Pro_User_Guide.pdf

Apple-iMacG5_iSight_UG.pdf

Apple-premiers_contacts_avec_iwork_08.pdf

Apple-services_de_collaboration_2e_ed_10.4.pdf

Apple-iPhone_Bluetooth_Headset_Benutzerhandbuch.pdf

Apple-Guide_de_l_utilisateur_de_Keynote08.pdf

APPLE/Apple-Logic-Pro-9-Effectsrfr.pdf

Apple-Logic-Pro-9-Effectsrfr.pdf

Apple-iPod_shuffle_3rdGen_UG_F.pdf

Apple-iPod_classic_160Go_Guide_de_l_utilisateur.pdf

Apple-iBookG4GettingStarted.pdf

Apple-Administration_de_technologies_web_10.5.pdf

Apple-Compressor-4-User-Manual-fr

Apple-MainStage-User-Manual-fr.pdf

Apple-Logic_Pro_8.0_lbn_j.pdf

Apple-PowerBookG4_15inch1.67-1.5GHzUserGuide.pdf

Apple-MacBook_Pro_15inch_Mid2010_CH.pdf

Apple-LED_Cinema_Display_27-inch_UG.pdf

Apple-MacBook_Pro_15inch_Mid2009_RS.pdf

Apple-macbook_pro_13inch_early2011_f.pdf

Apple-iMac_Mid2010_UG_BR.pdf

Apple-iMac_Late2009_UG_J.pdf

Apple-iphone_user_guide-For-iOS-6-Software

Apple-iDVD5_Getting_Started.pdf

Apple-guide_des_fonctionnalites_de_l_ipod_touch.pdf

Apple_iPod_touch_User_Guide

Apple_macbook_pro_13inch_early2011_f

Apple_Guide_de_l_utilisateur_d_Utilitaire_RAID

Apple_Time_Capsule_Early2009_Setup_F

Apple_iphone_4s_finger_tips_guide_rs

Apple_iphone_upute_za_uporabu

Apple_ipad_user_guide_ta

Apple_iPod_touch_User_Guide

apple_earpods_user_guide

apple_iphone_gebruikershandleiding

apple_iphone_5_info

apple_iphone_brukerhandbok

apple_apple_tv_3rd_gen_setup_tw

apple_macbook_pro-retina-mid-2012-important_product_info_ch

apple_Macintosh-User-s-Guide-for-Macintosh-PowerBook-145

Apple_ipod_touch_user_guide_ta

Apple_TV_2nd_gen_Setup_Guide_h

Apple_ipod_touch_manual_del_usuario

Apple_iphone_4s_finger_tips_guide_tu

Apple_macbook_pro_retina_qs_th

Apple-Manuel_de_l'utilisateur_de_Final_Cut_Server

Apple-iMac_G5_de_lutilisateur

Apple-Cinema_Tools_4.0_User_Manual_F

Apple-Personal-LaserWriter300-User-s-Guide

Apple-QuickTake-100-User-s-Guide-for-Macintosh

Apple-User-s-Guide-Macintosh-LC-630-DOS-Compatible

Apple-iPhone_iOS3.1_User_Guide

Apple-iphone_4s_important_product_information_guide

Apple-iPod_shuffle_Features_Guide_F

Liste-documentation-apple

Apple-Premiers_contacts_avec_iMovie_08

Apple-macbook_pro-retina-mid-2012-important_product_info_br

Apple-macbook_pro-13-inch-mid-2012-important_product_info

Apple-macbook_air-11-inch_mid-2012-qs_br

Apple-Manuel_de_l_utilisateur_de_MainStage

Apple-Compressor_3_User_Manual_F

Apple-Color_1.0_User_Manual_F

Apple-guide_de_configuration_airport_express_4.2

Apple-TimeCapsule_SetupGuide

Apple-Instruments_et_effets_Logic_Express_8

Apple-Manuel_de_l_utilisateur_de_WaveBurner

Apple-Macmini_Guide_de_l'utilisateur

Apple-PowerMacG5_UserGuide

Disque dur, ATA parallèle Instructions de remplacement

Apple-final_cut_pro_x_logic_effects_ref_f

Apple-Leopard_Installationshandbok

Manuale Utente PowerBookG4

Apple-thunderbolt_display_getting_started_1e

Apple-Compressor-4-Benutzerhandbuch

Apple-macbook_air_11inch_mid2011_ug

Apple-macbook_air-mid-2012-important_product_info_j

Apple-iPod-nano-Guide-des-fonctionnalites

Apple-iPod-nano-Guide-des-fonctionnalites

Apple-iPod-nano-Guide-de-l-utilisateur-4eme-generation

Apple-iPod-nano-Guide-de-l-utilisateur-4eme-generation

Apple-Manuel_de_l_utilisateur_d_Utilitaire_de_reponse_d_impulsion

Apple-Aperture_2_Raccourcis_clavier

AppleTV_Setup-Guide

Apple-livetype_2_user_manual_f

Apple-imacG5_17inch_harddrive

Apple-macbook_air_guide_de_l_utilisateur

Apple-MacBook_Early_2008_Guide_de_l_utilisateur

Apple-Keynote-2-Guide-de-l-utilisateur

Apple-PowerBook-User-s-Guide-for-PowerBook-computers

Apple-Macintosh-Performa-User-s-Guide-5200CD-and-5300CD

Apple-Macintosh-Performa-User-s-Guide

Apple-Workgroup-Server-Guide

Apple-iPod-nano-Guide-des-fonctionnalites

Apple-iPad-User-Guide-For-iOS-5-1-Software

Apple-Boot-Camp-Guide-d-installation-et-de-configuration

Apple-iPod-nano-Guide-de-l-utilisateur-4eme-generation

Power Mac G5 Guide de l’utilisateur APPLE

Guide de l'utilisateur PAGE '08 APPLE

Guide de l'utilisateur KEYNOTE '09 APPLE

Guide de l'Utilisateur KEYNOTE '3 APPLE

Guide de l'Utilisateur UTILITAIRE RAID

Guide de l'Utilisateur Logic Studio

Power Mac G5 Guide de l’utilisateur APPLE

Guide de l'utilisateur PAGE '08 APPLE

Guide de l'utilisateur KEYNOTE '09 APPLE

Guide de l'Utilisateur KEYNOTE '3 APPLE

Guide de l'Utilisateur UTILITAIRE RAID

Guide de l'Utilisateur Logic Studio

Guide de l’utilisateur ipad Pour le logiciel iOS 5.1

PowerBook G4 Premiers Contacts APPLE

Guide de l'Utilisateur iphone pour le logiciel ios 5.1 APPLE

Guide de l’utilisateur ipad Pour le logiciel iOS 4,3

Guide de l’utilisateur iPod nano 5ème génération

Guide de l'utilisateur iPod Touch 2.2 APPLE

Guide de l’utilisateur QuickTime 7 Mac OS X 10.3.9 et ultérieur Windows XP et Windows 2000

Guide de l'utilisateur MacBook 13 pouces Mi 2010

Guide de l’utilisateur iPhone (Pour les logiciels iOS 4.2 et 4.3)

Guide-de-l-utilisateur-iPod-touch-pour-le-logiciel-ios-4-3-APPLE

Guide-de-l-utilisateur-iPad-2-pour-le-logiciel-ios-4-3-APPLE

Guide de déploiement en entreprise iPhone OS

Guide-de-l-administrateur-Apple-Remote-Desktop-3-1

Guide-de-l-utilisateur-Apple-Xserve-Diagnostics-Version-3X103

Guide-de-configuration-AirPort-Extreme-802.11n-5e-Generation

Guide-de-configuration-AirPort-Extreme-802-11n-5e-Generation

Guide-de-l-utilisateur-Capteur-Nike-iPod

Guide-de-l-utilisateur-iMac-21-5-pouces-et-27-pouces-mi-2011-APPLE

Guide-de-l-utilisateur-Apple-Qadministrator-4

Guide-d-installation-Apple-TV-3-eme-generation

User-Guide-iPad-For-ios-5-1-Software

Cocoa Text Architecture
GuideContents
About the Cocoa Text System 7
At a Glance 7
Most Applications Can Use the Cocoa Text System 8
Typographical Concepts Are Essential for Understanding the Text System 8
The Text System Comprises Views, Controllers, and Storage Classes 8
Attributes Characterize Text and Documents 8
Font Objects, the Font Panel, and the Font Manager Provide Typeface Handling 9
Text Objects Are Key to Text Editing 9
Prerequisites 9
See Also 9
Text Handling Technologies in OS X 11
Typographical Concepts 12
Characters and Glyphs 12
Typefaces and Fonts 13
Text Layout 14
Text System Organization 18
Functional Areas of the Cocoa Text System 19
Class Hierarchy of the Cocoa Text System 21
MVC and the Text System 23
Creating Text System Objects 23
Text View Creates the Objects 23
Your App Creates the Objects Explicitly 24
Common Configurations 26
Text Fields, Text Views, and the Field Editor 30
Text Fields 30
Text Views 31
The Field Editor 32
Text Attributes 33
Character Attributes 33
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
2Storing Character Attributes 34
Attribute Fixing 34
Temporary Attributes 35
Paragraph Attributes 35
Glyph Attributes 35
Document Attributes 36
Font Handling 37
The Font Panel 37
Creating a Font Panel 37
Using the Font Panel 38
Working with Font Objects 39
Querying Font Metrics 39
Querying Standard Font Variations 40
Characters, Glyphs, and the Layout Manager 41
Getting the View Coordinates of a Glyph 42
Working with the Font Manager 42
Creating a Font Manager 42
Handling Font Changes 43
Converting Fonts Manually 44
Setting Font Styles and Traits 45
Examining Fonts 46
Customizing the Font Conversion System 46
Text Editing 48
The Editing Environment 48
The Key-Input Message Sequence 49
Intercepting Key Events 51
Text View Delegation 52
Text View Delegate Messages and Notifications 53
Text Field Delegation 54
Synchronizing Editing 55
Batch-Editing Mode 55
Forcing the End of Editing 56
Setting Focus and Selection Programmatically 57
Subclassing NSTextView 58
Updating State 59
Custom Import Types 59
Altering Selection Behavior 60
Preparing to Change Text 60
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
3
ContentsText Change Notifications and Delegate Messages 60
Smart Insert and Delete 61
Creating a Custom Text View 61
Implementing Text Input Support 61
Managing Marked Text 62
Communicating with the Text Input Context 63
Working with the Field Editor 64
How the Field Editor Works 64
Using Delegation and Notification with the Field Editor 64
Using a Custom Field Editor 66
Field Editor–Related Methods 67
Document Revision History 71
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
4
ContentsFigures, Tables, and Listings
Typographical Concepts 12
Figure 2-1 Glyphs of the character A 12
Figure 2-2 Ligatures 13
Figure 2-3 Fonts in the Times font family 14
Figure 2-4 Glyph metrics 16
Figure 2-5 Kerning 16
Figure 2-6 Alignment of text relative to margins 17
Figure 2-7 Justified text 17
Text System Organization 18
Figure 3-1 Major functional areas of the Cocoa text system 19
Figure 3-2 Cocoa Text System Class Hierarchy 22
Figure 3-3 Text object configuration for a single flow of text 26
Figure 3-4 Text object configuration for paginated text 27
Figure 3-5 Text object configuration for a multicolumn document 27
Figure 3-6 Text object configuration for multiple views of the same text 28
Figure 3-7 Text object configuration with custom text containers 29
Text Fields, Text Views, and the Field Editor 30
Figure 4-1 A text field 30
Figure 4-2 A text view 31
Figure 4-3 The field editor 32
Text Attributes 33
Figure 5-1 The composition of an NSAttributedString object including its attributes dictionary 34
Font Handling 37
Figure 6-1 Font metrics 39
Table 6-1 Font metrics and related NSFont methods 39
Table 6-2 Standard font methods 40
Table 6-3 Font conversion methods 44
Table 6-4 Font menu item actions and tags 47
Text Editing 48
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
5Figure 7-1 Key-event processing 49
Figure 7-2 Input context key binding and interpretation 50
Figure 7-3 Delegate of an NSTextView object 53
Table 7-1 NSWindow field editor–related methods 67
Table 7-2 NSTextFieldCell field editor–related method 68
Table 7-3 NSCell field editor–related methods 68
Table 7-4 NSControl field editor–related methods 69
Table 7-5 NSResponder field editor–related methods 69
Table 7-6 NSText field editor–related methods 70
Listing 7-1 Forcing layout 56
Listing 7-2 Forcing the end of editing 57
Listing 7-3 Forcing the field editor to enter a newline character 65
Listing 7-4 Substituting a custom field editor 67
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
6
Figures, Tables, and ListingsThe Cocoa text system is the primary text-handling system in OS X, responsible for the processing and display
of all visible text in Cocoa. It provides a complete set of high-quality typographical services through the
text-related AppKit classes, which enable applications to create, edit, display, and store text with all the
characteristics of fine typesetting, such as kerning, ligatures, line-breaking, and justification.
Ruler views, font
and color panels
Glyph generator
Text input
Typesetter
Text containers Text storage
Text views
Layout
manager
Display
View Layer
Controller Layer
Storage Layer
At a Glance
The Cocoa text system provides text editing and layout for most applications. The object-oriented design of
the system provides flexibility and ease of use.
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
7
About the Cocoa Text SystemMost Applications Can Use the Cocoa Text System
If your application needs to display text, and especially if its users need to enter and edit text, then you should
use the Cocoa text system. The Cocoa text system is one of two text-handling systems in OS X. The other is
Core Text, which provides low-level, basic text layout and font-handling capabilities to higher-level engines
such as the AppKit.
Related Chapter: “Text Handling Technologies in OS X”
Typographical Concepts Are Essential for Understanding the Text System
The Cocoa text system encodes characters as Unicode values. It translates characters into glyphs, including
ligatures and other contextual forms, and handles typefaces, styles, fonts, and families. The system does text
layout, placing glyphs horizontally or vertically in either direction, using font metric information, and uses
kerning when appropriate. It performs high-quality line breaking and hyphenation to create lines of text with
proper alignment or justification.
Related Chapter: “Typographical Concepts” (page 12)
The Text System Comprises Views, Controllers, and Storage Classes
The Cocoa textsystem is abstracted as a set of classesthat represent modular, layered functional areasreflecting
the Model-View-Controller design paradigm. The top layer of the system is the user-interface layer of various
views, the bottom layer stores the data models, and the middle layer consists of controllers that interpret
keyboard input and arrange text for display.
The four primary text system classes—NSTextView, NSLayoutManager, NSTextContainer, and
NSTextStorage—can be configured in various ways to accomplish different text-handling goals.
Related Chapters: “Text System Organization” (page 18), “Text Fields, Text Views, and the Field
Editor” (page 30)
Attributes Characterize Text and Documents
The Cocoa text system handles five kinds of attributes: character attributes, such as font and size; temporary
attributes used during processing or display, such as underlining of misspelled words; paragraph attributes,
such as alignment and tab stops; glyph attributes that may control special handling of particular glyphs; and
document attributes, such as margins and paper size.
About the Cocoa Text System
At a Glance
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
8Related Chapter: “Text Attributes” (page 33)
Font Objects, the Font Panel, and the Font Manager Provide Typeface Handling
The Font panel, also called the Fonts window, is a user interface object that displays a list of available font
families and styles, letting the user preview them and change the font used to display text. Text views work
with NSFontPanel and NSFontManager objects to implement the font-handling system. You can create font
objects using the NSFont class and query them for font metrics and detailed glyph layout information.
Related Chapter: “Font Handling” (page 37)
Text Objects Are Key to Text Editing
Usually, text editing is performed by direct user action with a text view, but it can also be accomplished by
programmatic interaction with a text storage object. The text input system translates keyboard events into
commands and text input. You can customize editing behavior using many methods of text system objects,
through the powerful Cocoa mechanisms of notification and delegation, or, in extreme cases, by replacing the
text view itself with a custom subclass.
Related Chapter: “Text Editing” (page 48)
Prerequisites
To understand the information in this document, you should understand the material in Text System User
Interface Layer Programming Guide . In addition, you should have a general knowledge of Cocoa programming
paradigms and, to understand the code examples, familiarity with the Objective-C language.
See Also
The following documents describe other aspects of the Cocoa text system:
Text SystemUserInterface Layer ProgrammingGuide describesthe high-level interface to the Cocoa textsystem,
which is sufficient for most applications.
Text System Storage Layer Overview discusses the lower-level facilities that the Cocoa text system uses to store
text.
About the Cocoa Text System
Prerequisites
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
9Text Layout Programming Guide describes how the Cocoa text system lays out text on a page, suitable for
display and printing.
The following sample code projects illustrate how to use many of the APIs of the Cocoa text system:
CircleView is a small application with a demonstration subclass of NSView that draws text in a circle.
NSFontAttributeExplorer demonstrates how to gather and display various metric information for installed fonts
using NSFont.
TextInputView demonstrates how to gather and display various metric information for installed fonts using
NSFont.
TextViewConfig demonstrates configuration of multiple layout managers and multiple text container–text
view pairs on a single text storage object.
TextLinks programmatically creates links to URLs and other objects and handles clicks in non-URL links.
TextViewDelegate demonstrates using a text view's delegate to control selection and user input.
About the Cocoa Text System
See Also
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
10The Macintosh operating system has provided sophisticated text handling and typesetting capabilities from
its beginning. In fact, these featuressparked the desktop publishing revolution. Over the years, the text handling
facilities of the platform have continued to evolve to become more advanced, more efficient, and easier to
use. OS X provides modern text handling capabilities that are available to all applications through the classes
of the Cocoa text system and the opaque types and functions of Core Text.
The text-handling component of any application presents one of the greatest challengesto software designers.
Even the most basic text-handling system must be relatively sophisticated, allowing for text input, layout,
display, editing, copying and pasting, and many other features. But developers and users expect even more
than these basic features, expecting even simple editors to support multiple fonts, various paragraph styles,
embedded images, spell checking, and other features.
The Cocoa text system provides all these basic and advanced text-handling features, and it also satisfies
additional requirements from the ever-more-interconnected computing world: support for the character sets
of all of the world’s living languages, powerful layout capabilities to handle various text directionality and
nonrectangular text containers, and sophisticated typesetting capabilities such as control of kerning and
ligatures. Cocoa’s object-oriented text system is designed to provide all these capabilities without requiring
you to learn about or interact with more of the system than is necessary to meet the needs of your application.
Underlying the Cocoa text system is Core Text, which provides low-level, basic text layout and font-handling
capabilitiesto higher-level enginessuch as AppKit, WebKit, and others. Core Text providesthe implementation
for many Cocoa text technologies. Application developers typically have no need to use Core Text directly.
However, the Core Text API is accessible to developers who must use it directly,such asthose writing applications
with their own layout engine and those porting ATSUI- or QuickDraw-based codebases to the modern world.
To decide which OS X text technology is right for your application, apply the following guidelines:
●
If possible, use Cocoa text. The NSTextView class is the most advanced full-featured, flexible text view in
OS X. Forsmall amounts of text, use NSTextField. For more information about text views,see Text System
User Interface Layer Programming Guide .
● To display web content in your application, use WebKit. For more information about WebKit, see WebKit
Objective-C Programming Guide .
●
If you have your own page layout engine, you can use Core Text to generate the glyphs and position them
relative to each other. For more information about Core Text, see Core Text Programming Guide .
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
11
Text Handling Technologies in OS XThis chapter defines some important typographical concepts relevant to the text system. If you are already
familiar with typography, you can skip this chapter.
Characters and Glyphs
A character is the smallest unit of written language that carries meaning. Characters can correspond to a
particularsound in the spoken form of the language, as do the letters of the Roman alphabet; they can represent
entire words, such as Chinese ideographs; or they can represent independent concepts, such as mathematical
symbols. In every case, however, a character is an abstract concept.
Although characters must be represented in a display area by a recognizable shape, they are not identical to
that shape. That is, a character can be drawn in various forms and remain the same character. For example, an
“uppercase A” character can be drawn with a different size or a different stroke thickness, it can lean or be
vertical, and it can have certain optional variations in form, such as serifs. Any one of these various concrete
forms of a character is called a glyph. Figure 2-1 shows different glyphs that all represent the character
“uppercase A.”
Figure 2-1 Glyphs of the character A
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
12
Typographical ConceptsCharacters and glyphs do not have a one-to-one correspondence. In some cases a character may be represented
by multiple glyphs, such as an “é” which may be an “e” glyph combined with an acute accent glyph “´”. In other
cases, a single glyph may represent multiple characters, as in the case of a ligature, or joined letter. Figure 2-2
shows individual characters and the single-glyph ligature often used when they are adjacent.
Figure 2-2 Ligatures
+ =
+ = A ligature is an example of a contextual form in which the glyph used to represent a character changes
depending on the characters next to it. Other contextual formsinclude alternate glyphsfor characters beginning
or ending a word.
Computers store characters as numbers mapped by encoding tables to their corresponding characters. The
encoding scheme native to OS X is called Unicode. The Unicode standard provides a unique number for every
character in every modern written language in the world, independent of the platform, program, and
programming language being used. This universalstandard solves a longstanding problem of different computer
systems using hundreds of conflicting encoding schemes. It also hasfeaturesthatsimplify handling bidirectional
text and contextual forms.
Glyphs are also represented by numeric codes called glyph codes. The glyphs used to depict characters are
selected by the Cocoa layout manager during composition and layout processing. The layout manager
determines which glyphs to use and where to place them in the display, or view. The layout manager caches
the glyph codesin use and provides methodsto convert between characters and glyphs and between characters
and view coordinates. (See “Text Layout” (page 14) for more information about the layout process.)
Typefaces and Fonts
A typeface is a set of visually related shapesforsome or all of the charactersin a written language. For example,
Times is a typeface, designed by Stanley Morrison in 1931 for The Times newspaper of London. All of the letter
forms in Times are related in appearance, having consistent proportions between stems (vertical strokes) and
counters (rounded shapes in letter bodies) and other elements. When laid out in blocks of text, the shapes in
a typeface work together to enhance readability.
Typographical Concepts
Typefaces and Fonts
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
13A typestyle, orsimply style, is a distinguishing visual characteristic of a typeface. For example, roman typestyle
is characterized by upright letters having serifs and stems thicker than horizontal lines. In italic typestyle, the
letters slant to the right and are rounded, similar to cursive or handwritten letter shapes. A typeface usually
has several associated typestyles.
A font is a series of glyphs depicting the characters in a consistent size, typeface, and typestyle. A font is
intended for use in a specific display environment. Fonts contain glyphs for all the contextual forms, such as
ligatures, as well as the normal character forms.
A font family is a group of fontsthatshare a typeface but differ in typestyle. So, for example, Timesisthe name
of a font family (as well as the name of its typeface). Times Roman and Times Italic are the names of two
individual fonts belonging to the Times family. Figure 2-3 shows several of the fonts in the Times font family.
Figure 2-3 Fonts in the Times font family
Styles, also called traits, that are available in Cocoa include variationssuch as bold, italic, condensed, expanded,
narrow, small caps, poster fonts, and fixed pitch. Font descriptors in the Cocoa text system provide a
font-matching capability,so that you can partially describe a font by creating a font descriptor with, for example,
just a family name or weight, and you can then find all the fonts on the system that match the given trait.
Text Layout
Text layoutisthe process of arranging glyphs on a display device, in an area called a text view, which represents
an area similar to a page in traditional typesetting. The order in which glyphs are laid out relative to each other
is called text direction. In English and other languages derived from Latin, glyphs are placed side by side to
form words that are separated by spaces. Words are laid out in lines beginning at the top left of the text view
proceeding from left to right until the text reaches the right side of the view. Text then begins a new line at
the left side of the view under the beginning of the previous line, and layout proceeds in the same manner to
the bottom of the text view.
Typographical Concepts
Text Layout
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
14In other languages, glyph layout can be quite different. For example, some languages lay out glyphs from right
to left or vertically instead of horizontally. It is common, especially in technical writing, to mix languages with
differing text direction, such as English and Hebrew, in the same line. Some writing systems even alternate
layout direction in every other line (an arrangement called boustrophedonic writing). Some languages do not
group glyphs into words separated by spaces. Moreover, some applications call for arbitrary arrangements of
glyphs; for example, in a graphic design context, a layout may require glyphs to be arranged on a nonlinear
path.
To create lines from a string of glyphs, the layout engine must perform line breaking by finding a point at
which to end one line and begin the next. In the Cocoa text system, you can specify line breaking at either
word or glyph boundaries. In Roman text, a word broken between glyphs requires insertion of a hyphen glyph
at the breakpoint.
The Cocoa layout manager lays out glyphs along an invisible line called the baseline. In Roman text, the baseline
is horizontal, and the bottom edge of most of the glyphs rest on it. Some glyphs extend below the baseline,
including those for characters like “g” that have descenders, or “tails,” and large rounded characters like “O”
that must extend slightly below the baseline to compensate for optical effects. Other writing systems place
glyphs below or centered on the baseline. Every glyph includes an origin point that the layout manager uses
to align it properly with the baseline.
Glyph designers provide a set of measurements with a font, called metrics, which describe the spacing around
each glyph in the font. The layout manager uses these metrics to determining glyph placement. In horizontal
text, the glyph has a metric called the advance width, which measures the distance along the baseline to the
origin point of the next glyph. Typically there is some space between the origin point and the left side of the
glyph, which is called the left-side bearing. There may also be space between the right side of the glyph and
the point described by the advance width, which is called the right-side bearing. The vertical dimension of
the glyph is provided by two metrics called the ascent and the descent. The ascent is the distance from the
Typographical Concepts
Text Layout
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
15origin (on the baseline) to the top of the tallest glyphs in the font. The descent, which is the distance below
the baseline to the bottom of the font’s deepest descender. The rectangle enclosing the visible parts of the
glyph is called the bounding rectangle or bounding box. Figure 2-4 illustrates these metrics.
Figure 2-4 Glyph metrics
Advance width
= Origin
Ascent
Baseline
Right-side bearing
Descent
Left-side
bearing
Bounding
box
By default, in horizontal text, typesetters place glyphs side-by-side using the advance width, resulting in a
standard interglyph space. However, in some combinations, text is made more readable by kerning, which is
shrinking or stretching the space between two glyphs. A very common example of kerning occurs between
an uppercase W and uppercase A, as shown in Figure 2-5. Type designers include kerning information in the
metricsfor a font. The Cocoa textsystem provides methodsto turn kerning off, use the defaultsettings provided
with the font, or tighten or loosen the kerning throughout a selection of text.
Figure 2-5 Kerning
With kerning
Without kerning
Type systems usually measure font metrics in units called points, which in OS X measure exactly 72 per inch.
Adding the distance of the ascent and the descent of a font provides the font’s point size.
Space added during typesetting between lines of type is called leading, after the slugs of lead used for that
purpose in traditional metal-type page layout. (Leading is sometimes also called linegap .) The total amount
of ascent plus descent plus leading provides a font’s line height.
Typographical Concepts
Text Layout
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
16Although the preceding typographic concepts of type design may be somewhat esoteric, most people who
have created documents on a computer or typewriter are familiar with the elements of text layout on a page.
For example, the margins are the areas of white space between the edges of the page and the text area where
the layout engine places glyphs. Alignment describes the way text lines are placed relative to the margins.
For example, horizontal text can be aligned right, left, or centered, as shown in Figure 2-6.
Figure 2-6 Alignment of text relative to margins
Left aligned
Alignment or flushness, is the
process of placing text in relation to
one or both margins. You set
the alignment in the style object for
glyph and text shapes, not for
layout shapes.
Justification, is the process of
typographically “stretching” or
“shrinking” a line of text to fit
within a given width. Your
application can set the width of the
space in which the line of text
should appear; ATSUI then
distributes the white space available
on the line between words or
even between glyphs, depending on
the level of justification your
application or the user choses.
Centered
Alignment or flushness, is the
process of placing text in relation to
one or both margins. You set
the alignment in the style object for
glyph and text shapes, not for
layout shapes.
Justification, is the process of
typographically “stretching” or
“shrinking” a line of text to fit
within a given width. Your
application can set the width of the
space in which the line of text
should appear; ATSUI then
distributes the white space available
on the line between words or
even between glyphs, depending on
the level of justification your
application or the user choses.
Right aligned
Alignment or flushness, is the
process of placing text in relation to
one or both margins. You set
the alignment in the style object for
glyph and text shapes, not for
layout shapes.
Justification, is the process of
typographically “stretching” or
“shrinking” a line of text to fit
within a given width. Your
application can set the width of the
space in which the line of text
should appear; ATSUI then
distributes the white space available
on the line between words or
even between glyphs, depending on
the level of justification your
application or the user choses.
Lines of text can also be justified; for horizontal text the lines are aligned on both right and left margin by
varying interword and interglyph spacing, as shown in Figure 2-7. The system performs alignment and
justification, if requested, after the text stream has been broken into lines and hyphens added and other glyph
substitutions made.
Figure 2-7 Justified text
Justified
Glyph designers provide a set of measurements with a
font, called metrics, which describe the spacing around
each glyph placement. Layout engines use the metrics to
determine glyph placement. In horizontal text, the glyph
has a metric called the advanced width, which measures
the distance along the baseline where the origin point if
the next glyph is placed. Typically there is some space
between the origin point and the left side of the glyph,
which is called the left-side bearing. There may also be
space between the right side of the glyph and the point
described by the advanced width, called the right-side
bearing. Vertical spacing of the glyph is provided by two
metrics called the ascent, which is the distance from the
origin (on the baseline) to a height slightly above the top
of the tallest glyphs in the font, and the descent, which is
below the baseline. The rectangle enclosing the visible
Typographical Concepts
Text Layout
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
17The Cocoa textsystem is abstracted into a set of classesthat interact to provide all of the text-handling features
of the system. The classesrepresentspecific functional areas with well-defined interfacesthat enable application
programs to modify the behavior of the system or even to replace parts with custom subclasses. The Cocoa
text system is designed so that you don’t need to learn about or interact with more of the system than is
necessary to meet the needs of your application.
For most developers, the general-purpose programmatic interface of the NSTextView class is all you need to
learn. NSTextView provides the user interface to the text system. See NSTextView Class Reference for detailed
information about NSTextView.
If you need more flexible, programmatic access to the text, you’ll need to learn about the storage layer and
the NSTextStorage class. And, of course, to access all the available features, you can interact with any of the
classes that support the text system.
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
18
Text System OrganizationFunctional Areas of the Cocoa Text System
Figure 3-1 shows the major functional areas of the text system with the user interface layer on top, the storage
layer on the bottom, and, in the middle region, the components that lay out the text for display. These layers
represent view, controller, and model concepts, respectively, as described in “MVC and the Text System” (page
23).
Figure 3-1 Major functional areas of the Cocoa text system
Ruler views, font
and color panels
Glyph generator
Text input
Typesetter
Text containers Text storage
Text views
Layout
manager
Display
View Layer
Controller Layer
Storage Layer
The text classes exceed most other classes in the AppKit in the richness and complexity of their interface. One
of their design goals is to provide a comprehensive set of text-handling features so that you rarely need to
create a subclass. Among other things, a text object such as NSTextView can:
● Control whether the user can select or edit text.
● Control the font and layout characteristics of its text by working with the Font menu and Font panel (also
called the Fonts window).
● Let the user control the format of paragraphs by manipulating a ruler.
● Control the color of its text and background.
● Wrap text on a word or character basis.
● Display graphic images within its text.
● Write text to or read text from files in the form of RTFD—Rich Text Format files that contain TIFF or EPS
images, or attached files.
Text System Organization
Functional Areas of the Cocoa Text System
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
19● Let another object, the delegate, dynamically control its properties.
● Let the user copy and paste text within and between applications.
● Let the user copy and paste font and format information between NSTextView objects.
● Let the user check the spelling of words in its text.
Graphical user-interface building tools (such as Interface Builder) may give you access to text objects in several
different configurations,such asthose found in the NSTextField, NSForm, and NSScrollView objects. These
classes configure a text object for their own specific purposes. Additionally, all NSTextField, NSForm, or
NSButton objects within the same window—in short, all objects that access a text object through associated
cells—share the same text object, called the field editor. Thus, it’s generally best to use one of these classes
whenever it meets your needs, rather than create text objects yourself. But if one of these classes doesn’t
provide enough flexibility for your purposes, you can create text objects programmatically.
Text objects typically work closely with various other objects. Some of these—such as the delegate or an
embedded graphic object—require some programming on your part. Others—such as the Font panel, spell
checker, or ruler—take no effort other than deciding whether the service should be enabled or disabled.
To control layout of text on the screen or printed page, you work with the objectsthat link the NSTextStorage
repository to the NSTextView that displays its contents. These objects are of the NSLayoutManager and
NSTextContainer classes.
An NSTextContainer object defines a region where text can be laid out. Typically, a text container defines
a rectangular area, but by creating a subclass of NSTextContainer you can create other shapes: circles,
pentagons, or irregular shapes, for example. NSTextContainer isn’t a user-interface object, so it can’t display
anything or receive events from the keyboard or mouse. It simply describes an area that can be filled with text,
and it’s not tied to any particular coordinate system. Nor does an NSTextContainer object store text—that’s
the job of an NSTextStorage object.
A layout manager object, of the NSLayoutManager class, orchestratesthe operation of the other text handling
objects. It intercedes in operations that convert the data in an NSTextStorage object to rendered text in an
NSTextView object’s display. It also overseesthe layout of text within the areas defined by NSTextContainer
objects.
Text System Organization
Functional Areas of the Cocoa Text System
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
20Class Hierarchy of the Cocoa Text System
In addition to the four principal classes in the text system—NSTextStorage, NSLayoutManager,
NSTextContainer, NSTextView—there are a number of auxiliary classes and protocols. Figure 3-2 provides
a more complete picture of the text system. Names between angle brackets, such as , are
protocols.
Text System Organization
Class Hierarchy of the Cocoa Text System
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
21Figure 3-2 Cocoa Text System Class Hierarchy
NSAttributedString
NSObject
NSActionCell
NSSecureTextFieldCell
NSGlyphInfo
NSMutableAttributedString NSTextStorage
NSView
NSFontDescriptor
NSFont
NSCell NSTextFieldCell
NSTextTable
NSTextTableBlock
NSMutableParagraphStyle
NSGlyphGenerator
NSLayoutManager
NSParagraphStyle
NSResponder
NSTextAttachmentCell
NSSearchFieldCell
NSTokenFieldCell
NSFontManager
NSATSTypesetter
NSTextBlock
NSSpellChecker
NSRulerMarker
NSTextContainer
NSTextInputContext
NSTextList
NSTextTab
NSTypesetter
NSTextAttachment

NSWindow NSPanel NSFontPanel

NSControl
NSRulerView
NSSearchField
NSSecureTextField
NSTokenField
NSTextField

NSText NSTextView

NSView

Text System Organization
Class Hierarchy of the Cocoa Text System
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
22MVC and the Text System
The Cocoa text system’s architecture is both modular and layered to enhance its ease of use and flexibility. Its
modular design reflects the Model-View-Controller paradigm (originating with Smalltalk-80) where the data,
its visual representation, and the logic that links the two are represented by separate objects. In the case of
the text system, NSTextStorage holds the model’s text data, NSTextContainer models the geometry of
the layout area, NSTextView presents the view, and NSLayoutManager intercedes as the controller to make
sure that the data and its representation onscreen stay in agreement.
This factoring of responsibilities makes each component less dependent on the implementation of the others
and makes it easier to replace individual components with improved versions without having to redesign the
entire system. To illustrate the independence of the text-handling components, considersome of the operations
that are possible using different subsets of the text system:
● Using only an NSTextStorage object, you can search text forspecific characters,strings, paragraph styles,
and so on.
● Using only an NSTextStorage object, you can programmatically operate on the text without incurring
the overhead of laying it out for display.
● Using all the components of the text system except for an NSTextView object, you can calculate layout
information, determine where line breaks occur, figure the total number of pages, and so forth.
The layering of the text system reduces the amount you have to learn to accomplish common text-handling
tasks. In fact, many applications interact with the system solely through the API of the NSTextView class.
Creating Text System Objects
There are two standard ways to create an object web of the four principal classes of the text system to handle
text editing, layout, and display: in one case, the text view creates and owns the other objects; in the other
case, you create all the objects explicitly and the text storage owns them.
Text View Creates the Objects
You create and maintain a reference to an NSTextView object which automatically creates, interconnects,
and owns the other text system objects. The majority of Cocoa apps use this technique and interact with the
text system at a high level through NSTextView. You can create a text view and have it create the other text
objects using Interface Builder, the graphical interface editor of Xcode, or you can do the same thing
programmatically.
Text System Organization
MVC and the Text System
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
23To create the text view object in Interface Builder, drag a Text View from the Object library onto your app
window. When your app launches and its nib file is loaded, it instantiates an NSTextView object and embeds
it in a scroll view. Behind the scenes, the text view object automatically instantiates and manages
NSTextContainer, NSLayoutManager, and NSTextStorage objects.
To create the text view object programmatically and let it create and own the other objects, use the NSTextView
initialization method initWithFrame:.
The text view ownership technique is the easiest and cleanest way to set up the text system object web.
However, it creates a single flow of text which does not support pagination or complex layouts, as described
in “Common Configurations” (page 26). For other configurations you must create the objects explicitly.
Your App Creates the Objects Explicitly
You create all four text objects explicitly and connect them together, maintaining a reference only to the
NSTextStorage object. The text storage object then owns and manages the other text objects in the web.
To create the text system objects explicitly and connect them together, use the steps shown in this section.
This code could reside in the implementation of the applicationDidFinishLaunching: notification
method of the app delegate, for example. It assumesthat textStorage is an instance variable of the delegate
object. It also assumes that window and windowView are properties of the app delegate representing outlets
to the app’s main window and its content view.
1. Create an NSTextStorage object in the normal way using the alloc and init… messages.
When you create the text system explicitly, you need to keep a reference only to this NSTextStorage
object. The other objects of the system are owned by the text storage object, and they are released
automatically by the system.
textStorage = [[NSTextStorage alloc]
initWithString:@"Here's to the ones who see things
different."];
2. Create an NSLayoutManager object and connect it to the text storage object.
The layout manager needs a number of supporting objects—such as those that help it generate glyphs
or position text within a text container—for its operation. It automatically createsthese objects(or connects
to existing ones) upon initialization.
NSLayoutManager *layoutManager;
layoutManager = [[NSLayoutManager alloc] init];
Text System Organization
Creating Text System Objects
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
24[textStorage addLayoutManager:layoutManager];
3. Create an NSTextContainer object, initialize it with a size, and connect it to the layout manager.
The size of the text container isthe size of the view in which it is displayed—in this case self.windowView
is the content view of the app’s main window. Once you’ve created the text container, you add it to the
list of containers that the layout manager owns. If your app has multiple text containers, you can create
them and add them in this step, or you can create them lazily as needed.
NSTextContainer *textContainer;
textContainer = [[NSTextContainer alloc]
initWithContainerSize:self.windowView.frame.size];
[layoutManager addTextContainer:textContainer];
4. Create an NSTextView object, initialize it with a frame, and connect it to the text container.
When you create the text system’s object web explicitly, you must use the
initWithFrame:textContainer: method to initialize the text view. This initialization method does
nothing more than initialize the receiver and set its text container (unlike initWithFrame:, which not
only initializesthe receiver, but automatically creates and interconnectsits own web of textsystem objects).
Each text view in the system is connected to its own text container.
NSTextView *textView;
textView = [[NSTextView alloc]
initWithFrame:self.windowView.frame
textContainer:textContainer];
Once the NSTextView object has been initialized, you make it the content view of the window, which is
then displayed. The makeFirstResponder: message makesthe text view key,so that it accepts keystroke
events.
[self.window setContentView:textView];
[self.window makeKeyAndOrderFront:nil];
[self.window makeFirstResponder:textView];
For simplicity, this code puts the text view directly into the window’s content view. More commonly, text
views are placed inside scroll views, as described in “Putting an NSTextView Object in an NSScrollView”.
Text System Organization
Creating Text System Objects
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
25Common Configurations
The following diagrams give you an idea of how you can configure objects of the four primary text system
classes—NSTextStorage, NSLayoutManager, NSTextContainer, and NSTextView—to accomplish different
text-handling goals.
To display a single flow of text, arrange the objects as shown in Figure 3-3.
Figure 3-3 Text object configuration for a single flow of text
With one
NSTextView,
all of the text
flows within a
single, typically
rectangular, area.
NSTextStorage NSLayoutManager NSTextContainer NSTextView
The NSTextView object providesthe view that displaysthe glyphs, and the NSTextContainer object defines
an area within that view where the glyphs are laid out. Typically in this configuration, the NSTextContainer
object’s vertical dimension is declared to be some extremely large value so that the container can accommodate
any amount of text, while the NSTextView object is set to size itself around the text using the
setVerticallyResizable: method defined by NSText, and given a maximum height equal to the
NSTextContainer object’s height. Then, with the text view embedded in an NSScrollView object, the user
can scroll to see any portion of this text.
If the text container’s area is inset from the text view’s bounds, a margin appears around the text. The
NSLayoutManager object, and other objects not pictured here, work together to generate glyphs from the
NSTextStorage object’s data and lay them out within the area defined by the NSTextContainer object.
This configuration islimited by having only one NSTextContainer-NSTextView pair. In such an arrangement,
the text flows uninterrupted within the area defined by the NSTextContainer. Page breaks, multicolumn
layout, and more complex layouts can’t be accommodated by this arrangement.
Text System Organization
Common Configurations
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
26By using multiple NSTextContainer-NSTextView pairs, more complex layout arrangements are possible.
For example, to support page breaks, an application can configure the text objects as shown in Figure 3-4.
Figure 3-4 Text object configuration for paginated text
As text is added,
it fills the region
defined by the first
NSTextContainer.
The text is
displayed in the
NSTextView that is
paired with the
NSTextContainer.
When there's no
more room, another
NSTextContainer
(and associated
NSTextView) is
added, and the text
flows onto the
second page.
NSTextStorage NSLayoutManager
NSTextContainer NSTextView
NSTextContainer NSTextView
Each NSTextContainer-NSTextView pair corresponds to a page of the document. The blue rectangle in
Figure 3-4 represents a custom view object that your application provides as a background for the NSTextView
objects. This custom view can be embedded in an NSScrollView object to enable the user to scroll through
the document’s pages.
A multicolumn document uses a similar configuration, as shown in Figure 3-5.
Figure 3-5 Text object configuration for a multicolumn document
With multiple
text views
and containers,
text can flow
in more
complex
layouts, such
as in
paginated
documents
having multiple
columns.
As a
column
fills with text,
a new column
is added.
When the
second
column on
the page is
filled, a new
page is added.
NSTextStorage NSLayoutManager
NSTextContainer NSTextView
NSTextContainer NSTextView
NSTextContainer NSTextView
NSTextContainer NSTextView
Text System Organization
Common Configurations
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
27Instead of having one NSTextView-NSTextContainer pair correspond to a single page, there are now two
pairs—one for each column on the page. Each NSTextContainer-NSTextView pair controls a portion of the
document. As the text is displayed, glyphs are first laid out in the top-left view. When there is no more room
in that view, the NSLayoutManager object informs its delegate that it has finished filling the container. The
delegate can check whether there’s more text that needs to be laid out and add another NSTextContainer
and NSTextView if necessary. The NSLayoutManager object proceeds to lay out text in the next container,
notifies the delegate when finished, and so on. Again, a custom view (depicted as a blue rectangle) provides
a canvas for these text columns.
Not only can you have multiple NSTextContainer-NSTextView pairs, you can also have multiple
NSLayoutManager objects accessing the same text storage. Figure 3-6 illustrates the simplest arrangement
with multiple layout managers.
Figure 3-6 Text object configuration for multiple views of the same text
NSTextStorage
NSTextView
NSTextContainer NSTextView
Multiple NSLayoutManagers
allow you to have multiple
presentations of the same
text. The text within
eachview can have separate
layout and selections.
Multiple
NSLayoutManagers
allow you to have
multiple presentations
of the same text.
The text within
each view can have
separate layout
and selections.
NSLayoutManager
NSLayoutManager
NSTextContainer
The effect of this arrangement is to give multiple views on the same text. If the user alters the text in the top
view, the change is immediately reflected in the bottom view (assuming the location of the change is within
the bottom view’s bounds).
Text System Organization
Common Configurations
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
28Finally, complex page layout requirements, such as permitting text to wrap around embedded graphics, can
be achieved by a configuration that uses a custom subclass of NSTextContainer. This subclass defines a
region that adapts its shape to accommodate the graphic image and uses the object configuration shown in
Figure 3-7.
Figure 3-7 Text object configuration with custom text containers
NSTextStorage NSLayoutManager
NSTextContainer NSTextView
NSTextContainer NSTextView
 The text
 container
 defines a
 region that
 wraps
around the embedded
graphic. A custom
view is the super
view for each of the
NSTextViews. It
both arranges the
NSTextViews as
pages and detects
when the
graphic
has moved.
When a
graphic is
moved or added, the
text container must
adapt its shape to
accommodate the
new placement.
See Text Layout Programming Guide for information about how the text system lays out text.
Text System Organization
Common Configurations
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
29Text fields, text views, and the field editor are important objects in the Cocoa text system because they are
central to the user’s interaction with the system. They provide text entry, manipulation, and display. If your
application deals in any way with user-entered text, you should understand these objects.
Text Fields
A text field is a user interface control object instantiated from the NSTextField class. Figure 4-1 shows a text
field. Text fields display small amounts of text, typically (although not necessarily) a single line. Text fields
provide places for users to enter text responses, such as search parameters. Like all controls, a text field has a
target and an action, and it performs validation on its value when edited. If the value isn’t valid, it sends a
special error action message to its target.
Figure 4-1 A text field
A text field is implemented by two classes: NSTextFieldCell, the cell which does most of the work, and
NSTextField, the control that contains that cell. Every method in NSTextFieldCell has a cover in
NSTextField. (A cover is a method of the same name that callsthe original method.) An NSTextField object
can have a delegate that responds to such delegate methods as textShouldEndEditing:.
By default, text fields send their action message when editing ends—that is, when the user presses Return or
moves focus to another control. You can control a text field’s shape and layout, the font and color of its text,
background color, whether the text is editable or read-only, whether it is selectable or not (if read-only), and
whether the text scrolls or wraps when the text exceeds the text field’s visible area.
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
30
Text Fields, Text Views, and the Field EditorTo create a secure text field for password entry, use NSSecureTextField, a subclass of NSTextField. Secure
text fields display bullets in place of characters entered by the user, and they do not allow cutting or copying
of their contents. You can get the text field’s value using the stringValue method, but users have no access
to the value. See “Why Use a Custom Field Editor?” (page 66) for information about the implementation of
secure text fields.
The usual way to instantiate a text field is to drag an NSTextField or NSSecureTextField object from the
Interface Builder objects library and place it in a window of your application’s user interface. You can link text
fields together in their window’s key view loop by setting each field’s nextKeyView outlet in the Connections
pane of the Inspector window, so that users can press Tab to move keyboard focus from one field to the next
in the order you specify.
Text Views
Text views are user interface objects instantiated from the NSTextView class. Figure 4-2 shows a text view.
Text viewstypically display multiple lines of text laid out in paragraphs with all the characteristics ofsophisticated
typesetting. A text view is the main user interface to the Cocoa text-editing system. It handles user events to
provide text entry and modification, and to display any font, including those of non-English languages, with
arbitrary colors, styles, and other attributes.
Figure 4-2 A text view
The Cocoa text system supports text views with many other underlying objects providing text storage, layout,
font and attribute manipulation, spell checking, undo and redo, copy and paste, drag and drop, saving of text
to files, and other features. NSTextView is a subclass of NSText, which is a separate classfor historical reasons.
You don’t instantiate NSText, although it declares many of the methods you use with NSTextView. When
you put an NSTextView object in an NSWindow object, you have a full-featured text editor whose capabilities
are provided “for free” by the Cocoa text system.
Text Fields, Text Views, and the Field Editor
Text Views
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
31The Field Editor
The field editor is a single NSTextView object that is shared among all the controls, including text fields, in a
window. This text view object inserts itself into the view hierarchy to provide text entry and editing services
for the currently active text field. When the user shifts focus to a text field, the field editor begins handling
keystroke events and display for that field. Figure 4-3 illustrates the field editor in relation to the text field it is
editing.
Figure 4-3 The field editor
NSTextView
Field editor
delegate
Field editor becomes first responder
while text field is being edited.
NSTextField
Because only one of the text fieldsin a window can be active at a time, the system needs only one NSTextView
instance per window to be the field editor. However, you can substitute custom field editors, in which case
there could be more than one field editor. Among its other duties, the field editor maintains the selection.
Therefore, a text field that's not being edited typically does not have a selection at all.
For more information about the field editor, see “Working with the Field Editor” (page 64).
Text Fields, Text Views, and the Field Editor
The Field Editor
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
32The Cocoa textsystem handlesfive kinds of text attributes: character attributes, temporary attributes, paragraph
attributes, glyph attributes, and document attributes. Character attributes include traits such as font, color,
and subscript, which can be associated with an individual character or a range of characters. Temporary
attributes are character attributes that apply only to a particular layout and are not persistent. Paragraph
attributes are traits such as indentation, tabs, and line spacing. Glyph attributes affect the way the layout
manager renders glyphs and include traitssuch as overstriking the previous glyph. Document attributesinclude
document-wide traits such as paper size, margins, and view zoom percentage.
This chapter provides a brief introduction to the various types of text attributes with cross-references to more
detailed documentation.
Character Attributes
The text system stores character attributes persistently in attributed strings along with the characters to which
they apply. The text system’s predefined character attributes control the appearance of characters (font,
foreground color, background color, and ligature handling) and their placement (superscript, baseline offset,
and kerning).
Two special character attributes pertain to links and attachments. A link attribute pointsto a URL (encapsulated
in an NSURL object) or any other object of your choice. An attachment attribute is associated with a special
attachment character and points to an NSFileWrapper object containing the attached file or in-memory
data.
The predefined character attribute NSCharacterShapeAttributeName enables you to set a value for the
character shape feature used in font rendering by Apple Type Services. This feature is currently used to specify
traditional shapes in Chinese and Japanese scripts, but font developers could use it for other scripts as well.
The predefined character attribute NSGlyphInfoAttributeName points to an NSGlyphInfo object that
provides a means to override the standard glyph generation process and substitute a specified glyph over the
attribute’s range.
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
33
Text AttributesStoring Character Attributes
An attributed string stores character attributes as key-value pairs in NSDictionary objects. The key is an
attribute name, represented by an identifier (an NSString constant) such as NSFontAttributeName. Figure
5-1 shows an attributed string with an attribute dictionary applied to a range within the string.
Figure 5-1 The composition of an NSAttributedString object including its attributes dictionary
NSForegroundColorAttributeName
NSFontAttributeName
This is a character string. NSString
NSRange
NSDictionary
NSFont
NSColor
Conceptually, each character in an attributed string has an associated dictionary of attributes. Typically, however,
an attribute dictionary applies to a longer range of characters. The NSAttributedString class provides
methods that take a character index and return the associated attribute dictionary and the range to which its
attribute values apply. See “Accessing Attributes” for more information about using these methods.
In addition to the predefined attributes, you can assign any attribute key-value pair you wish to a range of
characters. You add the attributes to the appropriate character range in the NSTextStorage object using the
NSMutableAttributedString method addAttribute:value:range:. You can also create an
NSDictionary object containing the names and values of a set of custom attributes and add them to the
character range in a single step using the addAttributes:range: method. To make use of your custom
attributes, you need a custom subclass of NSLayoutManager that understands what to do with them. Your
subclass should override the drawGlyphsForGlyphRange:atPoint: method first to call the superclass to
draw the glyph range, then draw your own attributes on top, or else draw the glyphs entirely your own way.
Attribute Fixing
Editing attributed strings can cause inconsistencies that must be cleaned up by attribute fixing. The AppKit
extensionsto NSMutableAttributedString define fix...methodsto fix inconsistencies among attachment,
font, and paragraph attributes. These methods ensure that attachments don’t remain after their attachment
characters are deleted, that font attributes apply only to characters available in that font, and that paragraph
attributes are consistent throughout paragraphs.
See Attributed String Programming Guide for more details about character attributes and attribute fixing.
Text Attributes
Character Attributes
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
34Temporary Attributes
Temporary attributes are character attributes that are not stored with an attributed string. Rather, the layout
manager assigns temporary attributes during the layout process and uses them only when drawing the text.
For example, you can use temporary attributes to underline misspelled words or color key words in a
programming language.
Temporary attributes affect only the appearance of text, not the way in which it islaid out. You store temporary
attributes in an NSDictionary object using the same keys as regular character attributes, or using custom
attribute names(if you have an NSLayoutManager subclassthat can handle them). Then you add the attributes
using an NSLayoutManagermethod such as addTemporaryAttributes:forCharacterRange:. By default,
the only temporary attributes recognized are those affecting color and underlines. During layout, temporary
attributes supersede regular character attributes. So, for example, if a character has a stored
NSForegroundColorAttributeName value specifying blue and a temporary attribute of the same identifier
specifying red, then the character is rendered in red.
For more information on temporary attributes, see NSLayoutManager Class Reference .
Paragraph Attributes
Paragraph attributes affect the way the layout manager arranges lines of text into paragraphs on a page. The
text system encapsulates paragraph attributes in objects of the NSParagraphStyle class. The value of one
of the predefined character attributes, NSParagraphStyleAttributeName, pointsto an NSParagraphStyle
object containing the paragraph attributes for that character range. Attribute fixing ensures that only one
NSParagraphStyle object pertains to the characters throughout each paragraph.
Paragraph attributes include traits such as alignment, tab stops, line-breaking mode, and line spacing (also
known as leading). Users of text applications control paragraph attributes through ruler views, defined by the
NSRulerView class.
See Ruler and Paragraph Style Programming Topics for more details about paragraph attributes.
Glyph Attributes
Glyphs are the concrete representations of characters that the text system actually draws on a display. Glyph
attributes are not complex data structureslike character attributes but are simply integer valuesthat the layout
manager uses to denote special handling for particular glyphs during rendering.
Text Attributes
Temporary Attributes
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
35The text system uses glyph attributes rarely, and applications should have little reason to be concerned with
them. Nonetheless, NSLayoutManager provides public methods that handle glyph attributes, so you can use
subclasses to extend the mechanism to handle custom glyph attributes if necessary.
The glyph generatorsets built-in glyph attributes asrequired on glyphs during typesetting. They are maintained
in the layout manager’s glyph cache during that process, but they are not stored persistently. Two examples
of glyph attributes are the elastic attribute for spaces, used to lay out fully justified text, and the attribute
NSGlyphAttributeInscribe, which is used forsituationssuch as drawing an umlaut over a character when
the font does not include a built-in character-with-umlaut.
For more information about glyph attributes, see the description of the
setIntAttribute:value:forGlyphAtIndex: method in NSLayoutManager Class Reference .
Document Attributes
Document attributes pertain to a document as a whole. Document attributes include traits such as paper size,
margins, and view zoom percentage. Although the text system has no built-in mechanism to store document
attributes, initialization methods such as initWithRTF:documentAttributes: can populate an
NSDictionary object that you provide with document attributes derived from a stream of RTF or HTML data.
Conversely, methods that write RTF data, such as RTFFromRange:documentAttributes:, write document
attributes if you pass a reference to an NSDictionary object containing them with the message.
See “RTF Files and Attributed Strings” and NSAttributedString Application Kit Additions Reference for more
information.
Text Attributes
Document Attributes
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
36This chapter explains how the Cocoa text system deals with fonts. It explains how to use the Font panel in your
application, how to work directly with font objects, and how to work with the font manager.
The Font Panel
The Font panel, also called the Fonts window, is a user interface object that displays a list of available font
families and styles, letting the user preview them and change the font used to display text. Text objects, such
as NSTextView, work with NSFontPanel and NSFontManager objects to implement the AppKit’s font
conversion system. By default, a text object keeps the Font panel updated with the first font in its selection,
or with its typing attributes. It also changes the font in which it displays text in response to messages from the
Font panel and Font menu. Such changes apply to the selected text or typing attributes for a rich text object
or to all the text in a plain text object.
NSFontManager is the hub for font conversion—that is, changing the traits of a font object, such as its size
or typeface. The font manager receivesthe messagesfrom the Font panel and sends messages up the responder
chain for action on the text objects.
Normally, an application’s Font panel displays all the standard fonts available on the system. If this isn’t
appropriate for your application—for example, if only fixed-pitch fonts should be used—you can assign a
delegate to the NSFontPanel object to filter the available fonts. Before the NSFontPanel object adds a
particular font family or face to its list, the NSFontPanel object asks its delegate to confirm the addition by
sending the delegate a fontManager:willIncludeFont: message. If the delegate returns TRUE (or doesn’t
implement this method), the font is added. If the delegate returns FALSE, the font isn’t added. This method
must be invoked before the loading of the main nib file.
Creating a Font Panel
In general, you add the facilities of the Font panel to your application, along with the NSFontManager object
and the Font menu, through which the user opens the Font panel, using Interface Builder. You do this by
dragging a Font or Format menu (which contains a Font submenu) into one of your application’s menus. At
runtime, the Font panel object is created and hooked into the font conversion system. You can also create (or
access) the Font panel using the sharedFontPanel class method.
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
37
Font HandlingYou can add a custom view object to an NSFontPanel object using setAccessoryView:, allowing you to
add custom controlsto the Font panel. You can also limit the fonts displayed (by default, all fonts are displayed)
by assigning a delegate to the application’s font manager object.
If you want the NSFontManager object to instantiate the Font panel from some class other than NSFontPanel,
use the NSFontManager class method setFontPanelFactory:. See “Converting Fonts Manually” for more
information on using the font conversion system.
Using the Font Panel
You can enable the interaction between a text object and the Font panel using the NSTextView (or NSText)
method setUsesFontPanel: method. Doing so is recommended for a text view that serves as a field editor,
for example.
You can use the Font panel on objects other than standard text fields. The NSFontManager method
setAction: sets the action (specified by a selector) that is sent up the first responder chain when a new font
is selected. The default selector is changeFont:. Any object that receives this message from the responder
chain should send a convertFont: message back to the NSFontManager to convert the font in a manner
the user has specified.
This example assumes there is only one font selected:
– (void)changeFont:(id)sender
{
NSFont *oldFont = [self font];
NSFont *newFont = [sender convertFont:oldFont];
[self setFont:newFont];
return;
}
If multiple fonts are selected, changeFont: must send conversion messages for each selected font. This is
useful for objects such as table views, which do not inherently respond to messages from the Font panel.
Font Handling
The Font Panel
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
38Working with Font Objects
You don’t create font objects using the alloc and init methods; instead, you use either
fontWithName:matrix: or fontWithName:size: to look up an available font and alter its size or matrix
to your needs. These methods check for an existing font object with the specified characteristics, returning it
if there is one. Otherwise, they look up the font data requested and create the appropriate object.
NSFont also defines a number of methodsforspecifying standard system fonts,such as systemFontOfSize:,
userFontOfSize:, and messageFontOfSize:. To request the default size for these standard fonts, pass 0
or a negative number as the font size. The standard system font methods are listed in “Querying Standard Font
Variations” (page 40).
Querying Font Metrics
NSFont defines a number of methods for accessing a font’s metrics information, when that information is
available. Methods such as boundingRectForGlyph:, boundingRectForFont, xHeight, and so on, all
correspond to standard font metrics information. Figure 6-1 shows how the font metrics apply to glyph
dimensions, and Table 6-1 lists the method names that correlate with the metrics. See the various method
descriptions for more specific information.
Figure 6-1 Font metrics
Advancement
Ascent
Line
height
Cap
height
X-height
Descent
Baseline
Bounding Italic angle
rectangle
Line gap (leading)
Origin
Table 6-1 Font metrics and related NSFont methods
Font metric Methods
Advancement advancementForGlyph:, maximumAdvancement
Font Handling
Working with Font Objects
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
39Font metric Methods
X-height xHeight
Ascent ascender
Bounding rectangle boundingRectForFont, boundingRectForGlyph:
Cap height capHeight
defaultLineHeightForFont, pointSize, labelFontSize,
smallSystemFontSize, systemFontSize, systemFontSizeForControlSize:
Line height
Descent descender
Italic angle italicAngle
Querying Standard Font Variations
Using the methods of NSFont listed in Table 6-2, you can query all of the standard font variations. To request
the default font size for the standard fonts, you can either explicitly pass in default sizes (obtained from class
methods such as systemFontSize and labelFontSize), or pass in 0 or a negative value.
Table 6-2 Standard font methods
Font Methods
System font [NSFont systemFontOfSize:[NSFont systemFontSize]]
Emphasized system font [NSFont boldSystemFontOfSize:[NSFont systemFontSize]]
[NSFont systemFontOfSize:[NSFont
smallSystemFontSize]]
Small system font
[NSFont boldSystemFontOfSize:[NSFont
smallSystemFontSize]]
Emphasized small system font
[NSFont systemFontSizeForControlSize:
NSMiniControlSize]
Mini system font
[NSFont boldSystemFontOfSize:[NSFont
systemFontSizeForControlSize: NSMiniControlSize]]
Emphasized mini system font
Application font [NSFont userFontOfSize:-1.0]
Font Handling
Working with Font Objects
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
40Font Methods
Application fixed-pitch font [NSFont userFixedPitchFontOfSize:-1.0]
Label Font [NSFont labelFontOfSize:[NSFont labelFontSize]]
Characters, Glyphs, and the Layout Manager
Characters are conceptual entities that correspond to units of written language. Generally, a glyph is the
concrete, rendered image of a character. (“Typographical Concepts” (page 12) presents a more detailed
discussion of characters and glyphs.)
In English, there’s often a one-to-one mapping between characters and glyphs, but that is not always the case.
For example, the glyph “ö” can be the result of two characters, one representing the base character “o” and
the other representing the umlaut diacritical mark “¨”. A user of a word processor can press an arrow key one
time to move the insertion point from one side of the “ö” glyph to the other; however, the current position in
the character stream must be incremented by two to account for the two characters that make up the single
glyph.
Thus, the text system must manage two related but different streams of data: the stream of characters (and
their attributes) and the stream of glyphs that are derived from these characters. The NSTextStorage object
stores the attributed characters, and the NSLayoutManager object stores the derived glyphs. Finding the
correspondence between these two streams is the responsibility of the layout manager. For example, when a
user selects a range of text, working with glyphs displayed on screen, the layout manager must determine
which range of characters corresponds to the selection.
When characters are deleted, some glyphs may have to be redrawn. For example, if the user deletes the
characters “ee” from the word “feel”, then the “f” and “l” are now adjacent and can be represented by the “fl”
ligature rather than the two glyphs “f” and “l”. The NSLayoutManager object directs a glyph generator object
to generate new glyphs as needed. Once the glyphs are regenerated, the text must be laid out and displayed.
Working with the NSTextContainer object and other objects of the text system, the layout manager
determines where each glyph appears in the text view. Finally, the text view renders the text.
Because an NSLayoutManager object is central to the operation of the text system, it also serves as the
repository of information shared by various components of the system. For more information about
NSLayoutManager, refer to NSLayoutManager Class Reference and to Text Layout Programming Guide .
Font Handling
Working with Font Objects
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
41Getting the View Coordinates of a Glyph
Glyph locations are figured relative to the origin of the bounding rectangle of the line fragment in which they
are laid out. To get the rectangle of the glyph’s line fragment in its container coordinates, use the
NSLayoutManager method lineFragmentRectForGlyphAtIndex:effectiveRange:. Then add the
origin of that rectangle to the location of the glyph returned by locationForGlyphAtIndex: to get the
glyph location in container coordinates.
The following code fragment from the CircleView sample code project illustrates this technique.
usedRect = [layoutManager usedRectForTextContainer:textContainer];
NSRect lineFragmentRect = [layoutManager lineFragmentRectForGlyphAtIndex:glyphIndex
effectiveRange:NULL];
NSPoint viewLocation, layoutLocation = [layoutManager
locationForGlyphAtIndex:glyphIndex];
// Here layoutLocation is the location (in container coordinates) where the glyph
was laid out.
layoutLocation.x += lineFragmentRect.origin.x;
layoutLocation.y += lineFragmentRect.origin.y;
Working with the Font Manager
Any object that recordsfontsthat the user can change should tell the font manager what the font of itsselection
is whenever it becomes the first responder and whenever its selection changes while it’s the first responder.
The object does so by sending the shared font manager a setSelectedFont:isMultiple: message. It
should pass in the first font of the selection, along with a flag indicating whether there’s more than one font.
The font manager uses this information to update the Font panel and Font menu to reflect the font in the
selection. For example, suppose the font is Helvetica Oblique 12.0 point. In this case, the Font panel selects
that font and displays its name; the Font menu adds a check mark before its Italic command; if there’s no Bold
variant of Helvetica available, the Bold menu item is disabled; and so on.
Creating a Font Manager
You normally set up a font manager and the Font menu using Interface Builder. However, you can also do so
programmatically by getting the shared font manager instance and having it create the standard Font menu
at runtime, as in this example:
NSFontManager *fontManager = [NSFontManager sharedFontManager];
Font Handling
Working with the Font Manager
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
42NSMenu *fontMenu = [fontManager fontMenu:YES];
You can then add the Font menu to your application’s menus. Once the Font menu isinstalled, your application
automatically gains the functionality of both the Font menu and the Font panel.
Handling Font Changes
The user normally changes the font of the selection by manipulating the Font panel (also called the Fonts
window) and the Font menu. These objects initiate the intended change by sending an action message to the
font manager. There are four font-changing action methods:
addFontTrait:
removeFontTrait:
modifyFont:
modifyFontViaPanel:
The first three cause the font manager to query the sender of the message in order to determine which trait
to add or remove, or how to modify the font. The last causes the font manager to use the settings in the Font
panel to modify the font. The font manager records this information and uses it in later requests to convert
fonts.
When the font manager receives an addFontTrait: or removeFontTrait: message, it queries the sender
with a tag message, interpreting the return value as a trait mask for use with convertFont:toHaveTrait:
or convertFont:toNotHaveTrait:, as described in “Converting Fonts Manually” (page 44). The Font menu
commandsItalic and Bold, for example, have trait mask values of NSItalicFontMask and NSBoldFontMask,
respectively. See the Constants section in NSFontManager Class Reference for a list of trait mask values.
When the font manager receives a modifyFont: message, it queries the sender with a tag message and
interprets the return value as a particular kind of conversion to perform, via the various conversion methods
described in “Converting Fonts Manually” (page 44). For example, a button whose tag value is
SizeUpFontAction causes the font manager’s convertFont: method to increase the size of the NSFont
object passed as the parameter. See the NSFontManager method modifyFont: for a list of conversion tag
values.
For modifyFontViaPanel:, the font manager sends the application’s Font panel a panelConvertFont:
message. The Font panel in turn uses the font manager to convert the font provided according to the user’s
choices. For example, if the user selects only the font family in the Font panel (perhaps Helvetica), then for
whatever fonts are provided to panelConvertFont:, only the family is changed: Courier Medium 10.0 point
becomes Helvetica Medium 10.0 point, and Times Italic 12.0 point becomes Helvetica Oblique 12.0 point.
Font Handling
Working with the Font Manager
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
43The font manager responds to a font-changing action method by sending a changeFont: action message
up the responder chain. A text-bearing object that receivesthis message should have the font manager convert
the fonts in its selection by invoking convertFont: for each font and using the NSFont object returned. The
convertFont: method uses the information recorded by the font-changing action method, such as
addFontTrait:, modifying the font provided appropriately. (There’s no way to explicitly set the font-changing
action or trait; instead, you use the methods described in “Converting Fonts Manually” (page 44).)
This simple example assumes there’s only one font in the selection:
- (void)changeFont:(id)sender
{
NSFont *oldFont = [self selectionFont];
NSFont *newFont = [sender convertFont:oldFont];
[self setSelectionFont:newFont];
return;
}
Most text-bearing objects have to scan the selection for ranges with different fonts and invoke convertFont:
for each one.
Converting Fonts Manually
NSFontManager defines a number of methods for explicitly converting particular traits and characteristics of
a font. Table 6-3 lists these conversion methods.
Table 6-3 Font conversion methods
Methods Behavior
Alters the basic design of the font provided. Requires a fully specified
typeface name, such as “Times-Roman” or “Helvetica-BoldOblique”.
convertFont:toFace:
Alters the basic design of the font provided. Requires only a family
name, such as “Times” or “Helvetica”.
convertFont: toFamily:
Uses a trait mask to add a single trait such as Italic, Bold, Condensed,
or Extended.
convertFont:
toHaveTrait:
Uses a trait mask to remove a single trait such as Italic, Bold,
Condensed, or Extended.
convertFont:
toNotHaveTrait:
Font Handling
Working with the Font Manager
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
44Methods Behavior
Returns a font of the requested size, with all other characteristics the
same as those of the original font.
convertFont:toSize:
Either increases or decreasesthe weight of the font provided, according
to a Boolean flag. Font weights are typically indicated by a series of
names, which can vary from font to font. Some go from Light to
Medium to Bold, while others have Book, SemiBold, Bold, and Black.
This method offers a uniform way of incrementing and decrementing
any font’s weight.
convertWeight: ofFont:
Each method returns a transformed version of the font provided, or the original font if it can’t be converted.
The default implementation of font conversion is very conservative, making a change only if no other trait or
aspect is affected. For example, if you try to convert Helvetica Oblique 12.0 point by adding the Bold trait, and
only Helvetica Bold is available, the font isn’t converted. You can create a subclass of NSFontManager and
override the conversion methods to perform less conservative conversion, perhaps using Helvetica Bold in this
case and losing the Oblique trait.
In addition to the font-conversion methods, NSFontManager defines
fontWithFamily:traits:weight:size: to construct a font with a given set of characteristics. If you don’t
care to make a subclass of NSFontManager, you can use this method to perform approximate font conversions
yourself.
Setting Font Styles and Traits
This section shows how to programmatically set font styles, such as bold or italic, and font attributes, such as
underlining, in an attributed string.
Underlining is an attribute that can be easily set on an attributed string, using the
NSUnderlineStyleAttributeName constant, as explained in NSMutableAttributedString Class Reference .
Use the following method:
- (void)addAttribute:(NSString *)name value:(id)value range:(NSRange)aRange
Pass NSUnderlineStyleAttributeName for the name parameter with a value of [NSNumber
numberWithInt:1].
Unlike underlining, bold and italic are traits of the font, so you need to use a font manager instance to convert
the font to have the desired trait, then add the font attribute to the mutable attributed string. For a mutable
attributed string named attributedString, use the following technique:
Font Handling
Working with the Font Manager
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
45NSFontManager *fontManager = [NSFontManager sharedFontManager];
unsigned idx = range.location;
NSRange fontRange;
NSFont *font;
while (NSLocationInRange(idx, range)){
font = [attributedString attribute:NSFontAttributeName atIndex:idx
longestEffectiveRange:&fontRange inRange:range];
fontRange = NSIntersectionRange(fontRange, range);
[attributedString applyFontTraits:NSBoldFontMask range:fontRange];
idx = NSMaxRange(fontRange);
}
If your mutable attributed string is actually an NSTextStorage object, place this code between beginEditing
and endEditing calls.
Examining Fonts
In addition to converting fonts, NSFontManager provides information on which fonts are available to the
application and on the characteristics of any given font. The availableFonts method returns an array of
the names of all fonts available. The availableFontNamesWithTraits: method filters the available fonts
based on a font trait mask.
There are three methods for examining individual fonts. The fontNamed:hasTraits: method returns true
if the font matches the trait mask provided. The traitsOfFont: method returns a trait mask for a given font.
The weightOfFont: method returns an approximate ranking of a font’s weight on a scale of 0–15, where 0
is the lightest possible weight, 5 is Normal or Book weight, 9 is the equivalent of Bold, and 15 is the heaviest
possible (often called Black or Ultra Black).
Customizing the Font Conversion System
If you need to customize the font conversion systemby creating subclasses of NSFontManager or NSFontPanel,
you must inform the NSFontManager class of this change with a setFontManagerFactory: or
setFontPanelFactory: message, before either the shared font manager or shared Font panel is created.
These methods record your class as the one to instantiate the first time the font manager or Font panel is
requested. You may be able to avoid using subclasses if all you need is to add some custom controls to the
Font panel. In this case, you can invoke the NSFontPanel method setAccessoryView: to add an NSView
object below its font browser.
Font Handling
Working with the Font Manager
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
46If you provide your own Font menu, you should register it with the font manager using the setFontMenu:
method. The font manager is responsible for validating Font menu items and changing their titles and tags
according to the selected font. For example, when the selected font is Italic, the font manager adds a check
mark to the Italic Font menu item and changes its tag to UnitalicMask. Your Font menu’s items should use
the appropriate action methods and tags, as shown in Table 6-4.
Table 6-4 Font menu item actions and tags
Font menu item Action Tag
Italic addFontTrait: ItalicMask
Bold addFontTrait: BoldMask
Heavier modifyFont: HeavierFontAction
Larger modifyFont: SizeUpFontAction
See also the following documents: Attributed String Programming Guide describes NSAttributedString
objects, which manage sets of attributes, such as font and kerning, that are associated with character strings
or individual characters. Text Layout Programming Guide describes how the Cocoa textsystem convertsstrings
of text characters, font information, and page specifications into lines of glyphs placed at specific locations on
a page, suitable for display and printing.
Font Handling
Working with the Font Manager
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
47This chapter describes ways in which you can control the behavior of the Cocoa text system as it performs text
editing. Text editing isthe modification of text characters or attributes by interacting with text objects. Usually,
editing is performed by direct user action with a text view, but it can also be accomplished by programmatic
interaction with a text storage object. This document also discusses the text input system that translates
keyboard events into commands and text input.
The Cocoa text system implements a sophisticated editing mechanism that enables input and modification of
complex text character and style information. It is important to understand this mechanism if your code needs
to hook into it to modify that behavior.
The text system provides a number of control points where you can customize the editing behavior:
● Text system classes provide methods to control many of the ways in which they perform editing.
● You can implement more control through the Cocoa mechanisms of notification and delegation.
●
In extreme cases where the capabilities of the text system are not suitable, you can replace the text view
with a custom subclass.
The Editing Environment
Text editing is performed by a text view object. Typically, a text view is an instance of NSTextView or a subclass.
A text view provides the front end to the text system. It displays the text, handles the user events that edit the
text, and coordinates changes to the stored text required by the editing process. NSTextView implements
methods that perform editing, manage the selection, and handle formatting attributes affecting the layout
and display of the text.
NSTextView has a number of methods that control the editing behavior available to the user. For example,
NSTextView allows you to grant or deny the user the ability to select or edit itstext, using the setSelectable:
and setEditable: methods. NSTextView also implements the distinction between plain and rich text
defined by NSText with its setRichText: and setImportsGraphics: methods. See Text System User
InterfaceLayerProgrammingGuide ,NSTextViewClassReference ,andNSTextClassReference formoreinformation.
An editable text view can operate in either of two distinct editing modes: as a normal text editor or as a field
editor. A field editor is a single text view instance shared by many text fields belonging to a window in an
application. This sharing results in a performance gain. When a text field becomes the first responder, the
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
48
Text Editingwindow inserts the field editor in its place in the responder chain. A normal text editor accepts Tab and Return
characters as input, whereas a field editor interprets Tab and Return as cues to end editing. The NSTextView
method setFieldEditor: controls this behavior.
See “Working with the Field Editor” (page 64) for more information about the field editor.
The Key-Input Message Sequence
When you want to modify the way in which Cocoa edits text, it’s helpful to understand the message sequence
that definesthe editing mechanism,so you can select the most appropriate point at which to add your custom
behavior.
The message sequence invoked when a text view receives key events involves four methods declared by
NSResponder. When the user presses a key, the operating system handles certain reserved key events and
sends others to the NSApplication object, which handles Command-key events as key equivalents. The key
events not handled are sent by the application object to the key window, which processes key events mapped
to keyboard navigation actions (such as Tab moving focus on the next view) and sends other key events to
the first responder. Figure 7-1 illustrates this sequence.
Figure 7-1 Key-event processing
sendEvent:
keyDown:
Key press sendEvent:
Control-key events
First responder
Command-key events
Reserved key events
NSWindow
NSApplication
OS
Text Editing
The Key-Input Message Sequence
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
49If the first responder is a text view, the key event enters the text system. The key window sends the text view
a keyDown: message with the event as its argument. The keyDown: method passes the event to
handleEvent:, which sends the character input to the input context for key binding and interpretation. In
response, the input context sends either insertText:replacementRange:,
setMarkedText:selectedRange:replacementRange:, or doCommandBySelector: to the text view.
Figure 7-2 illustrates the sequence of text-input event processing.
Figure 7-2 Input context key binding and interpretation
setMarkedText:selectedRange:
replacementRange:
or
doCommandBySelector:
or
insertText:replacementRange:
handleEvent:
keyDown:
First responder
Key binding and marked
text processing
NSTextView
NSTextInputContext
Key-bindings dictionary
The text input system uses a dictionary property list, called a key-bindings dictionary, to interpret keyboard
events before passing them to the Input Method Kit framework for mapping to characters.
During the processing of a keyboard event, the event passes through the NSMenu object, then to the first
responder via the keyDown: method. The default implementation of the method provided by the NSResponder
class propagates the message up the responder chain until an overridden keyDown: implementation stops
the propagation. Typically, an NSResponder subclass can choose to process certain keys and ignore others
(for example, in a game) or to send the handleEvent: message to its input context.
Text Editing
The Key-Input Message Sequence
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
50The input context checksthe event to see if it matches any of the keystrokesin the user’s key-bindings dictionary.
A key-bindings dictionary maps a keystroke (including its modifier keys) to a method name. For example, the
default key-bindings dictionary maps ^d (Control-D) to the method name deleteForward:. If the keyboard
event is in the dictionary, then the input context calls the text view’s doCommandBySelector: method with
the selector associated with the dictionary entry.
If the input context cannot match the keyboard event to an entry in the key-bindings dictionary, it passes the
event to the Input Method Kit for mapping to characters.
The standard key-bindings dictionary is in the file
/System/Library/Frameworks/AppKit.framework/Resources/StandardKeyBinding.dict. You
can override the standard dictionary entirely by providing a dictionary file at the path
~/Library/KeyBindings/DefaultKeyBinding.dict. However, defining customkey bindings dynamically
(that is, while the application is running) is not supported.
For more information about text-input key event processing, see ““Text System Defaults and Key Bindings”” in
Cocoa Event Handling Guide .
When the text view has enough information to specify an actual change to itstext, itsends an editing message
to its NSTextStorage object to effect the change. The methodsthat change character and attribute information
in the text storage object are declared in the NSTextStorage superclass NSMutableAttributedString,
and they depend on the two primitive methods replaceCharactersInRange:withString: and
setAttributes:range:. The text storage object then informs its layout managers of the change to initiate
glyph generation and layout when necessary, and it posts notifications and sends delegate messages before
and after processing the edits. For more information about the interaction of text view, textstorage, and layout
manager objects, see Text Layout Programming Guide .
Intercepting Key Events
This section explains how to catch key events received by a text view so that you can modify the result. It also
explains the message sequence that occurs when a text view receives a key event.
You need to intercept key events, for example, if you want users to be able to insert a line-break character in
a text field. By default, text fields hold only one line of text. Pressing either Enter or Return causes the text field
to end editing and send its action message to its target, so you would need to modify the behavior.
You may also wish to intercept key events in a text view to do something different from simply entering
characters in the text being displayed by the view, such as changing the contents of an in-memory buffer.
Text Editing
Intercepting Key Events
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
51In both circumstances you need to deal with the text view object, which is obvious for the text view case but
less so for a text field. Editing in a text field is performed by an NSTextView object, called the field editor,
shared by all the text fields belonging to a window.
When a text view receives a key event, it sends the character input to the input context for key binding and
interpretation. In response, the input context sends either insertText:replacementRange: or
doCommandBySelector: to the text view, depending on whether the key event representstext to be inserted
or a command to perform. The input context can also send the
setMarkedText:selectedRange:replacementRange: message to set the marked text in the text view’s
associated textstorage object. The message sequence invoked when a text view receives key eventsis described
in more detail in “The Key-Input Message Sequence” (page 49).
With the standard key bindings, an Enter or Return character causes the text view to receive
doCommandBySelector: with a selector of insertNewline:, which can have one of two results. If the text
view is not a field editor, the text view’s insertText:replacementRange: method inserts a line-break
character. If the text view is a field editor, as when the user is editing a text field, the text view ends editing
instead. You can cause a text view to behave in either way by calling setFieldEditor:.
Although you could alter the text view’s behavior by subclassing the text view and overriding
insertText:replacementRange: and doCommandBySelector:, a better solution is to handle the event
in the text view’s delegate. The delegate can take control over user changes to text by implementing the
textView:shouldChangeTextInRange:replacementString: method.
To handle keystrokes that don’t insert text, the delegate can implement the
textView:doCommandBySelector: method.
To distinguish between Enter and Return, for example, the delegate can test the selector passed with
doCommandBySelector:. If it is @selector(insertNewline:), you can send currentEvent to the NSApp
object to make sure the event is a key event and, if so, which key was pressed.
Text View Delegation
Delegation provides a powerful mechanism for modifying editing behavior because you can implement
methods in the delegate that can then perform editing commands in place of the text view, a technique called
delegation of implementation . NSTextView gives its delegate this opportunity to handle a command by
sending it a textView:doCommandBySelector: message whenever it receives a doCommandBySelector:
message from the input context. If the delegate implements this method and returns YES, the text view does
nothing further; if the delegate returns NO, the text view must try to perform the command itself.
Text Editing
Text View Delegation
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
52Before a text view makes any change to its text, it sends its delegate a
textView:shouldChangeTextInRange:replacementString: message, which returns a Boolean value.
(As with all delegate messages, it sends the message only if the delegate implements the method.) This
mechanism providesthe delegate with an opportunity to control all editing of the character and attribute data
in the text storage object associated with the text view.
Text View Delegate Messages and Notifications
An NSTextView object can have a delegate that it informs of certain actions or pending changes to the state
of the text. The delegate can be any object you choose, and one delegate can control multiple NSTextView
objects(or multiple series of connected NSTextView objects). Figure 7-3 illustratesthe activity of the delegate
of an NSTextView object receiving the delegate message
textView:shouldChangeTextInRange:replacementString:.
Figure 7-3 Delegate of an NSTextView object
YES or NO
textView:
shouldChangeTextInRange:
replacementString:
Delegate can return NO to deny
any changes to text or do other
processing first and then return
YES to allow the change.
NSTextView
Delegate
NSTextDelegate Protocol Reference andNSTextViewDelegate Protocol Reference describe the delegatemessages
the delegate can receive. The delegating object sends a message only if the delegate implements the method.
All NSTextView objects attached to the same NSLayoutManager share the same delegate. Setting the
delegate of one such text view setsthe delegate for all the others. Delegate messages passthe id of the sender
as an argument.
Note: For multiple NSTextView objects attached to the same NSLayoutManager object, the
argument id is that of the notifying text view, which is the first NSTextView object for the shared
NSLayoutManager object. This NSTextView object is responsible for posting notifications at the
appropriate times.
The notifications posted by NSTextView are:
Text Editing
Text View Delegate Messages and Notifications
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
53NSTextDidBeginEditingNotification
NSTextDidEndEditingNotification
NSTextDidChangeNotification
NSTextViewDidChangeSelectionNotification
NSTextViewWillChangeNotifyingTextViewNotification
It is particularly important for observers to register for the last of these notifications. If a new NSTextView
object is added at the beginning of a series of connected NSTextView objects, it becomes the new notifying
text view. It doesn’t have access to which objects are observing its group of text objects, so it posts an
NSTextViewWillChangeNotifyingTextViewNotification, which allows allthose observersto unregister
themselvesfrom the old notifying text view and reregister themselves with the new one. For more information,
see the description for this notification in NSTextView Class Reference .
Text Field Delegation
Text fields(that is, instances of NSTextField, as opposed to instances of NSTextView) can also use delegation
to control their editing behavior. One way in which thisis done isfor the text field itself to designate a delegate.
Typically, you do this in Interface Builder by Control-dragging from the text field object to the delegate object,
but you can also do it at run time by sending the text field a setDelegate: message, for example, in an
awakeFromNib method. The delegate must respond to the messages defined by the NSTextFieldDelegate
protocol (which adoptsthe NSControlTextEditingDelegate protocol). In addition to the methods defined
by the NSControlTextEditingDelegate protocol, a text field delegate can respond to the delegate methods
of NSControl.
As an example of how a text field’s delegate can control its editing behavior, you can disable text completion
in a text field by having its delegate implement the delegate method
control:textView:completions:forPartialWordRange:indexOfSelectedItem: simply to return
nil.
Another way in which you can customize editing behavior in a text field by delegation involves the field editor,
an NSTextView object that handles the actual editing, in turn, for all the text fields in a window. The field
editor automatically designates any text field it is editing asits delegate,so you can encapsulate special editing
behavior for a text field with the text field itself by implementing the delegate methods defined by
NSTextDelegate and NSTextViewDelegate protocols. For information about controlling the editing
behavior of text fieldsthrough delegate messages and notificationssent by the field editor,see “Using Delegation
and Notification with the Field Editor” (page 64).
Text Editing
Text Field Delegation
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
54Synchronizing Editing
The editing process involves careful synchronization of the complex interaction of various objects. The text
system coordinates event processing, data modification, responder chain management, glyph generation, and
layout to maintain consistency in the text data model.
The system provides a rich set of notifications to delegates and observers to enable your code to interact with
this logic, as described in “Text View Delegate Messages and Notifications” (page 53).
Batch-Editing Mode
If your code needsto modify the text backing store directly, you should use batch-editing mode; that is, bracket
the changes between the NSMutableAttributedString methods beginEditing and endEditing.
Although this bracketing is not strictly necessary, it’s good practice, and it’s important for efficiency if you’re
making multiple changes in succession. NSTextView uses the beginEditing and endEditing methods to
synchronize its editing activity, and you can use the methods directly to control the timing of notifications to
delegates, observers, and associated layout managers. When the NSTextStorage object is in batch-editing
mode, it refrains from informing its layout managers of any editing changes until it receives the endEditing
message.
The “beginning of editing” means that a series of modifications to the text backing store (NSTextStorage
for text views and cell values for cells) is about to occur. Bracketing editing between beginEditing and
endEditing locks down the text storage to ensure that text modifications are atomic transactions.
The “end of editing” means that the backing store is in a consistent state after modification. In cells (such as
NSTextFieldCell objects, which control text editing in text fields), the end of editing coincides with the
field editor resigning first responder status, which triggers synchronization of the contents of the field editor
and its parent cell.
In addition, the text view sends NSTextDidEndEditingNotification when it completes modifying its
backing store, regardless of its first responder status. For example, it sends out this notification when the
Replace All button is clicked in the Find window, even if the text view is not the first responder.
Important: Calling any of the layout manager’s layout-causing methods between beginEditing and
endEditingmessagesraises anexception.NSLayoutManager Class Reference andtheNSLayoutManager.h
header file indicate which methods cause layout.
Listing 7-1 illustrates a situation in which the NSText method scrollRangeToVisible: forces layout to
occur and raises an exception.
Text Editing
Synchronizing Editing
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
55Listing 7-1 Forcing layout
[[myTextView textStorage] beginEditing];
[[myTextView textStorage] replaceCharactersInRange:NSMakeRange(0,0)
withString:@"Hello to you!"];
[myTextView scrollRangeToVisible:NSMakeRange(0,13)]; //BOOM
[[myTextView textStorage] endEditing];
Scrolling a character range into visibility requires layout to be complete through that range so the text view
can know where the range is located. But in Listing 7-1, the text storage is in batch-editing mode. It is in an
inconsistent state, so the layout manager has no way to do layout at this time. Moving the
scrollRangeToVisible: call after endEditing would solve the problem.
There are additional actions that you should take if you implement new user actions in a text view, such as a
menu action or key binding method that changes the text. For example, you can modify the selected range
of characters using the NSTextView method setSelectedRange:, depending on the type of change
performed by the command, using the results of the NSTextView methods rangeForUserTextChange,
rangeForUserCharacterAttributeChange, or rangeForUserParagraphAttributeChange. For
example, rangeForUserParagraphAttributeChange returnsthe entire paragraph containing the original
selection—that is the range affected if your action modifies paragraph attributes. Also, you should call
textView:shouldChangeTextInRange:replacementString: before you make the change and
didChangeText afterwards. These actions ensure that the correct text gets changed and the system sends
the correct notifications and delegate messagesto the text view’s delegate. See “Subclassing NSTextView” (page
58) for more information.
Forcing the End of Editing
There may be situations in which you need to force the text system to end editing programmatically so you
can take some action dependent on notifications being sent. In such a case, you don’t need to modify the
editing mechanism but simply stimulate its normal behavior.
To force the end of editing in a text view, which subsequently sends a textDidEndEditing: message to its
delegate, you can observe the window’s NSWindowDidResignKeyNotification notification. Then, in the
observer method, send makeFirstResponder: to the window to finish any editing in progress while the
window was active. Otherwise, the control that is currently being edited remains the first responder of the
window and does not end editing.
Listing 7-2 presents an implementation of the textDidEndEditing: delegate method that ends editing in
an NSTableView subclass. By default, when the user is editing a cell in a table view and presses Tab or Return,
the field editor ends editing in the current cell and begins editing the next cell. In this case, you want to end
Text Editing
Synchronizing Editing
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
56editing altogether if the user presses Return. This method distinguishes which key the user pressed; for Tab it
does the normal behavior, and for Return it forces the end of editing completely by making the window first
responder.
Listing 7-2 Forcing the end of editing
- (void)textDidEndEditing:(NSNotification *)notification {
if([[[notification userInfo] valueForKey:@"NSTextMovement"] intValue] ==
NSReturnTextMovement) {
NSMutableDictionary *newUserInfo;
newUserInfo = [[NSMutableDictionary alloc]
initWithDictionary:[notification userInfo]];
[newUserInfo setObject:[NSNumber numberWithInt:NSIllegalTextMovement]
forKey:@"NSTextMovement"];
notification = [NSNotification notificationWithName:[notification name]
object:[notification object]
userInfo:newUserInfo];
[super textDidEndEditing:notification];
[[self window] makeFirstResponder:self];
} else {
[super textDidEndEditing:notification];
}
}
Setting Focus and Selection Programmatically
Usually the user clicks a view object in a window to set the focus, or first responder status, so that subsequent
keyboard events go to that object initially. Likewise, the user usually creates a selection by dragging the mouse
in a view. However, you can set both the focus and the selection programmatically.
For example, if you have a window that contains a text view, and you want that text view to become the first
responder with the insertion point located at the beginning of any text currently in the text view, you need a
reference to the window and the text view. If those references are theWindow and theTextView, respectively,
you can use the following code to set the focus and the insertion point, which is simply a zero-length selection
range:
[theWindow makeFirstResponder: theTextView];
[theTextView setSelectedRange: NSMakeRange(0,0)];
Text Editing
Synchronizing Editing
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
57When an object conforming to the NSTextInputClient protocol becomes the first responder in the key
window, its NSTextInputContext object becomes active and bound to the active text input sources, such
as character palette, keyboards, and input methods.
Whether the selection was set programmatically or by the user, you can get the range of characters currently
selected using the selectedRange method. NSTextView indicates its selection by applying a special set of
attributes to it. The selectedTextAttributes method returns these attributes, and
setSelectedTextAttributes: sets them.
While changing the selection in response to user input, an NSTextView object invokes its own
setSelectedRange:affinity:stillSelecting: method. The first parameter is the range to select. The
second, called the selection affinity, determines which glyph the insertion point displays near when the two
glyphs defining the selected range are not adjacent. It’s typically used where the selected lines wrap to place
the insertion point at the end of one line or the beginning of the following line. You can get the selection
affinity currently in effect using the selectionAffinity method. The last parameter indicates whether the
selection is still in the process of changing; the delegate and any observers aren’t notified of the change in the
selection until the method is invoked with NO for this argument.
Another factor affecting selection behavior is the selection granularity: whether characters, words, or whole
paragraphs are being selected. This is usually determined by the number of initial mouse clicks; for example,
a double click initiates word-level selection. NSTextView decides how much to change the selection during
input tracking using its selectionRangeForProposedRange:granularity: method.
An additional aspect of selection, related to input management, is the range of marked text. As the input
context interprets keyboard input, it can mark incomplete input in a special way. The text view displays this
marked text differently from the selection, using temporary attributes that affect only display, not layout or
storage. For example, NSTextView uses marked text to display a combination key, such as Option-E, which
places an acute accent character above the character entered next. When the user types Option-E, the text
view displays an acute accent in a yellow highlight box, indicating that it is marked text, rather than final input.
When the user typesthe next character, the text view displaysit as a single accented character, and the marked
text highlight disappears. The markedRange method returns the range of any marked text, and
markedTextAttributes returns the attributes used to highlight the marked text. You can change these
attributes using setMarkedTextAttributes:.
Subclassing NSTextView
Using NSTextView directly is the easiest way to interact with the text system, and its delegate mechanism
provides an extremely flexible way to modify its behavior. In cases where delegation does not provide required
behavior, you can subclass NSTextView.
Text Editing
Subclassing NSTextView
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
58Note: To modify editing behavior, your first resort should be to notification or delegation, rather
than subclassing. It may be tempting to start by subclassing NSTextView and overriding keyDown:,
but that’s usually not appropriate, unless you really need to deal with raw key events before input
management or key binding. In most cases it’s more appropriate to work with one of the text view
delegate methods or with text view notifications, as described in “Text View Delegate Messages and
Notifications” (page 53).
The text system requires NSTextView subclasses to abide by certain rules of behavior, and NSTextView
provides many methods to help subclasses do so. Some of these methods are meant to be overridden to add
information and behavior into the basic infrastructure. Some are meant to be invoked as part of that
infrastructure when the subclass defines its own behavior.
Updating State
NSTextView automatically updates the Fonts window and ruler as its selection changes. If you add any new
font or paragraph attributesto yoursubclass of NSTextView, you’ll need to override the methodsthat perform
this updating to account for the added information. The updateFontPanel method makesthe Fonts window
display the font of the first character in the selection. You could override this method to update the display of
an accessory view in the Fonts window. Similarly, updateRuler causes the ruler to display the paragraph
attributes for the first paragraph in the selection. You can also override this method to customize display of
items in the ruler. Be sure to invoke the super implementation in your override to have the basic updating
performed as well.
Custom Import Types
NSTextView supports pasteboard operations and the dragging of files and colorsinto itstext. If you customize
the ability of your subclass to handle pasteboard operations for new data types, you should override the
readablePasteboardTypes and writablePasteboardTypes methods to reflect those types. Similarly,
to support new types of data for dragging operations, you should override the acceptableDragTypes
method. Your implementation of these methods should invoke the superclass implementation, add the new
data types to the array returned from super, and return the modified array.
To read and write custom pasteboard types, you must override the readSelectionFromPasteboard:type:
and writeSelectionToPasteboard:type: methods. In your implementation of these methods, you should
read the new data types your subclass supports and let the superclass handle any other types.
For dragging operations, if your subclass’s ability to accept your custom dragging types varies over time, you
can override updateDragTypeRegistration to register or unregister the custom types according to the
text view’s current status. By default this method enables dragging of all acceptable types if the receiver is
editable and a rich text view.
Text Editing
Subclassing NSTextView
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
59Altering Selection Behavior
Your subclass of NSTextView can customize the way selections are made for the various granularities (such
as character, word, and paragraph) described in“Setting Focus and Selection Programmatically” (page 57).
While tracking user changes to the selection, an NSTextView object repeatedly invokes
selectionRangeForProposedRange:granularity: to determine what range to actually select. When
finished tracking changes, it sends the delegate a
textView:willChangeSelectionFromCharacterRange:toCharacterRange: message. By overriding
the NSTextView method or implementing the delegate method, you can alter the way the selection is extended
or reduced. For example, in a code editor you can provide a delegate that extends a double click on a brace
or parenthesis character to its matching delimiter.
These mechanisms aren’t meant for changing language word definitions (such as what’s selected by a double
click). That detail of selection is handled at a lower (and currently private) level of the text system.
Preparing to Change Text
If you create a subclass of NSTextView to add new capabilities that will change the text in response to user
actions, you may need to modify the range selected by the user before actually applying the change. For
example, if the user is making a change to the ruler, the change must apply to whole paragraphs, so the
selection may have to be extended to paragraph boundaries. Three methods calculate the range to which
certain kinds of change should apply. The rangeForUserTextChange method returns the range to which
any change to characters themselves—insertions and deletions—should apply. The
rangeForUserCharacterAttributeChange method returns the range to which a character attribute
change, such as a new font or color, should apply. Finally, rangeForUserParagraphAttributeChange
returns the range for a paragraph-level change, such as a new or moved tab stop or indent. These methods
all return a range whose location is NSNotFound if a change isn’t possible; you should check the returned
range and abandon the change in this case.
Text Change Notifications and Delegate Messages
In actually making changesto the text, you must ensure that the changes are properly performed and recorded
by different parts of the text system. You do this by bracketing each batch of potential changes with
shouldChangeTextInRange:replacementString: and didChangeText messages. These methods
ensure that the appropriate delegate messages are sent and notifications posted. The first method asks the
delegate for permission to begin editing with a textShouldBeginEditing: message. If the delegate returns
NO, shouldChangeTextInRange:replacementString: in turn returns NO, in which case your subclass
should disallow the change. If the delegate returns YES, the text view posts an
NSTextDidBeginEditingNotification, and shouldChangeTextInRange:replacementString: in
Text Editing
Subclassing NSTextView
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
60turn returns YES. In this case you can make your changesto the text, and follow up by invoking didChangeText.
This method concludes the changes by posting an NSTextDidChangeNotification, which results in the
delegate receiving a textDidChange: message.
The textShouldBeginEditing: and textDidBeginEditing: messages are sent only once during an
editing session. More precisely, they’re sent upon the first user input since the NSTextView became the first
responder. Thereafter, these messages—and the NSTextDidBeginEditingNotification—are skipped in
the sequence. The textView:shouldChangeTextInRange:replacementString: method, however, must
be invoked for each individual change.
Smart Insert and Delete
NSTextView defines several methods to aid in “smart” insertion and deletion of text, so that spacing and
punctuation are preserved after a change. Smart insertion and deletion typically applies when the user has
selected whole words or othersignificant units of text. A smart deletion of a word before a comma, for example,
also deletesthe space that would otherwise be left before the comma (though not placing it on the pasteboard
in a Cut operation). A smart insertion of a word between another word and a comma adds a space between
the two words to protect that boundary. NSTextView automatically uses smart insertion and deletion by
default; you can turn this behavior off using setSmartInsertDeleteEnabled:. Doing so causes only the
selected text to be deleted, and inserted text to be added, with no addition of white space.
If your subclass of NSTextView defines any methods that insert or delete text, you can make them smart by
taking advantage of two NSTextView methods. The smartDeleteRangeForProposedRange: method
expands a proposed deletion range to include any white space that should also be deleted. If you need to save
the deleted text, however, it’s typically best to save only the text from the original range. For smart insertion,
smartInsertForString:replacingRange:beforeString:afterString: returns by reference two
stringsthat you can insert before and after a given string to preserve spacing and punctuation. See the method
descriptions for more information.
Creating a Custom Text View
A strategy even more complicated than subclassing NSTextView is to create your own custom text view
object. If you need more sophisticated text handling than NSTextView provides, for example in a word
processing application, it is possible to create a text view by subclassing NSView, implementing the
NSTextInputClient protocol, and interacting directly with the input management system.
Implementing Text Input Support
Custom Cocoa views can provide varying levels ofsupport for the text inputsystem. There are essentially three
levels of support to choose from:
Text Editing
Creating a Custom Text View
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
611. Override the keyDown: method.
2. Override keyDown: and use handleEvent: to support key bindings.
3. Also implement the full NSTextInputClient protocol.
In the first level of support, the keyDown: method recognizes a limited set of events and ignores others. This
level of support is typical of games. (When overriding keyDown:, you must also override
acceptsFirstResponder to make your custom view respond to key events, as described in ““Event Handling
Basics”” in Cocoa Event Handling Guide .)
In the second level of support, you can override keyDown: and use the handleEvent: method to receive
key-binding support without implementing the NSTextInputClient protocol. Because the NSView method
inputContext does not instantiate NSTextInputContext automatically if the view does not conform to
NSTextInputClient, the custom view must instantiate it manually. You then implement the standard
key-binding methodsthat your view wantsto support,such as moveForward: or deleteForward:. (The full
list of key-binding methods can be found in NSResponder.h.)
If you are writing your own text view from scratch, you should use the third level of support and implement
the NSTextInputClient protocol in addition to overriding keyDown: and using handleEvent:. NSTextView
and its subclasses are the only classes provided in Cocoa that implement NSTextInputClient, and if your
application needs more complex behavior than NSTextView can provide, as a word processor might, you
may need to implement a text view from the ground up. To do this, you must subclass NSView and implement
the NSTextInputClient protocol. (A class implementing this protocol—by inheriting from NSTextView or
by implementing the protocol directly—is called a text view.)
If you are implementing the NSTextInputClient protocol, your view needs to manage marked text and
communicate with the text input context to support the text input system. These tasks are described in the
next two sections.
Managing Marked Text
One of the primary thingsthat a text view must do to cooperate with an input context isto maintain a (possibly
empty) range of marked text within its text storage. The text view should highlight text in this range in a
distinctive way, and itshould allow selection within the marked text. A text view must also maintain an insertion
point, which is usually at the end of the marked text, but the user can place it within the marked text. The text
view also maintains a (possibly empty) selection range within its text storage, and if there is any marked text,
the selection must be entirely within the marked text.
Text Editing
Creating a Custom Text View
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
62A common example of marked text appears when a user enters a character with multiple keystrokes, such as
“é”, in an NSTextView object. To enter this character, the user needs to type Option-E followed by the E key.
After pressing Option-E, the accent mark appears in a highlighted box, indicating that the text is marked (not
final). After the final E is pressed, the “é” character appears and the highlight disappears.
Communicating with the Text Input Context
A text view and a text input context must cooperate so that the input context can implement its user interface.
The NSTextInputContext class represents the interface to the text input system, that is, a state or context
unique to its client object such as the key binding state, input method communication session, and so on.
Most of the NSTextInputClient protocol methods are called by an input context to manipulate text within
the text view for the input context’s user-interface purposes.
Each NSTextInputClient-compliant object(typically an NSView subclass) hasits own NSTextInputContext
instance. The default implementation of the NSView method inputContext manages an
NSTextInputContext instance automatically if the view subclass conforms to the NSTextInputClient
protocol.
A text view must inform the current input manager when a mouse or keyboard event happens by sending the
handleEvent: message to the current input context. When its marked text range is no longer needed, the
text view sends a discardMarkedText message to the current input context.
In addition, a text view must tell the input context when position information for a character range changes,
such as when the text view scrolls, by sending the invalidateCharacterCoordinates message to the
input context. The input context can then update information previously queried via methods like
firstRectForCharacterRange:actualRange: when, for example, it wants to show a selection pop-up
menu for marked text (as with a Japanese input method). There is an optional method,
drawsVerticallyForCharacterAtIndex:, that can inform the text input system whether the
protocol-conforming client renders the character at the given index vertically.
The input context generally uses all of the methodsin the NSTextInputClient protocol. You can also register
to receive a notification from the input context when the keyboard layout changes.
For more information, refer to NSText Class Reference , NSTextView Class Reference , NSView Class Reference ,
NSTextInputContext Class Reference , and NSTextInputClient Protocol Reference .
Text Editing
Creating a Custom Text View
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
63Working with the Field Editor
This section explains how the Cocoa text system uses the field editor and how you can modify that behavior.
In most cases, you don’t need to be concerned about the field editor because Cocoa handles its operation
automatically, behind the scenes. However, it’s good to know of its existence, and it’s possible that in some
circumstances you could want to change its behavior.
How the Field Editor Works
The text system automatically instantiates the field editor from the NSTextView class when the user begins
editing text of an NSControl object such as a text field. While it is editing, the system inserts the field editor
into the responder chain as first responder, so it receives keystroke events in place of the text field or other
control object. When the focus shifts to another text field, the field editor attaches itself to that field instead.
The field editor designates the current text field as its delegate, which enables the text field to control changes
to its contents. This mechanism can be confusing if you’re not familiar with the workings of the field editor,
because the NSWindow method firstResponder returns the field editor, which is not visible, rather than
the onscreen object that currently has keyboard focus.
Among its other duties, the field editor maintains the selection for the text fields it edits. Therefore, a text field
that's not being edited does not have a selection (unless you cache it).
A field editor is defined by its treatment of certain characters during text input, which is different from an
ordinary text view. An ordinary text view inserts a newline when the user presses Return or Enter, it inserts a
tab character when the user presses Tab, and it ignores a Shift-Tab. In contrast, a field editor interprets these
characters as cues to end editing and resign first responder status, shifting focus to the next object in the
key-view loop (or in the case of Shift-Tab, the previous key view).
The end of editing triggers synchronization of the contents of the field editor and the NSTextFieldCell
object that controls editing in the text field. At that point Cocoa detaches the field editor from the text field
and reveals the text field at the top of the view hierarchy.
Using Delegation and Notification with the Field Editor
One of the ways you can control the editing behavior of text fieldsis by interacting with the field editor through
delegation and notification. Because the field editor automatically designates any text field it is editing as its
delegate, you can often encapsulate special editing behavior for a text field with the text field itself.
Changing Default Behavior
It’s straightforward to change the default behavior of the field editor by implementing delegate methods. For
example, the delegate can change the behavior that occurs when the user presses Return while editing a text
view. By default, that action ends editing and selects the next control in the key view loop. If, for example, you
Text Editing
Working with the Field Editor
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
64want pressing Return to end editing but not select the next control, you can implement the
textDidEndEditing: delegate method in the text field. The field editor automatically calls this method if
the delegate implements it, and passes NSTextDidEndEditingNotification. The implementation can
examine this notification to discover the event that ended editing and respond appropriately.
Getting Newlines into an NSTextField Object
Users can easily put newline characters into a text field by pressing Option-Return or Option-Enter. However,
there may be situations in which you want to allow users to enter newlines without taking any special action,
and you can do so by implementing a delegate method.
The easiest approach isto call setFieldEditor:NO on the window'sfield editor. But, of course, this approach
changes the behavior of the field editor for all controls. Another approach is to use the NSControl delegate
message control:textShouldBeginEditing:, which issent to a text view’s delegate when the user enters
a character into the text field. Because it passes references to both the text view and the field editor, you could
test to see if the text view is one into which you want to enter newlines, then simply send setFieldEditor:NO
to the field editor. However, this method is not called until after the user has entered one character into the
text field, and if that character is a newline, it is rejected.
A better method is to implement another NSControl delegate method,
control:textView:doCommandBySelector:, which enables the text field’s delegate to check whether
the user is attempting to insert a newline character and, ifso, force to field editor to insert it. The implementation
could appear as shown in Listing 7-3.
Listing 7-3 Forcing the field editor to enter a newline character
- (BOOL)control:(NSControl *)control textView:(NSTextView *)fieldEditor
doCommandBySelector:(SEL)commandSelector {
BOOL retval = NO;
if (commandSelector == @selector(insertNewline:)) {
retval = YES;
[fieldEditor insertNewlineIgnoringFieldEditor:nil];
}
return retval;
}
Text Editing
Working with the Field Editor
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
65This method returns YES to indicate that it handles this particular command and NO for other commands that
it doesn’t handle. This approach has the advantage that it doesn’t change the setup of the field editor but
handles just the special case of interest. Because the delegate message includes a reference to the control
being edited, you could add a check to restrict the behavior to a particular class, such as NSTextField, or an
individual subclass.
Using a Custom Field Editor
To customize behavior in ways that go beyond what the delegate can do, you need to define a subclass of
NSTextView that incorporates yourspecialized behavior and substitute it for the window’s default field editor.
Why Use a Custom Field Editor?
It’s not necessary to use a custom field editor if you simply need to validate, interpret, format, or even edit the
contents of text fields as the user types. You can attach an NSFormatter, such as NSNumberFormatter,
NSDateFormatter, or a custom formatter, for that purpose. See Data Formatting Guide for more information
about using formatters. Delegation and notification also provide many opportunities for you to intervene, as
described in “Using Delegation and Notification with the Field Editor” (page 64).
A secure text field is an example of truly specialized handling of data that goes beyond what can be reasonably
handled by formatters or delegates. A secure text field must accept text data entered by the user and validate
the entries, which are easily done with a regular text field and a formatter. But it must display some bogus
characters to keep the real data secret while it preserves the real data for an authentication process or other
purpose. Moreover, a secure text field must keep its data safe from unauthorized access by disabling features,
such as copy and cut, and possibly encrypting the data. To implement these specialized requirements, it is
easiest to deploy a custom field editor. In fact, Cocoa implements a custom field editor in the
NSSecureTextField class.
Any situation requiring unusual processing of data entered into a text field, or other individualized behavior
not available through the standard Cocoa mechanisms, is a good candidate for a custom field editor.
How to Substitute a Custom Field Editor
You can substitute your custom field editor in place of the window’s default version by implementing the
NSWindow delegate method windowWillReturnFieldEditor:toObject:. You implement this method
in the window’s delegate, which could be, for example, the window controller object. The window sends this
message to its delegate with itself and the object requesting the field editor as parameters. So, you can test
the object and make substitution of your custom field editor dependent on the result. The window continues
to use its default field editor for other controls.
Text Editing
Working with the Field Editor
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
66For example, the implementation shown in Listing 7-4 tests whether or not the requesting object isinstantiated
from a custom text field class named CustomTextField, and, if it is, returns a custom field editor.
Listing 7-4 Substituting a custom field editor
- (id)windowWillReturnFieldEditor:(NSWindow *)sender toObject:(id)anObject
{
if ([anObject isKindOfClass:[CustomTextField class]])
{
if (!myCustomFieldEditor) {
myCustomFieldEditor = [[CustomFieldEditor alloc] init];
[myCustomFieldEditor setFieldEditor:YES];
}
return myCustomFieldEditor;
}
return nil;
}
If the requesting object is not a custom text field orsubclass, the delegate method returns nil and the window
uses its default field editor. This arrangement has the advantage that it does not instantiate the custom field
editor unless it is needed.
In OS X v10.6 and later, another way of providing a custom field editor is to override the NSCell method
fieldEditorForView:. This method, rather than the window delegate method, is more suitable for custom
cell subclasses.
You can find more information about subclassing NSTextView in “Subclassing NSTextView” (page 58).
Field Editor–Related Methods
This section lists the AppKit methods most directly related to the field editor. You can peruse these tables to
understand where Cocoa provides opportunities for you to interact with the field editor. Refer to Application
Kit Framework Reference for details. The NSWindow methods related to the field editor are listed in Table 7-1.
Table 7-1 NSWindow field editor–related methods
Method Description
fieldEditor: forObject: Returns the receiver’s field editor, creating it if needed.
Text Editing
Working with the Field Editor
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
67Method Description
Forces the field editor to give up its first responder status and
prepares it for its next assignment.
endEditingFor:
Delegate method invoked when the field editor of sender is
requested by an object. If the delegate’s implementation of
this method returns an object other than nil, NSWindow
substitutes it for the field editor.
windowWillReturnFieldEditor:
toObject:
The NSTextFieldCell method related to the field editor is listed in Table 7-2.
Table 7-2 NSTextFieldCell field editor–related method
Method Description
You never invoke this method directly; by overriding it,
however, you can customize the field editor.
setUpFieldEditorAttributes:
The NSCell methods related to the field editor are listed in Table 7-3.
Table 7-3 NSCell field editor–related methods
Method Description
The primary way to substitute a custom field editor in OS X
v10.6 and later.
fieldEditorForView:
Uses the field editor passed with the message to select text
in a range.
selectWithFrame:
inView:editor: delegate:start:
length:
Begins editing of the receiver’s text using the field editor
passed with the message.
editWithFrame: inView:editor:
delegate:event:
Ends any editing of text, using the field editor passed with
the message, begun with either of the other two NSCell
field editor–related methods.
endEditing:
The NSControl methods related to the field editor are listed in Table 7-4. The NSControl delegate methods
listed in Table 7-4 are control-specific versions of the delegate methods and notifications defined by NSText.
The field editor, derived from NSText, initiates sending the delegate messages and notifications through its
editing actions.
Text Editing
Working with the Field Editor
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
68Table 7-4 NSControl field editor–related methods
Method Description
Terminates and discards any editing of text displayed by the receiver
and removes the field editor’s delegate.
abortEditing
If the receiver is being edited, this method returns the field editor;
otherwise, it returns nil.
currentEditor
Sets the object value of the text in a cell of the receiving control to
the current contents of the cell’s field editor.
validateEditing
Sent directly to the delegate when the user triesto enter a character
in a cell of the control passed with the message.
control:
textShouldBeginEditing:
Sent directly to the delegate when the insertion point tries to leave
a cell of the control that has been edited.
control:
textShouldEndEditing:
Sent by the default notification center to the delegate (and all
observers of the notification) when a control begins editing text,
passing NSControlTextDidBeginEditingNotification.
controlTextDidBeginEditing:
Sent by the default notification center to the delegate and observers
when the text in the receiving control changes, passing
NSControlTextDidChangeNotification.
controlTextDidChange:
Sent by the default notification center to the delegate and observers
when a control ends editing text, passing
NSControlTextDidEndEditingNotification.
controlTextDidEndEditing:
The NSResponder methods related to the field editor are listed in Table 7-5.
Table 7-5 NSResponder field editor–related methods
Method Description
insertBacktab: Implemented by subclasses to handle a “backward tab.”
Implemented by subclasses to insert a line-break character
at the insertion point or selection.
insertNewlineIgnoringFieldEditor:
Implemented by subclasses to insert a tab character at the
insertion point or selection.
insertTabIgnoringFieldEditor:
The NSText and NSTextDelegate methods related to the field editor are listed in Table 7-6.
Text Editing
Working with the Field Editor
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
69Table 7-6 NSText field editor–related methods
Method Description
Returns YES if the receiver interprets Tab, Shift-Tab, and Return (Enter)
as cues to end editing and possibly to change the first responder; NO if
it accepts them as text input.
isFieldEditor
Controls whether the receiver interprets Tab, Shift-Tab, and Return (Enter)
as cues to end editing and possibly to change the first responder.
setFieldEditor:
Informs the delegate that the user has begun changing text, passing
NSTextDidBeginEditingNotification.
textDidBeginEditing:
Informs the delegate that the text object has changed its characters or
formatting attributes, passing NSTextDidChangeNotification.
textDidChange:
Informsthe delegate that the text object hasfinished editing (that it has
resigned first responder status), passing NSTextDidEndEditingNotification.
textDidEndEditing:
Invoked from a text object’s implementation of
becomeFirstResponder, this method requests permission to begin
editing.
textShouldBeginEditing:
Invoked from a text object’s implementation of
resignFirstResponder, this method requests permission to end
editing.
textShouldEndEditing:
Text Editing
Working with the Field Editor
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
70This table describes the changes to Cocoa Text Architecture Guide .
Date Notes
2012-09-19 Added section on creating text objects programmatically. Fixed typo.
2012-07-23 Added section titled "Text Field Delegation" to "Text Editing" chapter.
Removed out-of-date text editortutorial and section describing deprecated
glyph-handling methods of NSFont. Removed references to manual
reference counting. Fixed typos.
2012-04-27
Updated textsystem class hierarchy diagram and configuration diagrams.
Additional legacy documents providing content to this document are
Font Handling and Font Panel.
2010-05-04
New document that explains how the objects of the Cocoa text system
interact. This document contains content previously published in the
following documents, which remain in the legacy area of the ADC library:
Text System Overview, Text Attributes, Text Editing Programming Guide
for Cocoa, and Text Input and Output.
2010-03-23
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
71
Document Revision HistoryApple Inc.
© 2012 Apple Inc.
All rights reserved.
No part of this publication may be reproduced,
stored in a retrievalsystem, or transmitted, in any
form or by any means, mechanical, electronic,
photocopying, recording, or otherwise, without
prior written permission of Apple Inc., with the
following exceptions: Any person is hereby
authorized to store documentation on a single
computer for personal use only and to print
copies of documentation for personal use
provided that the documentation contains
Apple’s copyright notice.
No licenses, express or implied, are granted with
respect to any of the technology described in this
document. Apple retains all intellectual property
rights associated with the technology described
in this document. This document is intended to
assist application developers to develop
applications only for Apple-labeled computers.
Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010
Apple, the Apple logo, Cocoa, Mac, Macintosh,
Objective-C, OS X, QuickDraw, and Xcode are
trademarks of Apple Inc., registered in the U.S.
and other countries.
Helvetica and Times are registered trademarks of
Heidelberger Druckmaschinen AG, available from
Linotype Library GmbH.
Smalltalk-80 is a trademark of ParcPlace Systems.
Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THIS
DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE.ASARESULT, THISDOCUMENT IS PROVIDED
“AS IS,” AND YOU, THE READER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY AND ACCURACY.
IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL,OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS DOCUMENT, even if advised of
the possibility of such damages.
THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple dealer,
agent, or employee is authorized to make any
modification, extension, or addition to this warranty.
Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have other
rights which vary from state to state.

Key-Value Observing
Programming GuideContents
Introduction to Key-Value Observing Programming Guide 4
At a Glance 4
Registering for Key-Value Observing 7
Registering as an Observer 7
Receiving Notification of a Change 8
Removing an Object as an Observer 10
KVO Compliance 11
Automatic Change Notification 11
Manual Change Notification 12
Registering Dependent Keys 15
To-one Relationships 15
To-many Relationships 16
Key-Value Observing Implementation Details 19
Document Revision History 20
2012-07-17 | © 2003, 2012 Apple Inc. All Rights Reserved.
2Listings
Registering for Key-Value Observing 7
Listing 1 Registering the inspector as an observer of the openingBalance property 7
Listing 2 Implementation of observeValueForKeyPath:ofObject:change:context: 9
Listing 3 Removing the inspector as an observer of openingBalance 10
KVO Compliance 11
Listing 1 Examples of method calls that cause KVO change notifications to be emitted 11
Listing 2 Example implementation of automaticallyNotifiesObserversForKey: 12
Listing 3 Example accessor method implementing manual notification 13
Listing 4 Testing the value for change before providing notification 13
Listing 5 Nesting change notifications for multiple keys 13
Listing 6 Implementation of manual observer notification in a to-many relationship 14
Registering Dependent Keys 15
Listing 1 Example implementation of keyPathsForValuesAffectingValueForKey: 15
Listing 2 Example implementation of the keyPathsForValuesAffecting naming convention
16
2012-07-17 | © 2003, 2012 Apple Inc. All Rights Reserved.
3Key-value observing is a mechanism that allows objects to be notified of changes to specified properties of
other objects.
Important: In order to understand key-value observing, you must first understand key-value coding.
At a Glance
Key-value observing provides a mechanism that allows objects to be notified of changes to specific properties
of other objects. It is particularly useful for communication between model and controller layers in an application.
(In OS X, the controller layer binding technology relies heavily on key-value observing.) A controller object typically
observes properties of model objects, and a view object observes properties of model objects through a
controller. In addition, however, a model object may observe other model objects (usually to determine when
a dependent value changes) or even itself (again to determine when a dependent value changes).
You can observe properties including simple attributes, to-one relationships, and to-many relationships.
Observers of to-many relationships are informed of the type of change made—as well as which objects are
involved in the change.
There are three steps to setting up an observer of a property. Understanding these three steps provides a clear
illustration of how KVO works.
1. First, see whether you have a scenario where key-value observing could be beneficial, for example, an
object that needs to be notified when any changes are made to a specific property in another object.
BankObject
@property int accountBalance
PersonObject
For example, a PersonObject will want to be aware of any changes made to their accountBalance in
the BankObject.
2012-07-17 | © 2003, 2012 Apple Inc. All Rights Reserved.
4
Introduction to Key-Value Observing Programming
Guide2. The PersonObject must register as an observer of the BankObject’s accountBalance property by
sending an addObserver:forKeyPath:options:context: message.
BankObject PersonObject
Connection established
[bankInstance addObserver:personInstance
 forKeyPath:@"accountBalance"
 options:NSKeyValueObservingOptionNew
 context:NULL];
Note: The addObserver:forKeyPath:options:context:method establishes a connection
between the instances of the objects that you specify. A connection is not established between
the two classes, but rather between the two specified instances of the objects.
3. In order to respond to change notifications, the observer must implement the
observeValueForKeyPath:ofObject:change:context: method. This method implementation
defines how the observer responds to change notifications. It is in this method that you can customize
your response to a change in one of the observed properties.
BankObject PersonObject
Connection established
-(void) observeValueForKeyPath:(NSString *)keyPath
 ofObject:(id)object
 change:(NSDictionary *)change
 context:(void *)context
{
//custom implementation
//be sure to call the superclass’ implementation
//if the superclass implements it
}
“Registering for Key-Value Observing” (page 7) describes how to register and receive observation
notifications.
Introduction to Key-Value Observing Programming Guide
At a Glance
2012-07-17 | © 2003, 2012 Apple Inc. All Rights Reserved.
54. The observeValueForKeyPath:ofObject:change:context: method is automatically invoked when
the value of an observed property is changed in a KVO-compliant manner, or if a key upon which it depends
is changed.
BankObject PersonObject
Automatically
notifies person
Person can react
accordingly in
customized method
[bankInstance setAccountBalance:50];
“Registering Dependent Keys” (page 15) explains how to specify that the value of a key is dependent on
the value of another key.
KVO’s primary benefit is that you don’t have to implement your own scheme to send notifications every time
a property changes. Its well-defined infrastructure has framework-level support that makes it easy to
adopt—typically you do not have to add any code to your project. In addition, the infrastructure is already
full-featured, which makes it easy to support multiple observers for a single property, as well as dependent
values.
“KVO Compliance” (page 11) describes the difference between automatic and manual key-value observing,
and how to implement both.
Unlike notifications that use NSNotificationCenter, there is no central object that provides change
notification for all observers. Instead, notifications are sent directly to the observing objects when changes are
made. NSObject provides this base implementation of key-value observing, and you should rarely need to
override these methods.
“Key-Value Observing Implementation Details ” (page 19) describes how key-value observing is implemented.
Introduction to Key-Value Observing Programming Guide
At a Glance
2012-07-17 | © 2003, 2012 Apple Inc. All Rights Reserved.
6In order to receive key-value observing notifications for a property, three things are required:
● The observed class must be key-value observing compliant for the property that you wish to observe.
● You must register the observing object with the observed object, using the method
addObserver:forKeyPath:options:context:.
● The observing class must implement observeValueForKeyPath:ofObject:change:context:.
Important: Not all classes are KVO-compliant for all properties. You can ensure your own classes are
KVO-compliant by following the steps described in “KVO Compliance” (page 11). Typically properties in
Apple-supplied frameworks are only KVO-compliant if they are documented as such.
Registering as an Observer
In order to be notified of changes to a property, an observing object must first register with the object to be
observed by sending it an addObserver:forKeyPath:options:context: message, passing the observer
object and the key path of the property to be observed. The options parameter specifies the information that
is provided to the observer when a change notification is sent. Using the option
NSKeyValueObservingOptionOld specifies that the original object value is provided to the observer as an
entry in the change dictionary. Specifying the NSKeyValueObservingOptionNew option provides the new
value as an entry in the change dictionary. To receive both values, you would bitwise OR the option constants.
The example in Listing 1 demonstrates registering an inspector object for the property openingBalance.
Listing 1 Registering the inspector as an observer of the openingBalance property
- (void)registerAsObserver {
/*
Register 'inspector' to receive change notifications for the "openingBalance"
property of
the 'account' object and specify that both the old and new values of
"openingBalance"
should be provided in the observe… method.
2012-07-17 | © 2003, 2012 Apple Inc. All Rights Reserved.
7
Registering for Key-Value Observing*/
[account addObserver:inspector
forKeyPath:@"openingBalance"
options:(NSKeyValueObservingOptionNew |
NSKeyValueObservingOptionOld)
context:NULL];
}
When you register an object as an observer, you can also provide a context pointer. The context pointer is
provided to the observer when observeValueForKeyPath:ofObject:change:context: is invoked. The
context pointer can be a C pointer or an object reference. The context pointer can be used as a unique identifier
to determine the change that is being observed, or to provide some other data to the observer.
Note: The key-value observing addObserver:forKeyPath:options:context: method does
not maintain strong references to the observing object, the observed objects, or the context. You
should ensure that you maintain strong references to the observing, and observed, objects, and the
context as necessary.
Receiving Notification of a Change
When the value of an observed property of an object changes, the observer receives an
observeValueForKeyPath:ofObject:change:context: message. All observers must implement this
method.
The observer is provided the object and key path that triggered the observer notification, a dictionary containing
details about the change, and the context pointer that was provided when the observer was registered.
The change dictionary entry NSKeyValueChangeKindKey provides information about the type of change
that occurred. If the value of the observed object has changed, the NSKeyValueChangeKindKey entry returns
NSKeyValueChangeSetting. Depending on the options specified when the observer was registered, the
NSKeyValueChangeOldKey and NSKeyValueChangeNewKey entries in the change dictionary contain the
values of the property before, and after, the change. If the property is an object, the value is provided directly.
If the property is a scalar or a C structure, the value is wrapped in an NSValue object (as with key-value coding).
Registering for Key-Value Observing
Receiving Notification of a Change
2012-07-17 | © 2003, 2012 Apple Inc. All Rights Reserved.
8If the observed property is a to-many relationship, the NSKeyValueChangeKindKey entry also indicates
whether objects in the relationship were inserted, removed, or replaced by returning
NSKeyValueChangeInsertion, NSKeyValueChangeRemoval, or NSKeyValueChangeReplacement,
respectively.
The change dictionary entry for NSKeyValueChangeIndexesKey is an NSIndexSet object specifying the
indexes in the relationship that changed. If NSKeyValueObservingOptionNew or
NSKeyValueObservingOptionOld are specified as options when the observer is registered, the
NSKeyValueChangeOldKey and NSKeyValueChangeNewKey entries in the change dictionary are arrays
containing the values of the related objects before, and after, the change.
The example in Listing 2 shows the observeValueForKeyPath:ofObject:change:context:
implementation for an inspector that reflects the old and new values of the property openingBalance, as
registered in Listing 1 (page 7).
Listing 2 Implementation of observeValueForKeyPath:ofObject:change:context:
- (void)observeValueForKeyPath:(NSString *)keyPath
ofObject:(id)object
change:(NSDictionary *)change
context:(void *)context {
if ([keyPath isEqual:@"openingBalance"]) {
[openingBalanceInspectorField setObjectValue:
[change objectForKey:NSKeyValueChangeNewKey]];
}
/*
Be sure to call the superclass's implementation *if it implements it*.
NSObject does not implement the method.
*/
[super observeValueForKeyPath:keyPath
ofObject:object
change:change
context:context];
}
Registering for Key-Value Observing
Receiving Notification of a Change
2012-07-17 | © 2003, 2012 Apple Inc. All Rights Reserved.
9Removing an Object as an Observer
You remove a key-value observer by sending the observed object a removeObserver:forKeyPath: message,
specifying the observing object and the key path. The example in Listing 3 removesthe inspector as an observer
of openingBalance.
Listing 3 Removing the inspector as an observer of openingBalance
- (void)unregisterForChangeNotification {
[observedObject removeObserver:inspector forKeyPath:@"openingBalance"];
}
If the context is an object, you must keep a strong reference to it until removing the observer. After receiving
a removeObserver:forKeyPath: message, the observing object will no longer receive any
observeValueForKeyPath:ofObject:change:context: messagesfor the specified key path and object.
Registering for Key-Value Observing
Removing an Object as an Observer
2012-07-17 | © 2003, 2012 Apple Inc. All Rights Reserved.
10In order to be considered KVO-compliant for a specific property, a class must ensure the following:
● The class must be key-value coding compliant for the property, as specified in “Ensuring KVC Compliance”.
KVO supports the same data types as KVC.
● The class emits KVO change notifications for the property.
● Dependent keys are registered appropriately (see “Registering Dependent Keys” (page 15)).
There are two techniques for ensuring the change notifications are emitted. Automatic support is provided by
NSObject and is by default available for all properties of a class that are key-value coding compliant. Typically,
if you follow standard Cocoa coding and naming conventions, you can use automatic change notifications—you
don’t have to write any additional code.
Manual change notification provides additional control over when notifications are emitted, and requires
additional coding. You can control automatic notifications for properties of your subclass by implementing
the class method automaticallyNotifiesObserversForKey:.
Automatic Change Notification
NSObject provides a basic implementation of automatic key-value change notification. Automatic key-value
change notification informs observers of changes made using key-value compliant accessors, as well as the
key-value coding methods. Automatic notification is also supported by the collection proxy objects returned
by, for example, mutableArrayValueForKey:.
The examples shown in Listing 1 result in any observers of the property name to be notified of the change.
Listing 1 Examples of method calls that cause KVO change notifications to be emitted
// Call the accessor method.
[account setName:@"Savings"];
// Use setValue:forKey:.
[account setValue:@"Savings" forKey:@"name"];
2012-07-17 | © 2003, 2012 Apple Inc. All Rights Reserved.
11
KVO Compliance// Use a key path, where 'account' is a kvc-compliant property of 'document'.
[document setValue:@"Savings" forKeyPath:@"account.name"];
// Use mutableArrayValueForKey: to retrieve a relationship proxy object.
Transaction *newTransaction = ;
NSMutableArray *transactions = [account mutableArrayValueForKey:@"transactions"];
[transactions addObject:newTransaction];
Manual Change Notification
Manual change notification provides more granular control over how and when notifications are sent to
observers. This can be useful to help minimize triggering notifications that are unnecessary, or to group a
number of changes into a single notification.
A class that implements manual notification must override the NSObject implementation of
automaticallyNotifiesObserversForKey:. It is possible to use both automatic and manual observer
notifications in the same class. For properties that perform manual notification, the subclass implementation
of automaticallyNotifiesObserversForKey: should return NO. A subclassimplementation should invoke
super for any unrecognized keys. The example in Listing 2 enables manual notification for the openingBalance
property allowing the superclass to determine the notification for all other keys.
Listing 2 Example implementation of automaticallyNotifiesObserversForKey:
+ (BOOL)automaticallyNotifiesObserversForKey:(NSString *)theKey {
BOOL automatic = NO;
if ([theKey isEqualToString:@"openingBalance"]) {
automatic = NO;
}
else {
automatic = [super automaticallyNotifiesObserversForKey:theKey];
}
return automatic;
}
KVO Compliance
Manual Change Notification
2012-07-17 | © 2003, 2012 Apple Inc. All Rights Reserved.
12To implement manual observer notification, you invoke willChangeValueForKey: before changing the
value, and didChangeValueForKey: after changing the value. The example in Listing 3 implements manual
notifications for the openingBalance property.
Listing 3 Example accessor method implementing manual notification
- (void)setOpeningBalance:(double)theBalance {
[self willChangeValueForKey:@"openingBalance"];
_openingBalance = theBalance;
[self didChangeValueForKey:@"openingBalance"];
}
You can minimize sending unnecessary notifications by first checking if the value has changed. The example
in Listing 4 tests the value of openingBalance and only provides the notification if it has changed.
Listing 4 Testing the value for change before providing notification
- (void)setOpeningBalance:(double)theBalance {
if (theBalance != _openingBalance) {
[self willChangeValueForKey:@"openingBalance"];
_openingBalance = theBalance;
[self didChangeValueForKey:@"openingBalance"];
}
}
If a single operation causes multiple keysto change you must nest the change notifications asshown in Listing
5.
Listing 5 Nesting change notifications for multiple keys
- (void)setOpeningBalance:(double)theBalance {
[self willChangeValueForKey:@"openingBalance"];
[self willChangeValueForKey:@"itemChanged"];
_openingBalance = theBalance;
_itemChanged = _itemChanged+1;
[self didChangeValueForKey:@"itemChanged"];
[self didChangeValueForKey:@"openingBalance"];
}
KVO Compliance
Manual Change Notification
2012-07-17 | © 2003, 2012 Apple Inc. All Rights Reserved.
13In the case of an ordered to-many relationship, you must specify not only the key that changed, but also the
type of change and the indexes of the objects involved. The type of change is an NSKeyValueChange that
specifies NSKeyValueChangeInsertion, NSKeyValueChangeRemoval, or
NSKeyValueChangeReplacement. The indexes of the affected objects are passed as an NSIndexSet object.
The code fragment in Listing 6 demonstrates how to wrap a deletion of objects in the to-many relationship
transactions.
Listing 6 Implementation of manual observer notification in a to-many relationship
- (void)removeTransactionsAtIndexes:(NSIndexSet *)indexes {
[self willChange:NSKeyValueChangeRemoval
valuesAtIndexes:indexes forKey:@"transactions"];
// Remove the transaction objects at the specified indexes.
[self didChange:NSKeyValueChangeRemoval
valuesAtIndexes:indexes forKey:@"transactions"];
}
KVO Compliance
Manual Change Notification
2012-07-17 | © 2003, 2012 Apple Inc. All Rights Reserved.
14There are many situations in which the value of one property depends on that of one or more other attributes
in another object. If the value of one attribute changes, then the value of the derived property should also be
flagged for change. How you ensure that key-value observing notifications are posted for these dependent
properties depends on the cardinality of the relationship.
To-one Relationships
To trigger notifications automatically for a to-on relationship you should either override
keyPathsForValuesAffectingValueForKey: or implement a suitable method that follows the pattern
it defines for registering dependent keys.
For example, the full name of a person is dependent on both the first and last names. A method that returns
the full name could be written as follows:
- (NSString *)fullName {
return [NSString stringWithFormat:@"%@ %@",firstName, lastName];
}
An application observing the fullName property must be notified when either the firstName or lastName
properties change, as they affect the value of the property.
One solution is to override keyPathsForValuesAffectingValueForKey: specifying that the fullName
property of a person is dependent on the lastName and firstName properties. Listing 1 (page 15) shows
an example implementation of such a dependency:
Listing 1 Example implementation of keyPathsForValuesAffectingValueForKey:
+ (NSSet *)keyPathsForValuesAffectingValueForKey:(NSString *)key {
NSSet *keyPaths = [super keyPathsForValuesAffectingValueForKey:key];
if ([key isEqualToString:@"fullName"]) {
2012-07-17 | © 2003, 2012 Apple Inc. All Rights Reserved.
15
Registering Dependent KeysNSArray *affectingKeys = @[@"lastName", @"firstName"];
keyPaths = [keyPaths setByAddingObjectsFromArray:affectingKeys];
}
return keyPaths;
}
Your override should typically invoke super and return a set that includes any members in the set that result
from doing that (so as not to interfere with overrides of this method in superclasses).
You can also achieve the same result by implementing a class method that follows the naming convention
keyPathsForValuesAffecting, where is the name of the attribute (first letter capitalized)
that is dependent on the values. Using this pattern the code in Listing 1 (page 15) could be rewritten as a class
method named keyPathsForValuesAffectingFullName as shown in Listing 2 (page 16).
Listing 2 Example implementation of the keyPathsForValuesAffecting naming convention
+ (NSSet *)keyPathsForValuesAffectingFullName {
return [NSSet setWithObjects:@"lastName", @"firstName", nil];
}
You can't override the keyPathsForValuesAffectingValueForKey: method when you add a computed
property to an existing class using a category, because you're not supposed to override methods in categories.
In that case, implement a matching keyPathsForValuesAffecting class method to take advantage
of this mechanism.
Note: You cannot set up dependencies on to-many relationships by implementing
keyPathsForValuesAffectingValueForKey:. Instead, you must observe the appropriate
attribute of each of the objects in the to-many collection and respond to changes in their values by
updating the dependent key yourself. The following section shows a strategy for dealing with this
situation.
To-many Relationships
The keyPathsForValuesAffectingValueForKey: method does not support key-paths that include a
to-many relationship. For example, suppose you have a Department object with a to-many relationship
(employees) to a Employee, and Employee has a salary attribute. You might want the Department object have
Registering Dependent Keys
To-many Relationships
2012-07-17 | © 2003, 2012 Apple Inc. All Rights Reserved.
16a totalSalary attribute that is dependent upon the salaries of all the Employees in the relationship. You can
not do this with, for example, keyPathsForValuesAffectingTotalSalary and returning
employees.salary as a key.
There are two possible solutions in both situations:
1. You can use key-value observing to register the parent (in this example, Department) as an observer of
the relevant attribute of all the children (Employeesin this example). You must add and remove the parent
as an observer as child objects are added to and removed from the relationship (see “Registering for
Key-Value Observing” (page 7)). In the observeValueForKeyPath:ofObject:change:context:
method you update the dependent value in response to changes, as illustrated in the following code
fragment:
- (void)observeValueForKeyPath:(NSString *)keyPath ofObject:(id)object
change:(NSDictionary *)change context:(void *)context {
if (context == totalSalaryContext) {
[self updateTotalSalary];
}
else
// deal with other observations and/or invoke super...
}
- (void)updateTotalSalary {
[self setTotalSalary:[self valueForKeyPath:@"employees.@sum.salary"]];
}
- (void)setTotalSalary:(NSNumber *)newTotalSalary {
if (totalSalary != newTotalSalary) {
[self willChangeValueForKey:@"totalSalary"];
_totalSalary = newTotalSalary;
[self didChangeValueForKey:@"totalSalary"];
}
}
- (NSNumber *)totalSalary {
return _totalSalary;
Registering Dependent Keys
To-many Relationships
2012-07-17 | © 2003, 2012 Apple Inc. All Rights Reserved.
17}
2. If you're using Core Data, you can register the parent with the application's notification center as an
observer of its managed object context. The parentshould respond to relevant change notifications posted
by the children in a manner similar to that for key-value observing.
Registering Dependent Keys
To-many Relationships
2012-07-17 | © 2003, 2012 Apple Inc. All Rights Reserved.
18Automatic key-value observing is implemented using a technique called isa-swizzling.
The isa pointer, as the name suggests, points to the object's class which maintains a dispatch table. This
dispatch table essentially contains pointers to the methods the class implements, among other data.
When an observer is registered for an attribute of an object the isa pointer of the observed object is modified,
pointing to an intermediate class rather than at the true class. As a result the value of the isa pointer does not
necessarily reflect the actual class of the instance.
You should never rely on the isa pointer to determine class membership. Instead, you should use the class
method to determine the class of an object instance.
2012-07-17 | © 2003, 2012 Apple Inc. All Rights Reserved.
19
Key-Value Observing Implementation DetailsThis table describes the changes to Key-Value Observing Programming Guide .
Date Notes
2012-07-17 Updated to use new Objective-C features.
ARCification
2011-03-08 Clarified terminology in "Registering Dependent Keys."
2009-08-14 Added links to some key Cocoa definitions.
2009-05-09 Corrected minor typo.
2009-05-06 Clarified Core Data requirement in Registering Dependent Keys.
2009-03-04 Updated Registering Dependent Keys chapter.
2006-06-28 Updated code examples.
Clarified that you should not release objects before calling
willChangeValueForKey: methods. Noted that Java is not supported.
2005-07-07
2004-08-31 Corrected minor typos.
Clarified the need to nest manual key-value change notifications.
2004-03-20 Modified source example in “Registering Dependent Keys” (page 15).
Corrected source example in “Registering for Key-Value Observing” (page
7). Added article “Key-Value Observing Implementation Details ” (page
19).
2004-02-22
2003-10-15 Initial publication of Key-Value Observing.
2012-07-17 | © 2003, 2012 Apple Inc. All Rights Reserved.
20
Document Revision HistoryApple Inc.
© 2003, 2012 Apple Inc.
All rights reserved.
No part of this publication may be reproduced,
stored in a retrievalsystem, or transmitted, in any
form or by any means, mechanical, electronic,
photocopying, recording, or otherwise, without
prior written permission of Apple Inc., with the
following exceptions: Any person is hereby
authorized to store documentation on a single
computer for personal use only and to print
copies of documentation for personal use
provided that the documentation contains
Apple’s copyright notice.
No licenses, express or implied, are granted with
respect to any of the technology described in this
document. Apple retains all intellectual property
rights associated with the technology described
in this document. This document is intended to
assist application developers to develop
applications only for Apple-labeled computers.
Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010
Apple, the Apple logo, Cocoa, Mac, and
Objective-C are trademarks of Apple Inc.,
registered in the U.S. and other countries.
Java is a registered trademark of Oracle and/or
its affiliates.
Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THIS
DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE.ASARESULT, THISDOCUMENT IS PROVIDED
“AS IS,” AND YOU, THE READER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY AND ACCURACY.
IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL,OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS DOCUMENT, even if advised of
the possibility of such damages.
THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple dealer,
agent, or employee is authorized to make any
modification, extension, or addition to this warranty.
Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have other
rights which vary from state to state.

Location Awareness
Programming GuideContents
Making Your App Location-Aware 7
At a Glance 8
Location Services Provide a Geographical Context for Apps 8
Heading Information Indicates the User’s Current Orientation 8
Maps Support Navigation and the Display of Geographically Relevant Content 8
Routing Apps Provide Directions to the User 9
How to Use This Document 9
See Also 9
Getting the User’s Location 10
Requiring the Presence of Location Services in Order to Run 10
Getting the User’s Current Location 11
Determining Whether Location Services Are Available 11
Starting the Standard Location Service 12
Starting the Significant-Change Location Service 13
Receiving Location Data from a Service 14
Monitoring Shape-Based Regions 15
Determining the Availability of Region Monitoring 15
Defining a Region to Be Monitored 16
Handling Boundary-Crossing Events for a Region 17
Testing Your App’s Region Monitoring Support 18
Getting Location Events in the Background 18
Tips for Conserving Battery Power 18
Getting Direction-Related Events 20
Adding a Requirement for Direction-Related Events 20
Getting Heading-Related Events 21
Getting Course Information While the User Is Moving 23
Geocoding Location Data 24
About Geocoder Objects 24
Converting Coordinates Into Place Name Information 25
Getting Placemark Information using CLGeocoder 25
Getting Placemark Information from the Reverse Geocoder 26
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
2Converting Place Names Into Coordinates 29
Displaying Maps 30
Understanding Map Geometry 30
Map Coordinate Systems 31
Converting Between Coordinate Systems 32
Adding a Map View to Your User Interface 33
Configuring the Properties of a Map 34
Setting the Visible Portion of the Map 34
Zooming and Panning the Map Content 34
Displaying the User’s Current Location on the Map 35
Responding to User Interactions with a Map 36
Annotating Maps 37
Adding Annotations to a Map 38
Checklist for Adding an Annotation to the Map 39
Defining a Custom Annotation Object 40
Using the Standard Annotation Views 41
Defining a Custom Annotation View 42
Creating Annotation Views from Your Delegate Object 44
Managing the Map’s Annotation Objects 46
Marking Your Annotation View as Draggable 46
Displaying Overlays on a Map 47
Checklist for Adding an Overlay to the Map 49
Using the Standard Overlay Objects and Views 50
Defining a Custom Overlay Object 51
Defining a Custom Overlay View 52
Creating Overlay Views from Your Delegate Object 55
Managing the Map’s Overlay Objects 56
Using Overlays as Annotations 56
Providing Directions 58
Asking the Maps App to Display Directions 58
Registering as a Routing App 58
Configuring Your App to Accept Direction Requests 59
Declaring the Supported Geographic Coverage for Directions 60
Handling Direction Requests 62
Legacy Map Techniques 64
Creating Draggable Annotations in Earlier Versions of iOS 64
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
3
ContentsDocument Revision History 69
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
4
ContentsFigures, Tables, and Listings
Getting the User’s Location 10
Listing 1-1 Starting the standard location service 12
Listing 1-2 Starting the significant-change location service 13
Listing 1-3 Processing an incoming location event 14
Listing 1-4 Creating and registering a region based on a Map Kit overlay 16
Getting Direction-Related Events 20
Listing 2-1 Initiating the delivery of heading events 21
Listing 2-2 Processing heading events 22
Geocoding Location Data 24
Listing 3-1 Geocoding a location using CLGeocoder 25
Listing 3-2 Geocoding a location using MKReverseGeocoder 27
Displaying Maps 30
Figure 4-1 Mapping spherical data to a flat surface 31
Table 4-1 Map coordinate system conversion routines 32
Annotating Maps 37
Figure 5-1 Displaying an annotation in a map 38
Figure 5-2 Displaying an overlay on a map 48
Figure 5-3 Using a custom overlay view to draw 55
Listing 5-1 Creating a simple annotation object 40
Listing 5-2 Implementing the MyCustomAnnotation class 41
Listing 5-3 Creating a standard annotation view 42
Listing 5-4 Declaring a custom annotation view 42
Listing 5-5 Initializing a custom annotation view 43
Listing 5-6 Creating annotation views 44
Listing 5-7 Creating a polygon overlay object 50
Listing 5-8 Creating a polygon view for rendering a shape 51
Listing 5-9 Drawing a gradient in a custom overlay view 53
Providing Directions 58
Table 6-1 Keys and values for the directions request document type 59
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
5Listing 6-1 A sample GeoJSON file 61
Listing 6-2 Handling a directions request URL 63
Legacy Map Techniques 64
Listing A-1 The BullseyeAnnotationView class 64
Listing A-2 Tracking the view’s location 66
Listing A-3 Handling the final touch events 67
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
6
Figures, Tables, and ListingsUsing location-based information in your apps is a way to keep the user connected to the surrounding world.
Whether you use thisinformation for practical purposes(such as navigation) or for entertainment, location-based
information can improve the overall user experience.
Location-based information in iOS comprises two pieces: location services and maps. Location services are
provided by the Core Location framework, which provides Objective-C interfaces for obtaining information
about the user’s location and heading. Maps are provided by the Map Kit framework, which supports both the
display and annotation of maps similar to those found in the Maps app.
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
7
Making Your App Location-AwareAt a Glance
Map and location services provide a way for you to enhance user interactions. By incorporating geographic
data into your apps, you can orient the user to the surrounding environment or help the user stay connected
to other people nearby.
Location Services Provide a Geographical Context for Apps
Location services is all about mobility and the fact that your app is running on a device that can go anywhere.
Knowing the user’s geographic location can help you improve the quality of the information you offer, and in
some cases it might even be at the heart of your app. Apps that offer navigation features use location services
to monitor the user’s position and generate updates. And many other types of apps use location as a way of
connecting nearby users socially.
Relevant Chapters: “Getting the User’s Location” (page 10), “Geocoding Location Data” (page 24)
Heading Information Indicates the User’s Current Orientation
Heading services complement the basic location services by providing more precise information about which
way a device is pointed. The most obvious use for this technology is for implementing a compass but this
technology is also used to support augmented reality, games, and navigational apps. And even on devices
that do not have a magnetometer—the hardware used to get precise heading information—information about
the user’s course and speed are still available for apps that need it.
Relevant Chapters: “Getting Direction-Related Events” (page 20)
Maps Support Navigation and the Display of Geographically Relevant Content
Maps are a way to visualize geographical data in a way that is easy to understand. The Map Kit framework
provides standard views that you can incorporate into your app and use to display information tied to specific
geographic points. In addition, this framework provides the means to layer custom information on top of the
map and have it scroll along with the rest of the map content.
Making Your App Location-Aware
At a Glance
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
8Relevant Chapters: “Displaying Maps” (page 30), “Annotating Maps” (page 37)
Routing Apps Provide Directions to the User
A routing app is an app that is able to receive coordinates from the Maps app and use those coordinates to
provide point-to-point directions to the user. Apps that provide navigation capabilities can declare themselves
as a routing app with minimal additional effort. In addition to driving and walking directions, routing apps can
support many other modes of transport, including taxi, airplane, and many public transportation options.
Relevant Chapters: “Providing Directions” (page 58)
How to Use This Document
You do not have to read this entire document to use each of the technologies. The services provided by the
Core Location and Map Kit frameworks are separate and can be used independent of other services. Therefore,
the beginning of each chapter introduces the terminology and information you need to understand the
corresponding technology followed by examples and task-related steps on how to use it. The only exception
is the “Annotating Maps” (page 37) chapter, which builds on the information presented in the “Displaying
Maps” (page 30) chapter.
See Also
For information about the classes of the Core Location framework, see Core Location Framework Reference .
For information about the classes of the Map Kit framework, see Map Kit Framework Reference .
Making Your App Location-Aware
How to Use This Document
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
9Apps use location data for a wide variety of purposes, ranging from social networking to turn-by-turn navigation
services. They get location data by using the classes of the Core Location framework. This framework provides
several services that you can use to get and monitor the device’s current location:
● The significant-change location service provides a low-power way to get the current location and be
notified of changes to that location. (iOS 4.0 and later).
● The standard location service offers a more configurable way to get the current location.
● Region monitoring lets you monitor boundary crossings for a defined area. (iOS 4.0 and later).
To use the features of the Core Location framework, you must link your app to CoreLocation.framework in
your Xcode project. To access the classes and headers of the framework, include an #import
 statement at the top of any relevant source files.
For general information about the classes of the Core Location framework, see Core Location Framework
Reference .
Requiring the Presence of Location Services in Order to Run
If your app relies on location services to function properly, you should include the
UIRequiredDeviceCapabilities key in the app’s Info.plist file. You use this key to specify the location
services that must be present in order for your app to run. The App Store uses the information in this key from
preventing users from downloading apps to devices that do not contain the listed features.
The value for the UIRequiredDeviceCapabilities is an array of strings indicating the features that your
app requires. There are two strings relevant to location services:
●
Include the location-services string if you require location services in general.
●
Include the gps string if your app requires the accuracy offered only by GPS hardware.
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
10
Getting the User’s LocationImportant: If your app uses location services but is able to operate successfully without them, do not
include the corresponding strings in the UIRequiredDeviceCapabilities key.
For more information about the UIRequiredDeviceCapabilities key, see Information Property List Key
Reference .
Getting the User’s Current Location
The Core Location framework lets you locate the current position of the device and use that information in
your app. The framework uses information obtained from the built-in cellular, Wi-Fi, or GPS hardware to
triangulate a location fix for the device. It reports that location to your code and, depending on how you
configure the service, also provides periodic updates as it receives new or improved data.
There are two different services you can use to get the user’s current location:
● The standard location service is a configurable, general-purpose solution and is supported in all versions
of iOS.
● The significant-change location service offers a low-power location service for devices with cellular radios.
This service is available only in iOS 4.0 and later and can also wake up an app that is suspended or not
running.
Gathering location data is a power-intensive operation. It involves powering up the onboard radios and querying
the available cell towers, Wi-Fi hotspots, or GPS satellites, which can take severalseconds. Leaving the standard
location service running for extended periods can drain the device’s battery. (The significant-change location
service drastically reduces battery drain by monitoring only cell tower changes, but the service works only on
devices with cellular radios.) For most apps, it is usually sufficient to establish an initial position fix and then
acquire updates only periodically after that. If you are sure you need regular position updates, you should use
the significant-change location service where you can; otherwise, you should configure the parameters of the
standard location service in a way that minimizes its impact on battery life.
Determining Whether Location Services Are Available
Every iOS-based device is capable of supporting location services in some form but there are still situations
where location services may not be available:
● The user can disable location services in the Settings app.
● The user can deny location services for a specific app.
● The device might be in Airplane mode and unable to power up the necessary hardware.
Getting the User’s Location
Getting the User’s Current Location
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
11For these reasons, it is recommended that you always call the locationServicesEnabled class method of
CLLocationManager before attempting to start either the standard or significant-change location services.
(In iOS 3.x and earlier, check the value of the locationServicesEnabled property instead.) If this class
method returns YES, you can start location services as planned. If it returns NO and you attempt to start location
services anyway, the system promptsthe user to confirm whether location servicesshould be reenabled. Given
that location services are very likely to be disabled on purpose, the user might not welcome this prompt.
Starting the Standard Location Service
The standard location service is the most common way to get the user’s current location because it is available
on all devices and in all versions of iOS. Before using this service, you configure it by specifying the desired
accuracy of the location data and the distance that must be traveled before reporting a new location. When
you start the service, it uses the specified parameters to determine which radios to enable and then proceeds
to report location events to your app.
To use the standard location service, create an instance of the CLLocationManager class and configure its
desiredAccuracy and distanceFilter properties. To begin receiving location notifications, assign a
delegate to the object and call the startUpdatingLocation method. As location data becomes available,
the location manager notifies its assigned delegate object. If a location update has already been delivered,
you can also get the most recent location data directly from the CLLocationManager object without waiting
for a new event to be delivered.
Listing 1-1 shows a sample method that configures a location manager for use. This method is part of a class
that caches its location manager object in a member variable for later use. (The class also conforms to the
CLLocationManagerDelegate protocol and so acts as the delegate for the location manager.) Because the
app does not need precise location data, it configures the location service to report the general area of the
user and notify it only when the user moves a significant distance, which in this case is half a kilometer.
Listing 1-1 Starting the standard location service
- (void)startStandardUpdates
{
// Create the location manager if this object does not
// already have one.
if (nil == locationManager)
locationManager = [[CLLocationManager alloc] init];
locationManager.delegate = self;
locationManager.desiredAccuracy = kCLLocationAccuracyKilometer;
Getting the User’s Location
Getting the User’s Current Location
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
12// Set a movement threshold for new events.
locationManager.distanceFilter = 500;
[locationManager startUpdatingLocation];
}
The code for receiving location updates from this service is shown in “Receiving Location Data from a
Service” (page 14).
Starting the Significant-Change Location Service
In iOS 4.0 and later, you can use the significant-change location service to receive location events. This service
offers a significant powersavings and provides accuracy that is good enough for most apps. It usesthe device’s
cellular radio to determine the user’s location and report changes in that location, allowing the system to
manage power usage much more aggressively than it could otherwise. This service is also capable of waking
up an app that is currently suspended or not running in order to deliver new location data.
To use the significant-change location service, create an instance of the CLLocationManager class, assign a
delegate to it, and call the startMonitoringSignificantLocationChanges method as shown in Listing
1-2. Aslocation data becomes available, the location manager notifiesits assigned delegate object. If a location
update has already been delivered, you can also get the most recent location data directly from the
CLLocationManager object without waiting for a new event to be delivered.
Listing 1-2 Starting the significant-change location service
- (void)startSignificantChangeUpdates
{
// Create the location manager if this object does not
// already have one.
if (nil == locationManager)
locationManager = [[CLLocationManager alloc] init];
locationManager.delegate = self;
[locationManager startMonitoringSignificantLocationChanges];
}
Getting the User’s Location
Getting the User’s Current Location
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
13As with the standard location service, location data is delivered to the delegate object as described in “Receiving
Location Data from a Service” (page 14).
If you leave thisservice running and your app issubsequently suspended or terminated, the service automatically
wakes up your app when new location data arrives. At wake-up time, your app is put into the background and
given a small amount of time to process the location data. Because your app is in the background, it should
do minimal work and avoid any tasks (such as querying the network) that might prevent it from returning
before the allocated time expires. If it does not, your app may be terminated.
Receiving Location Data from a Service
Whether you use the standard location service or the significant-change location service to get location events,
the way you receive those events is the same. In iOS 6 and later, the location manager reports events to the
locationManager:didUpdateLocations: method of its delegate when they become available. (In earlier
versions of the system, it reports eventsto the locationManager:didUpdateToLocation:fromLocation:
method.) If there is an error retrieving an event, the location manager calls the
locationManager:didFailWithError: method of its delegate instead.
Listing 1-3 shows the delegate method for receiving location events. Because the location manager object
sometimes returns cached events, it is recommended that you check the timestamp of any location events
you receive. (It can take several seconds to obtain a rough location fix, so the old data simply serves as a way
to reflect the last known location.) In this example, the method throws away any events that are more than
fifteen seconds old under the assumption that fairly recent events are likely to be good enough. If you were
implementing a navigation app, you might want to lower the threshold.
Listing 1-3 Processing an incoming location event
// Delegate method from the CLLocationManagerDelegate protocol.
- (void)locationManager:(CLLocationManager *)manager
didUpdateLocations:(NSArray *)locations {
// If it's a relatively recent event, turn off updates to save power
CLLocation* location = [locations lastObject];
NSDate* eventDate = location.timestamp;
NSTimeInterval howRecent = [eventDate timeIntervalSinceNow];
if (abs(howRecent) < 15.0) {
// If the event is recent, do something with it.
NSLog(@"latitude %+.6f, longitude %+.6f\n",
location.coordinate.latitude,
location.coordinate.longitude);
Getting the User’s Location
Getting the User’s Current Location
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
14}
}
In addition to a location object’s timestamp, you can also use the accuracy reported by that object as a means
of determining whether you want to accept an event. As it receives more accurate data, the location service
may return additional events, with the accuracy values reflecting the improvements accordingly. Throwing
away less accurate events means your app wastes less time on events that cannot be used effectively anyway.
Monitoring Shape-Based Regions
Apps can use region monitoring to be notified when the user crosses geographic boundaries. You can use this
capability to generate alerts when the user gets close to a specific location. For example, upon approaching
a specific dry cleaners, an app could notify the user to pick up any clothes that had been dropped off and are
now ready.
In iOS, regions associated with your app are tracked at all times, including when your app is not running. If a
region boundary is crossed while an app is not running, that app is relaunched into the background to handle
the event. Similarly, if the app is suspended when the event occurs, it is woken up and given a short amount
of time to handle the event.
Determining the Availability of Region Monitoring
Before attempting to monitor any regions, your app should check to see if region monitoring is supported on
the current device. There are several reasons why region monitoring might not be available:
● The device may not have the hardware needed to support region monitoring.
● The user may have disabled location services in the Settings app.
● The device might be in Airplane mode and unable to power up the necessary hardware.
For these reasons, it is recommended that you always call the regionMonitoringAvailable and
regionMonitoringEnabled class methods of CLLocationManager before attempting to monitor regions.
The regionMonitoringAvailable method lets you know whether the underlying hardware supportsregion
monitoring. If it returns NO, there is no chance that your app will ever be able to use region monitoring on the
device. If region monitoring is available, the regionMonitoringEnabled method reports whether the feature
is currently enabled. If region monitoring is available but not enabled when you attempt to monitor a region,
the system promptsthe user to confirm whether region monitoring should be reenabled. Given that the feature
is likely to be disabled on purpose, the user might not welcome this prompt.
Getting the User’s Location
Monitoring Shape-Based Regions
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
15Defining a Region to Be Monitored
To begin monitoring a region, you must define the region and register it with the system. Regions are defined
using the CLRegion class, which currently supports the creation of circular regions. Each region you create
must include both the data that definesthe desired geographic area and a unique identifierstring. (The identifier
string is required and is the only guaranteed way for your app to identify regions later.) To register a region,
you call the startMonitoringForRegion:desiredAccuracy: method of your CLLocationManager
object.
Listing 1-4 shows a sample method that creates a new region based on a circular Map Kit overlay. The overlay’s
center point and radius form the boundary for the region, although if the radius is too large to be monitored,
it is reduced automatically. After registering the region, the region object itself can be released. Core Location
stores the data associated with a region but does not typically store the region object itself.
Listing 1-4 Creating and registering a region based on a Map Kit overlay
- (BOOL)registerRegionWithCircularOverlay:(MyCircle*)overlay
andIdentifier:(NSString*)identifier
{
// Do not create regions if support is unavailable or disabled.
if (![CLLocationManager regionMonitoringAvailable] ||
![CLLocationManager regionMonitoringEnabled])
return NO;
// If the radius is too large, registration fails automatically,
// so clamp the radius to the max value.
CLLocationDegrees radius = overlay.radius;
if (radius > self.locManager.maximumRegionMonitoringDistance)
radius = self.locManager.maximumRegionMonitoringDistance;
// Create the region and start monitoring it.
CLRegion* region = [[CLRegion alloc]
initCircularRegionWithCenter:overlay.coordinate
radius:radius identifier:identifier];
[self.locManager startMonitoringForRegion:region
desiredAccuracy:kCLLocationAccuracyHundredMeters];
[region release];
Getting the User’s Location
Monitoring Shape-Based Regions
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
16return YES;
}
Monitoring of a region begins immediately after registration. However, do not expect to receive an event right
away. Only boundary crossings can generate an event. Thus, if at registration time the user’s location is already
inside the region, the location manager does not generate an event. Instead, you must wait for the user to
cross the region boundary before an event is generated and sent to the delegate.
You should always be judicious when specifying the set of regions to monitor. Regions are a shared system
resource and the total number of regions available systemwide is limited. For this reason, Core Location limits
the number of regions that may be simultaneously monitored by a single app. To work around these limits,
you should consider registering only those regions in the user’s immediate vicinity. As the user’s location
changes, you can remove regions that are now farther way and add regions coming up on the user’s path. If
you attempt to register a region and space is unavailable, the location manager calls the
locationManager:monitoringDidFailForRegion:withError: method of its delegate with the
kCLErrorRegionMonitoringFailure error code.
Handling Boundary-Crossing Events for a Region
Every time the user’s current location crosses a boundary region, the system generates an appropriate region
event for your app. If your app is already running, these events go directly to the delegates of any current
location manager objects. If your app is not running, the system launches it in the background so that it can
respond. Apps can implement the following methods to handle boundary crossings:
● locationManager:didEnterRegion:
● locationManager:didExitRegion:
The system does not report boundary crossings until the boundary plus a designated cushion distance is
exceeded. You specify the desired cushion distance for a region when you register it using the
startMonitoringForRegion:desiredAccuracy: method. This cushion value prevents the system from
generating numerous entered and exited events in quick succession while the user is traveling close the edge
of the boundary.
When a region boundary is crossed, the most likely response is to alert the user of the proximity to the target
item. If your app is running in the background, you can use local notifications to alert the user; otherwise, you
can simply post an alert.
Getting the User’s Location
Monitoring Shape-Based Regions
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
17Testing Your App’s Region Monitoring Support
When testing your region monitoring code in iOS Simulator or on a device, realize that region events may not
happen immediately after a region boundary is crossed. To prevent spurious notifications, iOS does not deliver
region notifications until certain threshold conditions are met. Specifically, the user’s location must cross the
region boundary and move away from that boundary by a minimum distance and remain at that minimum
distance for at least 20 seconds before the notifications are reported.
The specific threshold distances are determined by the hardware and the location technologiesthat are currently
available. For example, if Wi-Fi is disabled, region monitoring is significantly less accurate. However, for testing
purposes, you can assume that the minimum distance is approximately 200 meters.
Getting Location Events in the Background
If your app needs location updates delivered whether the app is in the foreground or background, there are
multiple options for doing so. The preferred option is to use the significant location change service to wake
your app at appropriate times to handle new events. However, if your app needs to use the standard location
service, you can declare your app as needing background location services.
An app should request background location services only if the absence of those services would impair its
ability to operate. In addition, any app that requests background location services should use those services
to provide a tangible benefit to the user. For example, a turn-by-turn navigation app would be a likely candidate
for background location services because of its need to track the user’s position and report when it is time to
make the next turn.
The process for configuring a background location app is described in “App States and Multitasking” in iOS App
Programming Guide .
Tips for Conserving Battery Power
Receiving and transmitting data using the radios of an iOS-based device require more power than any other
operation on the device. Because Core Location relies on these radios to determine the user’s location, you
should use location services judiciously in your apps. Most apps do not need location services to be running
all the time, and so turning off those services is the simplest way to save power.
● Turn off location services when you are not using them. This may seem obvious but it is worth repeating.
With the exception of navigation apps that offer turn-by-turn directions, most apps do not need location
services to be on all the time. Turn location services on just long enough to get a location fix and then
turn them off. Unless the user is in a moving vehicle, the current location should not change frequently
enough to be an issue. And you can always start location services again later if needed.
Getting the User’s Location
Getting Location Events in the Background
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
18● Use the significant-change location service instead ofthe standard location service whenever possible.
The significant-change location service providessignificant powersavings while still allowing you to leave
location services running. This is highly recommended for apps that need to track changes in the user’s
location but do not need the higher precision offered by the standard location services.
● Use lower-resolution values forthe desired accuracy unless doing so would impair your app. Requesting
a higher accuracy than you need causes Core Location to power up additional hardware and waste power
for precision you are not using. Unless your app really needs to know the user’s position within a few
meters, do not put the values kCLLocationAccuracyBest or
kCLLocationAccuracyNearestTenMeters in the desiredAccuracy property. And remember that
specifying a value of kCLLocationAccuracyThreeKilometers does not prevent the location service
from returning better data. Most of the time, Core Location can return location data with an accuracy
within a hundred meters or so using Wi-FI and cellular signals.
● Turn off location events if the accuracy does not improve over a period of time. If your app is not
receiving events with the desired level of accuracy, you should look at the accuracy of events you do
receive and see if it is improving or staying about the same over time. If accuracy is not improving, it could
be because the desired accuracy is simply not available at the moment. Turning off location services and
trying again later prevents your app from wasting power.
Getting the User’s Location
Tips for Conserving Battery Power
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
19Core Location supports two different ways to get direction-related information:
● Devices with a magnetometer can report the direction in which a device is pointing, also known as its
heading.
● Devices with GPS hardware can report the direction in which a device is moving, also known as its course.
Remember that heading and course information do not represent the same information. The heading of a
device reflects the actual orientation of the device relative to true north or magnetic north. The course of the
device represents the direction of travel and does not take into account the device orientation. Depending on
your app, you might prefer one over the other or use a combination of the two. For example, a navigation app
might toggle between course and heading information depending on the user’s current speed. At walking
speeds, heading information would be more useful for orienting the user to the current environment, whereas
in a car, course information provides the general direction of the car’s movement.
Adding a Requirement for Direction-Related Events
If your app requires some form of direction-related information in order to function properly, you should
include the UIRequiredDeviceCapabilities key in the app’s Info.plist file. This key contains an array
of strings indicating the features that your app requires of the underlying iOS-based device. The App Store
usesthisinformation to prevent usersfrom installing apps on a device without the minimum required hardware.
For direction-related events, there are two relevant strings you can associate with this key:
● magnetometer—Include this string if your app requires the presence of heading information.
● gps—Include this string if your app requires the presence of course-related information.
Important: If your app uses heading or course events but is able to operate successfully without them, do
not include the corresponding string value with the UIRequiredDeviceCapabilities key.
In both cases, you should also include the location-services string in the array. For more information
about the UIRequiredDeviceCapabilities key, see Information Property List Key Reference .
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
20
Getting Direction-Related EventsGetting Heading-Related Events
Heading events are available to apps running on a device that contains a magnetometer. A magnetometer
measures nearby magnetic fields emanating from the Earth and usesthem to determine the precise orientation
of the device. Although a magnetometer can be affected by local magnetic fields, such as those emanating
from fixed magnetsfound in audio speakers, motors, and many other types of electronic devices, Core Location
is smart enough to filter out fields that move with the device.
Heading values can be reported relative either to magnetic north or true north on the map. Magnetic north
represents the point on the Earth’s surface from which the planet’s magnetic field emanates. This location is
not the same asthe North Pole, which representstrue north. Depending on the location of the device, magnetic
north may be good enough for many purposes, but the closer to the poles you get, the less useful this value
becomes.
The steps for receiving heading events are as follows:
1. Create a CLLocationManager object.
2. Determine whether heading events are available by calling the headingAvailable class method. (In
iOS 3.x and earlier, check the value of the headingAvailable property instead.)
3. Assign a delegate to the location manager object.
4. If you want true north values, start location services.
5. Call the startUpdatingHeading method to begin the delivery of heading events.
Listing 2-1 shows a custom method that configures a location manager and starts the delivery of heading
events. In this case, the object is a view controller that displays the current heading to the user. Because the
view controller displaysthe true north heading value, itstartslocation updatesin addition to heading updates.
This code runs in iOS 4.0 and later
Listing 2-1 Initiating the delivery of heading events
- (void)startHeadingEvents {
if (!self.locManager) {
CLLocationManager* theManager = [[[CLLocationManager alloc] init] autorelease];
// Retain the object in a property.
self.locManager = theManager;
locManager.delegate = self;
}
Getting Direction-Related Events
Getting Heading-Related Events
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
21// Start location services to get the true heading.
locManager.distanceFilter = 1000;
locManager.desiredAccuracy = kCLLocationAccuracyKilometer;
[locManager startUpdatingLocation];
// Start heading updates.
if ([CLLocationManager headingAvailable]) {
locManager.headingFilter = 5;
[locManager startUpdatingHeading];
}
}
The object you assign to the delegate property must conform to the CLLocationManagerDelegate protocol.
When a new heading event arrives, the location manager object calls the
locationManager:didUpdateHeading: method to deliver that event to your app. Upon receiving a new
event, you should check the headingAccuracy property to ensure that the data you just received is valid, as
shown in Listing 2-2. In addition, if you are using the true heading value, you should also check to see if it
contains a valid value before using it.
Listing 2-2 Processing heading events
- (void)locationManager:(CLLocationManager *)manager didUpdateHeading:(CLHeading
*)newHeading {
if (newHeading.headingAccuracy < 0)
return;
// Use the true heading if it is valid.
CLLocationDirection theHeading = ((newHeading.trueHeading > 0) ?
newHeading.trueHeading : newHeading.magneticHeading);
self.currentHeading = theHeading;
[self updateHeadingDisplays];
}
Getting Direction-Related Events
Getting Heading-Related Events
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
22Getting Course Information While the User Is Moving
Devices that include GPS hardware can generate information indicating the device’s current course and speed.
Course information is used to indicate the direction in which the device is moving and does not necessarily
reflect the orientation of the device itself. As a result, it is primarily intended for apps that provide navigation
information while the user is moving.
The actual course and speed information is returned to your app in the same CLLocation objects you use to
get the user’s position. When you start location updates, Core Location automatically provides course and
speed information when it is available. The framework uses the incoming location events to compute the
current direction of motion. For more information on how to start location updates, see “Getting the User’s
Location” (page 10)
Getting Direction-Related Events
Getting Course Information While the User Is Moving
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
23Location data is usually returned as a pair of numerical values representing the latitude and longitude of the
corresponding point on the globe. These coordinates offer a precise and easy way to specify location data in
your code but they are not very intuitive for users. Instead of global coordinates, users are more likely to
understand a location that is specified using information they are more familiar with such as street, city, state,
and country information. For situations where you want to display a user friendly version of a location, you
can use a geocoder object to obtain that information.
About Geocoder Objects
A geocoder object uses a network service to convert between latitude and longitude values and a user-friendly
placemark, which is a collection of data such as the street, city, state, and country information. Reverse
geocoding is the process of converting a latitude and longitude into a placemark. Forward geocoding is the
process of converting place name information into a latitude and longitude value. Reverse geocoding is
supported in all versions of iOS but forward geocoding is supported only in iOS 5.0 and later.
Because geocodersrely on a network service, a live network connection must be present in order for a geocoding
request to succeed. If a device is in Airplane mode or the network is currently not configured, the geocoder
cannot connect to the service it needs and must therefore return an appropriate error. Here are some rules of
thumb for creating geocoding requests:
● Send at most one geocoding request for any one user action.
●
If the user performs multiple actions that involve geocoding the same location, reuse the results from the
initial geocoding request instead of starting individual requests for each action.
● When you want to update the location automatically (such as when the user is moving), reissue the
geocoding request only when the user's location has moved a significant distance and after a reasonable
amount of time has passed. For example, in a typical situation, you should not send more than one
geocoding request per minute.
● Do notstart a geocoding request at a time when the user will notsee the resultsimmediately. For example,
do not start a request if your app is in the background or was interrupted and is currently in the inactive
state.
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
24
Geocoding Location DataConverting Coordinates Into Place Name Information
Note: In iOS 5.0, MKReverseGeocoder and MKReverseGeocoderDelegate are deprecated so
use CLGeocoder for all new app development.
In iOS, you can use either the CLGeocoder or MKReverseGeocoder class to handle reverse-geocoding
requests. The CLGeocoder is the preferred class to use and is available in iOS 5.0 and later. However, if your
app must run on earlier versions of iOS, you can use the MKReverseGeocoder class.
Getting Placemark Information using CLGeocoder
To initiate a reverse-geocoding request using the CLGeocoder class, create an instance of the class and call
the reverseGeocodeLocation:completionHandler: method. The geocoder object initiates the reverse
geocoding request asynchronously and delivers the results to the block object you provide. The block object
is executed whether the request succeeds or fails. In the event of a failure, an error object is passed to the
block indicating the reason for the failure.
Note: The same CLGeocoder object can be used to initiate any number of geocoding requests but
only one request at a time may be active for a given geocoder.
“Converting Coordinates Into Place Name Information” shows an example of how to reverse geocode a point
on the map. The only code specific to the geocoding request are the first few lines, which allocate the geocoder
object as needed and call the reverseGeocodeLocation:completionHandler: method to start the
reverse-geocoding operation. (The geocoder variable represents a member variable used to store the geocoder
object.) The rest of the code isspecific to the sample app itself. In this case, the sample app storesthe placemark
with a custom annotation object (defined by the MapLocation class) and adds a button to the callout of the
corresponding annotation view.
Listing 3-1 Geocoding a location using CLGeocoder
@implementation MyGeocoderViewController (CustomGeocodingAdditions)
- (void)geocodeLocation:(CLLocation*)location forAnnotation:(MapLocation*)annotation
{
if (!geocoder)
geocoder = [[CLGeocoder alloc] init];
[theGeocoder reverseGeocodeLocation:location completionHandler:
Geocoding Location Data
Converting Coordinates Into Place Name Information
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
25^(NSArray* placemarks, NSError* error){
if ([placemarks count] > 0)
{
annotation.placemark = [placemarks objectAtIndex:0];
// Add a More Info button to the annotation's view.
MKPinAnnotationView* view = (MKPinAnnotationView*)[map
viewForAnnotation:annotation];
if (view && (view.rightCalloutAccessoryView == nil))
{
view.canShowCallout = YES;
view.rightCalloutAccessoryView = [UIButton
buttonWithType:UIButtonTypeDetailDisclosure];
}
}
}];
}
@end
The advantage of using a block object in a sample like this is that information (such as the annotation object)
can be easily captured and used as part of the completion handler. Without blocks, the process of wrangling
data variables becomes much more complicated.
Getting Placemark Information from the Reverse Geocoder
For apps running on iOS 4.1 and earlier, you must perform reverse-geocoding requests using the
MKReverseGeocoder class of the Map Kit framework. This class uses a delegate-based approach for geocoding
a single location. This means that you can use a single instance of the MKReverseGeocoder class only once.
In addition, the Google terms of service require that the MKReverseGeocoder class be used in conjunction
with a Google map.
To initiate a reverse geocoding request, create an instance of the MKReverseGeocoder class, assign an
appropriate object to the delegate property, and call the start method. If the query completessuccessfully,
your delegate’s reverseGeocoder:didFindPlacemark: method is called and passed an MKPlacemark
object with the results. If there is a problem reverse geocoding the location, the
reverseGeocoder:didFailWithError: method is called instead.
Geocoding Location Data
Converting Coordinates Into Place Name Information
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
26Listing 3-2 shows the code required to use a reverse geocoder. Upon successful completion of the geocoding
operation, the code adds a button to the annotation view’s callout so that it can display the placemark
information. Because the annotation is not automatically available to the delegate, the custom
annotationForCoordinate: method is included to find the appropriate annotation object from the map
view.
Listing 3-2 Geocoding a location using MKReverseGeocoder
@implementation MyGeocoderViewController (CustomGeocodingAdditions)
- (void)geocodeLocation:(CLLocation*)location forAnnotation:(MapLocation*)annotation
{
MKReverseGeocoder* theGeocoder = [[MKReverseGeocoder alloc]
initWithCoordinate:location.coordinate];
theGeocoder.delegate = self;
[theGeocoder start];
}
// Delegate methods
- (void)reverseGeocoder:(MKReverseGeocoder*)geocoder
didFindPlacemark:(MKPlacemark*)place
{
MapLocation* theAnnotation = [map annotationForCoordinate:place.coordinate];
if (!theAnnotation)
return;
// Associate the placemark with the annotation.
theAnnotation.placemark = place;
// Add a More Info button to the annotation's view.
MKPinAnnotationView* view = (MKPinAnnotationView*)[map
viewForAnnotation:annotation];
if (view && (view.rightCalloutAccessoryView == nil))
{
view.canShowCallout = YES;
view.rightCalloutAccessoryView = [UIButton
buttonWithType:UIButtonTypeDetailDisclosure];
}
Geocoding Location Data
Converting Coordinates Into Place Name Information
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
27}
- (void)reverseGeocoder:(MKReverseGeocoder*)geocoder didFailWithError:(NSError*)error
{
NSLog(@"Could not retrieve the specified place information.\n");
}
@end
@implementation MKMapView (GeocoderAdditions)
- (MapLocation*)annotationForCoordinate:(CLLocationCoordinate2D)coord
{
// Iterate through the map view's list of coordinates
// and return the first one whose coordinate matches
// the specified value exactly.
id theObj = nil;
for (id obj in [self annotations])
{
if (([obj isKindOfClass:[MapLocation class]]))
{
MapLocation* anObj = (MapLocation*)obj;
if ((anObj.coordinate.latitude == coord.latitude) &&
(anObj.coordinate.longitude == coord.longitude))
{
theObj = anObj;
break;
}
}
}
return theObj;
}
Geocoding Location Data
Converting Coordinates Into Place Name Information
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
28@end
Converting Place Names Into Coordinates
In iOS 5.0 and later, you use the CLGeocoder class to initiate forward-geocoding requests using either a
dictionary of Address Book information or a simple string. There is no designated format for string-based
requests; delimiter characters are welcome, but not required, and the geocoder server treats the string as
case-insensitive. Therefore, any of the following strings would yield results:
●
"Apple Inc”
●
"1 Infinite Loop”
●
"1 Infinite Loop, Cupertino, CA USA”
The more information you can provide to the forward geocoder, the better the results returned to you. The
geocoder object parses the information you give it and, if it finds a match, returns some number of placemark
objects. The number of returned placemark objects depends greatly on the specificity of the information
provided. Thus, providing street, city, province, and country information is much more likely to return a single
address than just street and city information. The completion handler block you pass to the geocoder should
therefore be prepared to handle multiple placemarks, as shown in the following example:
[geocoder geocodeAddressString:@"1 Infinite Loop"
completionHandler:^(NSArray* placemarks, NSError* error){
for (CLPlacemark* aPlacemark in placemarks)
{
// Process the placemark.
}
}];
Geocoding Location Data
Converting Place Names Into Coordinates
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
29Introduced in iOS 3.0, the Map Kit framework lets you embed a fully functional map interface into your app.
The map support provided by this framework includes many of the features normally found in the Maps app.
You can display standard street-level map information, satellite imagery, or a combination of the two. You can
zoom and pan the map programmatically, and the framework provides automatic support for the touch events
that let users zoom and pan the map. You can also annotate the map with custom information.
To use the features of the Map Kit framework, you must linking your app to MapKit.framework in your Xcode
project. To access the classes and headers of the framework, include an #import
statement at the top of any relevant source files. For general information about the classes of the Map Kit
framework, see Map Kit Framework Reference .
Important: The Map Kit framework uses Google services to provide map data. Use of the framework and
its associated interfaces binds you to the Google Maps/Google Earth API terms of service. You can find
these terms of service at http://code.google.com/apis/maps/iphone/terms.html.
Understanding Map Geometry
A map view contains a flattened representation of a spherical object, namely the Earth. In order to use maps
effectively, you need to understand a little bit about how to specify pointsin a map view, and how those points
translate to points on the Earth’s surface. Understanding map coordinate systems is especially important if
you plan to place custom content, such as overlays, on top of the map.
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
30
Displaying MapsMap Coordinate Systems
In order to understand the coordinate systems used by Map Kit, it helpsto understand how the three-dimensional
surface of the Earth is mapped to a two-dimensional map. Figure 4-1 shows how the surface of the Earth can
be mapped to a two-dimensional surface.
Figure 4-1 Mapping spherical data to a flat surface
Map Kit uses a Mercator map projection, which is a specific type of cylindrical map projection like the one
shown in Figure 4-1 (page 31). In a cylindrical map projection, the coordinates of a sphere are mapped onto
the surface of a cylinder, which is then unwrapped to generate a flat map. In such a projection, the longitude
lines that normally converge at the poles become parallel instead, causing land masses to be distorted as you
move away from the equator. The advantage of a Mercator projection is that the map content is scaled in a
way that benefits general navigation. Specifically, on a Mercator map projection, a straight line drawn between
any two points on the map yields a course heading that can be used in actual navigation on the surface of the
Earth. The projection used by Map Kit uses the Prime Meridian as its central meridian.
How you specify data points on a map depends on how you intend to use them. Map Kit supports three basic
coordinate systems for specifying map data points:
Displaying Maps
Understanding Map Geometry
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
31● A map coordinate is a latitude and longitude on the spherical representation of the Earth. Map coordinates
are the primary way of specifying locations on the globe. You specify individual map coordinate values
using the CLLocationCoordinate2D structure. You can specify areas using the MKCoordinateSpan
and MKCoordinateRegion structures.
● A map point is an x and y value on the Mercator map projection. Map points are used for many map-related
calculationsinstead of map coordinates because they simplify the mathematicsinvolved in the calculations.
In your app, you use map points primarily when specifying the shape and position of custom map overlays.
You specify individual map points using the MKMapPoint structure. You can specify areas using the
MKMapSize and MKMapRect structures.
● A point is a graphical unit associated with the coordinate system of a UIView object. Map points and map
coordinates must be mapped to points before drawing custom content in a view. You specify individual
points using the CGPoint structure. You can specify areas using the CGSize and CGRect structures.
In most situations, the coordinate system you should use is predetermined by the Map Kit interfaces you are
using. When it comes to storing actual data in files or inside your app, map coordinates are precise, portable,
and the best option forstoring location data. Core Location also uses map coordinates when specifying location
values.
Converting Between Coordinate Systems
Although you normally specify points on the map using latitude and longitude values, there may be times
when you need to convert to and from other coordinate systems. For example, you typically use map points
when specifying the shape of overlays. Table 4-1 lists the conversion routines you use to convert from one
coordinate system to another. Most of these conversionsrequire a view object because they involve converting
to or from points.
Table 4-1 Map coordinate system conversion routines
Convert from Convert to Conversion routines
convertCoordinate: toPointToView: (MKMapView)
convertRegion: toRectToView: (MKMapView)
Map coordinates Points
Map coordinates Map points MKMapPointForCoordinate
MKCoordinateForMapPoint
MKCoordinateRegionForMapRect
Map points Map coordinates
pointForMapPoint: (MKOverlayView)
rectForMapRect: (MKOverlayView)
Map points Points
Displaying Maps
Understanding Map Geometry
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
32Convert from Convert to Conversion routines
convertPoint: toCoordinateFromView: (MKMapView)
convertRect: toRegionFromView: (MKMapView)
Points Map coordinates
mapPointForPoint: (MKOverlayView)
mapRectForRect: (MKOverlayView)
Points Map points
Adding a Map View to Your User Interface
The MKMapView class is a self-contained interface for presenting map data in your app. This class provides
support for displaying map data, for managing user interactions, and for hosting custom content provided by
your app. You should never subclass MKMapView but should only embed it as-is into your app’s view hierarchy.
You should also assign a delegate object to the map. The map view reports all relevant interactions to its
delegate so that it has a chance to respond appropriately.
You can add a map view to your app programmatically or using Interface Builder:
● To add a map using Interface Builder, drag a Map view object to the appropriate view or window.
● To add a map programmatically, create an instance of the MKMapView class, initialize it using the
initWithFrame: method, and then add it as a subview to your view hierarchy.
Because it is a view, you can manipulate a map view in the same ways you manipulate other views. You can
change its size and position in your view hierarchy, you can configure its autoresizing behaviors, and you can
add subviews to it. Unlike a view, you never handle touch events directly in a map view. The map view itself
is an opaque container for a complex view hierarchy that handles the display of map-related data and all
interactions with that data. Any subviews you add to the map view retain the position specified by their frame
property and do not scroll with the map contents. If you want content to remain fixed relative to a specific
map coordinate (and thus scroll with the map itself), you must use annotations or overlays as described in
“Annotating Maps” (page 37).
New maps are configured to accept user interactions and display map data only. You can configure the map
to display satellite imagery or a mixture of satellite and map data by changing the Type attribute of the map
in Interface Builder or changing the value in the mapType property. If you want to limit user interactions, you
can change the values in the zoomEnabled and scrollEnabled properties as well. If you want to respond
to user interactions, you should do so using a delegate as described in “Responding to User Interactions with
a Map” (page 36).
Displaying Maps
Adding a Map View to Your User Interface
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
33Configuring the Properties of a Map
The MKMapView class has a handful of properties that you can configure programmatically. These properties
control important information such as which part of the map is currently visible and what user interactions
are allowed.
Setting the Visible Portion of the Map
The region property of the MKMapView class controls the currently visible portion of the map. When it is first
created, a map’s visible region is typically set to the entire world. In other words, the region encompasses the
area that shows as much of the map as possible. You can change this region at any time by assigning a new
value to the region property. This property contains an MKCoordinateRegion structure, which has the
following definition:
typedef struct {
CLLocationCoordinate2D center;
MKCoordinateSpan span;
} MKCoordinateRegion;
The interesting part of an MKCoordinateRegion structure is the span. The span is analogous to the width
and height values of a rectangle but is specified using map coordinates and thus is measured in degrees,
minutes, and seconds. One degree of latitude is equivalent to approximately 111 kilometers but longitudinal
distances vary with the latitude. At the equator, one degree of longitude is equivalent to approximately 111
kilometers but at the poles this value is zero. If you prefer to specify the span using meters, you can use the
MKCoordinateRegionMakeWithDistance to create a region data structure using meter values instead of
degrees.
The value you assign to the region property (or set using the setRegion:animated: method) is usually
not the same value that is eventually stored by that property. Setting the span of a region nominally defines
the rectangle you want to view but also implicitly sets the zoom level for the map view itself. The map view
cannot display arbitrary zoom levels and must adjust any regions you specify to match the zoom levels it
supports. It chooses the zoom level that allows your entire region to be visible while still filling as much of the
screen as possible. It then adjust the region property accordingly. To find out the resulting region without
actually changing the value in the region property, you can use the regionThatFits: method of the map
view.
Zooming and Panning the Map Content
Zooming and panning allow you to change the visible portion of the map at any time:
Displaying Maps
Configuring the Properties of a Map
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
34● To pan the map (but keep the same zoom level), change the value in the centerCoordinate property
of the map view or call the setCenterCoordinate:animated: method.
● To change the zoom level (and optionally pan the map), change the value in the region property of the
map view or call the setRegion:animated: method.
If you only want to pan the map, you should only do so by modifying the centerCoordinate property.
Attempting to pan the map by changing the region property usually causes a change in the zoom level as
well, because changing any part of the region causes the map view to evaluate the zoom level needed to
display that region appropriately. Changesto the current latitude almost always cause the zoom level to change
and other changes might cause a different zoom level to be chosen as well. Using the centerCoordinate
property (or the setCenterCoordinate:animated: method) lets the map view know that it should leave
the zoom level unchanged and update the span as needed. For example, to pan the map to the left by half
the current map width, you could use the following code to find the coordinate at the left edge of the map
and use that as the new center point, as shown here:
CLLocationCoordinate2D mapCenter = myMapView.centerCoordinate;
mapCenter = [myMapView convertPoint:
CGPointMake(1, (myMapView.frame.size.height/2.0))
toCoordinateFromView:myMapView];
[myMapView setCenterCoordinate:mapCenter animated:YES];
To zoom the map, modify the span of the visible map region. To zoom in, assign a smaller value to the span.
To zoom out, assign a larger value. In other words if the current span is one degree, specifying a span of two
degrees zooms out by a factor of two:
MKCoordinateRegion theRegion = myMapView.region;
// Zoom out
theRegion.span.longitudeDelta *= 2.0;
theRegion.span.latitudeDelta *= 2.0;
[myMapView setRegion:theRegion animated:YES];
Displaying the User’s Current Location on the Map
Map Kit includes built-in support for displaying the user’s current location on the map. To show this location,
set the showsUserLocation property of your map view object to YES. Doing so causes the map view to use
Core Location to find the user’s location and add an annotation of type MKUserLocation to the map.
Displaying Maps
Configuring the Properties of a Map
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
35The addition of the MKUserLocation annotation object to the map is reported by the delegate in the same
way that custom annotations are. If you want to associate a custom annotation view with the user’s location,
you should return that view from your delegate object’s mapView:viewForAnnotation: method. If you
want to use the default annotation view, you should return nil from that method instead.
Responding to User Interactions with a Map
The MKMapView class reports significant map-related events to its associated delegate object. The delegate
object is an object that conforms to the MKMapViewDelegate protocol. You provide this object in situations
where you want to respond to the following types of events:
● Changes to the visible region of the map
● The loading of map tiles from the network
● Changes in the user’s location
● Changes associated with annotations and overlays.
For information about handling changes associated with annotations and overlays,see “Annotating Maps” (page
37).
Displaying Maps
Responding to User Interactions with a Map
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
36The MKMapView class implements an opaque view hierarchy for displaying a scrollable map. Although the
map itself is scrollable, any subviews you add to a map view remain fixed in place and do not scroll. If you want
to affix content to the map itself, and thus have that content scroll along with the rest of the map, you must
use annotations and overlays.
Annotations are used to display content that can be defined by a single coordinate point. By contrast, overlays
are used to display content that is defined by any number of points and may constitute one or more contiguous
or noncontiguousshapes. For example, you use annotationsto represent information such asthe user’s current
location, a specific address, or a single point of interest. You use overlays to present more complex information
such as traffic information, the boundaries of parks, lakes, cities, states, countries, or other bounded areas.
Map Kit separates the data associated with an annotation or overlay from its visual presentation on the map.
This separation allows the map to manage visible annotations and overlays much more efficiently and means
that you can add hundreds of annotations and overlays to a map and still expect reasonable performance.
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
37
Annotating MapsAdding Annotations to a Map
Annotations offer a way to highlightspecific coordinates on the map and provide additional information about
them. You can use annotationsto call outspecific addresses, points of interest, and other types of destinations.
When displayed on a map, annotations typically have some sort of image to identify their location and may
also have a callout bubble providing information and links to more content. Figure 5-1 shows an annotation
that uses a custom image to highlight a particular location.
Figure 5-1 Displaying an annotation in a map
In order to display an annotation on a map, your app must provide two distinct objects:
● An object that conforms to the MKAnnotation protocol and manages the data for the annotation. (This
object is the annotation object.)
● A view (derived from the MKAnnotationView class) used to draw the visual representation of the
annotation on the map surface. (This is the annotation view.)
Annotation objects are typically small data objects that store the map coordinate data and any other relevant
information about the annotation, such as a title string. Because annotations are defined using a protocol, you
can turn any class in your app into an annotation object. In practice, it is good to keep annotation objects
lightweight, especially if you intend to add large numbers of them to the map. The map view keeps a reference
to the annotation objects you add to it and uses the data in those objects to determine when to display the
corresponding view.
Map Kit provides some standard annotation views and you can also define custom annotation views if you
want. However, you do not add annotation views directly to the map surface. Instead, you provide an annotation
view when asked for it and let the map view incorporate that view into its opaque view hierarchy. You provide
the annotation view using your map view delegate object.
Annotating Maps
Adding Annotations to a Map
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
38The annotations you create are typically anchored to a single map coordinate that does not change. However,
you can change the coordinate for an annotation programmatically as needed and can implement support to
allow the user to drag annotations around the map. In iOS 4.0 and later, support for dragging annotations is
even incorporated into the Map Kit classes; implementing thissupport in prior versions of the operating system
requires some additional custom code on your part.
Checklist for Adding an Annotation to the Map
The steps for implementing and using annotations in your map-based app are shown below. These steps
assume that your app incorporates an MKMapView object somewhere in its interface.
1. Define an appropriate annotation object using one of the following options:
● Use the MKPointAnnotation class to implement a simple annotation. This type of annotation
contains properties for specifying the title and subtitle strings to display in the annotation’s onscreen
callout bubble.
● Define a custom object that conforms to the MKAnnotation protocol, as described in “Defining a
Custom Annotation Object” (page 40). This type of annotation can store any type of data you want.
2. Define an annotation view to present the data on screen. How you define your annotation view depends
on your needs and may be one of the following:
●
If the annotation can be represented by a static image, create an instance of the MKAnnotationView
class and assign the image to its image property; see “Using the Standard Annotation Views” (page
41).
●
If you want to use a standard pin annotation, create an instance of the MKPinAnnotationView class;
see “Using the Standard Annotation Views” (page 41).
●
If a static image is insufficient for representing your annotation, subclass MKAnnotationView and
implement the custom drawing code needed to present it. For information about how to implement
custom annotation views, see “Defining a Custom Annotation View” (page 42).
3. Implement the mapView:viewForAnnotation: method in your map view delegate.
Your implementation of this method should dequeue an existing annotation view if one exists or create
a new one. If your app supports multiple types of annotations, you must include logic in this method to
create a view of the appropriate type for the provided annotation object. For more information about
implementing this method, see “Creating Annotation Views from Your Delegate Object” (page 44).
4. Add your annotation object to the map view using the addAnnotation: or addAnnotations: method.
When you add an annotation to a map view, the map view displays the corresponding annotation view
whenever the coordinate for the annotation is in the visible map rectangle. If you want to hide annotations
selectively, you must manually remove them from the map view yourself. You can add and remove annotations
at any time.
Annotating Maps
Adding Annotations to a Map
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
39All annotations are drawn at the same scale every time, regardless of the map’s current zoom level. If your map
contains many annotations, this could result in your annotation views overlapping each other as the user
zooms out. To counter this behavior, you can add and remove annotations based on the map’s current zoom
level. For example, a weather app might display information only for major cities when the map is zoomed
out to show the entire state. Asthe user zoomsin, the app could then add new annotations containing weather
information for smaller cities and regions. Implementing the logic necessary to add and remove annotations
is your responsibility.
For more information about how to manage the annotations of a map view effectively, see “Managing the
Map’s Annotation Objects” (page 46).
Defining a Custom Annotation Object
The most important part of an annotation is the annotation object, which is an object that conforms to the
MKAnnotation protocol. If all you want to do is associate a title with a map coordinate, you can use the
MKPointAnnotation classfor your annotation object. However, if you need to represent additional information
with the annotation, you need to define a custom annotation object.
A custom annotation object consists of a map coordinate and whatever other data you want to associate with
the annotation. Listing 5-1 shows the minimal code needed to declare a custom annotation class. The
coordinate property declaration isfrom the MKAnnotation protocol and must be included in all annotation
classes. Because this is a simple annotation, it also includes an initializer method, which is used to set the value
of the coordinate property, since it is read-only. Your own declaration would likely also include methods
and properties defining the additional annotation data.
Listing 5-1 Creating a simple annotation object
@interface MyCustomAnnotation : NSObject {
CLLocationCoordinate2D coordinate;
}
@property (nonatomic, readonly) CLLocationCoordinate2D coordinate;
- (id)initWithLocation:(CLLocationCoordinate2D)coord;
// Other methods and properties.
@end
Annotating Maps
Adding Annotations to a Map
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
40The implementation for your custom class must provide an implementation for the coordinate property and
a way to set its value. Because coordinate is a declared property, you can synthesize the code needed to
implement it easily enough using the @synthesize keyword. All that remains is to implement the code for
the custom initWithLocation: method, which is shown in Listing 5-2.
Listing 5-2 Implementing the MyCustomAnnotation class
@implementation MyCustomAnnotation
@synthesize coordinate;
- (id)initWithLocation:(CLLocationCoordinate2D)coord {
self = [super init];
if (self) {
coordinate = coord;
}
return self;
}
@end
Important: When you implement the coordinate property in your class, it is recommended that you
synthesize its creation. If you choose to implement the methodsfor this property yourself, or if you manually
modify the variable underlying that property in other parts of your class after the annotation has been
added to the map, be sure to send out notifications when you do. Map Kit uses KVO notifications to detect
changes to the coordinate, title, and subtitle properties of your annotations and make any needed
changes to the map display. If you do not send out KVO notifications, the position of your annotations may
not be updated properly on the map.
For more information about how to implement KVO-compliant accessor methods, see Key-Value Observing
Programming Guide .
For an example of an annotation object that is based on a Core Data object, see the sample code project
WeatherMap .
Using the Standard Annotation Views
Using one of the standard annotation views is the easiest way to present annotations on your map. The
MKAnnotationView class is a concrete view that defines the basic behavior for all annotation views. The
MKPinAnnotationView class is a subclass of MKAnnotationView that displays one of the standard system
pin images at the associated annotation’s coordinate point.
Annotating Maps
Adding Annotations to a Map
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
41The MKAnnotationView class is perfect for situations where you have a static image that you want to display
for an annotation. After creating an instance of this class, assign your custom image to the image property of
the object. When the annotation is displayed, the image is displayed centered over the target map coordinate.
If you do not want the image to be centered on the map coordinate, you can use the centerOffset property
to move the center point horizontally and vertically in any direction. Listing 5-3 shows an example of how to
create an annotation view with a custom image and offset.
Listing 5-3 Creating a standard annotation view
MKAnnotationView* aView = [[[MKAnnotationView alloc] initWithAnnotation:annotation
reuseIdentifier:@"MyCustomAnnotation"]
autorelease];
aView.image = [UIImage imageNamed:@"myimage.png"];
aView.centerOffset = CGPointMake(10, -20);
You create the standard annotation views in your delegate’s mapView:viewForAnnotation: method. For
more information about how to implement this method, see “Creating Annotation Views from Your Delegate
Object” (page 44).
Defining a Custom Annotation View
If a static image is insufficient for representing your annotation, you can subclass MKAnnotationView and
draw content dynamically in one of two ways. You can continue to use the image property of
MKAnnotationView but change the image at regular intervals, or you can also override the view’s drawRect:
method and draw your content dynamically every time. As with any custom drawing you do in a view, you
should always consider performance before choosing an approach. Custom drawing gives you the most
flexibility but if most of your content is fixed, using images may still be faster.
If you choose to define a custom annotation view, you subclass like any other view. The only difference is that
instead of subclassing UIView, you subclass MKAnnotationView as shown in Listing 5-4.
Listing 5-4 Declaring a custom annotation view
#import
#import
@interface MyCustomAnnotationView : MKAnnotationView
{
// Custom data members
Annotating Maps
Adding Annotations to a Map
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
42}
// Custom properties and methods.
@end
When drawing content using the drawRect: method, you must always remember to specify a nonzero frame
size for your annotation view shortly after initialization. The default initialization method for annotation views
does not take a frame rectangle as a parameter. Instead, it uses the image you specify in the image property
to set that frame size later. If you do not set an image, though, you must set the frame property of the view
explicitly in order for your rendered content to be visible, as shown in Listing 5-5. Because the view draws in
only part of its frame, it also sets its opaque property to NO so that the remaining map content shows through.
If you do not do this, the drawing system fills your view with the current background color before calling your
drawRect: method.
Listing 5-5 Initializing a custom annotation view
- (id)initWithAnnotation:(id)annotation reuseIdentifier:(NSString
*)reuseIdentifier
{
self = [super initWithAnnotation:annotation reuseIdentifier:reuseIdentifier];
if (self)
{
// Set the frame size to the appropriate values.
CGRect myFrame = self.frame;
myFrame.size.width = 40;
myFrame.size.height = 40;
self.frame = myFrame;
// The opaque property is YES by default. Setting it to
// NO allows map content to show through any unrendered
// parts of your view.
self.opaque = NO;
}
return self;
}
Annotating Maps
Adding Annotations to a Map
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
43In all other respects, drawing custom content in an annotation view is the same as it is in any view. The system
calls your view’s drawRect: method as needed to redraw portions of the view that need it and you can force
a redraw operation by calling the setNeedsDisplay or setNeedsDisplayInRect: method of your view
at any time. If you want to animate the contents of your view, you need to set up a timer to fire at periodic
intervals and update your view.
For information on how to set up timers, see Timer Programming Topics. For information about how views
draw content in iOS, see View Programming Guide for iOS .
Creating Annotation Views from Your Delegate Object
When it needs an annotation view, the map view calls the mapView:viewForAnnotation: method of its
delegate object. If you do not implement this method, or if you implement it and always return nil, the map
view uses a default annotation view, which is typically a pin annotation view. If you want to return annotation
views other than the default ones, you need to override the method and create your views there.
Before trying to create a new view in your mapView:viewForAnnotation: method, you should always check
to see if a similar annotation view already exists. Like table views, the map view has the option of caching
unused annotation views that it is not using. When it does this, it makes the unused views available from the
dequeueReusableAnnotationViewWithIdentifier: method. If this method returns a value other than
nil, you should update the view’s attributes and return it. If the method returns nil, just create a new instance
of the appropriate annotation view class. In both cases, it is your responsibility to take the annotation passed
to this method and assign it to your annotation view. You should also use this method to update the view
before returning it.
Listing 5-6 shows a sample implementation of the mapView:viewForAnnotation: method. This method
provides pin annotation views for custom annotation objects. If an existing pin annotation view already exists,
this method associates the annotation object with that view. If no view is in the reuse queue, this method
creates a new one, setting up the basic properties of the view and configuring an accessory view for the
annotation’s callout. If the map is currently showing the user’s location, this method returns nil for any
MKUserLocation objects so that the map uses the default annotation view.
Listing 5-6 Creating annotation views
- (MKAnnotationView *)mapView:(MKMapView *)mapView
viewForAnnotation:(id)annotation
{
// If it's the user location, just return nil.
if ([annotation isKindOfClass:[MKUserLocation class]])
return nil;
Annotating Maps
Adding Annotations to a Map
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
44// Handle any custom annotations.
if ([annotation isKindOfClass:[MyCustomAnnotation class]])
{
// Try to dequeue an existing pin view first.
MKPinAnnotationView* pinView = (MKPinAnnotationView*)[mapView
dequeueReusableAnnotationViewWithIdentifier:@"CustomPinAnnotationView"];
if (!pinView)
{
// If an existing pin view was not available, create one.
pinView = [[[MKPinAnnotationView alloc] initWithAnnotation:annotation
reuseIdentifier:@"CustomPinAnnotation"]
autorelease];
pinView.pinColor = MKPinAnnotationColorRed;
pinView.animatesDrop = YES;
pinView.canShowCallout = YES;
// Add a detail disclosure button to the callout.
UIButton* rightButton = [UIButton buttonWithType:
UIButtonTypeDetailDisclosure];
[rightButton addTarget:self action:@selector(myShowDetailsMethod:)
forControlEvents:UIControlEventTouchUpInside];
pinView.rightCalloutAccessoryView = rightButton;
}
else
pinView.annotation = annotation;
return pinView;
}
return nil;
}
Annotating Maps
Adding Annotations to a Map
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
45Managing the Map’s Annotation Objects
If your app works with more than a few annotations, you might need to think about how you manage those
objects. The map view does not make any distinction between active and inactive annotations; it considers all
annotation objectsit knows about to be active. As a result, it alwaystriesto display a corresponding annotation
view when the given coordinate point is on the screen. If the coordinatesfor two annotations are close together,
this could lead to overlap between the corresponding annotation views. And if your map includes hundreds
of annotations, zooming out far enough could lead to a visually unappealing mass of annotation views. Even
worse, the views may be so close together that the user cannot access some of them.
The only way to eliminate annotation overcrowding is to remove some of the annotation objects from the
map view. This typically involves implementing the mapView:regionWillChangeAnimated: and
mapView:regionDidChangeAnimated: methods to detect changes in the map zoom level. During a zoom
change, you can add or remove annotations as needed based on their proximity to one another. You might
also consider other criteria (such as the user’s current location) to eliminate some annotations.
In iOS 4.0 and later, Map Kit includes numerous functions to make determining the proximity of map points
easier. If you convert the map coordinate of your annotation to the map point coordinate space, you can use
the MKMetersBetweenMapPoints method to get absolute distances between two points. You can also use
each coordinate as the center of a map rectangle and use the MKMapRectIntersectsRect function to find
any intersections. For a complete list of functions, see Map Kit Functions Reference .
Marking Your Annotation View as Draggable
In iOS 4.0 and later, annotation views provide built-in dragging support. This support makes it very easy to
drag annotations around the map and to ensure that the annotation data is updated accordingly. To implement
minimal support for dragging, you must do the following:
●
In your annotation objects, implement the setCoordinate: method to allow the map view to update
the annotation’s coordinate point.
● When creating your annotation view, set its draggable property to YES.
When the user touches and holds a draggable annotation view, the map view begins a drag operation for it.
As the drag operation progresses, the map view calls the
mapView:annotationView:didChangeDragState:fromOldState: method of its delegate to notify it
of changes to the drag state of your view. You can use this method to affect or respond to the drag operation.
If you want to animate your view during a drag operation, you can do that by implementing a custom
dragState method in your annotation view. As the map view processes drag-related touch events, it updates
the dragState property of the affected annotation view. Implementing a custom dragState method gives
Annotating Maps
Adding Annotations to a Map
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
46you a chance to intercept these changes and perform additional actions, such as animate the appearance of
your view. For example, the MKPinAnnotationView class raises the pin off the map when a drag operation
starts and drops the pin back down on the map when it ends.
If you need to support draggable annotations in earlier versions of iOS, you must implement the support for
it yourself. For information and sample code showing how to do it, see “Legacy Map Techniques” (page 64).
Displaying Overlays on a Map
Overlays offer a way to layer content over an arbitrary region of the map. Whereas annotations are always
defined by a single map coordinate, overlays are typically defined by multiple coordinates. You can use these
coordinates to create contiguous or noncontiguous sets of lines, rectangles, circles, and other shapes, which
Annotating Maps
Displaying Overlays on a Map
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
47can then be filled or stroked with color. For example, you might use overlays to layer traffic information on
top of roadways, highlight the boundaries of a park, or show city, state, and national borders. Figure 5-2 shows
a filled and stroked overlay covering the state of Colorado.
Figure 5-2 Displaying an overlay on a map
In order to display an overlay on a map, your app must provide two distinct objects:
● An object that conforms to the MKOverlay protocol and manages the data points for the overlay. (This
object is the overlay object.)
● A view (derived from the MKOverlayView class) used to draw the visual representation of the overlay on
the map surface. (This is the overlay view.)
Annotating Maps
Displaying Overlays on a Map
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
48Overlay objects are typically small data objects that store the points that define the overlay and any other
relevant information, such as a title string. Because overlays are defined using a protocol, you can turn any
class in your app into an overlay object. In addition, Map Kit defines several concrete overlay objects for
specifying different types of standard shapes. The map view keeps a reference to the overlay objects you add
to it and uses the data in those objects to determine when to display a corresponding view.
Map Kit provides standard overlay views that are capable of drawing any shapes represented by the concrete
overlay objects. Like annotations, you do not add overlay views directly to the map surface. Instead, you provide
an overlay view when asked for it and let the map view incorporate that view into its opaque view hierarchy.
You provide the annotation view using your map view delegate object.
Once defined, the position of an overlay on the map typically never changes. Although it is possible to create
draggable overlays, doing so israre and you would need to implement the code to track the dragging operation
and update the overlay coordinate points yourself.
Checklist for Adding an Overlay to the Map
Here are the steps for implementing and using overlays in your map-based app. These steps assume that your
app incorporates an MKMapView object somewhere in its interface.
1. Define an appropriate overlay data object using one of the following options:
● Use the MKCircle, MKPolygon, or MKPolyline class as-is.
● Subclass MKShape or MKMultiPoint to create overlays that provide app-specific behaviors or use
custom shapes.
● Use an existing class from your app and make it conform to the MKOverlay protocol.
2. Define an overlay view to present on the screen using one of the following options:
● For standard shapes, use the MKCircleView, MKPolygonView, or MKPolylineView to represent
the annotation. You can customize many of the drawing attributes of the final shape using these
classes.
● For custom shapes descended from MKShape, define an appropriate subclass of MKOverlayPathView
to render the shape.
● For all other custom shapes and overlays, subclass MKOverlayView and implement your custom
drawing code.
3. Implement the mapView:viewForOverlay: method in your map view delegate.
4. Add your overlay data object to the map view using the addOverlay: method or one of many others.
Annotating Maps
Displaying Overlays on a Map
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
49Unlike annotations, rendered overlays are automatically scaled to match the current zoom level of the map.
Scaling the overlay is necessary because overlays generally highlight boundaries, roads, and other content
that also scales during zooming. In addition, you can rearrange their Z-ordering of overlays in a map to ensure
that specific overlays are always displayed on top of others.
Using the Standard Overlay Objects and Views
If all you want to do is highlight a specified map region, the standard overlay classes are the easiest way to do
it. The standard overlay classes include MKCircle, MKPolygon, and MKPolyline. These classes define the
basic shape of the overlay and are used in conjunction with the MKCircleView, MKPolygonView, or
MKPolylineView classes, which handle the rendering of that shape on the map surface.
Listing 5-7 shows an example of how you would create the rectangular polygon shown in Figure 5-2 (page
48). This polygon consists of four map coordinates that correspond to the four corners of the state of Colorado.
After creating the polygon, all you have to do is add it to the map using the addOverlay: method.
Listing 5-7 Creating a polygon overlay object
// Define an overlay that covers Colorado.
CLLocationCoordinate2D points[4];
points[0] = CLLocationCoordinate2DMake(41.000512, -109.050116);
points[1] = CLLocationCoordinate2DMake(41.002371, -102.052066);
points[2] = CLLocationCoordinate2DMake(36.993076, -102.041981);
points[3] = CLLocationCoordinate2DMake(36.99892, -109.045267);
MKPolygon* poly = [MKPolygon polygonWithCoordinates:points count:4];
poly.title = @"Colorado";
[map addOverlay:poly];
In order for an overlay can be shown on the map, the mapView:viewForOverlay: method of your map view
delegate needs to provide an appropriate overlay view. For the standard overlay shapes, you can do this by
creating a view that matches the type of shape you want to display. Listing 5-8 shows an implementation of
this method that creates the polygon view used to cover the state of Colorado. In this example, the method
sets the colors to use for rendering the shape and the border width.
Annotating Maps
Displaying Overlays on a Map
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
50Listing 5-8 Creating a polygon view for rendering a shape
- (MKOverlayView *)mapView:(MKMapView *)mapView viewForOverlay:(id
)overlay
{
if ([overlay isKindOfClass:[MKPolygon class]])
{
MKPolygonView* aView = [[[MKPolygonView alloc]
initWithPolygon:(MKPolygon*)overlay] autorelease];
aView.fillColor = [[UIColor cyanColor] colorWithAlphaComponent:0.2];
aView.strokeColor = [[UIColor blueColor] colorWithAlphaComponent:0.7];
aView.lineWidth = 3;
return aView;
}
return nil;
}
It is important to remember that the standard overlay views are there to simply fill and stroke the shape
represented by the overlay. If you want to display additional information, you need to create a custom overlay
view to do the necessary drawing. You should avoid adding subviews to an existing overlay in an attempt to
render any extra content. Any subviews you add to an overlay are scaled along with the overlay itself and made
to fit the zoom level of the map. Unless your subviews contain content that also scales well, the results would
probably not look very good.
Defining a Custom Overlay Object
The job of an overlay object is to manage the coordinate data and any additional information associated with
the overlay. Map Kit provides a couple of options for defining custom overlays. You can subclass MKShape or
MKMultiPoint to define new types of shape-based overlays or you can adopt the MKOverlay protocol into
one of your app’s existing classes. The choice between the two techniques depends mostly on whether you
already have a class with the data you want. If you do, you should incorporate the protocol into your existing
class; otherwise, subclass MKShape or MKMultiPoint to create a custom shape subclass.
Whether you subclass or adopt the MKOverlay protocol, the work you have to do in any custom overlay object
is the same. The main job of an overlay object is to vend two key pieces of information:
● A coordinate defining the center point of the overlay
Annotating Maps
Displaying Overlays on a Map
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
51● A bounding rectangle that completely encompasses the overlay’s content
Of the two pieces of information, the bounding rectangle isthe one that is most important to the overlay itself.
The map view uses the bounding rectangle specified by an overlay object as its cue for when to add the
corresponding overlay view to the map. (If you add the overlay to the map as an annotation as well, the
coordinate value similarly determines when the corresponding annotation view should be added to the map.)
The bounding rectangle itself must be specified using map points, not map coordinates. You can convert
between the two coordinate systems using the Map Kit functions.
Most of the real work involved with displaying an overlay isincurred by the corresponding overlay view object.
The overlay object simply defines where on the map the overlay should be placed, whereas the overlay view
defines the final appearance of the overlay, including what information (if any) is displayed for the overlay.
The creation of custom overlay views is described further in “Defining a Custom Overlay View” (page 52).
Defining a Custom Overlay View
If you want to do more than draw the boundaries or fill the content of your overlay shape, you need to create
a custom overlay view. Custom overlays give you the opportunity to draw any content you want. For example,
if you are drawing a traffic overlay, you could use a custom overlay view to color-code each roadway based
on its conditions. You can also use custom drawing code to animate your overlay’s appearance.
To create a custom overlay view, you mustsubclass MKOverlayView. (If you simply want to modify the drawing
behavior of an existing shape-based overlay, you can subclass MKOverlayPathView instead.) In your custom
implementation, you should implement the following methods:
● drawMapRect:zoomScale:inContext: to draw your custom content
● canDrawMapRect:zoomScale: if your drawing code depends on content that might not always be
available
The canDrawMapRect:zoomScale: method is for situations where your content may not always be ready
to draw. For example, a traffic overlay would need to download the needed traffic data from the network
before it could draw. If you return NO from this method, the map view refrains from drawing your view until
you signal that you are ready. You can do this by marking your view as dirty using either the
setNeedsDisplayInMapRect: or setNeedsDisplayInMapRect:zoomScale: method.
When your view is ready to draw, the map view calls the drawMapRect:zoomScale:inContext: method
to do the actual drawing. Unlike drawing in a normal view, drawing in an overlay view involves some special
considerations, including the following:
Annotating Maps
Displaying Overlays on a Map
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
52● Your drawing code should never use the view’s bounds or frame as reference points for drawing. Instead,
it should use the map points associated with the overlay object to define shapes. Immediately before
drawing, it should then convert those map points to points (CGPoint and so on) using the conversion
routines found in the MKOverlayView class.
Also, you typically do not apply the zoom scale value passed to this method directly to your content.
Instead, you provide it only when a Map Kit function or method specifically requires it. As long as you
specify content using map points and convert to points, your content should be scaled to the correct size
automatically.
●
If you use UIKit classes and functions to draw, you must explicitly set up and clean up the drawing
environment. Before issuing any calls, call the UIGraphicsPushContext function to make the context
passed to your method the current context. When you are done drawing, call UIGraphicsPopContext
to remove that context.
● Remember that the map view may tile large overlays and render each tile on a separate thread. Your
drawing code should therefore not attempt to modify variables or other data unless it can do so in a
thread-safe manner.
Listing 5-9 shows the drawing code used to fill the bounding rectangle of an overlay using a gradient. When
drawing gradients, it is especially important to contain the drawing operation by applying a clipping rectangle
to the desired drawing area. The view’s frame is actually larger than the overlay’s bounding rectangle, so
without a clipping rectangle, the gradient would render outside the expected area. Because the bounding
rectangle of the overlay definesthe actualshape in this case, this method simply clipsto the bounding rectangle.
For more complex overlays, you would want to clip to the path representing your overlay. The results of this
drawing code are shown in Figure 5-3 (page 55).
Listing 5-9 Drawing a gradient in a custom overlay view
- (void)drawMapRect:(MKMapRect)mapRect zoomScale:(MKZoomScale)zoomScale
inContext:(CGContextRef)context
{
// Get the overlay bounding rectangle.
MKMapRect theMapRect = [self.overlay boundingMapRect];
CGRect theRect = [self rectForMapRect:theMapRect];
// Clip the context to the bounding rectangle.
CGContextAddRect(context, theRect);
CGContextClip(context);
// Set up the gradient color and location information.
Annotating Maps
Displaying Overlays on a Map
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
53CGColorSpaceRef myColorSpace = CGColorSpaceCreateDeviceRGB();
CGFloat locations[4] = {0.0, 0.33, 0.66, 1.0};
CGFloat components[16] = {0.0, 0.0, 1.0, 0.5,
1.0, 1.0, 1.0, 0.8,
1.0, 1.0, 1.0, 0.8,
0.0, 0.0, 1.0, 0.5};
// Create the gradient.
CGGradientRef myGradient = CGGradientCreateWithColorComponents(myColorSpace,
components, locations, 4);
CGPoint start, end;
start = CGPointMake(CGRectGetMidX(theRect), CGRectGetMinY(theRect));
end = CGPointMake(CGRectGetMidX(theRect), CGRectGetMaxY(theRect));
// Draw.
CGContextDrawLinearGradient(context, myGradient, start, end, 0);
// Clean up.
CGColorSpaceRelease(myColorSpace);
CGGradientRelease(myGradient);
}
Annotating Maps
Displaying Overlays on a Map
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
54Figure 5-3 shows the results of drawing custom content over the overlay for the state of Colorado. In this case,
the overlay view fills its content with a custom gradient.
Figure 5-3 Using a custom overlay view to draw
Creating Overlay Views from Your Delegate Object
When it needs an overlay view, the map view calls the mapView:viewForOverlay: method of its delegate
object. If you do not implement this method, or if you implement it and always return nil, the map view does
not display anything for the specified overlay. Therefore, you must implement this method and return a valid
overlay view for any overlays you want displayed on the map.
For the most part, every overlay is different. Although you should always create your overlay views in your
mapView:viewForOverlay: method, you may need to be a little more creative in how you configure those
views. If all of your views share the same drawing attributes, you can implement this method in a way similar
Annotating Maps
Displaying Overlays on a Map
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
55to the one shown in Listing 5-8 (page 51). However, if each overlay uses different colors or drawing attributes,
you should find a way to initialize that information using the annotation object, rather than having a large
decision tree in this method.
Because overlays are typically different from one another, the map view does not recycle those views when
they are removed from the map. Instead of dequeueing an existing overlay view, you must create a new overlay
view every time.
Managing the Map’s Overlay Objects
If your app works with more than one overlay, you might need to think about how to manage those objects.
Like annotations, the overlays associated with a map are always displayed when any portion of the overlay
intersects the visible portion of the map. Unlike annotations, overlays scale proportionally with the map and
therefore do not automatically overlap one another. This means, you are less likely to have to remove overlays
and add them later to prevent overcrowding. In cases where the bounding rectangles of two overlays do
overlap, you can either remove one of the overlays or arrange their Z-order to control which one appears on
top.
The overlays property of the MKMapView class stores the registered overlays in an ordered array. The order
of the objects in this array matches the Z-order of the objects at render time, with the first object in the array
representing the bottom of the Z-order. To place an overlay on top of all other overlays, you add it to the end
of this array. You can also insert objects at different pointsin the array and exchange the position of two objects
in the array using the map view’s methods.
If you decide to implement some type of overlap-detection algorithm for overlays, one place to do so is in the
mapView:didAddOverlayViews: method of your map view delegate. When this method is called, you can
use the MKMapRectIntersectsRect function to see if the added overlay intersects the bounds of any other
overlays. If there is an overlap, use whatever custom logic is needed to choose which one should be placed
on top in the rendering tree and exchange positions as needed. (Because the map view is an interface item,
any modifications to the overlays array should be synchronized and performed on the app’s main thread.
The actual comparisons may occur on a different thread, though.)
Using Overlays as Annotations
The MKOverlay protocol conforms to the MKAnnotation protocol. As a result, all overlay objects are also
annotation objects and can be treated as one or both in your code. If you opt to treat an overlay object as
both, you are responsible for managing that object in two places. If you want to display both an overlay view
Annotating Maps
Using Overlays as Annotations
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
56and annotation view for it, you must implement both the mapView:viewForOverlay: and
mapView:viewForAnnotation: methodsin your app delegate. It also meansthat you must add and remove
the object from both the overlays and annotations arrays of your map.
Annotating Maps
Using Overlays as Annotations
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
57In iOS 6 and later, Map Kit offerssupport for providing map-based directionsto the user. Apps can be a provider
of directions or they can use the Maps app itself to provide directions. Appsthat consume direction information
do so by sending an appropriate request to the Maps app, which then handles the task of displaying that
information to the user. However, if you are implementing a navigation app of your own, you can register your
app as a routing app—that is, a provider of directions. When the Maps app receives direction requests from
the user (or other apps), it can then forward those requests to your app for display.
Asking the Maps App to Display Directions
Map Kit provides a way for you to display specific map locations or turn-by-turn directions using the Maps
app. This support allows apps to use the Maps app in situations where you might not want to display the map
data yourself. For example, if your app does not have its own turn-by-turn navigation services, you can ask
Maps to provide the information for you.
To generate a direction request, use the openMapsWithItems:launchOptions: or
openInMapsWithLaunchOptions: method of MKMapItem. These methods let you send map items to the
Maps app so that it can display them. If you include the MKLaunchOptionsDirectionsModeKey key with
the launch options you pass to these methods, Maps attempts to display directions from the start and end
points you specify.
For information about how to use these methods, see MKMapItem Class Reference .
Registering as a Routing App
Apps that are able to display point-to-point directions can register as a routing app and make those directions
available to the Maps app and to all other apps on a user’s device by extension. Registering as a routing app
improves the user experience by giving other apps a means to access routing information from your app, thus
avoiding the need for every app to provide its own routing directions. It is also a great way to get your app in
front of the user. Maps always displays appropriate suggestions from the App Store as options for displaying
directions.
To register your app as a directions provider, you must do the following:
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
58
Providing Directions● Configure your app’s Info.plist with the keys needed to indicate the type of directions your app offers
and the handlers you use to process incoming directions requests.
● Declare the map regions that your app supports using a geographic coverage file (specified using a
GeoJSON file).
● Process direction request URLs when they are sent to your app.
Configuring Your App to Accept Direction Requests
To enable directions support for your app, you must configure the following support for your app target in
Xcode:
● Enable directions support for your app.
● Configure a special document type to handle requests for directions.
You enable directions support in the Maps section of your target’s Summary tab. In addition to enabling
directions, you also specify the types of directions (pedestrian, car, subway, and so on) your app is able to
provide. Enabling directions support adds the MKDirectionsApplicationSupportedModes key to your
app’s Info.plist file and sets the value of the key to the transportation modes you select. These keys act as
a signal to the system (and to iTunes Connect) that your app provides directions and has an associated GeoJSON
file. (For more information about specifying the GeoJSON file, see “Declaring the Supported Geographic
Coverage for Directions” (page 60).)
In addition to declaring the types of directions your app supports, you need to declare support for a special
document type. The Maps app uses this document type to send URLs with direction requests to your app. To
add the document type, use the Xcode document type editor, located in the Info tab of your target. After
adding a new document type, use the information in Table 6-1 to set the values for the type. You should use
the values in this table exactly as they appear here.
Table 6-1 Keys and values for the directions request document type
Xcode field Value Description
The value in this field can be anything
you want, but you are encouraged to
use the suggested value.
Name MKDirectionsRequest
The value of this key is a custom UTI
type used to identify direction requests.
The value of this key must be exactly
as shown here.
Types com.apple.maps.directionsrequest
Providing Directions
Registering as a Routing App
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
59The changes you make in the document types editor cause Xcode to add a corresponding entry to the
CFBundleDocumentTypes key in your app’s Info.plist file. For more information about your app’s
Info.plist file and the keys you put into it, see Information Property List Key Reference .
Declaring the Supported Geographic Coverage for Directions
Apps must declare the geographic regions for which they are capable of providing directions. Declaring the
supported regions prevents the system from sending requests that your app is unable to handle. For example,
if your app provides subway route information only for New York, you would not want it to receive requests
to provide directions in London.
To declare your app’s supported regions, you must create a GeoJSON file, which is a type of JavaScript Object
Notation (JSON) file. This is your app’s geographic coverage file and it contains a set of map coordinates that
define the boundaries of one or more geographic regions. The format of thisfile is part of a public specification,
the details of which you can obtain at http://geojson.org/geojson-spec.html.
Your geographic coverage file is used by the Maps app and the App Store, but not by your app. Uploading it
to iTunes Connect makes it possible for Maps to look up apps on the App Store that are capable of providing
directions in the target region. It can then provide the user with that information in case the user wants to
download one of those apps. Because you upload it to iTunes Connect, you can also update the file at any
time without submitting a new version of your app.
Specifying the Geographic Coverage File Contents
The geographic coverage file for an iOS app must contain a single MultiPolygon shape that defines the
boundaries of the supported geographic regions. A single multi polygon may contain any number of child
polygons, each of which defines the boundaries around a single geographic region. Each polygon contains
four or more coordinate valuesthat define the boundaries of the polygon. Per the GeoJSON specification, every
polygon must represent a closed region—that is, the first and last coordinate values must always be identical.
Therefore, you must specify at least four points to define a triangular region, which is the simplest possible
shape. Of course, you can use include more points to define more complex polygons.
Listing 6-1 shows an example of a geographic coverage file that specifies two separate regions: one around
San Francisco and one around Chicago. Note that the set of coordinates for each region are surrounded by
whatseem to be an extra set of brackets. In each case, the first open bracket marksthe beginning of the overall
polygon shape, the second open bracket defines the beginning of the exterior bounding polygon, and the
third open bracket marks the beginning of the first coordinate. After closing the exterior bounding polygon,
you could add additional sets of points that define holes in the polygonal region.
Providing Directions
Registering as a Routing App
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
60Listing 6-1 A sample GeoJSON file
{ "type": "MultiPolygon",
"coordinates": [
[[[-122.7, 37.3], [-121.9, 37.3], [-121.9, 37.9], [-122.7, 37.9], [-122.7,
37.3]]],
[[[-87.9, 41.5], [-87.3, 41.5], [-87.3, 42.1], [-87.9, 42.1], [-87.9, 41.5]]]
]
}
Use the following guidelines to help you when defining the regions for your app:
● Keep your regions simple and do not try to trace precise routes around a given geographic area. Although
you can technically use hundreds of coordinates to define a region, doing so is inefficient and usually
unnecessary. The system has to determine whether a given point is inside one of your polygons. Using a
shape that contains hundreds of points is far less efficient than specifying a rectangular polygon around
the region.
● Only specify regions for which you can provide useful directions to the user.
● Use only MultiPolygon shape in your app’s coverage file. Although the GeoJSON specification supports
other types of shapes, only MultiPolygon shapes are supported for routing apps.
● Do not include comments in your coverage file.
● All coordinates must be specified as a longitude followed by a latitude value.
● The polygonsin your coverage files must not include holes. Although holes are supported by the GeoJSON
specification, they are not supported in Apple’s maps implementation.
Uploading Your GeoJSON File to iTunes Connect
When you upload your app to iTunes Connect, the server checks your app’s Info.plist file for the presence
of the MKDirectionsApplicationSupportedModes key. If that key is present, the iTunes Connect page
for your app includes a space for uploading your geographic coverage file. You must upload the file before
your app can be approved. See “Uploading Icons, Screenshots, and Routing Files for Your App” in iTunes Connect
Developer Guide for more information.
Debugging Your App’s Geographic Coverage File
During development, you use the scheme options of your Xcode project to specify the geographic coverage
file to use during testing. When you run your app in the simulator, Xcode transfers this file to the simulator or
device so that the Maps app knows about the regions your app supports. The content of this file should be
identical to the file you plan to upload to iTunes Connect.
Providing Directions
Registering as a Routing App
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
61To specify the geographic coverage file for testing, do the following:
1. Open the scheme editor for your project.
2. Select the Run (Debug) scheme for your project.
3. In the Options tab, select your coverage file from the Routing App Coverage File popup menu.
After installing your app on the device or simulator, exit your app and launch the Maps app to specify the start
and end points for directions. Your app should appear if its geographic coverage file is valid and contains the
two specified points. If it does not, check the pointsfor your geographical regionsto make sure they are correct.
Note: If you are running in the simulator and the Maps does not display your app as one of the
possible options, check the Console app for any possible error messages. Mapsreports any problems
it encounters when reading your app’s GeoJSON to the console output rather than to Xcode.
Handling Direction Requests
The system sends direction requests to your app using URLs. When the user asks the Maps app for directions
and chooses your app, Maps creates a URL with the start and end points and asks your app to open it. You
handle the opening of this URL in your app’s application:openURL:sourceApplication:annotation:
method, just like you would for other URLs. But the steps you take to processthe URL are a little more prescribed.
When your app receives a URL to open, it should perform the following steps in its
application:openURL:sourceApplication:annotation: method:
1. Call the isDirectionsRequestURL: class method of MKDirectionsRequest to check whether the
URL is a directions request URL. If it is a directions request, proceed with the remaining steps.
2. Create an MKDirectionsRequest object using the provided URL.
3. Obtain the start and end points of the route from the MKDirectionsRequest object.
The start and end points are specified as MKMapItem objects, which contain the geographic coordinate
of the location and possibly additional information. If the MKMapItem object represents the user’s current
location, you need to use Core Location to retrieve the actual coordinate location data yourself.
4. Compute and display the route using your custom routing technology.
Because the preceding steps are the same for every app, you can include code in your
application:openURL:sourceApplication:annotation: method similar to that shown in Listing 6-2.
The most important addition you must make is to compute the route information and display it in your app.
If your app handles other URL types, you would also include code for processing those URLs separately.
Providing Directions
Registering as a Routing App
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
62Listing 6-2 Handling a directions request URL
- (BOOL)application:(UIApplication *)application
openURL:(NSURL *)url
sourceApplication:(NSString *)sourceApplication
annotation:(id)annotation {
if ([MKDirectionsRequest isDirectionsRequestURL:url]) {
MKDirectionsRequest* directionsInfo = [[MKDirectionsRequest alloc]
initWithContentsOfURL:url];
// TO DO: Plot and display the route using the
// source and destination properties of directionsInfo.
return YES;
}
else {
// Handle other URL types...
}
return NO;
}
For additional information about using the MKDirectionsRequest class, see MKDirectionsRequest Class
Reference .
Providing Directions
Registering as a Routing App
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
63Creating Draggable Annotations in Earlier Versions of iOS
If you want to support draggable annotationsin iOS 3.x, you must implement the code for tracking drag-related
touches yourself. Although they live in a special layer above the map content, annotation views are full-fledged
views capable of receiving touch events. You can use these events to detect hits within the view and initiate
a drag operation.
Note: Because maps are displayed in a scrolling interface, there is typically a short delay between
the time the user touches your custom view and the time corresponding events are delivered. This
delay gives the underlying scroll view a chance to determine whether the touch event is part of a
scrolling gesture.
The following sequence of code listings shows you how to implement a user-movable annotation view in iOS
3.x. In this example, the annotation view displays a bulls-eye image directly over the annotation’s coordinate
point and includes a custom accessory view for displaying details about the target.
Listing A-1 shows the definition of the BullseyeAnnotationView class. The class includes some additional
member variables that it uses during tracking to move the view correctly. It also stores a pointer to the map
view itself, the value for which is set by the code in the mapView:viewForAnnotation: method when it
creates or reinitializes the annotation view. The map view object is needed when event tracking is finished to
adjust the map coordinate of the annotation object.
Listing A-1 The BullseyeAnnotationView class
@interface BullseyeAnnotationView : MKAnnotationView
{
BOOL isMoving;
CGPoint startLocation;
CGPoint originalCenter;
MKMapView* map;
}
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
64
Legacy Map Techniques@property (assign,nonatomic) MKMapView* map;
- (id)initWithAnnotation:(id)annotation;
@end
@implementation BullseyeAnnotationView
@synthesize map;
- (id)initWithAnnotation:(id)annotation
{
self = [super initWithAnnotation:annotation
reuseIdentifier:@"BullseyeAnnotation"];
if (self)
{
UIImage* theImage = [UIImage imageNamed:@"bullseye32.png"];
if (!theImage)
return nil;
self.image = theImage;
self.canShowCallout = YES;
self.multipleTouchEnabled = NO;
map = nil;
UIButton* rightButton = [UIButton buttonWithType:
UIButtonTypeDetailDisclosure];
[rightButton addTarget:self action:@selector(myShowAnnotationAddress:)
forControlEvents:UIControlEventTouchUpInside];
self.rightCalloutAccessoryView = rightButton;
}
return self;
}
@end
Legacy Map Techniques
Creating Draggable Annotations in Earlier Versions of iOS
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
65When a touch event first arrives in a bulls-eye view, the touchesBegan:withEvent: method of that class
records information about the initial touch event, as shown in Listing A-2. It uses this information later in its
touchesMoved:withEvent: method to adjust the position of the view. All location information is stored in
the coordinate space of the superview.
Listing A-2 Tracking the view’s location
@implementation BullseyeAnnotationView (TouchBeginMethods)
- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
{
// The view is configured for single touches only.
UITouch* aTouch = [touches anyObject];
startLocation = [aTouch locationInView:[self superview]];
originalCenter = self.center;
[super touchesBegan:touches withEvent:event];
}
- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event
{
UITouch* aTouch = [touches anyObject];
CGPoint newLocation = [aTouch locationInView:[self superview]];
CGPoint newCenter;
// If the user's finger moved more than 5 pixels, begin the drag.
if ((abs(newLocation.x - startLocation.x) > 5.0) ||
(abs(newLocation.y - startLocation.y) > 5.0))
isMoving = YES;
// If dragging has begun, adjust the position of the view.
if (isMoving)
{
newCenter.x = originalCenter.x + (newLocation.x - startLocation.x);
newCenter.y = originalCenter.y + (newLocation.y - startLocation.y);
self.center = newCenter;
}
Legacy Map Techniques
Creating Draggable Annotations in Earlier Versions of iOS
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
66else // Let the parent class handle it.
[super touchesMoved:touches withEvent:event];
}
@end
When the userstops dragging an annotation view, you need to adjust the coordinate of the original annotation
to ensure the view remains in the new position. Listing A-3 shows the touchesEnded:withEvent: method
forthe BullseyeAnnotationView class. Thismethod usesthemapmember variable to convertthe pixel-based
point into a map coordinate value. Because the coordinate property of an annotation is normally read-only,
the annotation object in this case implements a custom changeCoordinate method to update the value it
stores locally and reports using the coordinate property. If the touch event was canceled for some reason,
the touchesCancelled:withEvent: method returns the annotation view to its original position.
Listing A-3 Handling the final touch events
@implementation BullseyeAnnotationView (TouchEndMethods)
- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event
{
if (isMoving)
{
// Update the map coordinate to reflect the new position.
CGPoint newCenter = self.center;
BullseyeAnnotation* theAnnotation = self.annotation;
CLLocationCoordinate2D newCoordinate = [map convertPoint:newCenter
toCoordinateFromView:self.superview];
[theAnnotation changeCoordinate:newCoordinate];
// Clean up the state information.
startLocation = CGPointZero;
originalCenter = CGPointZero;
isMoving = NO;
}
else
[super touchesEnded:touches withEvent:event];
}
Legacy Map Techniques
Creating Draggable Annotations in Earlier Versions of iOS
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
67- (void)touchesCancelled:(NSSet *)touches withEvent:(UIEvent *)event
{
if (isMoving)
{
// Move the view back to its starting point.
self.center = originalCenter;
// Clean up the state information.
startLocation = CGPointZero;
originalCenter = CGPointZero;
isMoving = NO;
}
else
[super touchesCancelled:touches withEvent:event];
}
@end
Legacy Map Techniques
Creating Draggable Annotations in Earlier Versions of iOS
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
68This table describes the changes to Location Awareness Programming Guide .
Date Notes
2012-09-19 Added information about how to support custom routing directions.
2011-10-12 Added information about the new Core Location geocoders.
2010-05-20 Added information about region monitoring.
Added information about creating overlays.
Expanded the existing information about maps and annotations.
Updated the location-related sections to cover new technologies for
obtaining the user’s location.
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
69
Document Revision HistoryApple Inc.
© 2012 Apple Inc.
All rights reserved.
No part of this publication may be reproduced,
stored in a retrievalsystem, or transmitted, in any
form or by any means, mechanical, electronic,
photocopying, recording, or otherwise, without
prior written permission of Apple Inc., with the
following exceptions: Any person is hereby
authorized to store documentation on a single
computer for personal use only and to print
copies of documentation for personal use
provided that the documentation contains
Apple’s copyright notice.
No licenses, express or implied, are granted with
respect to any of the technology described in this
document. Apple retains all intellectual property
rights associated with the technology described
in this document. This document is intended to
assist application developers to develop
applications only for Apple-labeled computers.
Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010
Apple, the Apple logo, Chicago, iTunes, New York,
Objective-C, and Xcode are trademarks of Apple
Inc., registered in the U.S. and other countries.
App Store is a service mark of Apple Inc.
Java is a registered trademark of Oracle and/or
its affiliates.
iOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.
Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THIS
DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE.ASARESULT, THISDOCUMENT IS PROVIDED
“AS IS,” AND YOU, THE READER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY AND ACCURACY.
IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL,OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS DOCUMENT, even if advised of
the possibility of such damages.
THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple dealer,
agent, or employee is authorized to make any
modification, extension, or addition to this warranty.
Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have other
rights which vary from state to state.

Shark User Guide
(Legacy)Contents
Introduction 12
Overview 12
Philosophy 12
Organization of This Document 13
Getting Started with Shark 16
Main Window 16
Mini Configuration Editors 18
Perform Sampling 18
Session Windows and Files 19
Session Files 20
Session Information Sheet 21
Session Report 22
Advanced Settings Drawer 22
Shark Preferences 23
Time Profiling 28
Statistical Sampling 28
Taking a Time Profile 30
Profile Browser 31
Heavy View 35
Tree View 35
Profile Display Preferences 37
Chart View 39
Advanced Chart View Settings 42
Code Browser 45
Assembly Browser 48
Advanced Code Browser Settings 50
ISA Reference Window 54
Tips and Tricks 56
Example: Optimizing MPEG-2 using Time Profiles 58
Base 58
Vectorization 60
Retired Document | 2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
2System Tracing 63
Tracing Methodology 63
Basic Usage 64
Interpreting Sessions 66
Summary View In-depth 67
Trace View In-depth 73
Timeline View In-depth 77
Sign Posts 90
Tips and Tricks 93
Other Profiling and Tracing Techniques 97
Time Profile (All Thread States) 97
Malloc Trace 101
Using a Malloc Trace 102
Advanced Display Options 105
Static Analysis 107
Using Shark with Java Programs 108
Java Tracing Techniques 109
Linking Shark with the Java Virtual Machine 110
Event Counting and Profiling Overview 111
Timed Counters: The Performance Counter Spreadsheet 111
Event-Driven Counters: Correlating Events with Your Code 119
Advanced Profiling Control 122
Process Attach 122
Process Launch 122
Batch Mode 125
Windowed Time Facility (WTF) 125
WTF with System Trace 127
Unresponsive Application Measurements 128
Command Line Shark 129
Basic Methodology 130
Common Options 131
Target Selection 132
Reports 133
Custom Configurations 133
More Information 134
Interprocess Remote Control 134
Programmatic Control 134
Command Line Remote Control 137
Retired Document | 2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
3
ContentsNetwork/iPhone Profiling 138
Using Shared Profiling Mode 141
Mac OS X Firewall Considerations 143
Advanced Session Management and Data Mining 145
Automatic Symbolication Troubleshooting 145
Symbol Lookup 145
Debugging Information 146
Manual Session Symbolication 146
Managing Sessions 150
Comparing Sessions 150
Merging Sessions 151
Data Mining 151
Callstack Data Mining 152
Perf Count Data Mining 157
Example: Using Data Mining with a Time Profile 158
A Performance Problem... 158
Taking Samples 160
High Level Analysis 162
Analysis Via Source Navigation 163
Introduction To Focusing 168
Dig Deeper by Charging Costs 173
Example: Graphical Analysis using Chart View with a Malloc Trace 176
Taking Samples 176
Graphical Analysis of a Malloc Trace 179
Custom Configurations 183
The Config Editor 184
Simple Timed Samples and Counters Config Editor 186
Malloc Data Source PlugIn Editor 189
Static Analysis Data Source PlugIn Editor 190
Java Trace Data Source PlugIn Editor 191
Sampler Data Source PlugIn Editor 192
System Trace Data Source PlugIn Editor 193
All Thread States Data Source PlugIn Editor 194
Analysis and Viewer PlugIn Summary 195
Counter Spreadsheet Analysis PlugIn Editor 196
Using the Editor 196
Spreadsheet Configuration Example 199
Retired Document | 2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
4
ContentsHardware Counter Configuration 202
Configuring the Sampling Technique: The Sampling Tab 202
Common Elements in Performance Counter Configuration Tabs 206
Counter Control 206
Privilege Level Filtering 207
Process Marking 207
MacOS X OS-Level Counters Configuration 208
Intel CPU Performance Counter Configuration 209
PowerPC G3/G4/G4+ CPU Performance Counter Configuration 211
PowerPC G5 (970) Performance Counter Configuration 213
PowerPC North Bridge Counter Configuration 221
U1.5/U2 North Bridges 222
U3 North Bridge 223
U4 (Kodiak) North Bridge 226
ARM11 CPU Performance Counter Configuration 229
Command Reference 230
Menu Reference 230
Shark 230
File 230
Edit 231
Format 233
Config 233
Sampling 234
Data Mining 235
Window 235
Help 236
Alphabetical Reference 236
Miscellaneous Topics 242
Code Analysis with the G5 (PPC970) Model 242
Supervisor Space Sampling Guidelines 243
Intel Core Performance Counter Event List 246
Intel Core 2 Performance Counter Event List 252
PPC 750 (G3) Performance Counter Event List 263
PPC 7400 (G4) Performance Counter Event List 265
Retired Document | 2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
5
ContentsPPC 7450 (G4+) Performance Counter Event List 271
PPC 970 (G5) Performance Counter Event List 282
UniNorth-2 (U1.5/2) Performance Counter Event List 315
UniNorth-3 (U3) Performance Counter Event List 318
Kodiak (U4) Performance Counter Event List 322
ARM11 Performance Counter Event List 326
Document Revision History 328
Retired Document | 2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
6
ContentsFigures, Tables, and Listings
Getting Started with Shark 16
Figure 1-1 Main Window 16
Figure 1-2 Process Target 17
Figure 1-3 Mini Configuration Editor 18
Figure 1-4 Session Inspector Panel 21
Figure 1-5 Sample Window with Advanced Settings Drawer visible at right 23
Figure 1-6 Shark Preferences — Appearance 24
Figure 1-7 Shark Preferences — Sampling 25
Figure 1-8 Shark Preferences — Sessions 26
Figure 1-9 Shark Preferences — Search Paths 27
Time Profiling 28
Figure 2-1 Execution Before Sampling 29
Figure 2-2 Sampling Results 29
Figure 2-3 Time Profile mini-configuration editor 31
Figure 2-4 The Profile Browser 32
Figure 2-5 Tuning Advice 33
Figure 2-6 Callstack Table 34
Figure 2-7 Heavy Profile View Detail 35
Figure 2-8 Tree Profile View 36
Figure 2-9 Profile Analysis Preferences 37
Figure 2-10 Chart View 40
Figure 2-11 Advanced Settings for the Chart View 44
Figure 2-12 Code Browser 45
Figure 2-13 Hot Spot Scrollbar 47
Figure 2-14 Assembly Browser 50
Figure 2-15 Advanced Settings for the Code Browser 53
Figure 2-16 x86 Asm Browser Advanced Settings 54
Figure 2-17 ARM Asm Browser Advanced Settings 54
Figure 2-18 ISA Reference Window 55
Figure 2-19 Original Time Profile, with Tuning Advice 59
Figure 2-20 Code Browser with Vectorization Hint 61
Figure 2-21 Time Profile after Vectorizing IDCT 61
Table 2-1 MPEG-2 Performance Improvement 61
Retired Document | 2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
7System Tracing 63
Figure 3-1 Time Profile vs. System Trace Comparison 64
Figure 3-2 System Trace Mini Config Editor 65
Figure 3-3 Summary View 67
Figure 3-4 Summary View: Scheduler 68
Figure 3-5 Summary View: System Calls 69
Figure 3-6 Summary View: VM Faults 71
Figure 3-7 Summary View Advanced Settings Drawer 72
Figure 3-8 Trace View: Scheduler 74
Figure 3-9 Trace View: System Calls 75
Figure 3-10 Trace View: VM Faults 77
Figure 3-11 Timeline View 78
Figure 3-12 Timeline View: Thread Run Intervals 79
Figure 3-13 Thread Run Interval Inspector 79
Figure 3-14 Timeline View: System Calls 81
Figure 3-15 System Call Inspector 82
Figure 3-16 Timeline View: VM Faults 83
Figure 3-17 VM Fault Inspector 84
Figure 3-18 Interrupt Inspector 85
Figure 3-19 Sign Post Inspector 86
Figure 3-20 Timeline View Advanced Settings Drawer 89
Listing 3-1 ~/Library/Application Support/Shark/KDebugCodes/myFirstSignPosts 90
Listing 3-2 signPostExample.c 92
Listing 3-3 testKernelSignPost.c 92
Other Profiling and Tracing Techniques 97
Figure 4-1 Time Profile (All Thread States) mini configuration editor 98
Figure 4-2 Time Profile (All Thread States) session, heavy view 99
Figure 4-3 Time Profile (All Thread States) session, tree view 100
Figure 4-4 Malloc Trace mini configuration editor 102
Figure 4-5 Malloc Trace session, profile browser 103
Figure 4-6 Malloc Trace session, chart view 104
Figure 4-7 Enabling Malloc Trace Advanced Options 105
Figure 4-8 Additional Malloc Trace Charts 106
Figure 4-9 Static Analysis mini configuration editor 108
Figure 4-10 How Shark-for-Java differs from regular Shark configurations 109
Figure 4-11 Performance Counter Spreadsheet 114
Figure 4-12 Counters Menu 115
Figure 4-13 Performance Counter Spreadsheet: Advanced Settings 116
Retired Document | 2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
8
Figures, Tables, and ListingsFigure 4-14 Chart View with additional timed counter graphs 121
Advanced Profiling Control 122
Figure 5-1 Process Attach 122
Figure 5-2 Launch Process Panel 123
Figure 5-3 Batch Mode 125
Figure 5-4 Normal Profiling Workflow 126
Figure 5-5 Windowed Time Facility Workflow 126
Figure 5-6 The Windowed Time Facility Timeline 128
Figure 5-7 Unresponsive Application Triggering 129
Figure 5-8 Samples Taken for Towers of Hanoi N=10..20 137
Figure 5-9 Network/iPhone Manager 139
Figure 5-10 Command Line Shark in Network Profiling Mode 142
Figure 5-11 Sharing Firewall Warning Dialog 143
Figure 5-12 Firewall Sharing Preferences, while adding a new port range for Shark 144
Listing 5-1 Towers of Hanoi Source Code 135
Listing 5-2 Instrumented Towers of Hanoi 135
Advanced Session Management and Data Mining 145
Figure 6-1 Session Inspector: Symbols 147
Figure 6-2 Symbolication Dialog 148
Figure 6-3 Before Symbolication 149
Figure 6-4 After Symbolication 150
Figure 6-5 Example Callstacks 153
Figure 6-6 Heavy View 153
Figure 6-7 Tree View 154
Figure 6-8 Data Mining Advanced Settings 155
Figure 6-9 Contextual Data Mining Menu 157
Figure 6-10 Perf Count Data Mining Palette 158
Figure 6-11 Example Shapes 159
Figure 6-12 Example Shapes, Replicated 160
Figure 6-13 Sampling a Specific Process 161
Figure 6-14 Default Profile View 161
Figure 6-15 Navigation Via the Call-Stack Pane 163
Figure 6-16 Navigation Via the Call-Stack Pane with Tree View 163
Figure 6-17 Source View: SKTGraphicView selectAll 164
Figure 6-18 Source View: NSObject 165
Figure 6-19 Source View: SKTGraphicView selectGraphic 166
Figure 6-20 Source View: SKTGraphicView invalidateGraphic 167
Figure 6-21 Tree view before focusing 168
Retired Document | 2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
9
Figures, Tables, and ListingsFigure 6-22 Data Mining Contextual Menu 168
Figure 6-23 After Focus Symbol -[SKTGraphicView drawRect:] 169
Figure 6-24 After focus and expansion 170
Figure 6-25 Source View: SKTGraphic drawInView:isSelected: 171
Figure 6-26 Source View: SKGraphic drawHandlesInView: 172
Figure 6-27 Source View: SKGraphic drawHandleAtPoint:inView: 173
Figure 6-28 Heavy View of Focused Sketch 174
Figure 6-29 Expanded Heavy View of Focused Sketch 174
Figure 6-30 After Charge Library libRIP.A.dylib 175
Figure 6-31 After Flatten Library 175
Figure 6-32 Malloc Trace Main Window 177
Figure 6-33 Result of Malloc Sampling 178
Figure 6-34 Chart View 179
Figure 6-35 Place to Select 180
Figure 6-36 Graph View with Call-Stack Pane 182
Custom Configurations 183
Figure 7-1 Main Configuration Menu 183
Figure 7-2 Config Editor 186
Figure 7-3 Simple Timed Samples and Counters Data Source - Sampling Tab 187
Figure 7-4 Simple Timed Samples and Counters Data Source - Counter Settings 188
Figure 7-5 Malloc Data Source - Sampling Settings 189
Figure 7-6 Static Analysis Data Source - Settings 190
Figure 7-7 Java Trace Data Source - Sampling Settings 191
Figure 7-8 Sampler Data Source - Settings 192
Figure 7-9 System Trace Data Source - Settings 193
Figure 7-10 All Thread States Data Source - Settings 194
Figure 7-11 Counter Spreadsheet Analysis 196
Figure 7-12 Choosing a counter-based starting configuration 199
Figure 7-13 Enabling two performance counters 200
Figure 7-14 Performance Spreadsheet: Shortcut Equation 201
Hardware Counter Configuration 202
Figure 8-1 Timed Samples & Counters Data Source - Advanced Sampling Tab 203
Figure 8-2 A typical set of performance counter controls 206
Figure 8-3 Process Marker 208
Figure 8-4 MacOS X Performance Counters Configuration 209
Figure 8-5 Intel Core 2 Configuration Tab 211
Figure 8-6 PowerPC G4+ Configuration Tab (G3 and G4 are similar) 213
Figure 8-7 PowerPC 970 Processor Performance Counters Configuration 215
Retired Document | 2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
10
Figures, Tables, and ListingsFigure 8-8 PowerPC 970 IMC (IFU) Configuration Tab 217
Figure 8-9 PowerPC 970 IMC (IDU) Configuration Tab 221
Figure 8-10 U1.5/U2 Configuration Tab 223
Figure 8-11 U3 Memory Configuration Tab 225
Figure 8-12 U3 API Configuration Tab 226
Figure 8-13 U4 (Kodiak) Memory Configuration Tab 227
Figure 8-14 U4 (Kodiak) API Configuration Tab 228
Figure 8-15 ARM11 Counter Configuration Tab 229
Miscellaneous Topics 242
Figure B-1 PPC970 Resource Modeling 243
Figure B-2 Timer Sampling in the Kernel 244
Figure B-3 CPU PMI Sampling in the Kernel 245
Retired Document | 2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
11
Figures, Tables, and ListingsImportant: This document may not represent best practices for current development. Links to downloads
and other resources may no longer be valid.
Overview
Shark is a tool for performance understanding and optimization. Why is it called “Shark?” Performance tuning
requires a hunter’s mentality, and no animal is as pure in this quest as a shark. A shark is also an expert in his
field — one who uses all potential resources to achieve his goals. The name “Shark” embodies the spirit and
emotion you should have when tuning your code.
To help you analyze the performance of your code, Shark allows you to profile the entire system (kernel and
drivers as well as applications). At the simplest level, Shark profiles the system while your code is running to
see where time is being spent. It can also produce profiles of hardware and software performance events such
as cache misses, virtual memory activity, memory allocations, function calls, or instruction dependency stalls.
This information is an invaluable first step in your performance tuning effort so you can see which parts of
your code or the system are the bottlenecks.
In addition to showing you where time is being spent, Shark can give you advice on how to improve your
code. Shark is capable of identifying many common performance pitfalls and visually presents the costs of
these problems to you.
Philosophy
The first and most important step when optimizing your code is to determine what to optimize. In a program
of moderate complexity, there can be thousands of different code paths. Optimizing all of them is normally
impractical due to deadlines and limited programmer resources. There are also more subtle tradeoffs between
optimized code and portability and maintenance that limit candidates for optimization.
Here are a few general guidelines for finding a good candidate for optimization:
1. It should be time-critical. This is generally any operation that is perceptibly slow; the user has to wait for
the computer to finish doing something before continuing. Optimizing functionality that is already faster
than the user can perceive is usually unnecessary.
Retired Document | 2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
12
Introduction2. It must be relevant. Optimizing functionality that is rarely used is usually counter-productive.
3. It shows up as a hot spot in a time profile. If there is no obvious hot spot in your code or you are spending
a lot of time in system libraries, performance is more likely to improve through high-level improvements
(architectural changes).
Low-level optimizationstypically focus on a single segment of code and make it a better match to the hardware
and software systemsit is being run on. Examples of low-level optimizationsinclude using vector or cache hint
instructions. High-level optimizations include algorithmic or other architectural changes to your program.
Examples of high-level optimizations include data structure choice (for example, switching from a linked list
to a hash-table) or replacing calls to computationally expensive functions with a cache or lookup table.
Remember, it is critical to profile before investing your time and effort in optimization. Sadly, many programmers
invest prodigious amounts of effort optimizing what their intuition tellsthem isthe performance-criticalsection
of code only to realize no performance improvement. Profiling quickly reveals that bottlenecks often lie far
from where programmers might assume they are. Using Shark, you can focus your optimization efforts on both
algorithmic changes and tuning performance-critical code. Often, even small changesto a critical piece of code
can yield large overall performance improvements.
By default, Shark creates a profile of execution behavior by periodically interrupting each processor in the
system and sampling the currently running process, thread, and instruction address as well as the function
callstack. Along with this contextual information, Shark can record the values of hardware and software
performance counters. Each counter is capable of counting a wide variety of performance events. In the case
of processor and memory controller counters, these include detailed, low-level information that is otherwise
impossible to know without a simulator. The overhead for sampling with Shark is extremely low because all
sample collection takes place in the kernel and is based on hardware interrupts. A typical sample incurs an
overhead on the order of 20µs. This overhead can be significantly larger if callstack recording is enabled and
a virtual memory fault is incurred while saving the callstack. Time profiles generated by Shark are statistical in
nature; they give a representative view of what wasrunning on the system during a sampling session . Samples
can include all of the processes running on the system from both user and supervisor code, or samples can be
limited to a specific process or execution state. Shark’s sampling period can be an arbitrary time interval (timer
sampling). Shark also has the ability to use a performance event as the sampling trigger (event sampling).
Using event sampling, it is possible to associate performance events such as cache misses or instruction stalls
with the code that caused them. Additionally, Shark can generate exact profiles for specific function calls or
memory allocations.
Organization of This Document
This manual is organized into four major sections, each consisting of two or three chapters, plus several
appendices. Here is a brief “roadmap” to help you orient yourself:
Introduction
Organization of This Document
Retired Document | 2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
13● Getting Started with Shark— This introduction and “Getting Started with Shark” (page 16) are designed
to give you an overall introduction to Shark. After covering some basic philosophy here, “Getting Started
with Shark” (page 16) describes basic ways to use Shark to sample your applications, features of the
Session windows that open after you sample your applications, and the use of Shark’s global preferences.
● Profiling Configurations— Three chapters discuss Shark’s default Configurations — its methods of
collecting samples from your system or applications — and presentation of the sampled results in Session
windows. These chapters are probably the most important ones. “Time Profiling” (page 28) discusses Time
Profiling , the most frequently used configuration, which gives a statistical profile of processor utilization.
System Tracing , discussed in “System Tracing” (page 63), provides an exact trace of user-kernel transitions,
and is useful both to debug interactions between your program and the underlying system and to provide
a “microscope” to examine multithreaded programming issues in detail. After the complete chapters
devoted to these two configurations, the remainder are covered in “Other Profiling and Tracing
Techniques” (page 97). Time Profile (All Thread States) is a variant of Time Profile that also samples blocked
threads, and as a result is a good way to get an overview of locking behavior in multithreaded applications.
Malloc Trace allows you to examine memory allocation and deallocation activity in detail. Shark can apply
Static Analysis to your application in order to quickly examine rarely-traversed code paths. Equivalents
for Time Profile , Malloc Trace , and an exact Call Trace , all customized for use with Java applications, are
also available. Finally, the chapter gives an overview of Shark’s extensive performance counter recording
and analysis capabilities.
● Advanced Techniques—Shark’s basic techniquesforsampling and analysis are sufficient for most purposes,
but with complex applications you may need more sophisticated techniques. “Advanced Profiling
Control” (page 122) covers waysto start and stop Shark’ssampling very precisely, allowing you to carefully
control what issampled, in advance. You can also learn how to control Shark remotely from other machines
or even to control Shark running on iOS devices attached to your machine in this chapter. “Advanced
Session Management and Data Mining” (page 145) looks at Shark’s symbol management and data mining
techniques, which are ways to very precisely select subsets of your samples for examination after they are
taken.
● Custom Configurations— Shark is not just limited to its default configurations. If you want to save your
own custom settings for a configuration or create a new one from scratch, then you will want to check
out chapters “Custom Configurations” (page 183) and “Hardware Counter Configuration” (page 202). The
first describes how you may make adjustments to the existing configurations, while the latter covers the
many options relating to the use of hardware performance counters. Because there are so many different
possible combinations of performance counters, only a limited number of the possibilities are covered by
the default configurations. Hence, thisislikely to be the main area where the use of custom configurations
will be necessary for typical Shark users.
● Appendices— The first appendix, “Command Reference” (page 230), provides a brief reference to Shark’s
menu commands. The second, “Miscellaneous Topics” (page 242), describes several minor, miscellaneous
options that do not really fit in anywhere else or are of interest only to a small minority of Shark users. The
Introduction
Organization of This Document
Retired Document | 2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
14remainder of the appendices (“Intel Core Performance Counter Event List” (page 246), “Intel Core 2
Performance Counter Event List” (page 252), “PPC 750 (G3) Performance Counter Event List” (page 263),
“PPC 7400 (G4) Performance Counter Event List” (page 265), “PPC 7450 (G4+) Performance Counter Event
List” (page 271),“PPC 970 (G5) Performance Counter Event List” (page 282),“UniNorth-2 (U1.5/2) Performance
Counter Event List” (page 315), “UniNorth-3 (U3) Performance Counter Event List” (page 318), and “Kodiak
(U4) Performance Counter Event List” (page 322)) provide a reference for the performance counters that
you can measure with Shark.
Introduction
Organization of This Document
Retired Document | 2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
15Starting to use Shark is a relatively simple process. You only need to choose one or two items from menus and
press a big “Start” button in order to start sampling your applications. This chapter describes these basic steps
and a few other general Shark features, such as its preferences.
Main Window
Figure 1-1 Main Window
After launching Shark, you will be presented with Shark’s main window, as illustrated in Figure 1-1. The default
sampling configuration istimer-based sampling (Time Profile) of everything running on the system. By default,
the Time Profile configuration uses a 1 ms timer as the trigger for sampling and will record for 30 seconds
(30,000 samples per processor). Opening the Sampling Configuration menu (#1) allows you to select from
various built-in profiling configurations. Here is a list:
● Time Profile— This configuration, the default, performs timer-based sampling, interrupting your system
after a regular interval and taking a sample of what is executing. It is a great starting point, as it allows
you to very quickly see what code in your application is actually executing most frequently. Knowing this
isthe firststep to successfully optimizing CPU-bound applications. See “Time Profiling” (page 28) for more
information.
● System Trace—This configuration records an exact trace of callsinto the Mac OS X kernel by your program,
and which threads are running. It is useful for examining your program’s interactions with Mac OS X and
for visualizing how your threads are interacting in multithreaded programs. System Trace is discussed in
depth in “System Tracing” (page 63).
● Time Profile (All Thread States)— This variation on time profiling also records the state of all blocked,
inactive threads. As a result, it’s a great way to see how much and why your threads are blocked. This is
quite helpful in the development of multithreaded programs that do a lot of synchronization. This
configuration is described in “Time Profile (All Thread States)” (page 97).
Retired Document | 2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
16
Getting Started with Shark● Malloc Trace— If your program allocates and deallocates a lot of memory, performance can suffer and
the odds of accidental memory leaks increase. Shark can help you find and analyze these allocations.
“Malloc Trace” (page 101) talks about this more.
● Static Analysis— Shark can provide some basic optimization hints without actually running code. See
“Static Analysis” (page 107) for more information.
●
Java Profiling— Because Java programs run within the Java Virtual Machine (JVM), normally sampling
them with Shark produces little useful information. However, Shark also includes several configurations
that simulate the normal Time Profile , Malloc Trace , and even an exact trace of method calls, but while
collecting information about what the JVM is executing instead of the native machine. A full description
of these options and how to attach Shark to your Java programs is given in “Using Shark with Java
Programs” (page 108).
● Hardware Measurements— The L2 cache miss and Processor Bandwidth (x86 systems) or Memory
Bandwidth (PowerPC systems) configurations measure memory system activity using counters built into
the hardware. They are a great way to see how your program is being slowed because of poor cache
memory use. See “Event Counting and Profiling Overview” (page 111) for an overview of Shark’s counter
measurement capabilities.
These built-in configurations are adequate for sampling most applications. After you have used Shark for
awhile, however, you may decide that you would like to sample something in your application that is not
covered by the built-in collection of options. In particular, you may want to perform hardware measurements
using countersthat are not used by the default hardware measurement configurations. The processfor building
your own configurations is described in “Custom Configurations” (page 183). This process is complex enough
that you should probably familiarize yourself with Shark before attempting the creation of configurations.
By default, Shark samples your entire system, as indicated by the “Everything” item selected for you in the
Target pop-up menu (#2). Popping open this menu allows you to select a specific process or file (Figure 1-2).
You may also choose different targets using the keyboard: Command-1 for everything, Command-2 for an
executing process, and Command-3 for a file. For a Time Profile , it is unnecessary to select a specific target,
but others like Malloc Trace and Static Analysis require you to target a specific process or file. If you select the
“Process” target, you can also choose to launch a new process. See “Process Attach” (page 122) and “Process
Launch” (page 122) for full instructions on the process attaching and launching target selection techniques.
Figure 1-2 Process Target
Getting Started with Shark
Main Window
Retired Document | 2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
17Mini Configuration Editors
Each configuration typically has a few parameters that are frequently modified. Shark allows you to edit these
easily using themini configuration editors associated with each configuration. You can enablemini configuration
editors by selecting the Config ShowMini Config Editor menu item(Command-Shift-C). Mostmini configuration
editors are similar to the one depicted in “Shark Preferences,” but all have small configuration-specific variations.
The selection of controls available in each min configuration editor are described in the chapters associated
with each type of configuration.
Figure 1-3 Mini Configuration Editor
Perform Sampling
After you choose what you would like to sample (or trace, with some configurations) and how, then actually
using Shark to sample your program is extremely simple. There are two main ways to start sampling:
1. Click the Start button (#3 in “Main Window”).
2. Press the current “Hot Key” (Option-Esc , by default).
Shark will emit a brief tone and the Shark icon in the dock will turn bright red to let you know that Shark is
now actively sampling. At this point, you should exercise your program appropriately to trigger the execution
of code that you want to measure. Sometimes this may require no active input on your part, but if you are
measuring something like user interface performance then you may need to manually perform several steps
while Shark samples.
Getting Started with Shark
Perform Sampling
Retired Document | 2012-07-23 | © 2012 Apple Inc. All Rights Reserved.
18

Drawing and Printing
Guide for iOSContents
About Drawing and Printing in iOS 7
At a Glance 7
Custom UI Views Allow Greater Drawing Flexibility 8
Apps Can Draw Into Offscreen Bitmaps or PDFs 10
Apps Have a Range of Options for Printing Content 10
It’s Easy to Update Your App for High-Resolution Screens 11
See Also 11
iOS Drawing Concepts 12
The UIKit Graphics System 12
The View Drawing Cycle 13
Coordinate Systems and Drawing in iOS 13
Points Versus Pixels 16
Obtaining Graphics Contexts 18
Color and Color Spaces 20
Drawing with Quartz and UIKit 20
Configuring the Graphics Context 21
Creating and Drawing Paths 23
Creating Patterns, Gradients, and Shadings 24
Customizing the Coordinate Space 24
Applying Core Animation Effects 27
About Layers 27
About Animations 28
Accounting for Scale Factors in Core Animation Layers 28
Drawing Shapes Using Bézier Paths 30
Bézier Path Basics 30
Adding Lines and Polygons to Your Path 31
Adding Arcs to Your Path 32
Adding Curves to Your Path 34
Creating Oval and Rectangular Paths 35
Modifying the Path Using Core Graphics Functions 35
Rendering the Contents of a Bézier Path Object 36
Doing Hit-Detection on a Path 38
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
2Drawing and Creating Images 40
Drawing Images 40
Creating New Images Using Bitmap Graphics Contexts 41
Generating PDF Content 45
Creating and Configuring the PDF Context 45
Drawing PDF Pages 48
Creating Links Within Your PDF Content 50
Printing 52
Printing in iOS is Designed to be Simple and Intuitive 52
The Printing User Interface 52
How Printing Works in iOS 56
The UIKit Printing API 57
Printing Support Overview 58
Printing Workflow 59
Printing Printer-Ready Content 61
Using Print Formatters and Page Renderers 63
Setting the Layout Properties for the Print Job 63
Using a Print Formatter 65
Using a Page Renderer 69
Testing the Printing of App Content 73
Common Printing Tasks 73
Testing for Printing Availability 73
Specifying Print-Job Information 74
Specifying Paper Size, Orientation, and Duplexing Options 75
Integrating Printing Into Your User Interface 76
Responding to Print-Job Completion and Errors 79
Improving Drawing Performance 80
Supporting High-Resolution Screens In Views 82
Checklist for Supporting High-Resolution Screens 82
Drawing Improvements That You Get for Free 82
Updating Your Image Resource Files 83
Loading Images into Your App 83
Using an Image View to Display Multiple Images 84
Updating Your App’s Icons and Launch Images 85
Drawing High-Resolution Content Using OpenGL ES or GLKit 85
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
3
ContentsLoading Images 88
System Support for Images 89
UIKit Image Classes and Functions 89
Other Image-Related Frameworks 90
Supported Image Formats 90
Maintaining Image Quality 91
Document Revision History 92
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
4
ContentsFigures, Tables, and Listings
About Drawing and Printing in iOS 7
Figure I-1 You can combine custom views with standard views, and even draw things offscreen. 7
iOS Drawing Concepts 12
Figure 1-1 The relationship between drawing coordinates, view coordinates, and hardware coordinates
14
Figure 1-2 Default coordinate systems in iOS 15
Figure 1-3 A one-point line centered at a whole-numbered point value 17
Figure 1-4 Appearance of one-point-wide lines on standard and retina displays 18
Figure 1-5 Arc rendering in Core Graphics versus UIKit 26
Table 1-1 Core graphics functions for modifying graphics state 21
Drawing Shapes Using Bézier Paths 30
Figure 2-1 Shape drawn with methods of the UIBezierPath class 32
Figure 2-2 An arc in the default coordinate system 33
Figure 2-3 Curve segments in a path 34
Listing 2-1 Creating a pentagon shape 31
Listing 2-2 Creating a new arc path 33
Listing 2-3 Assigning a new CGPathRef to a UIBezierPath object 35
Listing 2-4 Mixing Core Graphics and UIBezierPath calls 36
Listing 2-5 Drawing a path in a view 37
Listing 2-6 Testing points against a path object 38
Drawing and Creating Images 40
Listing 3-1 Drawing a scaled-down image to a bitmap context and obtaining the resulting image 42
Listing 3-2 Drawing to a bitmap context using Core Graphics functions 43
Generating PDF Content 45
Figure 4-1 Creating a link destination and jump point 51
Listing 4-1 Creating a new PDF file 46
Listing 4-2 Drawing page-based content 48
Printing 52
Figure 5-1 System item action button—used for printing 53
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
5Figure 5-2 Printer-options popover view (iPad) 53
Figure 5-3 Printer-options sheet (iPhone) 54
Figure 5-4 Print Center 55
Figure 5-5 Print Center: detail of print job 56
Figure 5-6 Printing architecture 57
Figure 5-7 Relationships of UIKit printing objects 57
Figure 5-8 The layout of a multi-page print job 65
Table 5-1 Deciding how to print app content 58
Listing 5-1 Printing a single PDF document with capability for page-range selection 62
Listing 5-2 Printing an HTML document (without header information) 66
Listing 5-3 Printing the contents of a web view 68
Listing 5-4 Drawing the header and footer of a page 71
Listing 5-5 Enabling or disabling a print button based on availability of printing 74
Listing 5-6 Setting properties of a UIPrintInfo object and assigning it to the printInfo property 74
Listing 5-7 Setting the printing orientation to match image dimension 75
Listing 5-8 Implementing the printInteractionController:choosePaper: method 76
Listing 5-9 Presenting printing options based upon current device type 77
Listing 5-10 Implementing a completion-handler block 79
Improving Drawing Performance 80
Table A-1 Tips for improving drawing performance 80
Supporting High-Resolution Screens In Views 82
Listing B-1 Initializing a render buffer’s storage and retrieving its actual dimensions 85
Loading Images 88
Table C-1 Usage scenarios for images 88
Table C-2 Supported image formats 90
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
6
Figures, Tables, and ListingsThis document covers three related subjects:
● Drawing custom UI views. Custom UI views allow you to draw content that cannot easily be drawn with
standard UI elements. For example, a drawing program might use a custom view for the user’s drawing,
or an arcade game might use a custom view into which it draws sprites.
● Drawing into offscreen bitmap and PDF content. Whether you plan to display the images later, export
them to a file, or print the images to an AirPrint-enabled printer, offscreen drawing lets you do so without
interrupting the user’s workflow.
● Adding AirPrint support to your app. The iOS printing system lets you draw your content differently to fit
on the page.
Figure I-1 You can combine custom views with standard views, and even draw things offscreen.
At a Glance
The iOS native graphics system combines three major technologies: UIKit, Core Graphics, and Core Animation.
UIKit provides views and some high-level drawing functionality within those views, Core Graphics provides
additional (lower-level) drawing support within UIKit views, and Core Animation provides the ability to apply
transformations and animation to UIKit views. Core Animation is also responsible for view compositing.
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
7
About Drawing and Printing in iOSCustom UI Views Allow Greater Drawing Flexibility
This document describes how to draw into custom UI views using native drawing technologies. These
technologies, which include the Core Graphics and UIKit frameworks, support 2D drawing.
Before you consider using a custom UI view, you should make certain that you really need to do so. Native
drawing is suitable for handling more complex 2D layout needs. However, because custom views are
processor-intensive, you should limit the amount of drawing you do using native drawing technologies.
As an alternative to custom drawing, an iOS app can draw things onscreen in several other ways.
● Using standard (built-in) views. Standard viewslet you draw common user-interface primitives, including
lists, collections, alerts, images, progress bars, tables, and so on without the need to explicitly draw anything
yourself. Using built-in views not only ensures a consistent user experience between iOS apps, but also
saves you programming effort. If built-in views meet your needs, you should read ViewProgramming Guide
for iOS .
● Using Core Animation layers. Core Animation lets you create complex, layered 2D views with animation
and transformations. Core Animation is a good choice for animating standard views, or for combining
views in complex ways to present the illusion of depth, and can be combined with custom-drawn views
as described in this document. To learn more about Core Animation, read Core Animation Overview.
● Using OpenGL ES in a GLKit view or a custom view. The OpenGL ES framework provides a set of
open-standard graphics libraries geared primarily toward game development or apps that require high
frame rates, such as virtual prototyping apps and mechanical and architectural design apps. It conforms
to the OpenGL ES 2.0 and OpenGL ES v1.1 specifications. To learn more about OpenGL drawing, read
OpenGL ES Programming Guide for iOS .
● Using web content. The UIWebView class lets you display web-based user interfaces in an iOS app. To
learn more about displaying web content in a web view, read Using UIWebView to display select document
types and UIWebView Class Reference .
Depending on the type of app you are creating, it may be possible to use little or no custom drawing code.
Although immersive apps typically make extensive use of custom drawing code, utility and productivity apps
can often use standard views and controls to display their content.
The use of custom drawing code should be limited to situations where the content you display needsto change
dynamically. For example, a drawing app typically needsto use custom drawing code to track the user’s drawing
commands, and an arcade-style game may need to update the screen constantly to reflect the changing game
environment. In those situations, you should choose an appropriate drawing technology and create a custom
view class to handle events and update the display appropriately.
About Drawing and Printing in iOS
At a Glance
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
8On the other hand, if the bulk of your app’s interface is fixed, you can render the interface in advance to one
or more image files and display those images at runtime using the UIImageView class. You can layer image
views with other content as needed to build your interface. You can also use the UILabel class to display
configurable text and include buttons or other controls to provide interactivity. For example, an electronic
version of a board game can often be created with little or no custom drawing code.
Because custom views are generally more processor-intensive (with less help from the GPU), if you can do
what you need to do using standard views, you should always do so. Also, you should make your custom views
as small as possible, containing only content that you cannot draw in any other way, use use standard views
for everything else. If you need to combine standard UI elements with custom drawing, consider using a Core
Animation layer to superimpose a custom view with a standard view so that you draw as little as possible.
A Few Key Concepts Underpin Drawing With the Native Technologies
When you draw content with UIKit and Core Graphics, you should be familiar with a few concepts in addition
to the view drawing cycle.
● For the drawRect: method, UIKit creates a graphics context for rendering to the display. This graphics
context contains the information the drawing system needs to perform drawing commands, including
attributes such as fill and stroke color, the font, the clipping area, and line width. You can also create and
draw into custom graphics context for bitmap images and PDF content.
● UIKit has a default coordinate system where the origin of drawing is at the top-left of a view; positive
values extend downward and to the right of that origin. You can change the size, orientation, and position
of the default coordinate system relative to the underlying view or window by modifying the current
transformation matrix, which maps a view’s coordinate space to the device screen.
●
In iOS, the logical coordinate space, which measures distances in points, is not equal to the device
coordinate space, which measures in pixels. For greater precision, points are expressed in floating-point
values.
Relevant Chapter: “iOS Drawing Concepts” (page 12)
UIKit, Core Graphics, and Core Animation Give Your App Many Tools For Drawing
The UIKit and Core Graphics have many complementary graphics capabilitiesthat encompass graphics contexts,
Bézier paths, images, bitmaps, transparency layers, colors, fonts, PDF content, and drawing rectangles and
clipping areas. In addition, Core Graphics has functions related to line attributes, color spaces, pattern colors,
gradients, shadings, and image masks. The Core Animation framework enables you to create fluid animations
by manipulating and displaying content created with other technologies.
About Drawing and Printing in iOS
At a Glance
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
9Relevant Chapters: “iOS Drawing Concepts” (page 12), “Drawing Shapes Using Bézier Paths” (page
30), “Drawing and Creating Images” (page 40), “Generating PDF Content” (page 45)
Apps Can Draw Into Offscreen Bitmaps or PDFs
It is often useful for an app to draw content offscreen:
● Offscreen bitmap contexts are often used when scaling down photographs for upload, rendering content
into an image file for storage purposes, or using Core Graphics to generate complex images for display.
● Offscreen PDF contexts are often used when drawing user-generated content for printing purposes.
After you create an offscreen context, you can draw into it just as you would draw within the drawRect:
method of a custom view.
Relevant Chapters: “Drawing and Creating Images” (page 40), “Generating PDF Content” (page
45)
Apps Have a Range of Options for Printing Content
As of iOS 4.2, apps can print content wirelessly to supported printers using AirPrint. When assembling a print
job, they have three ways to give UIKit the content to print:
● They can give the framework one or more objects that are directly printable; such objects require minimal
app involvement. These are instances of the NSData, NSURL, UIImage, or ALAsset classes containing or
referencing image data or PDF content.
● They can assign a print formatter to the print job. A print formatter is an object that can lay out content
of a certain type (such as plain text or HTML) over multiple pages.
● They can assign a page renderer to the print job. A page renderer is usually an instance of a custom subclass
of UIPrintPageRenderer that draws the content to be printed in part or in full. A page renderer can
use one or more print formatters to help it draw and format its printable content.
About Drawing and Printing in iOS
At a Glance
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
10Relevant Chapter: “Printing” (page 52)
It’s Easy to Update Your App for High-Resolution Screens
Some iOS devices feature high-resolution screens, so your app must be prepared to run on these devices and
on devices with lower-resolution screens. iOS handles much of the work required to handle the different
resolutions, but your app must do the rest. Your tasksinclude providing specially named high-resolution images
and modifying your layer- and image-related code to take the current scale factor into account.
Relevant Appendix: “Supporting High-Resolution Screens In Views” (page 82)
See Also
For complete examples of printing, see the PrintPhoto , Recipes and Printing , and PrintWebView sample code
projects.
About Drawing and Printing in iOS
See Also
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
11High-quality graphics are an important part of your app’s user interface. Providing high-quality graphics not
only makes your app look good, but it also makes your app look like a natural extension to the rest of the
system. iOS provides two primary paths for creating high-quality graphics in your system: OpenGL or native
rendering using Quartz, Core Animation, and UIKit. This document describes native rendering. (To learn about
OpenGL drawing, see OpenGL ES Programming Guide for iOS .)
Quartz isthe main drawing interface, providing support for path-based drawing, anti-aliased rendering, gradient
fill patterns, images, colors, coordinate-space transformations, and PDF document creation, display, and parsing.
UIKit provides Objective-C wrappers for line art, Quartz images, and color manipulations. Core Animation
provides the underlying support for animating changes in many UIKit view properties and can also be used to
implement custom animations.
This chapter provides an overview of the drawing process for iOS apps, along with specific drawing techniques
for each of the supported drawing technologies. You will also find tips and guidance on how to optimize your
drawing code for the iOS platform.
Important: Not all UIKit classes are thread safe. Be sure to check the documentation before performing
drawing-related operations on threads other than your app’s main thread.
The UIKit Graphics System
In iOS, all drawing to the screen—regardless of whether it involves OpenGL, Quartz, UIKit, or Core
Animation—occurs within the confines of an instance of the UIView class or a subclass thereof. Views define
the portion of the screen in which drawing occurs. If you use system-provided views, this drawing is handled
for you automatically. If you define custom views, however, you must provide the drawing code yourself. If
you use Quartz, Core Animation, and UIKit to draw, you use the drawing concepts described in the following
sections.
In addition to drawing directly to the screen, UIKit also allows you to draw into offscreen bitmap and PDF
graphics contexts. When you draw in an offscreen context, you are not drawing in a view, which means that
concepts such as the view drawing cycle do not apply (unless you then obtain that image and draw it in an
image view or similar).
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
12
iOS Drawing ConceptsThe View Drawing Cycle
The basic drawing model forsubclasses of the UIView classinvolves updating content on demand. The UIView
class makes the update process easier and more efficient; however, by gathering the update requests you
make and delivering them to your drawing code at the most appropriate time.
When a view is first shown or when a portion of the view needs to be redrawn, iOS asks the view to draw its
content by calling the view’s drawRect: method.
There are several actions that can trigger a view update:
● Moving or removing another view that was partially obscuring your view
● Making a previously hidden view visible again by setting its hidden property to NO
● Scrolling a view off of the screen and then back onto the screen
● Explicitly calling the setNeedsDisplay or setNeedsDisplayInRect: method of your view
System views are redrawn automatically. For custom views, you must override the drawRect: method and
perform all your drawing inside it. Inside your drawRect: method, use the native drawing technologies to
draw shapes, text, images, gradients, or any other visual content you want. The first time your view becomes
visible, iOS passes a rectangle to the view’s drawRect: method that contains your view’s entire visible area.
During subsequent calls, the rectangle includes only the portion of the view that actually needsto be redrawn.
For maximum performance, you should redraw only affected content.
After calling your drawRect: method, the view marks itself as updated and waits for new actions to arrive
and trigger another update cycle. If your view displays static content, then all you need to do is respond to
changes in your view’s visibility caused by scrolling and the presence of other views.
If you want to change the contents of the view, however, you must tell your view to redraw its contents. To
do this, call the setNeedsDisplay or setNeedsDisplayInRect: method to trigger an update. For example,
if you were updating content several times a second, you might want to set up a timer to update your view.
You might also update your view in response to user interactions or the creation of new content in your view.
Important: Do not call your view’s drawRect: method yourself. That method should be called only by
code built into iOS during a screen repaint. At other times, no graphics context exists, so drawing is not
possible. (Graphics contexts are explained in the next section.)
Coordinate Systems and Drawing in iOS
When an app draws something in iOS, it has to locate the drawn content in a two-dimensional space defined
by a coordinate system. This notion mightseem straightforward at first glance, but it isn’t. Appsin iOS sometimes
have to deal with different coordinate systems when drawing.
iOS Drawing Concepts
The UIKit Graphics System
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
13In iOS, all drawing occurs in a graphics context. Conceptually, a graphics context is an object that describes
where and how drawing should occur, including basic drawing attributes such as the colors to use when
drawing, the clipping area, line width and style information, font information, compositing options, and so on.
In addition, as shown in Figure 1-1 (page 14), each graphics context has a coordinate system. More precisely,
each graphics context has three coordinate systems:
● The drawing (user) coordinate system. This coordinate system is used when you issue drawing commands.
● The view coordinate system (base space). This coordinate system is a fixed coordinate system relative to
the view.
● The (physical) device coordinate system. This coordinate system represents pixels on the physical screen.
Figure 1-1 The relationship between drawing coordinates, view coordinates, and hardware coordinates
The drawing frameworks of iOS create graphics contexts for drawing to specific destinations—the screen,
bitmaps, PDF content, and so on—and these graphics contexts establish the initial drawing coordinate system
for that destination. This initial drawing coordinate system is known as the default coordinate system, and is
a 1:1 mapping onto the view’s underlying coordinate system.
Each view also has a current transformation matrix (CTM), a mathematical matrix that maps the points in the
current drawing coordinate system to the (fixed) view coordinate system. The app can modify this matrix (as
described later) to change the behavior of future drawing operations.
Each of the drawing frameworks of iOS establishes a default coordinate system based on the current graphics
context. In iOS, there are two main types of coordinate systems:
iOS Drawing Concepts
The UIKit Graphics System
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
14● An upper-left-origin coordinate system (ULO), in which the origin of drawing operationsis at the upper-left
corner of the drawing area, with positive values extending downward and to the right. The default
coordinate system used by the UIKit and Core Animation frameworks is ULO-based.
● A lower-left-origin coordinate system (LLO), in which the origin of drawing operations is at the lower-left
corner of the drawing area, with positive values extending upward and to the right. The default coordinate
system used by Core Graphics framework is LLO-based.
These coordinate systems are shown in Figure 1-2.
Figure 1-2 Default coordinate systems in iOS
UIKit Core Graphics
(0.0, 0.0)
(0.0, 0.0)
Note: The default coordinate system in OS X is LLO-based. Although the drawing functions and
methods of the Core Graphics and AppKit frameworks are perfectly suited to this default coordinate
system, AppKit provides programmatic support for flipping the drawing coordinate system to have
an upper-left origin.
Before calling your view’s drawRect: method, UIKit establishes the default coordinate system for drawing to
the screen by making a graphics context available for drawing operations. Within a view’s drawRect: method,
an app can set graphics-state parameters (such as fill color) and draw to the current graphics context without
needing to refer to the graphics context explicitly. This implicit graphics context establishes a ULO default
coordinate system.
iOS Drawing Concepts
The UIKit Graphics System
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
15Points Versus Pixels
In iOS there is a distinction between the coordinates you specify in your drawing code and the pixels of the
underlying device. When using native drawing technologies such as Quartz, UIKit, and Core Animation, the
drawing coordinate space and the view’s coordinate space are both logical coordinate spaces, with distances
measured in points. These logical coordinate systems are decoupled from the device coordinate space used
by the system frameworks to manage the pixels onscreen.
The system automatically maps points in the view’s coordinate space to pixels in the device coordinate space,
but this mapping is not always one-to-one. This behavior leads to an important fact that you should always
remember:
One point does not necessarily correspond to one physical pixel.
The purpose of using points (and the logical coordinate system) is to provide a consistent size of output that
is device independent. For most purposes, the actualsize of a point isirrelevant. The goal of pointsisto provide
a relatively consistentscale that you can use in your code to specify the size and position of views and rendered
content. How points are actually mapped to pixels is a detail that is handled by the system frameworks. For
example, on a device with a high-resolution screen, a line that is one point wide may actually result in a line
that is two physical pixels wide. The result is that if you draw the same content on two similar devices, with
only one of them having a high-resolution screen, the content appears to be about the same size on both
devices.
In iOS, the UIScreen, UIView, UIImage, and CALayer classes provide properties to obtain (and, in some
cases, set) a scale factor that describes the relationship between points and pixels for that particular object.
For example, every UIKit view has a contentScaleFactor property. On a standard-resolution screen, the
scale factor is typically 1.0. On a high-resolution screen, the scale factor is typically 2.0. In the future, other scale
factors may also be possible. (In iOS prior to version 4, you should assume a scale factor of 1.0.)
Native drawing technologies, such as Core Graphics, take the current scale factor into account for you. For
example, if one of your views implements a drawRect: method, UIKit automatically sets the scale factor for
that view to the screen’sscale factor. In addition, UIKit automatically modifiesthe current transformation matrix
of any graphics contexts used during drawing to take into account the view’s scale factor. Thus, any content
you draw in your drawRect: method is scaled appropriately for the underlying device’s screen.
Because of this automatic mapping, when writing drawing code, pixels usually don’t matter. However, there
are times when you might need to change your app’s drawing behavior depending on how points are mapped
to pixels—to download higher-resolution images on devices with high-resolution screens or to avoid scaling
artifacts when drawing on a low-resolution screen, for example.
iOS Drawing Concepts
The UIKit Graphics System
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
16In iOS, when you draw things onscreen, the graphics subsystem uses a technique called antialiasing to
approximate a higher-resolution image on a lower-resolution screen. The best way to explain this technique
is by example. When you draw a black vertical line on a solid white background, if that line falls exactly on a
pixel, it appears as a series of black pixels in a field of white. If it appears exactly between two pixels, however,
it appears as two grey pixels side-by-side, as shown in Figure 1-3.
Figure 1-3 A one-point line centered at a whole-numbered point value
Positions defined by whole-numbered points fall at the midpoint between pixels. For example, if you draw a
one-pixel-wide vertical line from (1.0, 1.0) to (10.0, 10.0), you get a fuzzy grey line. If you draw a two-pixel-wide
line, you get a solid black line because it fully covers two pixels (one on either side of the specified point). As
a rule, lines that are an odd number of physical pixels wide appear softer than lines with widths measured in
even numbers of physical pixels unless you adjust their position to make them cover pixels fully.
Where the scale factor comes into play is when determining how many pixels are covered by a one-point-wide
line.
iOS Drawing Concepts
The UIKit Graphics System
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
17On a low-resolution display (with a scale factor of 1.0), a one-point-wide line is one pixel wide. To avoid
antialiasing when you draw a one-point-wide horizontal or vertical line, if the line is an odd number of pixels
in width, you must offset the position by 0.5 points to either side of a whole-numbered position. If the line is
an even number of points in width, to avoid a fuzzy line, you must not do so.
Figure 1-4 Appearance of one-point-wide lines on standard and retina displays
On a high-resolution display (with a scale factor of 2.0), a line that is one point wide is not antialiased at all
because it occupies two full pixels (from -0.5 to +0.5). To draw a line that covers only a single physical pixel,
you would need to make it 0.5 points in thickness and offset its position by 0.25 points. A comparison between
the two types of screens is shown in Figure 1-4.
Of course, changing drawing characteristics based on scale factor may have unexpected consequences. A
1-pixel-wide line might look nice on some devices but on a high-resolution device might be so thin that it is
difficult to see clearly. It is up to you to determine whether to make such a change.
Obtaining Graphics Contexts
Most of the time, graphics contexts are configured for you. Each view object automatically creates a graphics
contextso that your code can start drawing immediately assoon as your custom drawRect: method is called.
As part of this configuration, the underlying UIView class creates a graphics context (a CGContextRef opaque
type) for the current drawing environment.
If you want to draw somewhere other than your view (for example, to capture a series of drawing operations
in a PDF or bitmap file), or if you need to call Core Graphics functions that require a context object, you must
take additional steps to obtain a graphics context object. The sections below explain how.
iOS Drawing Concepts
The UIKit Graphics System
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
18For more information about graphics contexts, modifying the graphics state information, and using graphics
contextsto create customcontent,seeQuartz 2DProgrammingGuide . For a list of functions used in conjunction
with graphics contexts, see CGContext Reference , CGBitmapContext Reference , and CGPDFContext Reference .
Drawing to the Screen
If you use Core Graphics functions to draw to a view, either in the drawRect: method or elsewhere, you’ll
need a graphics context for drawing. (The first parameter of many of these functions must be a CGContextRef
object.) You can call the function UIGraphicsGetCurrentContext to get an explicit version of the same
graphics context that’s made implicit in drawRect:. Because it’s the same graphics context, the drawing
functions should also make reference to a ULO default coordinate system.
If you want to use Core Graphics functions to draw in a UIKit view, you should use the ULO coordinate system
of UIKit for drawing operations. Alternatively, you can apply a flip transform to the CTM and then draw an
object in the UIKit view using Core Graphics native LLO coordinate system. “Flipping the Default Coordinate
System” (page 25) discusses flip transforms in detail.
The UIGraphicsGetCurrentContext function always returns the graphics context currently in effect. For
example, if you create a PDF context and then call UIGraphicsGetCurrentContext, you’d receive that PDF
context. You must use the graphics context returned by UIGraphicsGetCurrentContext if you use Core
Graphics functions to draw to a view.
Note: The UIPrintPageRenderer class declares several methods for drawing printable content.
In a manner similar to drawRect:, UIKit installs an implicit graphics context for implementations
of these methods. This graphics context establishes a ULO default coordinate system.
Drawing to Bitmap Contexts and PDF Contexts
UIKit provides functions for rendering images in a bitmap graphics context and for generating PDF content
by drawing in a PDF graphics context. Both of these approachesrequire that you first call a function that creates
a graphics context—a bitmap context or a PDF context, respectively. The returned object serves as the current
(and implicit) graphics context for subsequent drawing and state-setting calls. When you finish drawing in the
context, you call another function to close the context.
Both the bitmap context and the PDF context provided by UIKit establish a ULO default coordinate system.
Core Graphics has corresponding functions for rendering in a bitmap graphics context and for drawing in a
PDF graphics context. The context that an app directly creates through Core Graphics, however, establishes a
LLO default coordinate system.
iOS Drawing Concepts
The UIKit Graphics System
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
19Note: In iOS, it is recommended that you use the UIKit functions for drawing to bitmap contexts
and PDF contexts. However, if you do use the Core Graphics alternatives and intend to display the
rendered results, you will have to adjust your code to compensate for the difference in default
coordinate systems. See “Flipping the Default Coordinate System” (page 25) for more information.
For details, see “Drawing and Creating Images” (page 40) (for drawing to bitmap contexts) and “Generating
PDF Content” (page 45) (for drawing to PDF contexts).
Color and Color Spaces
iOS supports the full range of color spaces available in Quartz; however, most apps should need only the RGB
color space. Because iOS is designed to run on embedded hardware and display graphics onscreen, the RGB
color space is the most appropriate one to use.
The UIColor object provides convenience methods for specifying color values using RGB, HSB, and grayscale
values. When creating colors in this way, you never need to specify the color space. It is determined for you
automatically by the UIColor object.
You can also use the CGContextSetRGBStrokeColor and CGContextSetRGBFillColor functions in the
Core Graphics framework to create and set colors. Although the Core Graphics framework includes support for
creating colors using other color spaces, and for creating custom color spaces, using those colors in your
drawing code is not recommended. Your drawing code should always use RGB colors.
Drawing with Quartz and UIKit
Quartz is the general name for the native drawing technology in iOS. The Core Graphics framework is at the
heart of Quartz, and is the primary interface you use for drawing content. This framework provides data types
and functions for manipulating the following:
● Graphics contexts
● Paths
●
Images and bitmaps
● Transparency layers
● Colors, pattern colors, and color spaces
● Gradients and shadings
● Fonts
● PDF content
iOS Drawing Concepts
Drawing with Quartz and UIKit
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
20UIKit builds on the basic features of Quartz by providing a focused set of classesfor graphics-related operations.
The UIKit graphics classes are not intended as a comprehensive set of drawing tools—Core Graphics already
providesthat. Instead, they provide drawing support for other UIKit classes. UIKitsupport includesthe following
classes and functions:
● UIImage, which implements an immutable class for displaying images
● UIColor, which provides basic support for device colors
● UIFont, which provides font information for classes that need it
● UIScreen, which provides basic information about the screen
● UIBezierPath, which enables your app to draw lines, arcs, ovals, and other shapes.
● Functions for generating a JPEG or PNG representation of a UIImage object
● Functions for drawing to a bitmap graphics context
● Functions for generating PDF data by drawing to a PDF graphics context
● Functions for drawing rectangles and clipping the drawing area
● Functions for changing and getting the current graphics context
For information about the classes and methods that comprise UIKit, see UIKit Framework Reference . For more
information about the opaque types and functions that comprise the Core Graphics framework, see Core
Graphics Framework Reference .
Configuring the Graphics Context
Before calling your drawRect: method, the view object creates a graphics context and sets it as the current
context. This context exists only for the lifetime of the drawRect: call. You can retrieve a pointer to this
graphics context by calling the UIGraphicsGetCurrentContext function. This function returns a reference
to a CGContextRef type, which you pass to Core Graphics functions to modify the current graphics state.
Table 1-1 lists the main functions you use to set different aspects of the graphics state. For a complete list of
functions, see CGContext Reference . This table also lists UIKit alternatives where they exist.
Table 1-1 Core graphics functions for modifying graphics state
Graphics state Core Graphics functions UIKit alternatives
CGContextRotateCTM None
CGContextScaleCTM
CGContextTranslateCTM
CGContextConcatCTM
Current transformation matrix
(CTM)
iOS Drawing Concepts
Drawing with Quartz and UIKit
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
21Graphics state Core Graphics functions UIKit alternatives
Clipping area CGContextClipToRect UIRectClip function
CGContextSetLineWidth None
CGContextSetLineJoin
CGContextSetLineCap
CGContextSetLineDash
CGContextSetMiterLimit
Line: Width, join, cap, dash,
miter limit
Accuracy of curve estimation CGContextSetFlatness None
Anti-aliasing setting CGContextSetAllowsAntialiasing None
CGContextSetRGBFillColor UIColor class
CGContextSetRGBStrokeColor
Color: Fill and stroke settings
Alpha global value CGContextSetAlpha None
(transparency)
Rendering intent CGContextSetRenderingIntent None
CGContextSetFillColorSpace UIColor class
CGContextSetStrokeColorSpace
Color space: Fill and stroke
settings
CGContextSetFont UIFont class
CGContextSetFontSize
CGContextSetCharacterSpacing
Text: Font, font size, character
spacing, text drawing mode
The UIImage class
and various drawing
functions let you
specify which blend
mode to use.
Blend mode CGContextSetBlendMode
The graphics context contains a stack of saved graphics states. When Quartz creates a graphics context, the
stack is empty. Using the CGContextSaveGState function pushes a copy of the current graphics state onto
the stack. Thereafter, modifications you make to the graphics state affect subsequent drawing operations but
do not affect the copy stored on the stack. When you are done making modifications, you can return to the
previous graphics state by popping the saved state off the top of the stack using the
iOS Drawing Concepts
Drawing with Quartz and UIKit
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
22CGContextRestoreGState function. Pushing and popping graphics states in this manner is a fast way to
return to a previous state and eliminates the need to undo each state change individually. It is also the only
way to restore some aspects of the state, such as the clipping path, back to their original settings.
For general information about graphics contexts and using them to configure the drawing environment, see
“Graphics Contexts” in Quartz 2D Programming Guide .
Creating and Drawing Paths
A path is a vector-based shapes created from a sequence of lines and Bézier curves. UIKit includes the
UIRectFrame and UIRectFill functions(among others) for drawing simple pathssuch asrectanglesin your
views. Core Graphics also includes convenience functions for creating simple paths such as rectangles and
ellipses.
For more complex paths, you must create the path yourself using the UIBezierPath class of UIKit, or using
the functions that operate on the CGPathRef opaque type in the Core Graphics framework. Although you can
construct a path without a graphics context using either API, the pointsin the path still must refer to the current
coordinate system (which either has a ULO or LLO orientation), and you still need a graphics context to actually
render the path.
When drawing a path, you must have a current context set. This context can be a custom view’s context (in
drawRect:), a bitmap context, or a PDF context. The coordinate system determines how the path is rendered.
UIBezierPath assumes a ULO coordinate system. Thus, if your view is flipped (to use LLO coordinates), the
resulting shape may render differently than intended. For best results, you should alwaysspecify pointsrelative
to the origin of the current coordinate system of the graphics context used for rendering.
Note: Arcs are an aspect of paths that require additional work even if this “rule” is followed. If you
create a path using Core Graphic functions that locate points in a ULO coordinate system, and then
render the path in a UIKit view, the direction an arc “points” is different. See “Side Effects of Drawing
with Different Coordinate Systems” (page 25) for more on this subject.
For creating paths in iOS, it is recommended that you use UIBezierPath instead of CGPath functions unless
you need some of the capabilities that only Core Graphics provides, such as adding ellipses to paths. For more
on creating and rendering paths in UIKit, see “Drawing Shapes Using Bézier Paths” (page 30).
For information on using UIBezierPath to draw paths, see “Drawing Shapes Using Bézier Paths” (page 30).
For information on how to draw paths using Core Graphics, including information about how you specify the
pointsfor complex path elements,see “Paths”inQuartz 2DProgramming Guide . Forinformation on the functions
you use to create paths, see CGContext Reference and CGPath Reference .
iOS Drawing Concepts
Drawing with Quartz and UIKit
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
23Creating Patterns, Gradients, and Shadings
The Core Graphics framework includes additional functions for creating patterns, gradients, and shadings. You
use these typesto create non monochrome colors and use them to fill the paths you create. Patterns are created
from repeating images or content. Gradients and shadings provide different ways to create smooth transitions
from color to color.
The details for creating and using patterns, gradients, and shadings are all covered in Quartz 2D Programming
Guide .
Customizing the Coordinate Space
By default, UIKit creates a straightforward current transformation matrix that maps points onto pixels. Although
you can do all of your drawing without modifying that matrix, sometimes it can be convenient to do so.
When your view’s drawRect: method is first called, the CTM is configured so that the origin of the coordinate
system matches the your view’s origin, its positive X axis extends to the right, and its positive Y axis extends
down. However, you can change the CTM by adding scaling, rotation, and translation factors to it and thereby
change the size, orientation, and position of the default coordinate system relative to the underlying view or
window.
Using Coordinate Transforms to Improve Drawing Performance
Modifying the CTM is a standard technique for drawing content in a view because it allows you to reuse paths,
which potentially reduces the amount of computation required while drawing. For example, if you want to
draw a square starting at the point (20, 20), you could create a path that moves to (20, 20) and then draws the
needed set of lines to complete the square. However, if you later decide to move that square to the point (10,
10), you would have to recreate the path with the new starting point. Because creating paths is a relatively
expensive operation, it is preferable to create a square whose origin is at (0, 0) and to modify the CTM so that
the square is drawn at the desired origin.
In the Core Graphics framework, there are two ways to modify the CTM. You can modify the CTM directly using
the CTM manipulation functions defined in CGContext Reference . You can also create a CGAffineTransform
structure, apply any transformations you want, and then concatenate that transform onto the CTM. Using an
affine transform lets you group transformations and then apply them to the CTM all at once. You can also
evaluate and invert affine transforms and use them to modify point, size, and rectangle values in your code.
For more information on using affine transforms, see Quartz 2D Programming Guide and CGAffineTransform
Reference .
iOS Drawing Concepts
Drawing with Quartz and UIKit
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
24Flipping the Default Coordinate System
Flipping in UIKit drawing modifiesthe backing CALayer to align a drawing environment having a LLOcoordinate
system with the default coordinate system of UIKit. If you only use UIKit methods and function for drawing,
you shouldn’t need to flip the CTM. However, if you mix Core Graphics or Image I/O function calls with UIKit
calls, flipping the CTM might be necessary.
Specifically, if you draw an image or PDF document by calling Core Graphics functions directly, the object is
rendered upside-down in the view’s context. You must flip the CTM to display the image and pages correctly.
To flip a object drawn to a Core Graphics context so that it appears correctly when displayed in a UIKit view,
you must modify the CTM in two steps. You translate the origin to the upper-left corner of the drawing area,
and then you apply a scale translation, modifying the y-coordinate by -1. The code for doing this looks similar
to the following:
CGContextSaveGState(graphicsContext);
CGContextTranslateCTM(graphicsContext, 0.0, imageHeight);
CGContextScaleCTM(graphicsContext, 1.0, -1.0);
CGContextDrawImage(graphicsContext, image, CGRectMake(0, 0, imageWidth,
imageHeight));
CGContextRestoreGState(graphicsContext);
If you create a UIImage object initialized with a Core Graphics image object, UIKit performs the flip transform
for you. Every UIImage object is backed by a CGImageRef opaque type. You can access the Core Graphics
object through the CGImage property and do some work with the image. (Core Graphics has image-related
facilities not available in UIKit.) When you are finished, you can recreate the UIImage object from the modified
CGImageRef object.
Note: You can use the Core Graphics function CGContextDrawImage to draw an image to any
rendering destination. This function has two parameters, the first for a graphics context and the
second for a rectangle that defines both the size of the image and its location in a drawing surface
such as a view. When drawing an image with CGContextDrawImage, if you don’t adjust the current
coordinate system to a LLO orientation, the image appears inverted in a UIKit view. Additionally, the
origin of the rectangle passed into this function is relative to the origin of the coordinate system
that is current when the function is called.
Side Effects of Drawing with Different Coordinate Systems
Some rendering oddities are brought to light when you draw an object with with reference to the default
coordinate system of one drawing technology and then render it in a graphics context of the other. You may
want to adjust your code to account for these side effects.
iOS Drawing Concepts
Drawing with Quartz and UIKit
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
25Arcs and Rotations
If you draw an path with functionssuch as CGContextAddArc and CGPathAddArc and assume a LLOcoordinate
system, then you need to flip the CTM to render the arc correctly in a UIKit view. However, if you use the same
function to create an arc with points located in a ULO coordinate system and then render the path in a UIKit
view, you’ll notice that the arc is an altered version of its original. The terminating endpoint of the arc now
pointsin the opposite direction of what that endpoint would do were the arc created using the UIBezierPath
class. For example, a downward-pointing arrow now points upward (as shown in Figure 1-5), and the direction
in which the arc “bends” is also different. You must change the direction of Core Graphics-drawn arcsto account
for the ULO-based coordinate system; this direction is controlled by the startAngle and endAngle parameters
of those functions.
Figure 1-5 Arc rendering in Core Graphics versus UIKit
Arc specified in Core Graphics Arc rendered in UIKit
y
y
x
(0,0)
(0,0)
x
You can observe the same kind of mirroring effect if you rotate an object (for example, by calling
CGContextRotateCTM). If you rotate an object using Core Graphics calls that make reference to a ULO
coordinate system, the direction of the object when rendered in UIKit is reversed. You must account for the
different directions of rotation in your code; with CGContextRotateCTM, you do this by inverting the sign of
the angle parameter (so, for example, a negative value becomes a positive value).
Shadows
The direction a shadow falls from its object is specified by an offset value, and the meaning of that offset is a
convention of a drawing framework. In UIKit, positive x and y offsets make a shadow go down and to the right
of an object. In Core Graphics, positive x and y offsets make a shadow go up and to the right of an object.
Flipping the CTM to align an object with the default coordinate system of UIKit does not affect the object’s
shadow, and so a shadow does not correctly track its object. To get it to track correctly, you must modify the
offset values appropriately for the current coordinate system.
iOS Drawing Concepts
Drawing with Quartz and UIKit
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
26Note: Prior to iOS 3.2, Core Graphics and UIKit shared the same convention for shadow direction:
positive offset values make the shadow go down and to the right of an object.
Applying Core Animation Effects
Core Animation is an Objective-C framework that provides infrastructure for creating fluid, real-time animations
quickly and easily. Core Animation is not a drawing technology itself, in the sense that it does not provide
primitive routines for creating shapes, images, or other types of content. Instead, it is a technology for
manipulating and displaying content that you created using other technologies.
Most apps can benefit from using Core Animation in some form in iOS. Animations provide feedback to the
user about what is happening. For example, when the user navigates through the Settings app, screens slide
in and out of view based on whether the user is navigating further down the preferences hierarchy or back up
to the root node. This kind of feedback is important and provides contextual information for the user. It also
enhances the visual style of an app.
In most cases, you may be able to reap the benefits of Core Animation with very little effort. For example,
several properties of the UIView class (including the view’s frame, center, color, and opacity—among others)
can be configured to trigger animations when their values change. You have to do some work to let UIKit know
that you want these animations performed, but the animations themselves are created and run automatically
for you. For information about how to trigger the built-in view animations, see “Animating Views” in UIView
Class Reference .
When you go beyond the basic animations, you must interact more directly with Core Animation classes and
methods. The following sections provide information about Core Animation and show you how to work with
its classes and methods to create typical animations in iOS. For additional information about Core Animation
and how to use it, see Core Animation Programming Guide .
About Layers
The key technology in Core Animation is the layer object. Layers are lightweight objects that are similar in
nature to views, but that are actually model objects that encapsulate geometry, timing, and visual properties for
the content you want to display. The content itself is provided in one of three ways:
● You can assign a CGImageRef to the contents property of the layer object.
● You can assign a delegate to the layer and let the delegate handle the drawing.
● You can subclass CALayer and override one of the display methods.
iOS Drawing Concepts
Applying Core Animation Effects
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
27When you manipulate a layer object’s properties, what you are actually manipulating is the model-level data
that determines how the associated content should be displayed. The actual rendering of that content is
handled separately from your code and is heavily optimized to ensure it is fast. All you must do is set the layer
content, configure the animation properties, and then let Core Animation take over.
For more information about layers and how they are used, see Core Animation Programming Guide .
About Animations
When it comes to animating layers, Core Animation uses separate animation objects to control the timing and
behavior of the animation. The CAAnimation class and its subclasses provide different types of animation
behaviors that you can use in your code. You can create simple animations that migrate a property from one
value to another, or you can create complex keyframe animations that track the animation through the set of
values and timing functions you provide.
Core Animation also lets you group multiple animations together into a single unit, called a transaction. The
CATransaction object manages the group of animations as a unit. You can also use the methods of this class
to set the duration of the animation.
For examples of how to create custom animations, see Animation Types and Timing Programming Guide .
Accounting for Scale Factors in Core Animation Layers
Apps that use Core Animation layers directly to provide content may need to adjust their drawing code to
account for scale factors. Normally, when you draw in your view’s drawRect: method, or in the
drawLayer:inContext: method of the layer’s delegate, the system automatically adjusts the graphics
context to account for scale factors. However, knowing or changing that scale factor might still be necessary
when your view does one of the following:
● Creates additional Core Animation layers with different scale factors and composites them into its own
content
● Sets the contents property of a Core Animation layer directly
Core Animation’s compositing engine looks at the contentsScale property of each layer to determine
whether the contents of that layer need to be scaled during compositing. If your app creates layers without
an associated view, each new layer object’s scale factor is initially set to 1.0. If you do not change that scale
factor, and if you subsequently draw the layer on a high-resolution screen, the layer’s contents are scaled
automatically to compensate for the difference in scale factors. If you do not want the contents to be scaled,
you can change the layer’s scale factor to 2.0 by setting a new value for the contentsScale property, but if
you do so without providing high-resolution content, your existing content may appear smaller than you were
expecting. To fix that problem, you need to provide higher-resolution content for your layer.
iOS Drawing Concepts
Applying Core Animation Effects
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
28Important: The contentsGravity property of the layer plays a role in determining whether
standard-resolution layer content is scaled on a high-resolution screen. This property is set to the value
kCAGravityResize by default, which causes the layer content to be scaled to fit the layer’s bounds.
Changing the gravity to a nonresizing option eliminates the automatic scaling that would otherwise occur.
In such a situation, you may need to adjust your content or the scale factor accordingly.
Adjusting the content of your layer to accommodate different scale factors is most appropriate when you set
the contents property of a layer directly. Quartz images have no notion of scale factors and therefore work
directly with pixels. Therefore, before creating the CGImageRef object you plan to use for the layer’s contents,
check the scale factor and adjust the size of your image accordingly. Specifically, load an appropriately sized
image from your app bundle or use the UIGraphicsBeginImageContextWithOptions function to create
an image whose scale factor matches the scale factor of your layer. If you do not create a high-resolution
bitmap, the existing bitmap may be scaled as discussed previously.
For information on how to specify and load high-resolution images, see “Loading Images into Your App” (page
83). For information about how to create high-resolution images, see “Drawing to Bitmap Contexts and PDF
Contexts” (page 19).
iOS Drawing Concepts
Applying Core Animation Effects
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
29In iOS 3.2 and later, you can use the UIBezierPath class to create vector-based paths. The UIBezierPath
class is an Objective-C wrapper for the path-related features in the Core Graphics framework. You can use this
classto define simple shapes,such as ovals and rectangles, as well as complex shapesthat incorporate multiple
straight and curved line segments.
You can use path objects to draw shapes in your app’s user interface. You can draw the path’s outline, fill the
space it encloses, or both. You can also use paths to define a clipping region for the current graphics context,
which you can then use to modify subsequent drawing operations in that context.
Bézier Path Basics
A UIBezierPath object is a wrapper for a CGPathRef data type. Paths are vector-based shapes that are built
using line and curve segments. You can use line segments to create rectangles and polygons, and you can use
curve segments to create arcs, circles, and complex curved shapes. Each segment consists of one or more
points(in the current coordinate system) and a drawing command that defines how those points are interpreted.
Each set of connected line and curve segments form what is referred to as a subpath. The end of one line or
curve segment in a subpath defines the beginning of the next. A single UIBezierPath object may contain
one or more subpaths that define the overall path, separated by moveToPoint: commands that effectively
raise the drawing pen and move it to a new location.
The processes for building and using a path object are separate. Building the path is the first process and
involves the following steps:
1. Create the path object.
2. Set any relevant drawing attributes of your UIBezierPath object, such as the lineWidth or
lineJoinStyle properties for stroked paths or the usesEvenOddFillRule property for filled paths.
These drawing attributes apply to the entire path.
3. Set the starting point of the initial segment using the moveToPoint: method.
4. Add line and curve segments to define a subpath.
5. Optionally, close the subpath by calling closePath, which draws a straight line segment from the end
of the last segment to the beginning of the first.
6. Optionally, repeat the steps 3, 4, and 5 to define additional subpaths.
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
30
Drawing Shapes Using Bézier PathsWhen building your path, you should arrange the points of your path relative to the origin point (0, 0). Doing
so makes it easier to move the path around later. During drawing, the points of your path are applied as-is to
the coordinate system of the current graphics context. If your path is oriented relative to the origin, all you
have to do to reposition it is apply an affine transform with a translation factor to the current graphics context.
The advantage of modifying the graphics context (as opposed to the path object itself) is that you can easily
undo the transformation by saving and restoring the graphics state.
To draw your path object, you use the stroke and fill methods. These methods render the line and curve
segments of your path in the current graphics context. The rendering process involves rasterizing the line and
curve segments using the attributes of the path object. The rasterization process does not modify the path
object itself. As a result, you can render the same path object multiple timesin the current context or in another
context.
Adding Lines and Polygons to Your Path
Lines and polygons are simple shapes that you build point-by-point using the moveToPoint: and
addLineToPoint: methods. The moveToPoint: method sets the starting point of the shape you want to
create. From that point, you create the lines of the shape using the addLineToPoint: method. You create
the linesin succession, with each line being formed between the previous point and the new point you specify.
Listing 2-1 shows the code needed to create a pentagon shape using individual line segments. (Figure 2-1
showsthe result of drawing thisshape with appropriate stroke and fill colorsettings, as described in “Rendering
the Contents of a Bézier Path Object” (page 36).) This code sets the initial point of the shape and then adds
four connected line segments. The fifth segment is added by the call to the closePath method, which connects
the last point (0, 40) with the first point (100, 0).
Listing 2-1 Creating a pentagon shape
UIBezierPath *aPath = [UIBezierPath bezierPath];
// Set the starting point of the shape.
[aPath moveToPoint:CGPointMake(100.0, 0.0)];
// Draw the lines.
[aPath addLineToPoint:CGPointMake(200.0, 40.0)];
[aPath addLineToPoint:CGPointMake(160, 140)];
[aPath addLineToPoint:CGPointMake(40.0, 140)];
[aPath addLineToPoint:CGPointMake(0.0, 40.0)];
Drawing Shapes Using Bézier Paths
Adding Lines and Polygons to Your Path
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
31[aPath closePath];
Figure 2-1 Shape drawn with methods of the UIBezierPath class
Using the closePath method not only ends the subpath describing the shape, it also draws a line segment
between the first and last points. This is a convenient way to finish a polygon without having to draw the final
line.
Adding Arcs to Your Path
The UIBezierPath class providessupport for initializing a new path object with an arc segment. The parameters
of the bezierPathWithArcCenter:radius:startAngle:endAngle:clockwise: method define the
circle that containsthe desired arc and the start and end points of the arc itself. Figure 2-2 showsthe components
that go into creating an arc, including the circle that defines the arc and the angle measurements used to
Drawing Shapes Using Bézier Paths
Adding Arcs to Your Path
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
32specify it. In this case, the arc is created in the clockwise direction. (Drawing the arc in the counterclockwise
direction would paint the dashed portion of the circle instead.) The code for creating this arc isshown in Listing
2-2 (page 33).
Figure 2-2 An arc in the default coordinate system
100 200
100
200
(0, 0)
3π
4
(135°) rad
75 pts
0 rad (0°)
(150, 150)
Listing 2-2 Creating a new arc path
// pi is approximately equal to 3.14159265359.
#define DEGREES_TO_RADIANS(degrees) ((pi * degrees)/ 180)
- (UIBezierPath *)createArcPath
{
UIBezierPath *aPath = [UIBezierPath bezierPathWithArcCenter:CGPointMake(150,
150)
radius:75
startAngle:0
endAngle:DEGREES_TO_RADIANS(135)
clockwise:YES];
return aPath;
}
Drawing Shapes Using Bézier Paths
Adding Arcs to Your Path
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
33If you want to incorporate an arc segment into the middle of a path, you must modify the path object’s
CGPathRef data type directly. For more information about modifying the path using Core Graphics functions,
see “Modifying the Path Using Core Graphics Functions” (page 35).
Adding Curves to Your Path
The UIBezierPath class provides support for adding cubic and quadratic Bézier curves to a path. Curve
segments start at the current point and end at the point you specify. The shape of the curve is defined using
tangent lines between the start and end points and one or more control points. Figure 2-3 shows approximations
of both types of curve and the relationship between the control points and the shape of the curve. The exact
curvature of each segment involves a complex mathematical relationship between all of the points and is well
documented online and at Wikipedia.
Figure 2-3 Curve segments in a path
Start point
Control point 2
Endpoint
Control point 1
A Current point
B Control point
C Endpoint
Bézier curve Quad curve
To add curves to a path, you use the following methods:
● Cubic curve:addCurveToPoint:controlPoint1:controlPoint2:
● Quadratic curve:addQuadCurveToPoint:controlPoint:
Because curves rely on the current point of the path, you must set the current point before calling either of
the preceding methods. Upon completion of the curve, the current point is updated to the new end point you
specified.
Drawing Shapes Using Bézier Paths
Adding Curves to Your Path
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
34Creating Oval and Rectangular Paths
Ovals and rectangles are common types of pathsthat are built using a combination of curve and line segments.
The UIBezierPath class includes the bezierPathWithRect: and bezierPathWithOvalInRect:
convenience methods for creating paths with oval or rectangular shapes. Both of these methods create a new
path object and initialize it with the specified shape. You can use the returned path object right away or add
more shapes to it as needed.
If you want to add a rectangle to an existing path object, you must do so using the moveToPoint:,
addLineToPoint:, and closePath methods as you would for any other polygon. Using the closePath
method for the final side of the rectangle is a convenient way to add the final line of the path and also mark
the end of the rectangle subpath.
If you want to add an oval to an existing path, the simplest way to do so is to use Core Graphics. Although you
can use the addQuadCurveToPoint:controlPoint: to approximate an oval surface, the
CGPathAddEllipseInRect function is much simpler to use and more accurate. For more information, see
“Modifying the Path Using Core Graphics Functions” (page 35).
Modifying the Path Using Core Graphics Functions
The UIBezierPath class is really just a wrapper for a CGPathRef data type and the drawing attributes
associated with that path. Although you normally add line and curve segments using the methods of the
UIBezierPath class, the class also exposes a CGPath property that you can use to modify the underlying path
data type directly. You can use this property when you would prefer to build your path using the functions of
the Core Graphics framework.
There are two ways to modify the path associated with a UIBezierPath object. You can modify the path
entirely using Core Graphicsfunctions, or you can use a mixture of Core Graphicsfunctions and UIBezierPath
methods. Modifying the path entirely using Core Graphics calls is easier in some ways. You create a mutable
CGPathRef data type and call whatever functions you need to modify its path information. When you are
done you assign your path object to the corresponding UIBezierPath object, as shown in Listing 2-3.
Listing 2-3 Assigning a new CGPathRef to a UIBezierPath object
// Create the path data.
CGMutablePathRef cgPath = CGPathCreateMutable();
CGPathAddEllipseInRect(cgPath, NULL, CGRectMake(0, 0, 300, 300));
CGPathAddEllipseInRect(cgPath, NULL, CGRectMake(50, 50, 200, 200));
// Now create the UIBezierPath object.
Drawing Shapes Using Bézier Paths
Creating Oval and Rectangular Paths
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
35UIBezierPath *aPath = [UIBezierPath bezierPath];
aPath.CGPath = cgPath;
aPath.usesEvenOddFillRule = YES;
// After assigning it to the UIBezierPath object, you can release
// your CGPathRef data type safely.
CGPathRelease(cgPath);
If you choose to use a mixture of Core Graphics functions and UIBezierPath methods, you must carefully
move the path information back and forth between the two. Because a UIBezierPath object owns its
underlying CGPathRef data type, you cannot simply retrieve that type and modify it directly. Instead, you
must make a mutable copy, modify the copy, and then assign the copy back to the CGPath property as shown
in Listing 2-4.
Listing 2-4 Mixing Core Graphics and UIBezierPath calls
UIBezierPath *aPath = [UIBezierPath bezierPathWithOvalInRect:CGRectMake(0, 0, 300,
300)];
// Get the CGPathRef and create a mutable version.
CGPathRef cgPath = aPath.CGPath;
CGMutablePathRef mutablePath = CGPathCreateMutableCopy(cgPath);
// Modify the path and assign it back to the UIBezierPath object.
CGPathAddEllipseInRect(mutablePath, NULL, CGRectMake(50, 50, 200, 200));
aPath.CGPath = mutablePath;
// Release both the mutable copy of the path.
CGPathRelease(mutablePath);
Rendering the Contents of a Bézier Path Object
After creating a UIBezierPath object, you can render it in the current graphics context using its stroke and
fill methods. Before you call these methods, though, there are usually a few other tasksto perform to ensure
your path is drawn correctly:
Drawing Shapes Using Bézier Paths
Rendering the Contents of a Bézier Path Object
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
36● Set the desired stroke and fill colors using the methods of the UIColor class.
● Position the shape where you want it in the target view.
If you created your path relative to the point (0, 0), you can apply an appropriate affine transform to the
current drawing context. For example, to draw your shape starting at the point (10, 10), you would call the
CGContextTranslateCTM function and specify 10 for both the horizontal and vertical translation values.
Adjusting the graphics context (as opposed to the points in the path object) is preferred because you can
undo the change more easily by saving and restoring the previous graphics state.
● Update the drawing attributes of the path object. The drawing attributes of your UIBezierPath instance
override the values associated with the graphics context when rendering the path.
Listing 2-5 shows a sample implementation of a drawRect: method that draws an oval in a custom view. The
upper-left corner of the oval’s bounding rectangle is located at the point (50, 50) in the view’s coordinate
system. Because fill operations paint right up to the path boundary, this method fills the path before stroking
it. This prevents the fill color from obscuring half of the stroked line.
Listing 2-5 Drawing a path in a view
- (void)drawRect:(CGRect)rect
{
// Create an oval shape to draw.
UIBezierPath *aPath = [UIBezierPath bezierPathWithOvalInRect:
CGRectMake(0, 0, 200, 100)];
// Set the render colors.
[[UIColor blackColor] setStroke];
[[UIColor redColor] setFill];
CGContextRef aRef = UIGraphicsGetCurrentContext();
// If you have content to draw after the shape,
// save the current state before changing the transform.
//CGContextSaveGState(aRef);
// Adjust the view's origin temporarily. The oval is
// now drawn relative to the new origin point.
CGContextTranslateCTM(aRef, 50, 50);
Drawing Shapes Using Bézier Paths
Rendering the Contents of a Bézier Path Object
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
37// Adjust the drawing options as needed.
aPath.lineWidth = 5;
// Fill the path before stroking it so that the fill
// color does not obscure the stroked line.
[aPath fill];
[aPath stroke];
// Restore the graphics state before drawing any other content.
//CGContextRestoreGState(aRef);
}
Doing Hit-Detection on a Path
To determine whether a touch event occurred on the filled portion of a path, you can use the containsPoint:
method of UIBezierPath. This method teststhe specified point against all closed subpathsin the path object
and returns YES if it lies on or inside any of those subpaths.
Important: The containsPoint: method and the Core Graphics hit-testing functions operate only on
closed paths. These methods always return NO for hits on open subpaths. If you want to do hit detection
on an open subpath, you must create a copy of your path object and close the open subpaths before testing
points.
If you want to do hit-testing on the stroked portion of the path (instead of the fill area), you must use Core
Graphics. The CGContextPathContainsPoint function lets you test points on either the fill orstroke portion
of the path currently assigned to the graphics context. Listing 2-6 shows a method that tests to see whether
the specified point intersects the specified path. The inFill parameter lets the caller specify whether the
point should be tested against the filled or stroked portion of the path. The path passed in by the caller must
contain one or more closed subpaths for the hit detection to succeed.
Listing 2-6 Testing points against a path object
- (BOOL)containsPoint:(CGPoint)point onPath:(UIBezierPath *)path
inFillArea:(BOOL)inFill
{
CGContextRef context = UIGraphicsGetCurrentContext();
Drawing Shapes Using Bézier Paths
Doing Hit-Detection on a Path
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
38CGPathRef cgPath = path.CGPath;
BOOL isHit = NO;
// Determine the drawing mode to use. Default to
// detecting hits on the stroked portion of the path.
CGPathDrawingMode mode = kCGPathStroke;
if (inFill)
{
// Look for hits in the fill area of the path instead.
if (path.usesEvenOddFillRule)
mode = kCGPathEOFill;
else
mode = kCGPathFill;
}
// Save the graphics state so that the path can be
// removed later.
CGContextSaveGState(context);
CGContextAddPath(context, cgPath);
// Do the hit detection.
isHit = CGContextPathContainsPoint(context, point, mode);
CGContextRestoreGState(context);
return isHit;
}
Drawing Shapes Using Bézier Paths
Doing Hit-Detection on a Path
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
39Most of the time, it is fairly straightforward to display images using standard views. However, there are two
situations in which you may need to do additional work:
●
If you want to display images as part of a custom view, you must draw the images yourself in your view’s
drawRect: method. “Drawing Images” (page 40) explains how.
●
If you want to render images offscreen (to draw later, or to save into a file), you must create a bitmap
image context. To learn more, read “Creating New Images Using Bitmap Graphics Contexts” (page 41).
Drawing Images
For maximum performance, if your image drawing needs can be met using the UIImageView class, you should
use this image object to initialize a UIImageView object. However, if you need to draw an image explicitly,
you can store the image and use it later in your view’s drawRect: method.
The following example shows how to load an image from your app’s bundle.
NSString *imagePath = [[NSBundle mainBundle] pathForResource:@"myImage"
ofType:@"png"];
UIImage *myImageObj = [[UIImage alloc] initWithContentsOfFile:imagePath];
// Store the image into a property of type UIImage *
// for use later in the class's drawRect: method.
self.anImage = myImageObj;
To draw the resulting image explicitly in your view’s drawRect: method, you can use any of the drawing
methods available in UIImage. These methods let you specify where in your view you want to draw the image
and therefore do not require you to create and apply a separate transform prior to drawing.
The following snippet draws the image loaded above at the point (10, 10) in the view.
- (void)drawRect:(CGRect)rect
{
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
40
Drawing and Creating Images...
// Draw the image.
[self.anImage drawAtPoint:CGPointMake(10, 10)];
}
Important: If you use the CGContextDrawImage function to draw bitmap images directly, the image
data is inverted along the y axis by default. This is because Quartz images assume a coordinate system with
a lower-left corner origin and positive coordinate axes extending up and to the right from that point.
Although you can apply a transform before drawing, the simpler (and recommended) way to draw Quartz
images is to wrap them in a UIImage object, which compensates for this difference in coordinate spaces
automatically. For more information on creating and drawing images using Core Graphics, see Quartz 2D
Programming Guide .
Creating New Images Using Bitmap Graphics Contexts
Most of the time, when drawing, your goal is to show something onscreen. However, it is sometimes useful
to draw something to an offscreen buffer. For example, you might want to create a thumbnail of an existing
image, draw into a buffer so that you can save it to a file, and so on. To support those needs, you can create
a bitmap image context, use UIKit framework or Core Graphics functions to draw to it, and then obtain an
image object from the context.
In UIKit, the procedure is as follows:
1. Call UIGraphicsBeginImageContextWithOptions to create a bitmap context and push it onto the
graphics stack.
For the first parameter (size), pass a CGSize value to specify the dimensions of the bitmap context (in
points).
For the second parameter (opaque), if your image contains transparency (an alpha channel), pass NO.
Otherwise, pass YES to maximize performance.
For the final parameter (scale), pass 0.0 for a bitmap that is scaled appropriately for the main screen of
the device, or pass the scale factor of your choice.
For example, the following code snippet creates a bitmap that is 200 x 200 pixels. (The number of pixels
is determined by multiplying the size of the image by the scale factor.)
UIGraphicsBeginImageContextWithOptions(CGSizeMake(100.0,100.0), NO, 2.0);
Drawing and Creating Images
Creating New Images Using Bitmap Graphics Contexts
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
41Note: You should generally avoid calling the similarly named UIGraphicsBeginImageContext
function (except as a fallback for backwards compatibility), because it always creates images
with a scale factor of 1.0. If the underlying device has a high-resolution screen, an image created
with UIGraphicsBeginImageContext might not appear as smooth when rendered.
2. Use UIKit or Core Graphics routines to draw the content of the image into the newly created graphics
context.
3. Call the UIGraphicsGetImageFromCurrentImageContext function to generate and return a UIImage
object based on what you drew. If desired, you can continue drawing and call this method again to generate
additional images.
4. Call UIGraphicsEndImageContext to pop the context from the graphics stack.
The method in Listing 3-1 gets an image downloaded over the Internet and draws it into an image-based
context, scaled down to the size of an app icon. It then obtains a UIImage object created from the bitmap
data and assigns it to an instance variable. Note that the size of the bitmap (the first parameter of
UIGraphicsBeginImageContextWithOptions) and the size of the drawn content (the size of imageRect)
should match. If the content is larger than the bitmap, a portion of the content will be clipped and not appear
in the resulting image.
Listing 3-1 Drawing a scaled-down image to a bitmap context and obtaining the resulting image
- (void)connectionDidFinishLoading:(NSURLConnection *)connection {
UIImage *image = [[UIImage alloc] initWithData:self.activeDownload];
if (image != nil && image.size.width != kAppIconHeight && image.size.height
!= kAppIconHeight) {
CGRect imageRect = CGRectMake(0.0, 0.0, kAppIconHeight, kAppIconHeight);
UIGraphicsBeginImageContextWithOptions(itemSize, NO, [UIScreen
mainScreen].scale);
[image drawInRect:imageRect];
self.appRecord.appIcon = UIGraphicsGetImageFromCurrentImageContext(); //
UIImage returned.
UIGraphicsEndImageContext();
} else {
self.appRecord.appIcon = image;
}
self.activeDownload = nil;
[image release];
Drawing and Creating Images
Creating New Images Using Bitmap Graphics Contexts
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
42self.imageConnection = nil;
[delegate appImageDidLoad:self.indexPathInTableView];
}
You can also call Core Graphics functions to draw the contents of the generated bitmap image; the code
fragment in Listing 3-2, which draws a scaled-down image of a PDF page, gives an example of this. Note that
the code flips the graphics context prior to calling CGContextDrawPDFPage to align the drawn image with
default coordinate system of UIKit.
Listing 3-2 Drawing to a bitmap context using Core Graphics functions
// Other code precedes...
CGRect pageRect = CGPDFPageGetBoxRect(page, kCGPDFMediaBox);
pdfScale = self.frame.size.width/pageRect.size.width;
pageRect.size = CGSizeMake(pageRect.size.width * pdfScale, pageRect.size.height *
pdfScale);
UIGraphicsBeginImageContextWithOptions(pageRect.size, YES, pdfScale);
CGContextRef context = UIGraphicsGetCurrentContext();
// First fill the background with white.
CGContextSetRGBFillColor(context, 1.0,1.0,1.0,1.0);
CGContextFillRect(context,pageRect);
CGContextSaveGState(context);
// Flip the context so that the PDF page is rendered right side up
CGContextTranslateCTM(context, 0.0, pageRect.size.height);
CGContextScaleCTM(context, 1.0, -1.0);
// Scale the context so that the PDF page is rendered at the
// correct size for the zoom level.
CGContextScaleCTM(context, pdfScale,pdfScale);
CGContextDrawPDFPage(context, page);
CGContextRestoreGState(context);
UIImage *backgroundImage = UIGraphicsGetImageFromCurrentImageContext();
UIGraphicsEndImageContext();
Drawing and Creating Images
Creating New Images Using Bitmap Graphics Contexts
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
43backgroundImageView = [[UIImageView alloc] initWithImage:backgroundImage];
// Other code follows...
If you prefer using Core Graphics entirely for drawing in a bitmap graphics context, you can use the
CGBitmapContextCreate function to create the context and draw your image contents into it. When you
finish drawing, call the CGBitmapContextCreateImage function to obtain a CGImageRef object from the
bitmap context. You can draw the Core Graphics image directly or use this it to initialize a UIImage object.
When finished, call the CGContextRelease function on the graphics context.
Drawing and Creating Images
Creating New Images Using Bitmap Graphics Contexts
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
44The UIKit framework provides a set of functions for generating PDF content using native drawing code. These
functions let you create a graphics context that targets a PDF file or PDF data object. You can then create one
or more PDF pages and draw into those pages using the same UIKit and Core Graphics drawing routines you
use when drawing to the screen. When you are done, what you are left with is a PDF version of what you drew.
The overall drawing process is similar to the process for creating any other image (described in “Drawing and
Creating Images” (page 40)). It consists of the following steps:
1. Create a PDF context and push it onto the graphics stack (as described in “Creating and Configuring the
PDF Context” (page 45)).
2. Create a page (as described in “Drawing PDF Pages” (page 48)).
3. Use UIKit or Core Graphics routines to draw the content of the page.
4. Add links if needed (as described in “Creating Links Within Your PDF Content” (page 50)).
5. Repeat steps 2, 3, and 4 as needed.
6. End the PDF context (as described in “Creating and Configuring the PDF Context” (page 45)) to pop the
context from the graphicsstack and, depending on how the context was created, either write the resulting
data to the specified PDF file or store it into the specified NSMutableData object.
The following sections describe the PDF creation processin more detail using a simple example. For information
about the functions you use to create PDF content, see UIKit Function Reference .
Creating and Configuring the PDF Context
You create a PDF graphics context using either the UIGraphicsBeginPDFContextToData or
UIGraphicsBeginPDFContextToFile function. These functions create the graphics context and associate
it with a destination for the PDF data. For the UIGraphicsBeginPDFContextToData function, the destination
is an NSMutableData object that you provide. And for the UIGraphicsBeginPDFContextToFile function,
the destination is a file in your app’s home directory.
PDF documents organize their content using a page-based structure. This structure imposes two restrictions
on any drawing you do:
● There must be an open page before you issue any drawing commands.
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
45
Generating PDF Content● You must specify the size of each page.
The functions you use to create a PDF graphics context allow you to specify a default page size but they do
not automatically open a page. After creating your context, you must explicitly open a new page using either
the UIGraphicsBeginPDFPage or UIGraphicsBeginPDFPageWithInfo function. And each time you want
to create a new page, you must call one of these functions again to mark the start of the new page. The
UIGraphicsBeginPDFPage function creates a page using the default size, while the
UIGraphicsBeginPDFPageWithInfo function lets you customize the page size and other page attributes.
When you are done drawing, you close the PDF graphics context by calling the UIGraphicsEndPDFContext.
This function closes the last page and writes the PDF content to the file or data object you specified at creation
time. This function also removes the PDF context from the graphics context stack.
Listing 4-1 shows the processing loop used by an app to create a PDF file from the text in a text view. Aside
from three function calls to configure and manage the PDF context, most of the code is related to drawing the
desired content. The textView member variable points to the UITextView object containing the desired
text. The app uses the Core Text framework (and more specifically a CTFramesetterRef data type) to handle
the text layout and management on successive pages. The implementations for the custom
renderPageWithTextRange:andFramesetter: and drawPageNumber: methods are shown in Listing
4-2 (page 48).
Listing 4-1 Creating a new PDF file
- (IBAction)savePDFFile:(id)sender
{
// Prepare the text using a Core Text Framesetter.
CFAttributedStringRef currentText = CFAttributedStringCreate(NULL,
(CFStringRef)textView.text, NULL);
if (currentText) {
CTFramesetterRef framesetter =
CTFramesetterCreateWithAttributedString(currentText);
if (framesetter) {
NSString *pdfFileName = [self getPDFFileName];
// Create the PDF context using the default page size of 612 x 792.
UIGraphicsBeginPDFContextToFile(pdfFileName, CGRectZero, nil);
CFRange currentRange = CFRangeMake(0, 0);
NSInteger currentPage = 0;
Generating PDF Content
Creating and Configuring the PDF Context
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
46BOOL done = NO;
do {
// Mark the beginning of a new page.
UIGraphicsBeginPDFPageWithInfo(CGRectMake(0, 0, 612, 792), nil);
// Draw a page number at the bottom of each page.
currentPage++;
[self drawPageNumber:currentPage];
// Render the current page and update the current range to
// point to the beginning of the next page.
currentRange = [self renderPageWithTextRange:currentRange
andFramesetter:framesetter];
// If we're at the end of the text, exit the loop.
if (currentRange.location ==
CFAttributedStringGetLength((CFAttributedStringRef)currentText))
done = YES;
} while (!done);
// Close the PDF context and write the contents out.
UIGraphicsEndPDFContext();
// Release the framewetter.
CFRelease(framesetter);
} else {
NSLog(@"Could not create the framesetter needed to lay out the atrributed
string.");
}
// Release the attributed string.
CFRelease(currentText);
} else {
NSLog(@"Could not create the attributed string for the framesetter");
}
Generating PDF Content
Creating and Configuring the PDF Context
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
47}
Drawing PDF Pages
All PDF drawing must be done in the context of a page. Every PDF document has at least one page and many
may have multiple pages. You specify the start of a new page by calling the UIGraphicsBeginPDFPage or
UIGraphicsBeginPDFPageWithInfo function. These functions close the previous page (if one was open),
create a new page, and prepare it for drawing. The UIGraphicsBeginPDFPage creates the new page using
the default size while the UIGraphicsBeginPDFPageWithInfo function lets you customize the page size
or customize other aspects of the PDF page.
After you create a page, all of your subsequent drawing commands are captured by the PDF graphics context
and translated into PDF commands. You can draw anything you want in the page, including text, vectorshapes,
and images just as you would in your app’s custom views. The drawing commands you issue are captured by
the PDF context and translated into PDF data. Placement of content on the the page is completely up to you
but must take place within the bounding rectangle of the page.
Listing 4-2 shows two custom methods used to draw content inside a PDF page. The
renderPageWithTextRange:andFramesetter: method uses Core Text to create a text frame that fits the
page and then lay out some text inside that frame. After laying out the text, it returns an updated range that
reflectsthe end of the current page and the beginning of the next page. The drawPageNumber: method uses
the NSString drawing capabilities to draw a page number string at the bottom of each PDF page.
Note: This code snippet makes use of the Core Text framework. Be sure to add it to your project.
Listing 4-2 Drawing page-based content
// Use Core Text to draw the text in a frame on the page.
- (CFRange)renderPage:(NSInteger)pageNum withTextRange:(CFRange)currentRange
andFramesetter:(CTFramesetterRef)framesetter
{
// Get the graphics context.
CGContextRef currentContext = UIGraphicsGetCurrentContext();
// Put the text matrix into a known state. This ensures
// that no old scaling factors are left in place.
CGContextSetTextMatrix(currentContext, CGAffineTransformIdentity);
Generating PDF Content
Drawing PDF Pages
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
48// Create a path object to enclose the text. Use 72 point
// margins all around the text.
CGRect frameRect = CGRectMake(72, 72, 468, 648);
CGMutablePathRef framePath = CGPathCreateMutable();
CGPathAddRect(framePath, NULL, frameRect);
// Get the frame that will do the rendering.
// The currentRange variable specifies only the starting point. The framesetter
// lays out as much text as will fit into the frame.
CTFrameRef frameRef = CTFramesetterCreateFrame(framesetter, currentRange,
framePath, NULL);
CGPathRelease(framePath);
// Core Text draws from the bottom-left corner up, so flip
// the current transform prior to drawing.
CGContextTranslateCTM(currentContext, 0, 792);
CGContextScaleCTM(currentContext, 1.0, -1.0);
// Draw the frame.
CTFrameDraw(frameRef, currentContext);
// Update the current range based on what was drawn.
currentRange = CTFrameGetVisibleStringRange(frameRef);
currentRange.location += currentRange.length;
currentRange.length = 0;
CFRelease(frameRef);
return currentRange;
}
- (void)drawPageNumber:(NSInteger)pageNum
{
NSString *pageString = [NSString stringWithFormat:@"Page %d", pageNum];
UIFont *theFont = [UIFont systemFontOfSize:12];
Generating PDF Content
Drawing PDF Pages
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
49CGSize maxSize = CGSizeMake(612, 72);
CGSize pageStringSize = [pageString sizeWithFont:theFont
constrainedToSize:maxSize
lineBreakMode:UILineBreakModeClip];
CGRect stringRect = CGRectMake(((612.0 - pageStringSize.width) / 2.0),
720.0 + ((72.0 - pageStringSize.height) / 2.0),
pageStringSize.width,
pageStringSize.height);
[pageString drawInRect:stringRect withFont:theFont];
}
Creating Links Within Your PDF Content
Besides drawing content, you can also include links that take the user to another page in the same PDF file or
to an external URL. To create a single link, you must add a source rectangle and a link destination to your PDF
pages. One of the attributes of the link destination is a string that serves as the unique identifier for that link.
To create a link to a specific destination, you specify the unique identifier for that destination when creating
the source rectangle.
To add a new link destination to your PDF content, you use the
UIGraphicsAddPDFContextDestinationAtPoint function. This function associates a named destination
with a specific point on the current page. When you want to link to that destination point, you use
UIGraphicsSetPDFContextDestinationForRect function to specify the source rectangle for the link.
Generating PDF Content
Creating Links Within Your PDF Content
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
50Figure 4-1 shows the relationship between these two function calls when applied to the pages of your PDF
documents. Tapping on the rectangle surrounding the “see Chapter 1” text takesthe user to the corresponding
destination point, which is located at the top of Chapter 1.
Figure 4-1 Creating a link destination and jump point
Chapter 1
UIGraphicsAddPDFContextDestinationAtPoint
Name: “Chapter_1”
Point: (72, 72)
see Chapter 1
UIGraphicsSetPDFContextDestinationForRect
Name: “Chapter_1”
Rect: (72, 528, 400, 44)
In addition to creating links within a document, you can also use the UIGraphicsSetPDFContextURLForRect
function to create links to content located outside of the document. When using this function to create links,
you specify the target URL and the source rectangle on the current page.
Generating PDF Content
Creating Links Within Your PDF Content
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
51In iOS 4.2 and later, apps can add support for printing content to local AirPrint-capable printers. Although not
all apps need printing support, it is often a useful feature if your app is used for creating content (such as a
word processor or a drawing program), making purchases(printing order confirmations), and other tasks where
the user might reasonably want a permanent record.
This chapter explains how to add printing support to your app. At a high level, your app creates a print job,
providing either an array of ready-to-print images and PDF documents, a single image or PDF document, an
instance of any of the built-in print formatter classes, or a custom page renderer.
Terminology Note: The notion of a print job comes up many times in this chapter. A print job is a
unit of work that includes not just the content to be printed but information used in the printing of
it, such as the identity of the printer, the name of the print job, and the quality and orientation of
printing.
Printing in iOS is Designed to be Simple and Intuitive
To print, users tap a button that is usually in a navigation bar or toolbar that is associated with the view or
selected item the user wants to print. The app then presents a view of printing options. The user selects a
printer and various options and then requests printing. The app is asked to generate printing output from its
content or provide printable data or file URLs. The requested print job is spooled and control returns to the
app. If the destination printer is currently not busy, printing beginsimmediately. If the printer is already printing
or if there are jobs before it in the queue, the print job remains in the iOS print queue until it moves to the top
of queue and is printed.
The Printing User Interface
The first thing a user sees related to printing is a print button. The print button is often a bar-button item on
a navigation bar or a toolbar. The print button should logically apply to the content the app is presenting; if
the user taps the button, the app should print that content. Although the print button can be any custom
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
52
Printingbutton, it is recommended that you use the system item-action button shown in Figure 5-1. This is a
UIBarButtonItem object, specified with the UIBarButtonSystemItemAction constant, that you create
either in Interface Builder or by calling initWithBarButtonSystemItem:target:action:.
Figure 5-1 System item action button—used for printing
When a user taps the print button, a controller object of the app receives the action message. The controller
responds by preparing for printing and displaying the printer-options view. The options always include the
destination printer (selected from a list of discoverable printers), the number of copies, and sometimes the
range of pages to print. If the selected printer is capable of duplex printing, users can choose single-sided or
double-sided output. If users decide not to print, they tap outside the options view (on iPad) or tap the Cancel
button (on iPhone and iPod touch) to dismiss the printer-options view.
The kind of user interface shown depends on the device. On iPad, the UIKit framework displays a popover view
containing the options, as shown in Figure 5-2. An app can animate this view to appear from the print button
or from an arbitrary area of the app’s user interface.
Figure 5-2 Printer-options popover view (iPad)
Printing
Printing in iOS is Designed to be Simple and Intuitive
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
53On iPhone and iPod touch devices, UIKit displays a sheet of printing options that an app can animate to slide
up from the bottom of the screen, as shown in Figure 5-3.
Figure 5-3 Printer-options sheet (iPhone)
Printing
Printing in iOS is Designed to be Simple and Intuitive
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
54Once a print job has been submitted and is either printing or waiting in the print queue, users can check on
itsstatus by double-tapping the Home button to accessthe Print Center in the multitasking UI. The Print Center
(shown in Figure 5-4) is a background system app that shows the order of jobs in the print queue, including
those that are currently printing. It is only available while a print job is in progress.
Figure 5-4 Print Center
Printing
Printing in iOS is Designed to be Simple and Intuitive
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
55Users can tap a print job in the Print Center to get detailed information about it (Figure 5-5) and cancel jobs
that are printing or waiting in the queue.
Figure 5-5 Print Center: detail of print job
How Printing Works in iOS
An app uses the UIKit printing API to assemble the elements of a print job, including the content to print and
information related to the print job. It then presents the printer-options view described in “The Printing User
Interface” (page 52). The user makes his or her choices and then taps Print. In some cases, the UIKit framework
then asks the app to draw the content to be printed; UIKit records what the app draws as PDF data. UIKit then
hands off the printing data to the printing subsystem.
The printing system does a few things. As UIKit passes the print data to the printing subsystem, it writes this
data to storage (that is, it spools the data). It also captures information about the print job. The printing system
manages the combined print data and metadata for each print job in a first-in-first-out print queue. Multiple
apps on a device can submit multiple print jobs to the printing subsystem, and all of these are placed in the
print queue. Each device has one queue for all print jobs regardless of originating app or destination printer.
Printing
Printing in iOS is Designed to be Simple and Intuitive
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
56When a print job risesto the top of the queue, the system printing daemon (printd) considersthe destination
printer's requirements and, if necessary, converts the print data to a form that is usable by the printer. The
printing system reports error conditions such as "Out of Paper" to the user as alerts. It also reports the progress
of print jobs programmatically to the Print Center, which displays information such as “page 2 of 5” for a print
job.
This overall architecture is shown in Figure 5-6.
Figure 5-6 Printing architecture
Application
UIKit
Print job
Print job
Print job
Print job
Printing subsystem
Print Queue
printd
Printer
The UIKit Printing API
The UIKit printing API includes eight classes and one formal protocol. Objects of these classes and the delegate
implementing the protocol have runtime relationships as depicted in Figure 5-7.
Figure 5-7 Relationships of UIKit printing objects
UIPrintFormatter
subclass
UIPrintPageRenderer
subclass
UIPrintInteractionController
printInfo
delegate
printPaper
printingItems
printingItem
printPageRenderer
printFormatter
UIPrintPaper
paperSize
printableRect

numberOfPages
headerHeight
footerHeight
paperRect
printableRect
printFormatters
UIPrintFormatter
UIPrintFormatter
subclass
subclass
Inherited:
contentInsets
maximumContentWidth
maximumContentHeight
startPage
pageCount
, , ,
UIPrintInfo
printerID
jobName
orientation
duplex
outputType
Printing
The UIKit Printing API
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
57Printing Support Overview
At a high level, there are two waysto add printing to your app. If you are using a UIActivityViewController,
and if you do not need the ability to control whether the user can choose a page range or override the paper
selection process, you can add a printing activity.
Otherwise, to add printing to your app, you must work with the UIPrintInteractionController class. A
shared instance of the UIPrintInteractionController class provides your app with the ability to specify
what should happen when the user tells your app to print. It contains information about the print job
(UIPrintInfo) and the size of the paper and the area for the printed content (UIPrintPaper). It can also
have a reference to a delegate object that adoptsthe UIPrintInteractionControllerDelegate protocol
for further configuring behavior.
More importantly, the print interaction controller lets your app provide the content to be printed. The
UIPrintInteractionController class provides three distinct ways to print content:
● Static images or PDFs. For simple content, you can use the print interaction controller’s printingItem
or printingItems properties to provide an image (in various formats), a PDF file, or an array of images
and PDF files.
● Print formatters. If you need to print text and HTML content with automatic reflow, you can assign an
instance of any of the built-in print formatter classesto the print interaction controller’s printFormatter
property.
● Page renderers. Page renderers let you provide your own drawing routines for custom content, and give
you complete control over the page layout, including headers and footers. To use a page renderer, you
must first write a page renderer subclass, then assign an instance of it to the print interaction controller’s
printPageRenderer property.
Important: These four properties are mutually exclusive; that is, if you assign a value to one of the properties,
UIKit makes sure that all the other properties are nil.
With such a range of options available to you, what is the best option for your app? Table 5-1 clarifies the
factors involved in making this decision.
Table 5-1 Deciding how to print app content
If... Then...
Your app has access to directly printable Use the printingItem or printingItems properties.
content (images or PDF documents).
Printing
The UIKit Printing API
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
58If... Then...
You want to print a single image or PDF Use the printingItem property.
document and want the user to be able to
select a page range.
Assign a UISimpleTextPrintFormatter or
UIMarkupTextPrintFormatter object to the
printFormatter property. The print-formatter object
must be initialized with the plain or HTML text.
You want to print a plain text or HTML
document (and do not want additional
content such as headers and footers).
Get a UIViewPrintFormatter object from the view
and assign it to the printFormatter property.
You want to print the content of a UIKit view
(and do not want additional content such
as headers and footers).
Assign an instance of a custom subclass of
UIPrintPageRenderer to printPageRenderer. This
subclass should implement the methods required for
drawing headers and footers.
You want the printed pages to have
repeating headers and footers, possibly with
incremented page numbers.
Assign an instance of UIPrintPageRenderer (or a
custom subclassthereof) to printPageRenderer. You
can add one or more print formatters to render specific
pages of content. If you are using a custom subclass of
UIPrintPageRenderer, you also have the option of
providing custom drawing code to render some or all
of the pages yourself.
You have mixed content or sources that you
want to print—for example, HTML and
custom drawing.
Assign an instance of a custom subclass of
UIPrintPageRenderer to printPageRenderer and
draw everything that gets printed.
You want to have the greatest amount of
control over what gets drawn for printing.
Printing Workflow
The general workflow for printing an image, document, or other printable content of an app is as follows:
1. Obtain the shared instance of UIPrintInteractionController.
2. (Optional, but strongly recommended) Create a UIPrintInfo object, set attributes such as output type,
job name, and print orientation; then assign the object to the printInfo property of the
UIPrintInteractionController instance. (Setting the output type and job name are strongly
recommended.)
If you don’t assign a print-info object, UIKit assumes default attributes for the print job (for example, the
job name is the app name).
Printing
The UIKit Printing API
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
593. (Optional) Assign a custom controller object to the delegate property. This object must adopt the
UIPrintInteractionControllerDelegate protocol. The delegate can do a range of tasks. It can
respond appropriately when printing options are presented and dismissed, and when the print job starts
and ends. It can return a parent view controller for the print interaction controller.
Also, by default, UIKit chooses a default paper size and printable area based on the output type, which
indicates the kind of content your app is printing. If your app needs more control over paper size, you can
override this standard behavior. See “Specifying Paper Size, Orientation, and Duplexing Options” (page
75) for more details.
4. Assign one of the following to a property of the UIPrintInteractionController instance:
● A single NSData, NSURL, UIImage, or ALAsset object containing or referencing PDF data or image
data to the printingItem property.
● An array of directly printable images or PDF documents to the printingItems property. Array
elements must be NSData, NSURL, UIImage, or ALAsset objects containing, referencing, or
representing PDF data or images in supported formats.
● A UIPrintFormatter object to the printFormatter property. Print formatters perform custom
layout of printable content.
● A UIPrintPageRenderer object to the printPageRenderer property.
Only one of these properties can be non-nil for any print job. See “Printing Support Overview” (page 58)
for descriptions of these properties.
5. If you assigned a page renderer in the previousstep, that object istypically an instance of a custom subclass
of UIPrintPageRenderer. This object draws pages of content for printing when requested by the UIKit
framework. It can also draw content in headers and footers of printed pages. A custom page renderer
must override one or more of the “draw” methods and, if it is drawing at least part of the content (excluding
headers and footers), it must compute and return the number of pages for the print job. (Note that you
can use an instance of UIPrintPageRenderer “as-is” to connect a series of print formatters.)
6. (Optional) If you are using a page renderer, you can create one or more UIPrintFormatter objects using
concrete subclasses of this class; then add the print formatters for specific pages (or page ranges) to the
UIPrintPageRenderer instance either by calling the addPrintFormatter:startingAtPageAtIndex:
method of UIPrintPageRenderer or by creating an array of one or more print formatters (each with its
own starting page) and assigning that array to the printFormatters property of UIPrintPageRenderer.
7. If the current user-interface idiom is iPad, present the printing interface to the user by calling
presentFromBarButtonItem:animated:completionHandler: or
presentFromRect:inView:animated:completionHandler:; if the idiom is iPhone or iPod touch,
call presentAnimated:completionHandler:. Alternatively, you can embed the printing UI into your
existing UI by implementing a printInteractionControllerParentViewController: delegate
method. If your app uses an activity sheet (in iOS 6.0 and later), you can also add a printing activity item.
Printing
The UIKit Printing API
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
60From here, the process varies depending on whether you are printing using static content, a print formatter,
or a page renderer.
Printing Printer-Ready Content
The iOS printing system accepts certain objects and prints their contents directly, with minimal involvement
by the app. These objects are instances of the NSData, NSURL, UIImage, and ALAsset classes, and they must
contain or reference image data or PDF data. Image data involves all of these object types; PDF data is either
referenced by NSURL objects or encapsulated by NSData objects. There are additional requirements for these
printer-ready objects:
● An image must be in a format supported by the Image I/O framework. See “Supported Image Formats” in
UIImage Class Reference for a list of these formats.
● NSURL objects must use as a scheme file:, assets-library:, or anything that can return an NSData
with a registered protocol (for example, QuickLook’s x-apple-ql-id: scheme).
● ALAsset objects must be of type ALAssetTypePhoto.
You assign printer-ready objects either to the printingItem or printingItems property of the shared
UIPrintInteractionController instance. You assign a single printer-ready object to printingItem and
an array of printer-ready objects to the printingItems property.
Note: By providing printer-ready content, you are putting the layout of that content in the hands
of the printing system. Thus, settings such as printing orientation have no effect. If your app needs
to control layout, you must do the drawing yourself.
Also, if your app uses printingItems for its printable content (as opposed to printingItem),
users cannot specify page ranges in the printer-options view, even if there are multiple pages and
the showsPageRange property is set to YES.
Before assigning objects to the these properties, you should validate the objects by using one of the class
methods of UIPrintInteractionController. If, for example, you have the UTI of an image and you want
to verify that the image is printer-ready, you can test it first with the printableUTIs class method, which
returns the set of UTIs that are valid for the printing system:
if ([[UIPrintInteractionController printableUTIs] containsObject:mysteryImageUTI])
printInteractionController.printingItem = mysteryImage;
Printing
Printing Printer-Ready Content
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
61Similarly, you can apply the canPrintURL: and canPrintData: class methods of
UIPrintInteractionController to NSURL and NSData objects prior to assigning those objects to the
printingItem or printingItems properties. These methods determine if the printing system can directly
print those objects. Their use is strongly recommended, especially for PDF.
Listing 5-1 shows code that prints a PDF document encapsulated in an NSData object. Before assigning it to
printingItem, it teststhe object’s validity. It also tellsthe print interaction controller to include the page-range
controls in the printing options presented to the user.
Listing 5-1 Printing a single PDF document with capability for page-range selection
- (IBAction)printContent:(id)sender {
UIPrintInteractionController *pic = [UIPrintInteractionController
sharedPrintController];
if (pic && [UIPrintInteractionController canPrintData: self.myPDFData]) {
pic.delegate = self;
UIPrintInfo *printInfo = [UIPrintInfo printInfo];
printInfo.outputType = UIPrintInfoOutputGeneral;
printInfo.jobName = [self.path lastPathComponent];
printInfo.duplex = UIPrintInfoDuplexLongEdge;
pic.printInfo = printInfo;
pic.showsPageRange = YES:
pic.printingItem = self.myPDFData;
void (^completionHandler)(UIPrintInteractionController *, BOOL, NSError
*) =
^(UIPrintInteractionController *pic, BOOL completed, NSError *error) {
self.content = nil;
if (!completed && error)
NSLog(@"FAILED! due to error in domain %@ with error code %u",
error.domain, error.code);
};
if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad) {
[pic presentFromBarButtonItem:self.printButton animated:YES
completionHandler:completionHandler];
} else {
Printing
Printing Printer-Ready Content
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
62[pic presentAnimated:YES completionHandler:completionHandler];
}
}
The procedure for submitting several printer-ready objects at once is identical—except (of course), you must
assign an array of these objects to the printingItems property:
pic.printingItems = [NSArray arrayWithObjects:imageViewOne.image, imageViewTwo.image,
imageViewThree.image, nil];
Using Print Formatters and Page Renderers
Print formatters and page renderers are objectsthat lay out printable content over multiple pages. They specify
the beginning page of content and compute the final page of content based on the starting page, the content
area, and the content they lay out. They can also specify the margins relative to the printable area of the page.
The difference can be summarized as follows:
● Print formatters lay out a single piece of content (a block of text or HTML, a view, and so on).
● Page renderers let you add headers and footers, perform custom drawing, and so on. Page renderers can,
if desired, use print formatters to do most of their work.
If you create a custom subclass of UIPrintPageRenderer, you can draw each page of printable content
partially or entirely. A page renderer can have one or more print formatters associated with specific pages
or page ranges of the printable content.
Setting the Layout Properties for the Print Job
To define the areas on pages for printable content, the UIPrintFormatter class declares four key properties
for its concrete subclasses. These properties, along with the footerHeight and headerHeight properties
of UIPrintPageRenderer and the paperSize and printableRect properties of UIPrintPaper, define
the layout of a multi-page print job. Figure 5-8 (page 65) depicts this layout.
Property Description
Distances in points inset from the top, left, and right boundaries of the
printable rectangle. These valuesset the margins of the printed content,
although they can be overridden by the maximumContentHeight and
maximumContentWidth values. The top inset applies only to the first
page of a given formatter.
contentInsets
Printing
Using Print Formatters and Page Renderers
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
63Property Description
Specifies the maximum height of the content area, which factors in any
header or footer height. UIKit compares this value against the height of
the content area minus the top content-inset and uses the lesser of the
two values.
maximumContentHeight
Specifies the maximum width of the content area. UIKit compares this
value against the width of the content area created by the left
content-inset and right content-inset and uses the lesser of the two
values.
maximumContentWidth
The page on which this formatter should start drawing content for
printing. This value is zero-based—the first page of output has a value
of 0—but a formatter used by a pager renderer may begin drawing on
a later page.
For example, to tell a formatter to start printing on the third page, a
page renderer would specify 2 for startPage.
startPage
Printing
Using Print Formatters and Page Renderers
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
64Note: If you are using the printFormatter property of UIPrintInteractionController,
there is no UIPrintPageRenderer object, which means you cannot specify headers or footers on
the printed pages.
Figure 5-8 The layout of a multi-page print job
Paper rect
Printable rect
Right content inset
Maximum content width
Start page
Page 1
Page 3
Header height
Top content inset
Footer height
Left content inset
Page 2
Maximum content height
UIPrintFormatter uses all the properties depicted in the diagram in Figure 5-8 to compute the number of
pages needed for the print job; it stores this value in the read-only pageCount property.
Using a Print Formatter
UIKit allows you to assign a single print formatter for a print job. This can be a useful capability if you have
plain-text or HTML documents, because UIKit has concrete print-formatter classes for these types of textual
content. The framework also implements a concrete print-formatter subclass that enables you to print the
content of certain UIKit views in a printer-friendly way.
The UIPrintFormatter class is the abstract base class for the system-provided print formatters. Currently,
iOS provides the following built-in print formatters:
● UIViewPrintFormatter—automatically lays out the content of a view over multiple pages.
To obtain a print formatter for a view, call the view’s viewPrintFormatter method.
Printing
Using Print Formatters and Page Renderers
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
65Not all built-in UIKit classes support printing. Currently, only the view classes UIWebView, UITextView,
and MKMapView know how to draw their contents for printing.
View formatters should not be used for printing your own custom views. To print the contents of a custom
view, use a UIPrintPageRenderer instead.
● UISimpleTextPrintFormatter—automatically draws and lays out plain-text documents. Thisformatter
allows you to set global properties for the text, such a font, color, alignment, and line-break mode.
● UIMarkupTextPrintFormatter—automatically draws and lays out HTML documents.
Note: The UIPrintFormatter class is not intended to be subclassed by third-party developers. If
you need to do custom layout, you should write a page renderer instead.
Although the following discussion pertains to the use of a single formatter (and no page renderer), much of
the information about print formatters applies to print formatters used in conjunction with page renderers,
which is described in “Using One or More Formatters with a Page Renderer” (page 72).
Printing Text or HTML Documents
Many apps include textual content that users might want to print. If the content is plain text or HTML text, and
you have access to the backing string for the displayed textual content, you can use an instance of
UISimpleTextPrintFormatter or UIMarkupTextPrintFormatter to lay out and draw the text for
printing. Simply create the instance, initializing it with the backing string, and specify the layout properties.
Then assign it to the printFormatter instance variable of the shared UIPrintInteractionController
instance.
Listing 5-2 illustrates how you might use a UIMarkupTextPrintFormatter object to print an HTML document.
It adds an additional inch of margin inside the (printer-defined) printable area. You can determine the printable
area by examining the printPaper property of the UIPrintInteractionController object. For a more
complete example of how to create margins of a specific width, see the PrintWebView sample code project.
Listing 5-2 Printing an HTML document (without header information)
- (IBAction)printContent:(id)sender {
UIPrintInteractionController *pic = [UIPrintInteractionController
sharedPrintController];
pic.delegate = self;
UIPrintInfo *printInfo = [UIPrintInfo printInfo];
printInfo.outputType = UIPrintInfoOutputGeneral;
Printing
Using Print Formatters and Page Renderers
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
66printInfo.jobName = self.documentName;
pic.printInfo = printInfo;
UIMarkupTextPrintFormatter *htmlFormatter = [[UIMarkupTextPrintFormatter alloc]
initWithMarkupText:self.htmlString];
htmlFormatter.startPage = 0;
htmlFormatter.contentInsets = UIEdgeInsetsMake(72.0, 72.0, 72.0, 72.0); // 1
inch margins
pic.printFormatter = htmlFormatter;
pic.showsPageRange = YES;
void (^completionHandler)(UIPrintInteractionController *, BOOL, NSError *) =
^(UIPrintInteractionController *printController, BOOL completed, NSError
*error) {
if (!completed && error) {
NSLog(@"Printing could not complete because of error: %@", error);
}
};
if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad) {
[pic presentFromBarButtonItem:sender animated:YES
completionHandler:completionHandler];
} else {
[pic presentAnimated:YES completionHandler:completionHandler];
}
}
Remember that if you use a single print formatter for a print job (that is, a UIPrintFormatter object assigned
to the printFormatter property of the UIPrintInteractionController instance), you cannot draw
header and footer content on each printed page. To do this you must use a UIPrintPageRenderer object
plus any needed print formatters. For more information, see “Using One or More Formatters with a Page
Renderer” (page 72).
The procedure for using a UISimpleTextPrintFormatter object to lay out and print a plain text document
is almost identical. However, the class of this object includes properties that enable you to set the font, color,
and alignment of the printed text.
Printing
Using Print Formatters and Page Renderers
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
67Using a View Print Formatter
You can use an instance of the UIViewPrintFormatter class to lay out and print the contents of some
system views. The UIKit framework creates these view print formatters for the view. Often the same code used
to draw the view for display is used to draw the view for printing. Currently, the system views whose contents
you can print using a view print formatter are instances of UIWebView, UITextView, and MKMapView (MapKit
framework).
To get the view print formatter for a UIView object, call viewPrintFormatter on the view. Set the starting
page and any layout properties and then assign the object to the printFormatter property of the
UIPrintInteractionController shared instance. Alternatively, you can add the view print formatter to
a UIPrintPageRenderer object if you are using that object to draw portions of the printed output. Listing
5-3 shows code that uses a view print formatter from a UIWebView object to print the contents of that view.
Listing 5-3 Printing the contents of a web view
- (void)printWebPage:(id)sender {
UIPrintInteractionController *controller = [UIPrintInteractionController
sharedPrintController];
void (^completionHandler)(UIPrintInteractionController *, BOOL, NSError *) =
^(UIPrintInteractionController *printController, BOOL completed, NSError
*error) {
if(!completed && error){
NSLog(@"FAILED! due to error in domain %@ with error code %u",
error.domain, error.code);
}
};
UIPrintInfo *printInfo = [UIPrintInfo printInfo];
printInfo.outputType = UIPrintInfoOutputGeneral;
printInfo.jobName = [urlField text];
printInfo.duplex = UIPrintInfoDuplexLongEdge;
controller.printInfo = printInfo;
controller.showsPageRange = YES;
UIViewPrintFormatter *viewFormatter = [self.myWebView viewPrintFormatter];
viewFormatter.startPage = 0;
controller.printFormatter = viewFormatter;
Printing
Using Print Formatters and Page Renderers
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
68if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad) {
[controller presentFromBarButtonItem:printButton animated:YES
completionHandler:completionHandler];
}else
[controller presentAnimated:YES completionHandler:completionHandler];
}
For a complete example based on UIViewPrintFormatter, see the PrintWebView sample code project.
Using a Page Renderer
A page renderer is an instance of a custom subclass of UIPrintPageRenderer that draws the full or partial
content of a print job. To use one, you must create the subclass, add it to your project, and instantiate it when
you prepare a UIPrintInteractionController instance for a print job. Then assign the page renderer to
the printPageRenderer property of the UIPrintInteractionController instance. A page renderer
can have one or more print formatters associated with it; if it does, it mixes its drawing with the drawing of
the print formatters.
A page renderer can draw and lay out printable content on its own or it can use print formatters to handle
some or all of the rendering of specific ranges of pages. Thus, for relatively straightforward formatting needs,
you can use an instance of UIPrintPageRenderer “as-is” to connect multiple print formatters. However,
most page renderers are typically instances of custom subclasses of UIPrintPageRenderer.
Note: If you want to print header and footer information, such as a repeating document title and
an incrementing page count, you must use a custom subclass of UIPrintPageRenderer.
The UIPrintPageRenderer base class includes properties for the page count and for heights of headers and
footers of pages. It also declares several methods that you can override to draw specific portions of a page:
the header, the footer, the content itself, or to integrate page renderer and print formatter drawing.
Setting Page Renderer Attributes
If your page renderer is going to draw in the header or footer of each printed page, you should specify a height
for the header and footer. To do this, assign float values (representing points) to the headerHeight and
footerHeight properties inherited by your subclass. If these properties have height values of 0 (the default),
the drawHeaderForPageAtIndex:inRect: and drawFooterForPageAtIndex:inRect: methods are
not called.
Printing
Using Print Formatters and Page Renderers
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
69If your page renderer is going to draw in the content area of the page—that is, the area between any header
or footer areas—then your subclass should override the numberOfPages method to compute and return the
number of pages the page renderer will draw. If print formatters associated with the page renderer are going
to draw all of the content between the header and footer, then the print formatters will compute the number
of pages for you. This situation occurs your page renderer just draws in the header and footer areas and you
let the print formatter draw all the other content.
With a page renderer with no associated print formatter, the layout of each page of printable content is entirely
up to you. When computing layout metrics, you can take into account the headerHeight, footerHeight,
paperRect, and printableRect properties of UIPrintPageRenderer (the lasttwo properties are read-only).
If the page renderer uses print formatters, the layout metrics also include the contentInsets,
maximumContentHeight, and maximumContentWidth properties of UIPrintFormatter. See “Setting the
Layout Properties for the Print Job” (page 63) for an illustration and explanation.
Implementing the Drawing Methods
When an app uses a page renderer to draw printable content, UIKit calls the following methods for each page
of requested content. Note that there is no guarantee that UIKit calls these methods in page-sequence order.
Moreover, if users request a subset of pages for printing (that is, they specify a page range), UIKit does not
invoke the methods for pages not in the subset.
Note: Remember that if you are drawing images or PDF documents as printable content using
non-UIKit API (for example, Quartz API), then you must "flip” the UIKit’s coordinate system—putting
the origin in the lower-left corner with positive values going upwards—to match the coordinate
system used by Core Graphics. See “Coordinate Systems and Drawing in iOS” (page 13) for more
information.
The drawPageAtIndex:inRect: method calls each of the other draw methods, in the order listed below.
Your app can override this method if you want to have complete control over what is drawn for printing.
Override... To...
Draw content in the header. This method is not called if
headerHeight is 0.
drawHeaderForPageAtIndex:
inRect:
Draw the content of the print job (that is, the area between
the header and the footer).
drawContentForPageAtIndex:
inRect:
Printing
Using Print Formatters and Page Renderers
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
70Override... To...
Intermix custom drawing with the drawing performed by print
formatters. This method is called for each print formatter
associated with a given page. See “Using One or More
Formatters with a Page Renderer” (page 72) for more
information.
drawPrintFormatter:
forPageAtIndex:
Draw content in the footer. This method is not called if
footerHeight is 0.
drawFooterForPageAtIndex:
inRect:
All of these drawing methods are set up for drawing to the current graphics context (as returned by
UIGraphicsGetCurrentContext). The rectangle passed into each method—defining header area, footer
area, content area, and entire page—has values relative to the origin of the page, which is in the upper-left
corner.
Listing 5-4 shows example implementations of the drawHeaderForPageAtIndex:inRect: and
drawFooterForPageAtIndex:inRect: methods. They use CGRectGetMaxX and CGRectGetMaxY to
compute placement of text in the footerRect and headerRect rectangles in the coordinate system of the
printable rectangle.
Listing 5-4 Drawing the header and footer of a page
- (void)drawHeaderForPageAtIndex:(NSInteger)pageIndex inRect:(CGRect)headerRect
{
UIFont *font = [UIFont fontWithName:@"Helvetica" size:12.0];
CGSize titleSize = [self.jobTitle sizeWithFont:font];
//center title in header
CGFloat drawX = CGRectGetMaxX(headerRect)/2 - titleSize.width/2;
CGFloat drawY = CGRectGetMaxY(headerRect) - titleSize.height;
CGPoint drawPoint = CGPointMake(drawX, drawY);
[self.jobTitle drawAtPoint:drawPoint withFont: font];
}
- (void)drawFooterForPageAtIndex:(NSInteger)pageIndex inRect:(CGRect)footerRect
{
UIFont *font = [UIFont fontWithName:@"Helvetica" size:12.0];
NSString *pageNumber = [NSString stringWithFormat:@"%d.", pageIndex+1];
// page number at right edge of footer rect
CGSize pageNumSize = [pageNumber sizeWithFont:font];
Printing
Using Print Formatters and Page Renderers
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
71CGFloat drawX = CGRectGetMaxX(footerRect) - pageNumSize.width - 1.0;
CGFloat drawY = CGRectGetMaxY(footerRect) - pageNumSize.height;
CGPoint drawPoint = CGPointMake(drawX, drawY);
[pageNumber drawAtPoint:drawPoint withFont: font];
}
Using One or More Formatters with a Page Renderer
A page renderer can draw printable content in conjunction with one or more print formatters. For example,
an app can use a UISimpleTextPrintFormatter object to draw pages of textual content for printing, but
use a page renderer to draw a document title in each page header. Or an app can use two print formatters,
one to draw header (or summary) information at the beginning of the first page and another print formatter
to draw the remaining content; then it might use a page renderer to draw a line separating the two parts.
As you may recall, you can use a single print formatter for a print job by assigning it the printFormatter
property of the UIPrintInteractionController shared instance. But if you use a page renderer and print
formatters, you must associate each print formatter with the page renderer. You do this one of two ways:
●
Include each print formatter in the array assigned to the printFormatters property.
● Add each print formatter by calling the addPrintFormatter:startingAtPageAtIndex: method.
Before you associate a print formatter with a page renderer, be sure to set its layout properties, including the
starting page (startPage) of the print job. Once you have set these properties, UIPrintFormatter computes
the number of pages for the print formatter. Note that if you specify a starting page by calling
addPrintFormatter:startingAtPageAtIndex:; that value overwrites any value assigned to startPage.
For a discussion of print formatters and layout metrics,see “Setting the Layout Propertiesfor the PrintJob” (page
63).
A page renderer can override drawPrintFormatter:forPageAtIndex: to integrate its drawing with the
drawing performed by the print formatters assigned to a given page. It can draw in an area of the page where
the print formatter doesn’t draw and then call the drawInRect:forPageAtIndex: method on the passed-in
print formatter to have it draw its portion of the page. Or the page renderer can achieve an “overlay” effect
by having the print formatter draw first and then drawing something over the content drawn by the print
formatter.
For complete examples based on UIPrintPageRenderer, see the PrintPhoto , Recipes and Printing , and
PrintWebView sample code projects.
Printing
Using Print Formatters and Page Renderers
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
72Testing the Printing of App Content
The iOS 4.2 SDK (and later) provides a Printer Simulator app that you can use to test your app’s printing
capabilities. The app simulates printers of various general types (inkjet, black-and-white laser, color laser, and
so on). It displays printed pages in the OS X Preview app. You can set a preference to show the printable area
of each page. Printer Simulator also logs information from the printing system about each print job.
You can run the Printer Simulator in one of thee ways:
● Choose Open Printer Simulator from the File menu in the iOS Simulator.
● Choose the Printer Simulator in Xcode using the Xcode > Open Developer Tool menu.
● You can find Printer Simulator in the following file-system location:
/Platforms/iPhoneOS.platform/Developer/Applications/PrinterSimulator.app
When testing your app’s printing code, you should also implement the completion handler passed into the
present... methods and log any errors returned from the printing system. These errors are typically
programming errors, which you should catch before your app is deployed. See “Responding to Print-Job
Completion and Errors” (page 79) for details.
Common Printing Tasks
All the coding tasks described below are things that an app does (or can do) in response to a request for
printing. Although most of the tasks can occur in any order, you should first check that the device is capable
of printing and you should conclude with presenting the printing options. See “Printing Printer-Ready
Content” (page 61), “Using Print Formatters and Page Renderers” (page 63), and “Using a Page Renderer” (page
69) for complete examples.
An important set of tasks not covered here is adding a print button to an appropriate place in the app’s user
interface, declaring an action method, making a target-action connection, and implementing the action method.
(See “The Printing User Interface” (page 52) for a recommendation on which print button to use.) The following
tasks (except for “Specifying Paper Size, Orientation, and Duplexing Options” (page 75)) are part of the
implementation of the action method.
Testing for Printing Availability
Some iOS devices do not support printing. You should immediately determine this fact once your view loads.
If printing is not available for the device, you should either not programmatically add any printing user-interface
element (button, bar button item, and so on), or you should remove any printing element loaded from a nib
Printing
Testing the Printing of App Content
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
73file. To determine if printing is available, call the isPrintingAvailable class method of
UIPrintInteractionController. Listing 5-5 illustrates how you might do this; it assumes an outlet to a
print button (myPrintButton) loaded from a nib file.
Listing 5-5 Enabling or disabling a print button based on availability of printing
- (void)viewDidLoad {
if (![UIPrintInteractionController isPrintingAvailable])
[myPrintButton removeFromSuperView];
// other tasks...
}
Note: Although you could disable a printing element such as an “action” bar button item, removal
is recommended. The value returned by isPrintingAvailable never changes for a given device
because it reflects whether that device supports printing, not whether printing is currently available.
Specifying Print-Job Information
An instance of the UIPrintInfo class encapsulates information about a print job, specifically:
● The output type (indicating the type of content)
● The print-job name
● The printing orientation
● The duplex mode
● The identifier of the selected printer
You do not need to assign values to all UIPrintInfo properties; users choose some of these values and UIKit
assumes default valuesfor others. (Indeed, you don’t even have to explicitly create an instance of UIPrintInfo.)
However, in most cases you’ll want to specify some aspects of a print job, such as output type. Get an instance
of UIPrintInfo by calling the printInfo class method. Assign values to the object’s properties you want
to configure. Then assign the UIPrintInfo object to the printInfo property of the shared
UIPrintInteractionController instance. Listing 5-6 gives an example of this procedure.
Listing 5-6 Setting properties of a UIPrintInfo object and assigning it to the printInfo property
UIPrintInteractionController *controller = [UIPrintInteractionController
sharedPrintController];
Printing
Common Printing Tasks
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
74UIPrintInfo *printInfo = [UIPrintInfo printInfo];
printInfo.outputType = UIPrintInfoOutputGeneral;
printInfo.jobName = [self.path lastPathComponent];
printInfo.duplex = UIPrintInfoDuplexLongEdge;
controller.printInfo = printInfo;
One of the UIPrintInfo properties is the printing orientation: portrait or landscape. You might want the
printing orientation to suit the dimensions of the object being printed. In other words, if the object is large,
and its width is greater than its height, landscape would be a suitable printing orientation for it. Listing 5-7
illustrates this with an image.
Listing 5-7 Setting the printing orientation to match image dimension
UIPrintInteractionController *controller = [UIPrintInteractionController
sharedPrintController];
// other code here...
UIPrintInfo *printInfo = [UIPrintInfo printInfo];
UIImage *image = ((UIImageView *)self.view).image;
printInfo.outputType = UIPrintInfoOutputPhoto;
printInfo.jobName = @"Image from PrintPhoto";
printInfo.duplex = UIPrintInfoDuplexNone;
// only if drawing...
if (!controller.printingItem && image.size.width > image.size.height)
printInfo.orientation = UIPrintInfoOrientationLandscape;
Specifying Paper Size, Orientation, and Duplexing Options
By default, UIKit presents a set of default paper sizes for printable content based on the destination printer
and the output type of the print job, as specified by the outputType property of the UIPrintInfo object.
For example, if the output type is UIPrintInfoOutputPhoto, the default paper size is 4 x 6 inches, A6, or
some other standard size, depending on locale; if the output type is UIPrintInfoOutputGeneral or
UIPrintInfoOutputGrayscale, the default paper size is US Letter (8 1/2 x 11 inches), A4, or some other
standard size, depending on locale.
For most apps, these default paper sizes are acceptable. However, some apps might need a special paper size.
A page-based app might need to show the user how content will actually appear on paper of a given size, an
app that produces brochures or greeting cards might have its own preferred size, and so on.
Printing
Common Printing Tasks
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
75In this case, the delegate of the print interaction controller can implement the
UIPrintInteractionControllerDelegate protocol method
printInteractionController:choosePaper: to return a UIPrintPaper objectrepresenting the optimal
combination of available paper size and printable rectangle for a given content size.
The delegate has two approaches it can take. It can examine the passed-in array of UIPrintPaper objects
and identify the one that is most suitable. Or it can let the system pick the most suitable object by calling the
UIPrintPaper class method bestPaperForPageSize:withPapersFromArray:. Listing 5-8 shows an
implementation of the method for an app that supports multiple document types, each with its own page
size.
Listing 5-8 Implementing the printInteractionController:choosePaper: method
- (UIPrintPaper *)printInteractionController:(UIPrintInteractionController *)pic
choosePaper:(NSArray *)paperList {
// custom method & properties...
CGSize pageSize = [self pageSizeForDocumentType:self.document.type];
return [UIPrintPaper bestPaperForPageSize:pageSize
withPapersFromArray:paperList];
}
Typically, apps that use custom page renderers factor the paper size into their calculations of the number of
pages for a print job (numberOfPages).
If your app needs to present the user with a choice of page size (for a word processing app, for example), you
must implement that UI yourself, and you must then use that paper size in your
printInteractionController:choosePaper: implementation. For example:
// Create a custom CGSize for 8.5" x 11" paper.
CGSize custompapersize = CGSizeMake(8.5 * 72.0, 11.0 * 72.0);
The UIPrintInfo class also lets you provide additional settings, such as the printing orientation, selected
printer, and the duplexing mode (if the printersupports duplex printing). Users can change the selected printer
and duplex settings from the values you provide
Integrating Printing Into Your User Interface
There are two ways to integrate printing into your user interface:
Printing
Common Printing Tasks
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
76● Using a print interaction controller.
● From the activity sheet (in iOS 6.0 and later).
The way you integrate printing depends on which of these techniques you choose.
Presenting Printing Options Using a Print Interaction Controller
UIPrintInteractionController declares three methods for presenting the printing options to users,
each with its own animation:
● presentFromBarButtonItem:animated:completionHandler: animates a popover view from a
button in the navigation bar or toolbar (usually the print button).
● presentFromRect:inView:animated:completionHandler: animates a popover view from an
arbitrary rectangle in the app’s view.
● presentAnimated:completionHandler: animates a sheet that slides up from the bottom of the
screen.
The first two of these methods are intended to be invoked on iPad devices; the third method is intended to
be invoked on iPhone and iPod touch devices. You can conditionally code for each device type (or, user-interface
idiom) by calling the UI_USER_INTERFACE_IDIOM and comparing the result to UIUserInterfaceIdiomPad
or UIUserInterfaceIdiomPhone. Listing 5-9 gives an example of this.
Listing 5-9 Presenting printing options based upon current device type
if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad) {
[controller presentFromBarButtonItem:self.printButton animated:YES
completionHandler:completionHandler];
} else {
[controller presentAnimated:YES completionHandler:completionHandler];
}
If your app calls one of the iPad-specific methods on an iPhone (and requests animation), the default behavior
is to display the printing options in a sheet that slides up from the bottom of the screen. If your app calls the
iPhone-specific method on iPad, the default behavior is to animate the popover view from the current window
frame.
If you call one of the present… methods when the printing options are already displayed,
UIPrintInteractionController hidesthe printing-options view orsheet. You must call the method again
to display the options.
Printing
Common Printing Tasks
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
77If you assign a printer ID or a duplex mode as print-info values, these appear as defaultsin the printing options.
(The printer must be capable of double-sided printing for the duplex control to appear.) If you want to let your
users select ranges of pages for printing, you should set the showsPageRange property of the
UIPrintInteractionController object to YES (NO is the default value). Be aware, however, that no
page-range control appears in the printing options if you supply printable content via the printingItems
property or if the total number of pages is 1, even if showsPageRange is YES.
If you want the printing UI to appear within a particular view, you can do this by implementing the
printInteractionControllerParentViewController: method in your
UIPrintInteractionControllerDelegate class. This method should return the view controller that
should be used as the parent for the print interaction controller. If the provided parent view controller is a
UINavigationController instance, the printing UI is pushed into view in that controller. For any other
UIViewController instance, the print navigation is shown as a modal dialog within the specified view.
Printing From the Activity Sheet
If your app uses an activity sheet (in iOS 6.0 and later), you can allow printing from the activity sheet. Printing
from the activity sheet is simpler than using a print interaction controller. There are two caveats, however:
● The app cannot control whether a user can choose a page range.
● The app cannot use delegate methods to override behavior, such as manually overriding the paper size
selection process.
To use this technique, your app must create an activity items array containing:
● A UIPrintInfo object.
● Either a page renderer formatter object, a page renderer or a printable item.
● Any additional activity items appropriate for your app.
You then call initWithActivityItems:applicationActivities:, passing that array asthe first parameter
and nil as the second parameter (or an array of custom activities, if your app provides any).
Finally, you present the activity view using the standard view controller present* methods. If the user chooses
to printfromthat activity view, iOS creates a printjob for you. Formore information,read UIActivityViewController
Class Reference and UIActivity Class Reference .
Printing
Common Printing Tasks
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
78Responding to Print-Job Completion and Errors
The final parameter of the presentation methods declared by UIPrintInteractionController and
described in “Presenting Printing Options Using a Print Interaction Controller ” (page 77) is a completion
handler. The completion handler is a block of type UIPrintInteractionCompletionHandler that isinvoked
when a print job completes successfully or when it is terminated because of an error. You can provide a block
implementation that cleans up state that you have set up for the print job. The completion handler can also
log error messages.
The example in Listing 5-10 clears an internal property upon completion or error; if there is an error, it logs
information about it.
Listing 5-10 Implementing a completion-handler block
void (^completionHandler)(UIPrintInteractionController *, BOOL, NSError *) =
^(UIPrintInteractionController *pic, BOOL completed, NSError *error) {
self.content = nil;
if (!completed && error)
NSLog(@"FAILED! due to error in domain %@ with error code %u",
error.domain, error.code);
};
UIKit automatically releases all objects assigned to the UIPrintInteractionController instance at the
end of a print job (except for the delegate), so you do not have to do this yourself in a completion handler.
A printing error isrepresented by an NSError object having a domain of UIPrintErrorDomain and an error
code declared in UIPrintError.h. In almost all cases, these codes indicate programming errors, so usually
there is no need to inform the user about them. However, some errors can result from an attempt to print a
file (located by a file-scheme NSURL object) that results in an error.
Printing
Common Printing Tasks
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
79Drawing is a relatively expensive operation on any platform, and optimizing your drawing code should always
be an important step in your development process. Table A-1 lists several tips for ensuring that your drawing
code is as optimal as possible. In addition to these tips, you should always use the available performance tools
to test your code and remove hotspots and redundancies.
Table A-1 Tips for improving drawing performance
Tip Action
During each update cycle, you should update only the portions of your
view that actually changed. If you are using the drawRect: method of
UIView to do your drawing, use the update rectangle passed to that
method to limit the scope of your drawing. For OpenGL drawing, you must
track updates yourself.
Draw minimally
If you are calling setNeedsDisplay:, always spend the time to calculate
the actual area that you need to redraw. Don’t just pass a rectangle
containing the entire view.
Also, don’t call setNeedsDisplay: unless you actually need to redraw
content. If the content hasn’t actually changed, don’t redraw it.
Call
setNeedsDisplay:
judiciously
Compositing a view whose contents are opaque requires much less effort
than compositing one that is partially transparent. To make a view opaque,
the contents of the view must not contain any transparency and the opaque
property of the view must be set to YES.
Mark opaque views as
such
Creating new views during scrolling should be avoided at all costs. Taking
the time to create new views reduces the amount of time available for
updating the screen, which leads to uneven scrolling behavior.
Reuse table cells and
views during scrolling
By modifying the current transformation matrix, you can use a single path
to draw content on different parts of the screen. For details, see “Using
Coordinate Transforms to Improve Drawing Performance” (page 24).
Reuse paths by
modifying the current
transformation matrix
By default, UIKit clears a view’s current context buffer prior to calling its
drawRect: method to update that same area. If you are responding to
scrolling eventsin your view, clearing thisregion repeatedly during scrolling
updates can be expensive. To disable the behavior, you can change the
value in the clearsContextBeforeDrawing property to NO.
Avoid clearing the
previous content during
scrolling
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
80
Improving Drawing PerformanceTip Action
Changing the graphics state requires work by the underlying graphics
subsystems. If you need to draw content that usessimilarstate information,
try to draw that content together to reduce the number of state changes
needed.
Minimize graphics state
changes while drawing
The Core Animation instrument can help you spot drawing performance
problems in your app. In particular:
● Flash Updated Regions makes it easy to see what parts of your view
are actually being updated.
● Color Misaligned Images helps you see imagesthat are aligned poorly,
which results in both fuzzy images and poor performance.
For more information,see “Measuring Graphics Performance in Your iOS Device”
in Instruments User Guide .
Use Instruments to
debug your performance
Improving Drawing Performance
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
81Apps built against iOS SDK 4.0 and later need to be prepared to run on devices with differentscreen resolutions.
Fortunately, iOS makes supporting multiple screen resolutions easy. Most of the work of handling the different
types of screens is done for you by the system frameworks. However, your app still needs to do some work to
update raster-based images, and depending on your app you may want to do additional work to take advantage
of the extra pixels available to you.
See “Points Versus Pixels” (page 16) for important background information related to this topic.
Checklist for Supporting High-Resolution Screens
To update your apps for devices with high-resolution screens, you need to do the following:
● Provide a high-resolution image for each image resource in your app bundle, as described in “Updating
Your Image Resource Files” (page 83).
● Provide high-resolution app and document icons, as described in “Updating Your App’s Icons and Launch
Images” (page 85).
● For vector-based shapes and content, continue using your custom Core Graphics and UIKit drawing code
as before. If you want to add extra detail to your drawn content, see “Points Versus Pixels” (page 16) for
information on how to do so.
●
If you use OpenGL ES for drawing, decide whether you want to opt in to high-resolution drawing and set
the scale factor of your layer accordingly, as described in “Drawing High-Resolution Content Using OpenGL
ES or GLKit” (page 85).
● For custom images that you create, modify your image-creation code to take the current scale factor into
account, as described in “Drawing to Bitmap Contexts and PDF Contexts” (page 19).
●
If your app uses Core Animation, adjust your code as needed to compensate for scale factors, as described
in “Accounting for Scale Factors in Core Animation Layers” (page 28).
Drawing Improvements That You Get for Free
The drawing technologies in iOS provide a lot of support to help you make your rendered content look good
regardless of the resolution of the underlying screen:
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
82
Supporting High-Resolution Screens In Views● Standard UIKit views (text views, buttons, table views, and so on) automatically render correctly at any
resolution.
● Vector-based content (UIBezierPath, CGPathRef, PDF) automatically takes advantage of any additional
pixels to render sharper lines for shapes.
● Text is automatically rendered at higher resolutions.
● UIKit supports the automatic loading of high-resolution variants (@2x) of your images.
If your app uses only native drawing technologies for its rendering, the only thing you need to do to support
higher-resolution screens is provide high-resolution versions of your images.
Updating Your Image Resource Files
Apps running in iOS 4 should now include two separate files for each image resource. One file provides a
standard-resolution version of a given image, and the second provides a high-resolution version of the same
image. The naming conventions for each pair of image files is as follows:
● Standard: .
● High resolution: @2x.
The and portions of each name specify the usual name and extension
for the file. The portion is optional and contains either the string ~ipad or ~iphone. You
include one of these modifiers when you want to specify different versions of an image for iPad and iPhone.
The inclusion of the @2x modifier for the high-resolution image is new and letsthe system know that the image
is the high-resolution variant of the standard image.
Important: The order of the modifiers is critical. If you incorrectly put the @2x after the device modifier,
iOS will not find the image.
When creating high-resolution versions of your images, place the new versions in the same location in your
app bundle as the original.
Loading Images into Your App
The UIImage class handles all of the work needed to load high-resolution imagesinto your app. When creating
new image objects, you use the same name to request both the standard and the high-resolution versions of
your image. For example, if you have two image files, named Button.png and Button@2x.png, you would
use the following code to request your button image:
Supporting High-Resolution Screens In Views
Updating Your Image Resource Files
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
83UIImage *anImage = [UIImage imageNamed:@"Button"];
Note: In iOS 4 and later, you may omit the filename extension when specifying image names.
On devices with high-resolution screens, the imageNamed:, imageWithContentsOfFile:, and
initWithContentsOfFile: methods automatically looksfor a version of the requested image with the @2x
modifier in its name. If it finds one, it loads that image instead. If you do not provide a high-resolution version
of a given image, the image object still loads a standard-resolution image (if one exists) and scales it during
drawing.
When it loads an image, a UIImage object automatically sets the size and scale properties to appropriate
values based on the suffix of the image file. For standard resolution images, it sets the scale property to 1.0
and sets the size of the image to the image’s pixel dimensions. For images with the @2x suffix in the filename,
it sets the scale property to 2.0 and halves the width and height values to compensate for the scale factor.
These halved values correlate correctly to the point-based dimensions you need to use in the logical coordinate
space to render the image.
Note: If you use Core Graphics to create an image, remember that Quartz images do not have an
explicit scale factor, so their scale factor is assumed to be 1.0. If you want to create a UIImage object
from a CGImageRef data type, use the initWithCGImage:scale:orientation: to do so. That
method allows you to associate a specific scale factor with your Quartz image data.
A UIImage object automatically takes its scale factor into account during drawing. Thus, any code you have
for rendering images should work the same as long as you provide the correct image resources in your app
bundle.
Using an Image View to Display Multiple Images
If your app uses the UIImageView class to present multiple images for a highlight or animation, all of the
images you assign to that view must use the same scale factor. You can use an image view to display a single
image or to animate several images, and you can also provide a highlight image. Therefore, if you provide
high-resolution versions for one of these images, then all must have high-resolution versions as well.
Supporting High-Resolution Screens In Views
Updating Your Image Resource Files
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
84Updating Your App’s Icons and Launch Images
In addition to updating your app’s custom image resources, you should also provide new high-resolution icons
for your app’s icon and launch images. The process for updating these image resources is the same as for all
other image resources. Create a new version of the image, add the @2x modifier string to the corresponding
image filename, and treat the image as you do the original. For example, for app icons, add the high-resolution
image filename to the CFBundleIconFiles key of your app’s Info.plist file.
For information about specifying the icons and launch images for your app, see “App-Related Resources” in iOS
App Programming Guide .
Drawing High-Resolution Content Using OpenGL ES or GLKit
If your app uses OpenGL ES or GLKit for rendering, your existing drawing code should continue to work without
any changes. When drawn on a high-resolution screen, though, your content is scaled accordingly and will
appear more blocky. The reason for the blocky appearance is that the default behavior of the CAEAGLLayer
class, which you use to back your OpenGL ES renderbuffers (directly or indirectly), is the same as other Core
Animation layer objects. In other words, its scale factor is set to 1.0 initially, which causes the Core Animation
compositor to scale the contents of the layer on high-resolution screens. To avoid this blocky appearance, you
need to increase the size of your OpenGL ES renderbuffers to match the size of the screen. (With more pixels,
you can then increase the amount of detail you provide for your content.) Because adding more pixels to your
renderbuffers has performance implications, though, you must explicitly opt in to support high-resolution
screens.
To enable high-resolution drawing, you must change the scale factor of the view you use to present your
OpenGL ES or GLKit content. Changing the contentScaleFactor property of your view from 1.0 to 2.0
triggers a matching change to the scale factor of the underlying CAEAGLLayer object. The
renderbufferStorage:fromDrawable: method, which you use to bind the layer object to your
renderbuffers, calculatesthe size of the render buffer by multiplying the layer’s bounds by itsscale factor. Thus,
doubling the scale factor doubles the width and height of the resulting render buffer, giving you more pixels
for your content. After that, it is up to you to provide the content for those additional pixels.
Listing B-1 shows the proper way to bind your layer object to your renderbuffers and retrieve the resulting
size information. If you used the OpenGL ES app template to create your code, then this step is already done
for you, and the only thing you need to do is set the scale factor of your view appropriately. If you did not use
the OpenGL ES app template, you should use code similar to this to retrieve the render buffer size. You should
never assume that the render buffer size is fixed for a given type of device.
Listing B-1 Initializing a render buffer’s storage and retrieving its actual dimensions
GLuint colorRenderbuffer;
Supporting High-Resolution Screens In Views
Drawing High-Resolution Content Using OpenGL ES or GLKit
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
85glGenRenderbuffersOES(1, &colorRenderbuffer);
glBindRenderbufferOES(GL_RENDERBUFFER_OES, colorRenderbuffer);
[myContext renderbufferStorage:GL_RENDERBUFFER_OES fromDrawable:myEAGLLayer];
// Get the renderbuffer size.
GLint width;
GLint height;
glGetRenderbufferParameterivOES(GL_RENDERBUFFER_OES, GL_RENDERBUFFER_WIDTH_OES,
&width);
glGetRenderbufferParameterivOES(GL_RENDERBUFFER_OES, GL_RENDERBUFFER_HEIGHT_OES,
&height);
Important: A view that is backed by a CAEAGLLayer object should not implement a custom drawRect:
method. Implementing a drawRect: method causes the system to change the default scale factor of the
view so that it matches the scale factor of the screen. If your drawing code is not expecting this behavior,
your app content will not be rendered correctly.
If you do opt in to high-resolution drawing, you also need to adjust the model and texture assets of your app
accordingly. For example, when running on iPad or on a high-resolution device, you might want to choose
larger models and more detailed textures to take advantage of the increased number of pixels. Conversely, on
a standard-resolution iPhone, you can continue to use smaller models and textures.
An important factor when determining whether to support high-resolution content is performance. The
quadrupling of pixels that occurs when you change the scale factor of your layer from 1.0 to 2.0 puts additional
pressure on the fragment processor. If your app performs many per-fragment calculations, the increase in
pixels may reduce your app’s frame rate. If you find your app runs significantly slower at the higher scale factor,
consider one of the following options:
● Optimize your fragment shader’s performance using the performance-tuning guidelines found in OpenGL
ES Programming Guide for iOS .
● Choose a simpler algorithm to implement in your fragment shader. By doing so, you are reducing the
quality of each individual pixel to render the overall image at a higher resolution.
● Use a fractional scale factor between 1.0 and 2.0. A scale factor of 1.5 provides better quality than a scale
factor of 1.0 but needs to fill fewer pixels than an image scaled to 2.0.
● OpenGL ES in iOS 4 and later offers multisampling as an option. Even though your app can use a smaller
scale factor (even 1.0), implement multisampling anyway. An added advantage is that this technique also
provides higher quality on devices that do not support high-resolution displays.
Supporting High-Resolution Screens In Views
Drawing High-Resolution Content Using OpenGL ES or GLKit
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
86The best solution depends on the needs of your OpenGL ES app; you should test more than one of these
options and choose the approach that provides the best balance between performance and image quality.
Supporting High-Resolution Screens In Views
Drawing High-Resolution Content Using OpenGL ES or GLKit
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
87For both functional and aesthetic reasons, images are a pervasive element of app user interfaces. They can be
a key differentiating factor for apps.
Many images used by apps, including launch images and app icons, are stored asfilesin the app’s main bundle.
You can have launch images and icons that are specific to device type (iPad versus iPhone and iPod touch)
and that are optimized for high-resolution displays. You can find full descriptions of these bundled image files
in “Advanced App Tricks” and “App-Related Resources” in iOS App Programming Guide . “Updating Your Image
Resource Files” (page 83) discusses adjustments that make your image files compatible with high-resolution
screens.
In addition, iOS provides support for loading and displaying images using both the UIKit and Core Graphics
frameworks. How you determine which classes and functionsto use to draw images depends on how you intend
to use them. Whenever possible, though, it is recommended that you use the classes of UIKit for representing
images in your code. Table C-1 lists some of the usage scenarios and the recommended options for handling
them.
Table C-1 Usage scenarios for images
Scenario Recommended usage
Use the UIImageView class to display the image. This option
assumes that your view’s only content is an image. You can still
layer other views on top of the image view to draw additional
controls or content.
Display an image as the content
of a view
Display an image as an Load and draw the image using the UIImage class.
adornment for part of a view
You can do this using the UIKit functions or Core Graphicsfunctions
described in “Creating New Images Using Bitmap Graphics
Contexts” (page 41).
Save some bitmap data into an
image object
Create a UIImage object from the original image data. Call the
UIImageJPEGRepresentationorUIImagePNGRepresentation
function to get an NSData object, and use that object’s methods
to save the data to a file.
Save an image as a JPEG or PNG
file
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
88
Loading ImagesSystem Support for Images
The UIKit framework as well as the lower-level system frameworks of iOS give you a wide range of possibilities
for creating, accessing, drawing, writing, and manipulating images.
UIKit Image Classes and Functions
The UIKit framework has three classes and one protocol that are related to images in some way:
UIImage
Objects of this class represent images in the UIKit framework. You can create them from several different
sources, including files and Quartz image objects. Methods of the class enable you to draw images to
the current graphics context using different blend modes and opacity values.
The UIImage class automatically handles any required transformations for you, such as applying the
proper scale factor (taking into consideration high-resolution displays) and, when given Quartz images,
modifying the coordinate system of the image so that it matches the default coordinate system of UIKit
(where the y origin is at the upper left).
UIImageView
Objects of this class are views that display either a single image or animate a series of images. If an image
is to be the sole content of a view, use the UIImageView class instead of drawing the image.
UIImagePickerController and UIImagePickerControllerDelegate
This class and protocol give your app a way to obtain images (photos) and movies supplied by the user.
The class presents and manages user interfaces for choosing and taking photos and movies. When users
pick a photo, it deliversthe selected UIImage object to the delegate, which must implement the protocol
methods.
In addition to these classes, UIKit declares functions that you can call to perform a variety of tasks with images:
● Drawing into an image-backed graphics context. The UIGraphicsBeginImageContext function
creates an offscreen bitmap graphics context. You can draw in this graphics context and then extract a
UIImage object from it. (See “Drawing Images” (page 40) for additional information.)
● Getting or caching image data. Each UIImage object has a backing Core Graphics image object
(CGImageRef) that you can access directly. You can then pass the Core Graphics object to the Image I/O
framework to save the data. You can also convert the image data in a UIImage object to either a PNG or
JPEG format by calling the UIImagePNGRepresentation or UIImageJPEGRepresentation functions.
You can then access the bytes in the data object and you can write the image data to a file.
● Writing an image to the Photo Album on a device. Call the UIImageWriteToSavedPhotosAlbum
function, passing in a UIImage object, to put that image in the Photo Album on a device.
“Drawing Images” (page 40) identifies scenarios when you would use these UIKit classes and functions.
Loading Images
System Support for Images
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
89Other Image-Related Frameworks
You can use several system frameworks other than UIKit to create, access, modify, and write images. If you find
that you cannot accomplish a certain image-related task using a UIKit method or function, a function of one
of these lower-level frameworks might be able do what you want. Some of these functions might require a
Core Graphicsimage object (CGImageRef). You can accessthe CGImageRef object backing a UIImage object
through the CGImage property.
Note: If a UIKit method or function exists to accomplish a given image-related task, you should use
it instead of any corresponding lower-level function.
The Core Graphics framework of Quartz is the most important of the lower-level system frameworks. Several
of its functions correspond to UIKit functions and methods; for example, some Core Graphics functions allow
you to create and draw to bitmap graphics contexts, while others let you create images from various sources.
However, Core Graphics offers more optionsfor handling images. With Core Graphics you can create and apply
image masks, create images from portions of existing images, apply color spaces, and access a number of
additional image attributes, including bytes per row, bits per pixel, and rendering intent.
The Image I/O framework is closely related to Core Graphics. It allows an app to read and write most image
file formats, including the standard web formats, high dynamic range images, and raw camera data. It features
fast image encoding and decoding, image metadata, and image caching.
Assets Library is a framework that allows an app to access assets managed by the Photos app. You can get an
asset either by representation (for example, PNG or JPEG) or URL. From the representation or URL you can
obtain a Core Graphics image object or the raw image data. The framework also lets you write images to the
Saved Photos Album.
Supported Image Formats
Table C-2 lists the image formats supported directly by iOS. Of these formats, the PNG format is the one most
recommended for use in your apps. Generally, the image formats that UIKit supports are the same formats
supported by the Image I/O framework.
Table C-2 Supported image formats
Format Filename extensions
Portable Network Graphic (PNG) .png
Tagged Image File Format (TIFF) .tiff or .tif
Joint Photographic Experts Group (JPEG) .jpeg or .jpg
Loading Images
System Support for Images
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
90Format Filename extensions
Graphic Interchange Format (GIF) .gif
Windows Bitmap Format (DIB) .bmp or .BMPf
Windows Icon Format .ico
Windows Cursor .cur
XWindow bitmap .xbm
Maintaining Image Quality
Providing high-quality images for your user interface should be a priority in your design. Images provide a
reasonably efficient way to display complicated graphics and should be used wherever they are appropriate.
When creating images for your app, keep the following guidelines in mind:
● Use the PNG format for images. The PNG format provides lossless image content, meaning that saving
image data to a PNG format and then reading it back results in the exact same pixel values. PNG also has
an optimized storage format designed for faster reading of the image data. It isthe preferred image format
for iOS.
● Create images so that they do not need resizing. If you plan to use an image at a particular size, be sure
to create the corresponding image resource at that size. Do not create a larger image and scale it down
to fit, because scaling requires additional CPU cycles and requires interpolation. If you need to present an
image at variable sizes, include multiple versions of the image at different sizes and scale down from an
image that is relatively close to the target size.
● Remove alpha channels from opaque PNG files. If every pixel of a PNG image is opaque, removing the
alpha channel avoids the need to blend the layers containing that image. This simplifies compositing of
the image considerably and improves drawing performance.
Loading Images
Maintaining Image Quality
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
91This table describes the changes to Drawing and Printing Guide for iOS .
Date Notes
Revised wording throughout, fixed a number of technical errors, and
updated the printing chapter for iOS 6.
2012-09-19
2011-09-26 Made several minor changes.
2011-03-09 Made some minor changes.
2010-12-07 Added "Drawing to a Bitmap Graphics Context" to the Images chapter.
First version of the document describing the concepts, APIs, and
techniques for drawing and printing in iOS.
2010-11-15
2012-09-19 | © 2012 Apple Inc. All Rights Reserved.
92
Document Revision HistoryApple Inc.
© 2012 Apple Inc.
All rights reserved.
No part of this publication may be reproduced,
stored in a retrievalsystem, or transmitted, in any
form or by any means, mechanical, electronic,
photocopying, recording, or otherwise, without
prior written permission of Apple Inc., with the
following exceptions: Any person is hereby
authorized to store documentation on a single
computer for personal use only and to print
copies of documentation for personal use
provided that the documentation contains
Apple’s copyright notice.
No licenses, express or implied, are granted with
respect to any of the technology described in this
document. Apple retains all intellectual property
rights associated with the technology described
in this document. This document is intended to
assist application developers to develop
applications only for Apple-labeled computers.
Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010
Apple, the Apple logo, Instruments, iPad, iPhone,
iPod, iPod touch, Objective-C, OS X, Pages, Quartz,
Spaces, and Xcode are trademarks of Apple Inc.,
registered in the U.S. and other countries.
AirPrint is a trademark of Apple Inc.
Helvetica is a registered trademark of
Heidelberger Druckmaschinen AG, available from
Linotype Library GmbH.
OpenGL is a registered trademark of Silicon
Graphics, Inc.
iOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.
Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THIS
DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE.ASARESULT, THISDOCUMENT IS PROVIDED
“AS IS,” AND YOU, THE READER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY AND ACCURACY.
IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL,OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS DOCUMENT, even if advised of
the possibility of such damages.
THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple dealer,
agent, or employee is authorized to make any
modification, extension, or addition to this warranty.
Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have other
rights which vary from state to state.

QuickTime 7.3
User’s Guide
Includes instructions for
using QuickTime Pro
For Mac OS X version 10.3.9 or later, and WindowsK Apple Inc.
© 2007 Apple Inc. All rights reserved.
Under the copyright laws, this manual may not be
copied, in whole or in part, without the written consent
of Apple. Your rights to the software are governed by
the accompanying software license agreement.
The Apple logo is a trademark of Apple Inc., registered
in the U.S. and other countries. Use of the “keyboard”
Apple logo (Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state laws.
Every effort has been made to ensure that the
information in this manual is accurate. Apple is not
responsible for printing or clerical errors.
Apple
1 Infinite Loop
Cupertino, CA 95014-2084
408-996-1010
www.apple.com
Apple, the Apple logo, AppleScript, Final Cut Pro,
FireWire, iMovie, iPod, iTunes, Mac, Mac OS, Macintosh,
QuickDraw, and QuickTime are trademarks of Apple Inc.,
registered in the U.S. and other countries. Finder,
iPhone, and Tiger are trademarks of Apple Inc. Apple
Store is a service mark of Apple Inc., registered in the
U.S. and other countries. .Mac is a service mark of Apple
Inc.
Intel, Intel Core, and Xeon are trademarks of Intel Corp.
in the U.S. and other countries.
PowerPC™ is a trademark of International Business
Machines Corporation, used under license therefrom.
Other company and product names mentioned herein
are trademarks of their respective companies. Mention
of third-party products is for informational purposes
only and constitutes neither an endorsement nor a
recommendation. Apple assumes no responsibility with
regard to the performance or use of these products.
Manufactured under license from Dolby Laboratories.
“Dolby,” “Pro Logic,” and the double-D symbol are
trademarks of Dolby Laboratories. Confidential
UnPublished Works, © 1992–1997 Dolby Laboratories,
Inc. All rights reserved.
Simultaneously published in the United States and
Canada. 019-1032/2007-09-01 3
3 Contents
Preface 6 Welcome to QuickTime
6 What Is QuickTime?
6 What Is QuickTime Pro?
7 What’s New in QuickTime 7?
7 New in QuickTime Player
8 New in QuickTime Pro
9 System Requirements
9 Types of Files QuickTime Supports
10 Checking for New Versions of QuickTime
10 Using Onscreen Help
10 Where to Go for Additional Information
Chapter 1 11 Using QuickTime Player
11 Opening and Playing Files
11 Opening and Playing Movies in QuickTime Player
12 Opening and Playing Files in a Web Browser
15 Viewing QuickTime Virtual Reality (QTVR) Movies
16 Viewing Still Images
16 Playing MIDI Files
17 Opening Recently Used Files
17 Finding Movies Quickly Using QuickTime Favorites
17 Playing Copy-Protected Movies
18 Viewing Information About a File
18 Controlling Playback
18 Adjusting Audio and Video Settings
18 Changing Playback Preferences
19 Viewing Movies at Full Screen
20 Changing Movie Size for Playback
20 Looping a Movie
20 Simultaneously Playing Multiple Movies
21 Using Frame Number and Time Codes
21 Navigating a Movie by Frame Number or Time Code
22 Finding Text in a Text Track4 Contents
22 Preventing Users from Changing QuickTime Settings
22 Viewing Movies that have Flash Content
Chapter 2 23 Getting Started with QuickTime Pro
23 Getting QuickTime Pro
23 Using Advanced Playback Options
23 Playing a Movie on a Second Display
24 Presenting a Movie as a Slideshow
24 Changing the Color Around a Movie
25 Loading Movies into RAM for Better Playback
25 Creating Movies and Other Media
25 Recording Video and Audio
26 About Saving Movies
27 Saving Movies from the Internet
27 Creating a Slideshow or Animation from Still Images
28 Creating a Still Image from a Movie
28 Converting Files into QuickTime Movies
29 Sharing Movies by Email or the Web
29 Sharing Movies for Podcast Producer
Chapter 3 30 Editing and Authoring with QuickTime Pro
30 Simple Editing
30 Selecting and Playing Part of a Movie
31 Cutting, Copying, or Deleting a Section of a Movie
31 Combining Two QuickTime Movies into One
32 Working with Tracks
32 Turning Tracks On or Off
32 Extracting, Adding, and Moving Tracks
33 Working with Audio Tracks
34 Presenting Multiple Movies in the Same Window
35 Pasting Graphics and Text into a Movie
35 Working with Text Tracks
37 Specifying Languages for Individual Tracks
38 Changing Movie Properties
38 Adding Annotations to a Movie
38 Resizing, Flipping, or Rotating a Movie
39 Changing a Movie’s Shape with a Video Mask
39 Changing a Track’s Transparency
39 Creating a Chapter List for a Movie
41 Setting a Movie’s Poster Frame
41 Saving a Movie with Specific Playback Settings
41 Changing the Movie Controller TypeContents 5
Chapter 4 42 Exporting Files with QuickTime Pro
42 About Video and Audio Compression
43 Exporting Files Using Presets
43 Customizing Export Settings
43 Customizing Video Export Settings
45 Adding Special Effects and Filters to a QuickTime Movie
45 Changing Image (Frame) Size
46 Customizing Sound Export Settings
46 Preparing Movies for Internet Delivery
47 Preparing a Movie for Fast Start
47 Preparing a Movie for Real-Time Streaming
48 Creating Reference Movies to Optimize Web Playback
48 Creating Movies Optimized for iPhone and Web Delivery
49 Exporting MPEG-4 Files
49 MPEG-4 Video Export Options
50 MPEG-4 Audio Export Options
51 MPEG-4 Streaming Export Options
51 Exporting 3G Files
52 3G File Format Export Options
52 3G Video Export Options
53 3G Audio Export Options
54 3G Text Options
54 3G Streaming Options
54 3G Advanced Options
Appendix 55 Shortcuts and Tips
55 QuickTime Player Keyboard Shortcuts
56 QuickTime Pro Keyboard Shortcuts
57 Automating QuickTime Player with AppleScript
58 Automating QuickTime Player on Windows
Glossary 59
Index 62Preface
6
Welcome to QuickTime
Want to play movies from your hard disk or the Internet?
QuickTime Player makes it easy.
What Is QuickTime?
QuickTime Player is a free multimedia player. You can use it to view many kinds of files,
including video, audio, still images, graphics, and virtual reality (VR) movies. QuickTime
supports the most popular formats on the Internet for news, sports, education, movie
trailers, and other entertainment.
QuickTime is also a multimedia architecture that other applications can leverage. Some
of the most popular software—such as iTunes, iMovie, and Final Cut Pro from Apple, as
well as many third-party programs—uses the QuickTime architecture for important
multimedia functions. These applications require QuickTime to be installed in order to
function properly.
What Is QuickTime Pro?
You can easily add a host of useful features to your QuickTime software by purchasing
QuickTime Pro. With QuickTime Pro, you can:
Â Save files from the Internet
Â Edit audio and video
Â Record audio (Mac OS X and Windows) and video (Mac OS X only)
Â Add special effects
Â Create slideshows
Â Convert and save video, audio, and images to more than a hundred standard formats
For information about how to start using QuickTime Pro, see “Getting QuickTime Pro”
on page 23.Preface Welcome to QuickTime 7
What’s New in QuickTime 7?
Both the free QuickTime Player and QuickTime Pro provide a host of new features.
New in QuickTime Player
Â H.264 video support. This state-of-the-art, standards-based codec delivers
exceptional-quality video at the lowest data rate possible, across data rates ranging
from 3G to HD and beyond.
Â Live resize. Playback continues smoothly as you change the size of the QuickTime
Player window. (Some hardware requirements may apply.)
Â Zero-configuration streaming. You no longer need to set your Internet connection
speed in QuickTime Preferences. QuickTime automatically determines the best
connection speed for your computer. If a connection is lost during streaming,
QuickTime automatically reconnects to the server.
Â Surround sound. QuickTime Player can now play up to 24 channels of audio. With
QuickTime 7, your Mac, and surround speakers, you can enjoy the full effect of your
surround sound movie or game.
Â New and improved playback controls. Use the new A/V Controls window to adjust
settings for the best viewing experience. Easily change settings including jog shuttle,
playback speed, bass, treble, and balance.
Â All-new content guide. The all-new QuickTime Content Guide provides the latest in
entertainment on the Internet.
Â Full-screen playback. Get the most out of your display by using every pixel possible.
Thee new modes allow you fit the content to any size screen.
Â Floating controls. Full-screen mode now provides floating DVD-like controls for easy
access to functions like pause, play, fast-forward, rewind, and full-screen options.
Move your mouse and the full-screen controller appears on the screen for several
seconds.
Â Additional keyboard shortcuts. QuickTime Player now supports the same transport
control keyboard shortcuts as Final Cut Pro. While viewing a movie, press J, K, or L to
rewind, pause, or resume playback at variable speeds.
Â Closed Captioning. An option in QuickTime Player Preferences allows you to display
standard CEA-608 closed captions, when they’re available in your movies.
Â Timecode Display. QuickTime Player now allows you to switch between displaying
movie time, timecode, and frame count. You can also jump to a specific timecode or
frame number using the keyboard.
Â Spotlight-friendly media. With Mac OS X v10.4 or later, you can use Spotlight to
easily find your QuickTime content. Spotlight can search for movie attributes such as
artist, copyright, codec, and so on.
Â Screen reader compatibility. Using VoiceOver, included with Mac OS X v10.4 or later,
visually impaired users can enjoy QuickTime Player features.8 Preface Welcome to QuickTime
Â Easy access to QuickTime Pro. When you use the free QuickTime Player, features
available only in QuickTime Pro display “Pro” by their name. If you choose one of
these items, you’ll see a definition of the feature and learn how to purchase
QuickTime Pro. (To purchase QuickTime Pro, you must be connected to the Internet
using the computer on which you want to install the software.)
New in QuickTime Pro
QuickTime 7 Pro users enjoy not only all the great features in QuickTime Player, but also
the following new QuickTime Pro capabilities:
Â Create H.264 video. Use this codec for all your video encoding needs. Create
content ranging in size from HD (high definition) to 3G (for mobile devices), and
everything in between.
Â Create surround audio. Create a rich multimedia experience for your customers by
adding multi-channel audio to your movie. If some of your customers don’t have
surround speakers, don’t worry; QuickTime automatically mixes the audio to work
with the speaker setup of each user.
Â Improved movie authoring. Editing tasks are much easier with new hot keys for in
and out points. In addition, the Movie Properties interface has been completely
redesigned to facilitate simple and efficient movie authoring.
Â New AAC constant-quality mode. Create AAC audio files optimized for constant
quality rather than a constant bit rate for a consistently high-quality listening
experience.
Â 3G streaming. Create 3G files for RTSP streaming that are fully interoperable with
other 3G streaming handsets and delivery architectures.
Â Conform to Aperture. View a movie’s aperture mode, and choose to have the movie
conform to new aperture settings, including pixel shape.
Â Deinterlace source video. When exporting with the “Movie to QuickTime Movie”
option, you can now deinterlace the video by setting an option in Export Size
settings.
Â Export to Apple TV, iPod, and iPhone. New presets allow you to easily export your
movies in formats optimized for use with Apple TV, iPod, and iPhone.
Â Export for Web. Automatically creates versions of a movie that are optimized for
both web and iPhone delivery, a reference movie that automatically selects the
appropriate version for playback, and an HTML snippet file that you can use to
embed the movie on a web page.
Â Concurrent exports. Export multiple files simultaneously—and continue with your
next playback or editing task.
New for Mac OS X
In addition to the capabilities above, QuickTime Pro for Mac OS X provides these
capabilities:
Â Video recording. With a digital video camera connected to your Mac, you can
quickly create video postcards to share with family and friends.Preface Welcome to QuickTime 9
Â Movie sharing. Easily create a movie file for sending via email or posting to a
website.
Â Automator integration. With Mac OS X v10.4 Tiger or later, employ the easy-to-use
interface of Automator for streamlining your QuickTime workflow. QuickTime 7 Pro
users have exclusive access to a set of QuickTime-based Automator actions for easily
automating such tasks as starting and stopping captures, hinting movies, enabling
tracks, and more. With Automator and QuickTime 7 Pro, you can also create your own
personal set of QuickTime-based Automator actions.
Â Podcast sharing. With Mac OS X v10.5 Leopard, you can easily send a movie file to
Podcast Producer, on a computer with Mac OS X Server v10.5 Leopard, for automatic
creation and delivery of podcasts.
System Requirements
For Mac OS computers:
Â A 400 MHz or faster G3 PowerPC–based or Intel-based Macintosh computer
Â At least 128 MB of RAM
Â Mac OS X version 10.3.9 or later
For Windows computers:
Â A Pentium processor–based PC or compatible computer
Â At least 128 MB of RAM
Â Windows XP Service Pack 2 or Windows Vista
Types of Files QuickTime Supports
You can open (import) dozens of types of media with QuickTime. Some of the formats
you can open in QuickTime include the following:
Â Video formats: MOV, MPEG-1, MPEG-2,
1
 MPEG-4, 3GPP, 3GPP2, JPEG, DV,
Motion JPEG, AVI, MQV, H.264
Â Audio formats: AIFF/AIFC, Audio CD, CAF, MOV, MP3, MPEG-4, AU, WAV, iTunes audio
Â Still-image formats: BMP, GIF, JPEG/JFIF, JPEG 2000, PDF, MacPaint, PICT, PNG,
Photoshop (including layers), SGI, Targa, FlashPix (including layers), TIFF (including
layers)
Â Animation formats: Animated GIF, FLC, Flash, PICS
Â Other formats: KAR (Karaoke), MIDI, QuickDraw GX, QuickTime Image File,
QuickTime VR, Text
1. MPEG-2 playback is available via the QuickTime MPEG-2 Playback Component, sold separately at the Apple Store
online. Because some file formats can contain many different kinds of audio and video, QuickTime may not be able
to play all audio and video formats within a particular file format.10 Preface Welcome to QuickTime
For a complete list of supported formats, see the Products area of the QuickTime
website.
To determine if QuickTime Player can open a file, choose File > Open File and select the
file you want to open. You will be able to select only files that can be imported.
Checking for New Versions of QuickTime
From time to time, Apple releases new versions of QuickTime. If you’re connected to
the Internet while using QuickTime Player, you’ll be notified when there’s a newer
version of QuickTime available. It’s a good idea to have the latest version of the
software installed on your computer.
To check for a new version of QuickTime (if you are using Mac OS X), choose QuickTime
Player > Update Existing Software. In Windows, choose Edit > Preferences > QuickTime
Preferences, and then choose Update Check.
Using Onscreen Help
While QuickTime is open, you can see instructions for performing tasks by choosing
Help > QuickTime Player Help.
Where to Go for Additional Information
Consult the resources listed below for more information about QuickTime:
Â Latest QuickTime content listings. QuickTime Player includes an up-to-the-minute
guide to the best in QuickTime content. You can view the latest news, entertainment,
educational features, and more. You can also listen to audio programs. To view the
content guide, open QuickTime Player and choose Window > Show Content Guide.
You can also visit www.apple.com/quicktime.
Â QuickTime News. For the latest news about QuickTime content and products, sign
up for the QuickTime newsletter at applenews.lists.apple.com/subscribe.
Â Tutorials and tips. For step-by-step tutorials and a collection of instructional books
and CDs, visit www.apple.com/quicktime/resources.
Â Discussion lists. Sign up with one of the many QuickTime-specific discussion lists to
post messages, exchange ideas and information, and keep current with the latest
QuickTime developments at www.apple.com/quicktime/resources.
Â Developer support. If you’re interested in developing products using QuickTime, go
to developer.apple.com/quicktime.
Â Technical support. To view all the support resources available, visit
www.apple.com/support.1
 11
1 Using QuickTime Player
This chapter explains the basics of using
QuickTime Player.
Opening and Playing Files
You can open and play QuickTime movies in QuickTime Player or in your web browser.
Opening and Playing Movies in QuickTime Player
You can use QuickTime Player to play media stored on your computer’s hard disk, a CD,
a DVD, or the Internet.
To open a movie on your hard disk, a CD, or a DVD, do one of the following:
Â In the Finder (or Windows Explorer), double-click the file or drag it to the QuickTime
Player application icon.
Â Choose File > Open and select the file.
Â Drag the file to the QuickTime Player icon in the Dock (Mac OS X only).
To open a movie on the Internet, open QuickTime Player, choose File > Open URL, and
enter the URL (the Internet address) for the movie file.
When audio is
detected, you’ll
see activity in
the equalizer.
Playhead
Volume
Play/Pause
Go to Fast-forward; go to end
beginning;
rewind
Drag to resize
the window.12 Chapter 1 Using QuickTime Player
QuickTime Player has onscreen controls similar to those found on CD players and DVD
players. Use the controls to play, pause, rewind, fast-forward, jump to the beginning or
end, and adjust the volume of a QuickTime movie. You can also use the controls to
move forward or backward in a movie.
To go to a specific point in the movie, drag the playhead (the small black triangle) in
the timeline. To step through frame-by-frame, first click the small black triangle and
then press the Right or Left Arrow keys on your keyboard.
Some movies have chapter lists you can use to jump to a specific point in a movie. If a
movie has a chapter list, a pop-up menu appears between the timeline and the
equalizer.
You can drag the handle in the lower-right corner of the window to resize the viewing
space.
Opening and Playing Files in a Web Browser
With the QuickTime plug-in (part of the free QuickTime software), you can play most
multimedia you encounter on the Internet within your web browser. On some
websites, movies play automatically. On other sites, you need to click an image of the
movie or a play button.
When a movie plays on a webpage, you typically see controls you can use to play,
pause, fast-forward, rewind, and adjust the volume of the movie.
To play a movie in a web browser, go to the website and follow the site’s instructions to
watch the movie.
Choose a chapter from
the pop-up menu to
jump to that chapter.
Volume
Play/Pause Rewind; fast-forward
QuickTime Pro menu
The playheadChapter 1 Using QuickTime Player 13
With QuickTime Pro, you also have the option of saving the movie to your hard disk (if
the author of the movie allows it). To save a movie from the web, click the downwardpointing arrow on the right and choose “Save as QuickTime Movie” or “Save as Source”
from the QuickTime Pro menu. If the movie is a Real-Time Streaming Protocol (RTSP)
movie, it is saved as a small “reference movie” that points to the actual movie on the
Internet.
The QuickTime website has a number of QuickTime movies (including the latest movie
trailers) that you can view in your web browser. Go to www.apple.com/quicktime.
Adjusting Playback Preferences for Internet Movies
When you watch movies on the Internet, they start playing automatically. You can,
however, download entire movies to your hard disk before they start playing so that
you can watch the movies at your convenience.
To download movies before they start playing (in Mac OS X):
1 Choose QuickTime Player > QuickTime Preferences and click Browser.
2 Deselect “Play movies automatically.”
To download movies before they start playing (in Windows):
1 Choose Edit > Preferences > QuickTime Preferences.
2 Choose Browser.
3 Deselect “Play movies automatically.”
So that you don’t have to download movies and images each time you view them on a
website, QuickTime can save these files in a storage area called a cache. If you view a
movie or image more than once, having the item cached improves performance. To
have QuickTime cache movies and images you view on the Internet, select “Save
movies in disk cache.” You might not want to select this option if you don't have
sufficient free space on your hard disk to allocate a cache, or if, for security reasons, you
don't want movie data stored in a cache file.
You can specify how big to make the cache by changing the Movie Cache Size setting.
How big you make the cache depends on how much free space your hard disk has. A
larger cache can hold more files (or larger files), but it takes up more space on your
hard disk.
After the QuickTime cache fills all the space reserved for it, older items are
automatically deleted from the cache when new items are added. To clear the cache,
click Empty Download Cache (in Windows, choose Download Cache in QuickTime
Settings and then click Empty Cache Now). You might want to clear the cache for
security or privacy reasons, or to recover free space on your hard disk.14 Chapter 1 Using QuickTime Player
QuickTime automatically detects your Internet connection speed so that you get the
highest-quality QuickTime content that your Internet connection can support. If movies
you’re watching on the Internet don’t play properly, however, it may help to change the
connection speed setting.
To change the connection speed setting in Mac OS X, open QuickTime Preferences and
click Streaming. In Windows, open QuickTime Preferences and choose Connection
Speed.
QuickTime tries to play versions of the movie authored to match the connection speed
you choose. If you choose a speed slower than your actual connection speed, the
resulting movie may be smaller in size and lower in quality than your connection can
actually support.
If you choose a speed faster than your actual connection, QuickTime playback may
stutter or appear jerky because it is sending more data than your connection can
support.
If you’re unsure of your connection speed, check with your Internet service provider
(ISP).
If you change your connection speed setting and later want to make QuickTime
automatically detect your speed again, choose Automatic from the Streaming Speed
pop-up menu (in Mac OS X).
To set the Internet connection speed in Windows, choose Edit > Preferences >
QuickTime Preferences, and then follow the directions above.
Instant-On
QuickTime includes Instant-On, a technology that dramatically reduces buffer (wait)
time when you view streamed video. Instant-On provides an instantaneous viewing
experience; you can navigate quickly through video as if it were on your hard disk.
To experience Instant-On, you must have a broadband connection. The responsiveness
of Instant-On is affected by available bandwidth and the size, or data rate, of the
content. It can also be affected by the codec used to compress the streaming video.
Instant-On is on by default. If you experience problems with streamed video, you can
change the wait time (drag the Play slider) or turn off Instant-On (open QuickTime
Preferences and click Streaming).
Viewing Streamed Files Behind a Firewall
QuickTime streaming chooses the best protocol (a method of communicating via the
Internet) for your needs. Typically, QuickTime streaming uses Real-Time Streaming
Protocol (RTSP) to ensure the best performance. If your network connection is
protected by a firewall, you may want to use the HTTP protocol instead.Chapter 1 Using QuickTime Player 15
To use HTTP streaming (in Mac OS X):
1 In QuickTime Player, choose QuickTime Player > QuickTime Preferences (or open
System Preferences and click QuickTime).
2 Click Advanced.
3 Choose Custom from the Transport Setup pop-up menu.
4 Choose HTTP from the Transport Protocol pop-up menu.
To use HTTP streaming (in Windows):
1 In QuickTime Player, choose Edit > Preferences > QuickTime Preferences.
2 Choose Advanced.
3 Choose Custom from the Transport Setup pop-up menu.
4 Choose HTTP from the Transport Protocol pop-up menu.
If QuickTime can configure itself for your firewall, you can now watch streaming
QuickTime movies. If you still experience problems, contact your network administrator
or see the information on the Apple QuickTime website (www.apple.com/quicktime).
Setting QuickTime to Handle More or Fewer File Types (MIME Settings)
When files are downloaded over the Internet, each file is assigned a MIME type to
indicate what kind of file it is. Your browser keeps track of which plug-in should be
used to display each kind of file.
QuickTime can display a wide variety of file types. To make QuickTime handle more or
fewer file types, you can edit the MIME type settings. If you edit the list, you can return
to the default list by following the instructions below and clicking Use Defaults.
To edit MIME settings in Mac OS X, open QuickTime Preferences and click Advanced. In
Windows, choose Edit > Preferences > QuickTime Preferences, choose Browser, and
click MIME Settings.
Viewing QuickTime Virtual Reality (QTVR) Movies
QTVR movies display three-dimensional places (panoramas) and objects with which the
user can interact. With a QTVR panorama, it’s as if you’re standing in the scene and you
can look around you up to 360 degrees in any direction. In a QTVR movie of an object,
you can rotate the object in any direction.
To pan through a QTVR movie, drag the cursor through the scene. To zoom in or out,
click the + or – button. (If the buttons are not showing, zoom in by pressing Shift; zoom
out by pressing Control.)16 Chapter 1 Using QuickTime Player
Some QTVR movies have hot spots that take you from one scene (or node) to another.
As you move the mouse over a hot spot, the cursor changes to an arrow. To see all the
places where you can jump from one node in a scene to another, click the Show Hot
Spot button (an arrow with a question mark in it). A translucent blue outline of any hot
spots within the currently visible VR scene appears. (If there are no hot spots, clicking
this button has no effect.) Click a hot spot to jump to a new scene.
To step backward scene by scene, click the Back button. (The Back button appears only
on QTVR movie windows, not in all QuickTime movie windows.)
Viewing Still Images
You can view still images in QuickTime Player. Choose File > Open File and select the
file, or drag the file to the QuickTime Player icon in the Dock (Mac OS X only).
Mac OS X: You can use Preview to convert a still image to other formats (Preview is in
the Applications folder on your hard disk). You can also convert many kinds of files
using QuickTime Pro. For more information, see “Converting Files into QuickTime
Movies” on page 28.
Windows: If you have QuickTime Pro, you can use PictureViewer to import and export
various types of still image file formats and to rotate images. PictureViewer is in the
QuickTime folder on your hard disk.
Playing MIDI Files
QuickTime Player can import MIDI (Karaoke MIDI, Standard MIDI, and General MIDI)
formats. To open a MIDI file, choose File > Open File and select the file.
QuickTime uses its built-in synthesizer to play MIDI files. You can also set QuickTime to
use an external synthesizer instead of the built-in one.
To specify a different synthesizer (in Mac OS X):
1 Open System Preferences, click QuickTime, and then click Advanced.
2 Choose the synthesizer you want from the Default Synthesizer pop-up menu.
To specify a different synthesizer (in Windows):
1 Choose Edit > Preferences > QuickTime Preferences.
2 Click Audio.
3 Select the synthesizer you want from the Default Music Synthesizer pop-up menu.Chapter 1 Using QuickTime Player 17
Opening Recently Used Files
You can easily open recently used files.
To open recently used files:
m Choose File > Open Recent > [option]
To change the number of items that appear in the Open Recent submenu (in
Mac OS X), choose QuickTime Player > Preferences, click General, and choose an option
from the Number of Recent Items pop-up menu. In Windows, choose Edit >
Preferences > Player Preferences.
Finding Movies Quickly Using QuickTime Favorites
You can easily find and open movies by putting pointers to them in your QuickTime
Favorites window. To view your list of favorites, choose Window > Favorites > Show
Favorites.
To add a movie to the Favorites list:
1 Open the movie in QuickTime Player.
2 Choose Window > Favorites > Add Movie As Favorite.
You can also drag a file to the Favorites list window.
To rearrange movies in the list, drag them. To delete an item from the list, drag the item
to the Trash or select the item and press the Delete key. (In Windows, drag the item to
the Recycle Bin or select the item and press the Backspace key.) Deleting an item from
the Favorites list does not delete the file from your hard disk (or wherever the file is
saved).
Playing Copy-Protected Movies
QuickTime movies can be encrypted so that only authorized viewers can watch them.
Such movies are known as “secured media files.” To use such a file, you must enter a
“media key,” which is usually available from the media file provider.
To enter a media key (in Mac OS X):
1 Open System Preferences, click QuickTime, and click Advanced.
2 Click Media Keys.
3 Click the Add button and then enter the key provided by the author or vendor.
To enter a media key (in Windows):
1 Choose Edit > Preferences > QuickTime Preferences.
2 Click Advanced.
3 Click Media Keys.
4 Click Add and then enter the key provided by the author or vendor.18 Chapter 1 Using QuickTime Player
Viewing Information About a File
QuickTime Player can display information about a QuickTime file, such as its
compression format, size, and frame rate while playing.
To view information about a file:
1 Open the file.
2 Choose Window > Show Movie Info.
With QuickTime Pro, you can see additional information about a movie by choosing
Window > Show Movie Properties. For more information about movie properties, see
“Changing Movie Properties” on page 38.
Controlling Playback
You can change playback options such as balance, playback speed, the size at which a
movie plays, and whether the QuickTime Player window shows. You can also optimize
movies for playback on certain computers.
Adjusting Audio and Video Settings
For any QuickTime movie with an audio track, you can adjust the right/left balance, as
well as the volume, bass, and treble levels. For any movie, you can also set playback
options such as speed and playback rate (the jog shuttle).
To set audio and video controls:
1 Choose Window > Show A/V Controls.
2 Drag a slider to adjust the setting.
Other playback options (for playing several movies at once or for playing a movie while
using another application, for example) are available in QuickTime Player Preferences.
To open QuickTime Player Preferences (in Mac OS X), choose QuickTime Player >
Preferences. In Windows, choose Edit > Preferences > Player Preferences. For more
information, see “Changing Playback Preferences.”
Changing Playback Preferences
You can change playback preferences by choosing QuickTime Player > Preferences. The
available options include:
Â Open movies in new players: Select to open movies in a new player window;
deselect to replace the movie in the current player window with the new movie.
Â Automatically play movies when opened: Select to make all movies start playing
when they’re opened; deselect to have the movie start when you click the Play
button.
Â Use high-quality video settings when available: When this option is selected, video
looks sharper and smoother, but more processor capacity is used.Chapter 1 Using QuickTime Player 19
Â Play sound in frontmost player only: Select to play the audio for only one
QuickTime Player window (the active window); deselect to play the sound of all
playing movies simultaneously.
Â Play sound when application is in background: Select to play audio even if
QuickTime is not the frontmost application; deselect to mute the audio when
QuickTime is not the active application.
Â Show equalizer: Select or deselect to show or hide the equalizer (which shows the
presence of audio) in the QuickTime Player window.
Â Show Content Guide automatically: Select to see the latest content listings when
QuickTime Player first opens (unless you open a specific movie file).
Â Pause movie before switching users: Select to automatically pause a movie when
you use fast user switching to let another person use your computer.
Â Hide selection indicators for empty selection: Select to have the selection
indicators in the timeline removed when no frames are selected.
Â Show closed captioning when available: Select to see the closed caption
information, if captions have been provided by the movie’s creators.
With QuickTime Pro, more options are available. For information about them, see
“Getting QuickTime Pro” on page 23.
Viewing Movies at Full Screen
You can set the screen so that only the movie is visible, not the QuickTime Player
window, desktop, or other windows. This presentation setting is called “full-screen
mode.” (You can also set a movie to play at half size, double size, or other sizes.)
To play a movie at full screen, do one of the following:
Â Choose View > Full Screen.
Â Choose View > Present Movie, choose Full Screen, and click Play.
To quit full-screen mode, press Esc. To adjust the way the picture is sized to fit your
screen, such as stretched to fit or in letterbox format, move the pointer to the top of
the screen to display the QuickTime Player menu options, and then choose a setting
from the View menu. The following additional options are available in full-screen mode:
Â Fit to Screen: The content is scaled to fill your screen as fully as possible without
cropping the movie or changing the aspect ratio.
Â Zoom: The content is scaled and cropped to completely fill your screen in at least
one dimension. This can eliminate black areas on the top (letterboxing) or side
(pillarboxing) but may hide or distort the content.
Â Panoramic: The content is scaled to fit your screen and the outer horizontal edges
compressed to avoid cropping the image.
You can also cycle through all of the available full-screen options by clicking the button
in the movie controls that appear when you move the pointer. 20 Chapter 1 Using QuickTime Player
You can also set options for all movies playing at full screen. For example, you can hide
the movie controls or change the amount of time they’re displayed before being
hidden. To set these options in Mac OS X, choose QuickTime Player > Preferences and
click Full Screen. To set these options in Windows, choose Edit > Preferences >
Player Preferences, and then click Full Screen.
Note: As long as “Display full-screen controls” is selected in QuickTime Player
Preferences, you can make hidden controls appear by moving the pointer.
Changing Movie Size for Playback
QuickTime Player includes several options for changing movie playback size.
To change a movie’s playback size, choose View > [a size], or drag the resize control in
the lower-right corner of the window. To stretch the movie in any direction, hold down
the Shift key when you drag (holding down the Shift key while dragging doesn’t
preserve the aspect ratio).
To return the movie to its default size and aspect ratio, press Command-1 (in Windows,
press Alt-1).
You can also view movies at full screen, with additional sizing options available during
full-screen playback. For more information, see “Viewing Movies at Full Screen” on
page 19.
Looping a Movie
You can play a movie repeatedly. When the movie finishes, it automatically starts
playing again.
To loop a movie:
m Choose View > Loop.
With QuickTime Pro, you can also play the movie forward and then backward
repeatedly by choosing View > Loop Back and Forth.
Simultaneously Playing Multiple Movies
You can have more than one QuickTime Player window open at a time.
To open more than one QuickTime Player window, do one of the following:
Â Double-click another movie file.
Â Choose View > Play All Movies.
By default, when you have more than one QuickTime Player window open, the audio
plays only on the active (frontmost) QuickTime Player window. For information about
changing this setting, see “Changing Playback Preferences” on page 18.Chapter 1 Using QuickTime Player 21
Using Frame Number and Time Codes
When you’re viewing a movie in QuickTime Player, you can display the current movie
time or frame number, or the SMPTE time code if the movie has a time code track.
(Some applications, such as Final Cut Pro, automatically add a time code during
capture.)
Displaying Frame Numbers, Movie Time, or Time Code
The area next to the timeline in QuickTime Player displays the time information for the
current movie.
1 Click the time display area.
2 Choose an option from the pop-up menu that appears:
Â Standard: Displays movie time in HH:MM:SS format.
Â Time Code: Displays the movie’s time code in HH:MM:SS:Frame format. Either the
time code or drop-frame time code will be displayed, depending on the frames per
second of the movie. A colon in the frame segment of the time notation indicates
that a non-drop time code is being displayed. A semicolon indicates a drop-frame
time code. If the movie has a time code track, it will be used. Otherwise, the time
code will be calculated from 00:00:00:00 at the start of the movie.
Â Frame Number: Displays the frame number, incrementing from 0 at the start of the
movie. An “f“ in the time display area indicates that the frame count is being
displayed.
Navigating a Movie by Frame Number or Time Code
You can jump to a point in a movie by entering a specific frame number or time code.
Â Double-click the time display, and then press the arrow keys or type a new time or
frame number.
Â To select the entire time display, double-click the area, or click the area and then
press Command-A (in Mac OS X) or Control-A (in Windows).
To enter a time, separate each unit with a period. For example, 5.02.10 will go to five
minutes, two seconds, and 10 frames. To go to five minutes, zero seconds, and 10
frames you can enter 5..10.22 Chapter 1 Using QuickTime Player
Finding Text in a Text Track
Some movies contain text such as titles, credits, subtitles, or section headings. You can
search for text in a movie so that, for example, you can find specific frames in the
movie.
To search for text in a QuickTime movie:
1 Choose Edit > Find > Find.
If this command is unavailable, the movie does not have a text track.
2 In the Find dialog, type the text you are looking for and click Next.
Preventing Users from Changing QuickTime Settings
If you’re using a computer in a public setting (at a kiosk, for example), you can prevent
users from changing QuickTime settings and saving movies from the Internet.
To set up QuickTime for use on a public computer (in Mac OS X):
1 Open System Preferences, click QuickTime, and click Advanced.
2 Select “Enable kiosk mode.”
To set up QuickTime for use on a public computer (in Windows):
1 Choose Edit > Preferences > QuickTime Preferences.
2 Choose Browser Plug-in.
3 Select “Enable kiosk mode.”
Viewing Movies that have Flash Content
Some QuickTime movies contain a Flash track . To enable these movies to play properly,
you must turn on support for Flash within QuickTime.
To enable Flash playback in QuickTime movies (in Mac OS X):
1 Open System Preferences, click QuickTime, and click Advanced.
2 Select “Enable Flash.”
To enable Flash playback in QuickTime movies (in Windows):
1 Choose Edit > Preferences > QuickTime Preferences.
2 Choose Advanced.
3 Select “Enable Flash.”2
 23
2 Getting Started
with QuickTime Pro
Learn how to use the advanced playback options in
QuickTime Pro, create movie postcards, and share them
via email or the web.
Getting QuickTime Pro
To get QuickTime Pro, choose a QuickTime Pro menu item and click Buy Now, or choose
QuickTime Player > Buy QuickTime Pro.
You must be connected to the Internet using the computer on which you want
QuickTime Pro installed. You may need to restart QuickTime Player to make the new
options available.
Using Advanced Playback Options
With QuickTime Pro, you have additional options for playing movies, such as playing a
movie on a second display, and more.
Playing a Movie on a Second Display
With QuickTime Pro and a two-display setup with dual display support, you can play a
movie on one display while working in another application on the other display. This
arrangement is useful for presentations.
Mac OS X: Make sure Mirror Displays is not selected. (Open System Preferences, click
Displays, and click Arrangement. If you don’t see an Arrangement button, your
computer does not support this feature.)
Windows: Whether you can play a movie on a second display depends on your
computer and monitor. Open the Display control panel, click Settings, and make sure
that the second display is enabled. If it is not enabled, click it and make sure “Extend
my Windows desktop onto this monitor” is selected.24 Chapter 2 Getting Started with QuickTime Pro
To play a movie on a second display:
1 Open a movie in QuickTime Player.
2 Choose View > Present Movie.
The two displays are shown side by side; one contains the menu bar. The letter “Q”
appears on the display on which the movie will play. To play the movie on the other
display, click it.
3 Choose an option from the pop-up menu.
To play the movie without displaying the QuickTime Player controls, choose Full Screen.
4 Select Movie or Slideshow mode.
In slideshow mode, you can advance frames by clicking the mouse or pressing the
Right Arrow or Left Arrow key.
5 Click Play.
You can open other applications while the movie is playing. To make another
application active, press Command-Tab (in Windows, Alt-Tab). You can now use the
mouse and keyboard in other applications while the movie continues to play.
To stop the movie before it ends, press Command-Tab (in Windows, Alt-Tab) to make
QuickTime Player active, and then click the mouse.
All QuickTime movie playback keyboard shortcuts are available in full-screen mode.
Presenting a Movie as a Slideshow
In a slideshow, the viewer clicks to advance to the next frame. With QuickTime Pro, you
can set a movie to play as a slideshow.
To play a movie as a slideshow:
1 Choose View > Present Movie.
2 Click Slideshow, then click Play.
3 To advance the slideshow, click the mouse or press the Left or Right Arrow keys.
Changing the Color Around a Movie
By default, the onscreen area around the edge of a movie playing in full-screen mode is
black, but you can change it to another color.
To change a movie’s border color:
1 Choose View > Present Movie.
2 Click the color well to the right of the pop-up menu, then choose a color from the
Colors window.
If you have more than one display, you can have this color appear on all displays (not
just the one playing the movie), by selecting “Display background color on all screens.”Chapter 2 Getting Started with QuickTime Pro 25
Loading Movies into RAM for Better Playback
QuickTime has two memory (RAM) options you can use to improve playback
performance. Preload puts the entire movie into memory before it is played; Cache
keeps movie data in memory after it has played. This option is useful for small files you
want to loop.
With QuickTime Pro, you can adjust memory options for a QuickTime movie track.
To adjust memory options for a track:
1 Choose Window > Show Movie Properties.
2 Select the track you want to adjust and click Other Settings.
3 To put the track into memory, select “Preload this track.”
4 To keep track data in memory, select Cache.
Use these options only with tracks that contain very small amounts of data; too much
data in memory may cause poor performance, system errors, or unpredictable results.
Creating Movies and Other Media
With QuickTime Pro, you can create movies in various ways.
Recording Video and Audio
With a video camera and a Macintosh computer you can use QuickTime Pro to record a
movie. QuickTime Pro can capture video from most FireWire-equipped sources,
including the Apple iSight, DV cameras, and some webcams. With a Macintosh or
Windows computer, you can also record audio using a built-in or external microphone.
To record audio or video with QuickTime Pro:
1 Connect the camera or microphone to the computer (unless you are using a built-in
microphone).
2 In QuickTime Pro, choose File > New Movie Recording (or File > New Audio Recording).
A preview window appears, which you can use to adjust settings such as camera
position, lighting, and audio level before you start recording.
3 To start recording, click the Record button at the bottom of the window.
4 To stop recording, click the button again.
The movie you just recorded appears in a QuickTime movie window. By default, the
movie is saved on the desktop, but you can choose a different default location in the
Recording pane of QuickTime Player Preferences. To see where the movie has been
saved, Command-click the icon at the top of the window.26 Chapter 2 Getting Started with QuickTime Pro
Setting Recording Options
When you first use QuickTime Pro to record video or audio, settings are automatically
chosen for you. If you want, you can change settings such as which recording device
and format to use, and where recorded movies are stored.
To change recording options:
1 Choose QuickTime Player > Preferences.
2 Click Recording (or Audio Recording in Windows).
3 Choose the desired options for your video source, microphone, and quality, and then
choose a default location to store recorded files.
About Saving Movies
With QuickTime Pro, you can create and edit movies, and then save them. When you
choose File > Save As, you can save the movie as one of the following:
Â A self-contained movie includes all the data (video, audio, and so on) you used to
create the movie within a single file.
Â A reference movie contains pointers to other movies (or parts of movies) stored
elsewhere, such as in different folders on your hard disk or even on a web server.
Pointers to other movies are created when, for example, you copy and paste part of
a movie from one movie into another.
If you are concerned about free space on your hard disk and can be sure your
source movies won’t change location, you can save your movie as a reference
movie; the media you copy and paste is stored as a space-saving pointer to that
media, rather than being stored entirely inside your new movie file.
When you play a reference movie, QuickTime follows the pointers to access and
play the other movies (or parts of movies). To determine whether a movie contains
pointers to other data, choose Window > Show Movie Properties, select the movie
at the top of the window, and click Resources. If the file containing the movie does
not appear in the list, then the movie has pointers and is not self-contained. In Mac
OS X, you can Command-click the icon to see the name and location of the file that
contains the movie.
The term “reference movie” is also used for the files you can create to intelligently
deliver different-sized streams to different users depending on their connection
speeds. For more information, see “Creating Reference Movies to Optimize Web
Playback” on page 48.Chapter 2 Getting Started with QuickTime Pro 27
Saving Movies from the Internet
With QuickTime Pro, you can save (download) a movie viewed in your web browser to
your hard disk. (The movie must be authored to allow for saving.) If it’s a streaming
movie, QuickTime Pro saves a small “reference movie” that points to the stream.
To save an Internet movie on your hard disk:
1 When the movie finishes loading (when the entire progress bar is filled with gray), click
the down arrow in the playback controls.
2 Choose “Save as QuickTime Movie.”
If this command is not available, the movie is authored so that it cannot be saved.
Creating a Slideshow or Animation from Still Images
With QuickTime Pro, you can combine a series of still images to create a movie that
plays like a slideshow. This process is an easy way to share the pictures from your
digital camera or mobile phone.
Note: Slideshows look best when all the images are the same size.
To create a slideshow from still images:
1 Put all the graphic files you want to include in a folder.
2 Name each file with the same name followed by an increasing number; for example,
“picture1,” “picture2.”
Most digital cameras number files automatically. The numbers must be increasing but
don’t have to be precisely sequential (for example, you could name the files “picture1,”
“picture5,” “picture10,” and so on).
3 In QuickTime Player, choose File > Open Image Sequence, and then select the first file.
4 Choose a frame rate (the number of frames displayed per second) from the Frame Rate
pop-up menu.
Slideshows usually work best when slides are shown at 2 to 3 seconds per frame.
QuickTime Pro creates the movie, which shows each picture in sequence.
5 Choose File > Save to name and save the movie.28 Chapter 2 Getting Started with QuickTime Pro
You can add music to your slideshow by adding an audio track to your movie before
saving it. Open an audio file, select the portion you want to add to the slideshow, and
choose Edit > Copy. Select the slideshow (or a portion of it) and choose Edit > Select
All, then choose Edit > “Add to Selection and Scale.” The audio is sped up or slowed
down to fit the length of the paste destination (the pitch remains the same). For best
results, make the slideshow length match that of the audio as closely as possible. You
can also lengthen a soundtrack by adding multiple audio files to the movie, each
beginning at a different point.
Alternatively, you can keep the original audio speed and alter the image speed by
opening a new player window, copying and pasting the audio into the new window,
and then copying the slideshow and pasting it into the new window by choosing
Edit > “Add to Selection and Scale.”
If you’re using Mac OS X: You can also use the recording feature in QuickTime Pro to
narrate your slideshow. See “Recording Video and Audio” on page 25.
Creating a Still Image from a Movie
With QuickTime Pro, you can export a single frame from a movie as an image file.
To save a still image from a movie:
1 Move the playhead to the frame you want to export.
2 Choose File > Export.
3 Choose “Movie to Picture” from the Export pop-up menu.
4 Click Options and choose a format from the “Compression type” pop-up menu.
To export every frame from the movie as a series of images, choose “Movie to Image
Sequence.” Exporting every frame can generate a very large number of files; you may
want to export to a folder rather than to the desktop.
Converting Files into QuickTime Movies
If you have QuickTime Pro, you can use QuickTime Player to convert many types of
video, audio, graphics, and animation files (including Flash files) into QuickTime movies.
To convert a file into a QuickTime movie, open it in QuickTime Player and then choose
File > Save.Chapter 2 Getting Started with QuickTime Pro 29
Sharing Movies by Email or the Web
 With QuickTime Pro and Mac OS X it’s easy to create movies that are just right for
sharing with others by email or on your .Mac HomePage. Simply select how you want
to share your movie, and QuickTime Pro automatically creates a file suitable for that
delivery method. (To use the Share feature to put your movie on the web, you need a
.Mac account.)
To share a movie:
1 Choose File > Share.
2 Click Email or HomePage.
3 Choose a name and size for the movie.
4 If you are going to publish your movie on the web, you can type a name for the movie
(the name you type will appear on the webpage).
5 Click Share.
While the movie is being exported, you can click the “x” to cancel the export if
necessary.
If you click Email, a new message window opens in Mail, with your movie attached. If
you click HomePage, your browser opens to the specified webpage, with the movie
embedded. Send the URL to friends so that they can view the movie.
Sharing Movies for Podcast Producer
With QuickTime Pro and Mac OS X, you can create a movie for use with Podcast
Producer, an application included with Mac OS X Server v10.5 Leopard.
Note: This option is available only if you have the Podcast Capture application installed
on your computer.
To share a movie to Podcast Producer:
1 Choose File > Share.
2 Click Podcast Producer.
3 Enter your user name, password, and server name, then click Login.
4 Choose a Podcast Producer workflow from the pop-up menu.
See the Podcast Producer Administration Guide, or your network administrator, for
information about these settings.
5 Click Share.3
30
3 Editing and Authoring
with QuickTime Pro
Learn how to use QuickTime Pro to edit movies,
manipulate movie tracks, and much more.
Simple Editing
With QuickTime Pro, you can perform movie-editing tasks.
Selecting and Playing Part of a Movie
To perform editing functions such as Copy and Delete, in most cases you need to first
select the desired portion of a movie. (If you don’t select anything, the edit commands
work on the current frame.)
To select a portion of a movie, move the In and Out selection markers. The darkened
area between the two markers indicates the selected portion. To fine-tune the
selection, select a marker and move it with the arrow keys. You can also move the
playhead and press I (for In) or O (for Out) to set the start or end point of the selection,
even while the movie is playing.
To play the selection, choose View > Play Selection Only (so that the checkmark
appears), then click Play. To play the whole movie, choose View > Play Selection again
(to remove the checkmark).
With QuickTime Pro, you can save the movie (choose File > Save) so that the next time
it is opened, only the part you selected plays.
Tip: To move the In or Out marker
to a different position, drag the
playhead to the desired position
(or use the arrow keys), then press
I or O.
In and Out markers,
showing the selected
portion of the movie
The playheadChapter 3 Editing and Authoring with QuickTime Pro 31
Note: By default, the selection markers hide when nothing is selected, making it easy
to determine whether or not a frame is selected. To turn off this option so that the
selection markers appear even when nothing is selected, change the “Hide selection
indicators for empty selection” option in QuickTime Player preferences.
Cutting, Copying, or Deleting a Section of a Movie
Selecting and moving, copying, or deleting (trimming) part of a movie is easy in
QuickTime Pro.
To cut, copy, or delete part of a movie:
1 Move the playhead until the desired frame appears, or select the part of the movie you
want to modify (use the In and Out selection markers and the arrow keys).
2 Choose Edit > Copy, Cut, or Delete.
If you choose Copy or Cut, you can paste the selection elsewhere.
3 Position the playhead where you want to paste the selection and choose Edit > Paste.
QuickTime Pro inserts the selection you pasted at the position of the playhead.
You can also delete all parts of a movie that are not selected by choosing Edit > “Trim
to Selection.”
Note: After you delete parts of a movie, the file size stays the same until you choose
File > Save As and select “Save as a self-contained movie.”
Combining Two QuickTime Movies into One
With QuickTime Pro, you can easily add one movie to another to make one longer
movie.
To combine two movies:
1 In QuickTime Player, choose Edit > Select All to select the entire contents of the first
movie.
2 Choose Edit > Copy, then open the second movie.
3 Move the playhead to the point at which you want to insert the movie (usually the very
beginning or end of the original movie), and choose Edit > Paste.
4 Choose File > Save As to name and save the new movie.32 Chapter 3 Editing and Authoring with QuickTime Pro
Working with Tracks
A QuickTime movie is made up of one or more “tracks.” Each track stores a particular
kind of data. For example, a QuickTime movie could have a video track, music tracks,
and sound effects tracks.
With QuickTime Pro, you can edit tracks individually. You can move tracks from one
movie to another, turn a track on or off, delete tracks, or modify the information
contained in a track.
Turning Tracks On or Off
With QuickTime Pro, you can choose one or more tracks to enable or disable. For
example, you might want to turn off tracks to simplify editing, or to hide a track in a
final movie. When you export a movie, only enabled tracks are exported.
To turn movie tracks on or off:
1 In QuickTime Player, choose Window > Show Movie Properties.
The movie’s tracks appear in the list at the top of the Properties window.
2 Use the Enable checkboxes to turn tracks on (selected) or off (deselected).
To delete a track, drag it to the Trash, or select it and click Delete,.You can also choose
Edit > Cut, or press the Delete key.
Note: For audio tracks, other options are available by clicking Audio Settings. To play
only the audio in the selected track, select Solo. To play the movie without audio, select
Mute.
Extracting, Adding, and Moving Tracks
With QuickTime Pro, you can create a new movie from one or more tracks of an existing
movie, while leaving the original movie file intact. For example, you could create a
movie that uses only the audio from an existing movie. To do so, you extract the
desired tracks.
You can also add the extracted track to an existing movie.
Audio narration
Video 1
Video 2
Text title
Text credits
Audio sound effectsChapter 3 Editing and Authoring with QuickTime Pro 33
To extract a track (and add it to another movie):
1 Choose Window > Show Movie Properties.
2 Select the desired track or tracks and click Extract.
You can select more than one track by holding down the Shift key when you click.
QuickTime creates a new movie containing the extracted tracks.
3 To add the extracted track to another movie, select the movie (or the portion of it you
want your pasted media to fit into) and choose Edit > “Add to Movie.”
When you add a track to a movie, the track’s duration is unaltered. For example, if you
add a 10-second sound track to a 1-minute movie, the sound track plays for 10 seconds,
starting at the position in the movie where you added the track.
To “scale” a track so that it stretches or compresses to a particular length, drag the In
and Out markers of the target movie to select the duration you want the new track to
cover and then choose Edit > “Add to Selection and Scale” in step 3. Scaling audio may
change the speed of the audio (although the pitch remains the same when you play
the movie in QuickTime Player). You could add video to sound instead, and speed up or
slow down the video to match the audio. You might have better results if you compare
the timelines of the two tracks and cut from one or the other until they have the same
duration.
Working with Audio Tracks
QuickTime audio includes music tracks, which contain MIDI or other data, and sound
tracks, which contain digitized audio.
Adding an Audio Track to a QuickTime Movie
You can easily add audio and other tracks to a QuickTime movie.
To add an audio track to a movie:
1 In QuickTime Player, choose File > Open File and select the audio file you want to
import.
2 In the QuickTime Player window that opens, choose Edit > Select All to select the entire
audio file, then choose Edit > Copy.
3 Open the movie to which you want to add the audio.
4 To add the audio to the whole movie, choose Edit > Add. To add the audio to a part of
the movie, select a part and choose Edit > “Add to Selection and Scale”.
“Add to Selection and Scale” slows down or speeds up the audio track to fit the length
of the selected part of the movie; the pitch remains the same (when you play the
movie in QuickTime Player). You could add video to sound instead, and speed up or
slow down the video to match the audio. You might have better results if you compare
the timelines of the two tracks and cut from one or the other until they have the same
duration.34 Chapter 3 Editing and Authoring with QuickTime Pro
Note: If your audio and video are created by the same device, such as a DV camera,
and are created at the same time, the audio and video will be synchronized.
Changing Sound Track Volume Levels and Other Audio Settings
With QuickTime Pro, you can change the volume and balance of audio and music
tracks. For example, if a movie has more than one audio track, you can adjust the
volume of the tracks relative to one another. You can also change the bass and treble
levels.
To change settings for an audio track:
1 In QuickTime Player, choose Window > Show Movie Properties.
2 In the Properties window, select the audio track and click Audio Settings.
3 Drag the sliders to adjust the settings.
4 Use the pop-up menu to the right of each audio channel to specify where the channel’s
sound should be directed.
To direct a channel's sound to the subwoofer, choose LFE Screen. To specify a particular
output for the audio device, choose one of the Discrete options. To silence a channel,
choose Unused.
5 To turn off the audio (without having to delete the track), select Mute. To play only the
selected audio track, select Solo.
6 To save the balance and channel settings with your movie, choose File > Save or
Save As.
Presenting Multiple Movies in the Same Window
With QuickTime Pro, you can place multiple video tracks in the same window to play
movies side by side or to create a picture-in-picture effect.
To present multiple movies in the same window:
1 In QuickTime Player, choose Edit > Select All to select the entire contents of the first
movie.
2 Choose Edit > Copy, then open the second movie.
3 Move the playhead to the point at which you want the first movie to begin playing
(usually the beginning or end of the original movie), and choose Edit > “Add to Movie.”
4 Choose Window > Show Movie Properties, select the new video track, and click Visual
Settings.
5 Use the Current Size and Layer controls to set the new video to a desired size and layer
(layers with lower numbers are farther forward, or more “on top”).
For example, for a picture-within-a-picture effect, with the added movie inside the
original movie, make the new movie smaller and assign it a lower layer number.Chapter 3 Editing and Authoring with QuickTime Pro 35
Pasting Graphics and Text into a Movie
With QuickTime Pro, you can paste graphics and text into a QuickTime movie.
If a pasted graphic is larger than the movie’s dimensions, QuickTime Pro resizes the
movie to fit the dimensions of the graphic. For best results, size graphics (using a
graphics program) to match the movie size before you insert them. You can export a
single frame from the movie to use as a guide for text placement. (See “Creating a Still
Image from a Movie” on page 28.)
To find a movie’s dimensions, choose Window > Show Movie Properties, select the
video track, and click Visual Settings.
To add graphics or text:
1 Copy the text or graphic to the Clipboard.
2 In QuickTime Player, move the playhead to the point at which you want the copied
item to appear.
3 Choose Edit > Paste.
This procedure inserts the graphic into the movie at the Paste location, in its own
frame. To paste the graphic onto the frame at the Paste location, choose Edit >”Add to
Movie.”
To make a graphic show up in more than one frame, select the portion of the movie
you want to add it to and choose Edit > “Add to Selection and Scale.” You can use this
technique to add a company logo throughout a movie. (Also see “Changing a Track’s
Transparency” on page 39.)
Working with Text Tracks
You can add text to a QuickTime movie to create titles, credits, and subtitles. With
QuickTime Pro, text tracks are searchable, so you can use keywords to find precise
frames in the movie. The following topics provide details about adding text tracks.
Adding a Text Track to a QuickTime Movie
With QuickTime Pro, you can import a text file into a QuickTime movie.
To add a text track:
1 Create a text file containing the text you want in the movie, and save the file as text
only (.txt).
Separate each paragraph with a return character. Each paragraph appears in a separate
frame of the movie. By default, each text frame is displayed for 2 seconds.
2 In QuickTime Player, choose File > Open File and select the text file.
3 Click Open.36 Chapter 3 Editing and Authoring with QuickTime Pro
Overlaying a Movie with Text
With QuickTime Pro, you can use QuickTime Player to overlay (superimpose) text on a
specific part of an existing movie.
To overlay text:
1 In QuickTime Player, choose File > Open File and then select the text file.
2 Choose Edit > Select All and then choose Edit > Copy. (In Windows, click Options,
select the Keyed Text checkbox, and copy the track).
3 Select the part of the movie on which you want to overlay the text.
4 Choose Edit > “Add to Selection and Scale.”
5 Save as a self-contained movie.
The text appears throughout the part of the movie you selected. For information about
adjusting how long each line of text displays, see “Setting the Frame Duration of a Text
Track” on page 36.
Specifying Font Styles for Text Tracks
With QuickTime Pro you can change the font attributes of a text track already in a
movie. To do so, you export the track, make changes, then reimport the track.
To change font styles for the text track:
1 In QuickTime Player, choose File > Export.
2 Choose “Text to Text” from the Export pop-up menu.
3 Click Options and select “Show Text, Descriptors, and Time.”
4 Use a text editor to alter the values after the {QTtext} tag.
5 Import the text track back into your movie.
In Windows, click Convert. To import the text with the default settings, click Save. To
select different settings (such as font attributes), click Options.
You can also insert tags throughout the text to change values while the movie plays.
Setting the Frame Duration of a Text Track
With QuickTime Pro, you can set the duration of each frame in an existing text track to
a value other than 2 seconds. To do so, you export the track, make changes, then
reimport the track.
To change the current text frame information:
1 In QuickTime Player, choose File > Export and choose “Text to Text” from the Export
pop-up menu.
2 Click Options and select “Show Text, Descriptors, and Time.”
3 Edit the information in the text file and then import the track back into the movie. Chapter 3 Editing and Authoring with QuickTime Pro 37
The duration for each line of text in the text file appears on a separate line before the
line of text. The time you type is the length of time after the movie has started at which
this line of text will appear.
Timestamps are specified as hours:minutes:seconds:fractions of a second (the default
Text to Text export setting is 1/600th of a second). For example, if you enter the time
00:02:11:00, the text on the following line appears at 2 minutes and 11 seconds into
the movie.
For information about the other text track descriptors, see the developer section of the
QuickTime website at www.apple.com/quicktime.
Specifying Languages for Individual Tracks
With QuickTime Pro, you can create a movie with support for multiple languages by
specifying a language for an individual track. For example, you can create a movie that
contains a separate audio track for each language. QuickTime automatically plays the
correct track, based on the language setting of the user’s computer.
To specify languages:
1 Create or assemble the alternate tracks.
Record voiceovers in each desired language or create text tracks to use as subtitles.
Save each alternate track as a self-contained movie, and put all the alternates together
in a single folder.
2 Put a copy of your original movie, self-contained and minus any tracks that are now
stored as alternates, in the folder with the alternates.
3 Open the movie and choose Window > Show Movie Properties.
4 In the Properties window, select a sound or text track and click Other Settings.
5 Choose the language of this track from the Language pop-up menu.
6 Choose a track to use when a different language is selected from the Alternate pop-up
menu.
7 Save as a self-contained movie (choose Edit > Save As and make sure “Make movie selfcontained” is selected).
8 Repeat these steps for additional language tracks; each time, choose the previously
selected language from the Alternate pop-up menu.38 Chapter 3 Editing and Authoring with QuickTime Pro
Changing Movie Properties
The following sections describe how to resize or rotate a movie, set a movie’s poster
frame, and more.
Adding Annotations to a Movie
With QuickTime Pro, you can add annotations to document information about the
movie, such as its author, director, and copyright information. You can annotate the
entire movie and any of its individual tracks.
To annotate a movie:
1 In QuickTime Player, choose Window > Show Movie Properties.
2 Select an item from the list and click Annotations.
3 Choose an annotation to add from the Add Annotation pop-up menu.
4 Enter the annotation in the Value column of the list.
Users who don’t have QuickTime Pro see only three of the annotations the movie
contains. (Which three appear depends on which annotations the movie contains.)
Resizing, Flipping, or Rotating a Movie
With QuickTime Pro, you can change the size and orientation of a video track of a
movie.
To resize or rotate a QuickTime movie:
1 In QuickTime Player, choose Window > Show Movie Properties.
2 In the Properties window, select a video track and click Visual Settings.
3 To resize the movie, type new numbers in the Current Size fields.
To keep the same height-to-width proportions, select Preserve Aspect Ratio.
4 To rotate the movie, click one of the rotate buttons.
To restore the movie to its original appearance, click Reset.
Flip horizontal
or vertical
Rotate right or leftChapter 3 Editing and Authoring with QuickTime Pro 39
Changing a Movie’s Shape with a Video Mask
With QuickTime Pro, you can change the shape of a movie from rectangular to other
shapes using a video mask. In combination with a media skin; you can “skin” a movie so
that it plays in a non-rectangular region (for example, a movie could play from within a
ship porthole), and then use a mask to restrict the movie’s shape to the desired
playback region.
Use a graphics program to create the mask and save it as a QuickTime-compatible file
(for example, BMP, GIF, JPEG, or PICT). The mask should be a black shape on a white
background. The movie appears through the black shape.
To add a video mask:
1 In QuickTime Player, choose Window > Show Movie Properties.
2 Select the video track you want to assign the mask to, then click Visual Settings.
3 Drag the mask file to the Mask well in the Properties window, or click Choose to select
the file.
Changing a Track’s Transparency
With QuickTime Pro, you can create a track that is partly transparent. This technique is
useful, for example, for overlaying a movie with a logo.
To change a track’s transparency:
1 Add the track to the movie. (See “Extracting, Adding, and Moving Tracks” on page 32.)
2 Choose Window > Show Movie Properties.
3 Select the track and click Visual Settings.
4 Choose Blend from the Transparency pop-up menu and drag the Transparency Level
slider.
Creating a Chapter List for a Movie
With QuickTime Pro, you can create a pop-up chapter list to navigate to specific points
in a movie. First you create a list of topics (or entry points), and then you import the list
into the movie as a text track. When you play the movie in QuickTime Player, the
current chapter displays in the movie controller. (See “Opening and Playing Movies in
QuickTime Player” on page 11.)
To create a chapter list:
1 In a text editor or word processor, type your list of chapters and save the document as
plain text.
Make each item very short (preferably one word but no more than two or three words)
and separate each item with a return character.
2 In QuickTime Player, choose File > Open File, select the text file, and click Open. 40 Chapter 3 Editing and Authoring with QuickTime Pro
3 Choose File > Export. In the Export pop-up menu, choose “Text to Text.” In the Use
pop-up menu, choose “Text with Descriptors.”
4 Click Options. In the Text Export Settings dialog, select “Show Text, Descriptors, and
Time”; select “Show time relative to start of Movie”; and set fractions of seconds to 1/30
(the default is 1/1000).
5 Click OK, then click Save to create a text file with descriptors.
6 Open the exported list in your text editor or word processor, and open the target
movie in QuickTime Player.
7 Choose Window > Show Movie Info.
8 In QuickTime Player, drag the playhead on the timeline to find the first point in the
movie where you want to begin a new chapter.
Use the Right and Left Arrow keys to step forward or backward a frame at a time as
needed. Note the current time in the Properties window.
9 In the text file, find the first chapter title and change the timestamp just before that
chapter title to the time you noted in the Properties window.
The timestamp might now read, for example, [00:01:30.15], meaning that selecting the
first chapter title will jump the viewer 1 minute, 30 seconds, and 15 frames into the
movie.
10 Repeat steps 9 through 11 until you’ve identified all the places in the movie that
correspond to the chapter divisions and you’ve entered the proper timestamps in the
text file.
11 Change the last timestamp (the one after the last chapter title in the text file) to match
the duration of the movie.
12 Save the text file and import it into QuickTime Player.
QuickTime creates a new movie with just a text track.
13 Choose Edit > Select All, choose Edit > Copy, and close the movie.
14 Click in the main movie, choose Edit > Select All, and then choose Edit > “Add to
Movie.”
QuickTime adds the text track to the movie.
15 Choose Window > Show Movie Properties.
16 In the Properties window, select the video or audio track you want to associate with
the chapter track, and click Other Settings.
17 Choose the main video or audio track from the Chapters pop-up menu.
If you have a movie with alternate subtitle or sound tracks, you can create multiple
chapter lists in different languages and set the appropriate subtitle or sound track as
the owner of each chapter list. The chapter list will change to match the selected
language. Chapter 3 Editing and Authoring with QuickTime Pro 41
18 Select the text track, then select “Preload this track” (to make the chapter track load
first).
19 Deselect the new text track so that it doesn’t display on top of the video.
The new track will still function as a chapter track.
20 Save the movie as a self-contained movie.
You can now choose a chapter title from the pop-up menu to the right of the timeline.
Setting a Movie’s Poster Frame
A poster frame is a still image of a movie that represents the movie in places like the
QuickTime Player Favorites window and the Finder. The default poster frame is the first
frame in the movie. With QuickTime Pro, you can change the poster frame.
To change a movie’s poster frame:
1 In QuickTime Player, drag the playhead (or use the arrow keys to move the playhead) to
the desired frame.
2 Choose View > Set Poster Frame.
To view a movie’s poster frame, choose View > “Go to Poster Frame.”
Saving a Movie with Specific Playback Settings
With QuickTime Pro, you can specify how a movie should open and play, what happens
when the movie finishes, and the method QuickTime uses to resize the video.
To specify playback options:
1 Choose Window > Show Movie Properties.
2 Select the movie name, and then click Presentation.
3 Select the desired options.
4 Save the movie.
Changing the Movie Controller Type
With QuickTime Pro, you can specify the kind of playback controls available on the
QuickTime Player window. For a QTVR movie, for example, you can save the movie with
one of the QTVR movie controllers.
To specify a movie controller type:
1 Choose Window > Show Movie Properties.
2 Select Movie and click Presentation.
3 Choose an option from the Movie Controller Type pop-up menu.
4 Save the movie.4
42
4 Exporting Files
with QuickTime Pro
If you want more control over how QuickTime creates
a file, use the Export feature of QuickTime Pro.
With QuickTime Pro, you can export a movie to a number of different file formats, such
as QuickTime movie (MOV), MPEG-4, 3GPP, 3GPP2, AVI, and DV. In addition, you can
export an audio track to several different audio formats, export the individual frames of
a movie as separate image files, or export a text track to a text file.
To see the list of file formats available for a movie open in QuickTime Player, choose
File > Export and browse the list of file format choices in the Export pop-up menu.
About Video and Audio Compression
Because uncompressed video and audio require a lot of disk space to store and a lot of
bandwidth (the rate at which data can be transferred) to deliver, you’ll want to
compress (encode) your movie before sending it to another computer or on the web.
Movies are usually compressed (encoded) as part of the export process.Chapter 4 Exporting Files with QuickTime Pro 43
Exporting Files Using Presets
QuickTime Pro offers a myriad of settings and options for compressing video and audio
during export. To help simplify the process of compressing and exporting,
QuickTime Pro also offers export presets. Different presets are available for each file
format.
To export a movie using presets:
1 In QuickTime Player, open the movie you wish to export.
2 Choose File > Export.
3 Choose a file format from the Export pop-up menu.
4 Choose the preset that best meets your needs from the Use pop-up menu.
For example, to export a movie for use with a video-capable iPod, choose “Movie to
iPod.” To export a movie that is optimized for Apple TV, choose “Movie to Apple TV.”
You can also create movies for iPhone by choosing one of the “Movie to iPhone”
options.
5 Choose a filename and location, and click Save.
Note: To use the same settings you used during the last export, choose Most Recent
Settings from the Use pop-up menu.
Customizing Export Settings
For the greatest possible control when compressing and exporting media files, use the
export options available in QuickTime Pro.
For video compression and export, QuickTime Pro offers customizable settings in three
categories: video settings, filters (also known as special effects), and image size.
QuickTime Pro also offers many options for customizing compression settings for
sound.
The following topics provide information about which options to choose when
exporting and compressing movies.
Customizing Video Export Settings
To customize video settings for export:
1 Choose File > Export.
2 Choose a file format from the Export pop-up menu. For the options discussed below,
choose “Movie to QuickTime Movie.”
3 Click Options.44 Chapter 4 Exporting Files with QuickTime Pro
4 In the Video area of the Movie Settings dialog, click Settings, and then choose your
settings.
Â Compression type: Choose the video compressor (codec) you want to use to
compress your video. For the highest quality at the lowest data rate (or the smallest
file), H.264 is recommended.
Â Data rate (bit rate): In general, the higher the data rate, the better the quality, but
the bigger the file. In most cases, you’ll want to set a data rate based on the way your
movie will be viewed. For example, for streaming to Internet dialup connections, limit
the data rate to around 45 kilobits per second to leave room for network traffic. If the
file will be downloaded for playback, the data rate can be higher (a 56K modem user,
however, has longer to wait before playback begins). The data rate of a movie is also
affected by other compression options you set, such as the frame rate. To let the
compressor choose an appropriate data rate, select Automatic.
Â Optimized for: Choose your intended delivery method from the “Optimized for”
pop-up menu. This setting informs the codec how much the data rate can vary
above and below the data rate you choose. This option is available only for
compressors that can apply limits, such as H.264.
Â Key frame options: Many compressors use “frame differencing” to compress moving
images. Frame differencing is the process of determining what information has
changed from a starting frame (called a key frame) to subsequent frames. The key
frame contains all of the information for an image. Subsequent frames contain only
the information that has changed.
Depending on the compressor you use, you can specify how often you want key
frames to occur. If you don’t have enough key frames, the quality of your movie
might be lower because most frames are generated from others. However, more key
frames result in a larger movie with a higher data rate. With some compressors, an
additional key frame is inserted automatically if too much of the image has changed
from one frame to the next. A good rule of thumb for general use is to have one key
frame every 5 seconds (multiply the frames per second by 5). If you are creating a file
for RTSP streaming and have concerns about the reliability of the delivery network
(as with the public Internet), you may want to increase key frame frequency to one
key frame every 1 or 2 seconds. To let the compressor choose the key frame interval,
select Automatic.
Â Frame rate: Frame rate is the number of individual images shown every second.
Standard (NTSC) video has a frame rate of 29.97 frames per second (fps), and the
standard for film is 24 fps. The European standard (PAL) is 25 fps. QuickTime movies
are sometimes created with a slower frame rate to reduce bandwidth and CPU
requirements.Chapter 4 Exporting Files with QuickTime Pro 45
Movies with higher frame rates show motion better but have larger file sizes. If you
choose a frame rate that’s lower than the movie’s current frame rate, frames will be
deleted. If you choose a number that’s higher than the movie’s current frame rate,
existing frames will be duplicated (not recommended, since it increases file size
without improving quality). When choosing a frame rate, use a simple fraction of
your current frame rate, such as 1/2, 1/3, and so on. For example, if your current
frame rate is 30 (29.97), use 15 or 10.
Â Other options: Some compressors or codecs offer options specific to the codec.
After you select a compressor (codec), any special options appear.
Adding Special Effects and Filters to a QuickTime Movie
With QuickTime Pro, you can add special effects such as blur, emboss, and film noise to
a movie before you export it. You add special effects by using filters.
To set a filter for a movie:
1 In QuickTime Player, choose File > Export.
2 Choose “Movie to QuickTime Movie” from the Export pop-up menu.
3 Click Options, click Filter, and select the filter and settings you want to use.
The selected filter is applied to the entire movie.
Changing Image (Frame) Size
With QuickTime Pro, you can change the size of a movie’s video frame. For example, if
your movie will be viewed on a small screen (such as a mobile device), you can change
the movie’s dimensions to match the target device. You can experiment with making
the frame size smaller for a given data rate to get better encoding results.
To change the size of a movie’s video frame:
1 Choose File > Export.
2 Choose a file format from the Export pop-up menu.
3 Click Options.
4 In the Video area of the Movie Settings dialog, click Size and then choose an option:
Â Use current size: This option (the default) keeps the exported movie’s image size the
same as your original source movie.
Â Use custom size: When you choose this option, you can specify (in pixels) a height
and width for the exported movie’s image size. For best results, choose dimensions
smaller than your source movie, and keep the height-to-width ratio the same as the
source (so that objects don’t appear distorted).46 Chapter 4 Exporting Files with QuickTime Pro
Customizing Sound Export Settings
To customize sound settings for export:
1 Choose File > Export.
2 Choose “Movie to QuickTime Movie” from the Export pop-up menu.
3 Click Options.
4 In the Sound area of the Movie Settings dialog, click Settings and then choose your
options:
Â Format: Choose the compressor (codec) you want to use for compressing sound. For
general use and Internet delivery of music, MPEG-4 Audio (AAC) is recommended.
Â Channels: Choose between mono (1 channel) or stereo (2 channels).
Â Rate: Digitized sound is made up of sound samples. The more samples per second,
the higher the sound quality. To maintain quality, music requires a higher sampling
rate than spoken voice because music uses a wider range of frequencies. Audio CDs
use a sampling rate of 44.1 kHz.
Â Render Settings: Choose the quality of the signal processing that will be used;
higher quality settings take longer to process.
Â Other options: To see any additional options specific to your chosen codec, click the
Options button. if it’s available.
Preparing Movies for Internet Delivery
With QuickTime Pro, you can create movies so that they can be delivered over the
Internet. You can deliver a movie over the Internet in two ways:
Â With HTTP download, the movie is downloaded to the client’s hard disk. Fast Start is
a QuickTime feature that enables users to watch or listen to media as it is being
downloaded (long before the whole movie has been downloaded) from a standard
web server to their hard disks. Fast Start works well for short-form movies where file
size is limited. It ensures high-quality playback regardless of users’ Internet
connection speeds, although those with slower connections will wait longer before
media starts to play.
Â Real-time streaming provided by QuickTime Streaming Server (QTSS) delivers media
in real time over the Internet, from modem rates to broadband. No file is ever
downloaded to a viewer’s hard disk. Media is played, but not stored, by the client
software as it is delivered. You would choose real-time streaming rather than Fast
Start for webcasts of live events in real time, delivery of long-form video, 24/7
Internet radio and TV channels, and other cases in which you don’t files stored on a
user’s hard disk. QTSS uses the RTSP protocol.Chapter 4 Exporting Files with QuickTime Pro 47
Preparing a Movie for Fast Start
With QuickTime Pro, you can set up a movie to start playing from a web server before
the movie has completely downloaded to the user’s hard disk. This is called a “Fast
Start” movie.
Set the Fast Start setting just before you distribute your movie; making other changes
and resaving may undo the Fast Start setting.
If the movie is in the format you want, you can set it up for Fast Start by choosing
File > Save As and then selecting “Save as a self-contained movie.” If the movie is not
in the format you want, you need to encode it first by following the steps below.
To convert a movie and set it up for Fast Start:
1 In QuickTime Player, choose File > Export.
2 Choose “Movie to QuickTime Movie” from the Export pop-up menu.
3 Click Options and select video and sound compression options appropriate for web
delivery.
For more information, see “Customizing Video Export Settings” on page 43,
“Customizing Sound Export Settings” on page 46, and the tutorials at
www.apple.com/quicktime/resources.
4 Make sure the “Prepare for Internet Streaming” checkbox is selected and Fast Start
appears in the pop-up menu.
Preparing a Movie for Real-Time Streaming
With QuickTime Pro, you can set up a movie to be streamed over the Internet. To do so,
you should compress the movie so that its data rate is appropriate for the bandwidth at
which your users will connect.
Hinted streaming format is for use with QuickTime Streaming Server or Darwin
Streaming Server. When you choose hinted streaming, “hint tracks” (information
needed to stream the movie) are added to the movie. If the movie is already in the
desired format, you can prepare a movie for streaming by choosing File > Export and
then choosing “Movie to Hinted Movie.” If you want to change the movie’s format,
follow the steps below.
To set up a movie for Internet streaming:
1 In QuickTime Player, choose File > Export.
2 Choose “Movie to QuickTime Movie” from the Export pop-up menu.
3 Choose a streaming option from the Use pop-up menu.
4 Click Options and select the “Prepare for Internet Streaming” checkbox.
5 Choose Hinted Streaming from the pop-up menu.48 Chapter 4 Exporting Files with QuickTime Pro
If you want to stream a QuickTime movie using QuickTime Streaming Server, you
should use a web-optimized video or audio compressor to compress the movie file. All
QuickTime compressors are compatible with QuickTime Streaming Server, but the
compressors listed here are optimized to give the best results for delivery over the
Internet. For a complete list of compressors that QuickTime supports, see the Products
area of the QuickTime website (www.apple.com/quicktime/products).
Â Video compressors: H.264, MPEG-4, Sorenson Video (any version), H.263, H.261
Â Audio compressors: AAC, QUALCOMM PureVoice, AMR, QDesign
For more information about preparing a movie for streaming, go to
www.apple.com/quicktime/resources.
Creating Reference Movies to Optimize Web Playback
You can use reference movies to provide the appropriate movie for different users’
connection speeds. For example, you can have a smaller movie streamed to users
connected over a standard modem, and a larger version of the movie streamed to
users connected over a broadband connection.
Apple provides a free tool, MakeRefMovie X, that greatly simplifies the process of
creating reference movies. You can download this software at:
developer.apple.com/quicktime/quicktimeintro/tools
For more information about reference movies see “Creating Movies Optimized for
iPhone and Web Delivery” on page 48
Creating Movies Optimized for iPhone and Web Delivery
With QuickTime Pro you can easily create versions of your movie that are optimized for
iPhone and desktop viewing. This saves you several steps in creating movies for online
distribution and ensures that your audience automatically receives the best viewing
experience for the device they’re using.
To export for iPhone and web delivery:
1 Choose File > Export for Web.
2 In the dialog that appears, specify a filename and select a location for the exported
movies and HTML snippet file.
3 Select the versions you want to create.
Â iPhone: Creates a movie that is optimized for delivery to iPhone over a Wi-Fi
connection.
Â iPhone (cellular): Creates a move that is optimized for delivery to iPhone over a
cellular (EDGE) connection.
Â Desktop: Creates a movie optimized for delivery to computers over broadband
connections.Chapter 4 Exporting Files with QuickTime Pro 49
4 Choose a poster frame option for the movie.
The poster frame determines the still image viewers will see when they load the web
page with the embedded reference movie. If you want to set a new poster frame
before exporting the versions, click Cancel. Then navigate to the frame you want to use
and choose View > Set Poster Frame.
5 Click Export to create the files necessary for the options you selected.
The exporting process creates several files, including files for each version of the movie
you select, a reference movie that will automatically deliver the correct version to the
viewer, and an HTML file that contains a snippet of code you can use to embed the
movie in a web page. All of these files must be copied to your web server, in the same
location relative to each other and with the same file names, in order for the reference
movie and HTML snippet to function correctly.
Exporting MPEG-4 Files
MPEG-4 is the latest worldwide industry standard for delivering professional-quality
audio and video over a wide range of bandwidths, from mobile multimedia to high
definition. When you want to create a file that will work with another MPEG-4 device,
use QuickTime Pro to create MPEG-4 content by exporting a movie.
To export a file to the MPEG-4 format:
1 Open the movie you want to export in QuickTime Player, then choose File > Export.
2 Choose “Movie to MPEG-4” from the Export pop-up menu.
Note: To create an MPEG-4 movie that is optimized for use with Apple TV, iPhone, or
iPod, select “Movie to Apple TV” , “Movie to iPhone”, or “Movie to iPod” from the Export
pop-up menu. All of the MPEG-4 options will be set to the appropriate values for you.
To adjust settings such as file format, compression, and distribution restrictions, click
Options. The options you choose depend on the network over which you’ll deliver the
file and the viewers’ connection. The following sections describe the options in detail.
MPEG-4 Video Export Options
When you export a movie to MPEG-4 format (by choosing File > Export and then
choosing “Movie to MPEG-4”), you access the following options by clicking Options and
then clicking Video.
Â File Format: To ensure operability with devices made by ISMA members, choose
“MP4 (ISMA).” For more information, go to www.isma.tv.50 Chapter 4 Exporting Files with QuickTime Pro
Â Video Format: Choose the video compressor (codec) you want to use to compress
your video. For the highest quality at the lowest data rate (or the smallest file), H.264
is recommended. If you need the file to play on a device that supports MPEG-4 video,
choose MPEG-4 Basic or MPEG-4 Improved, depending on the target device. If your
source movie’s video track is already compressed, you can choose “Pass through” so
that the video doesn’t get compressed again.
Â Data Rate: The more kilobits per second (kbps), the better the movie quality. For
best playback, however, don’t choose a data rate higher than the available
bandwidth.
Â Optimized for: If you choose H.264 from the Video Format pop-up menu, choose
your intended delivery method from the “Optimized for” pop-up menu. This setting
tells the codec how much the data rate can vary above and below the data rate you
choose.
Â Image Size: Current maintains the source material size. To choose a size not listed in
the pop-up menu, choose Custom.
Â Preserve Aspect Ratio Using: If you are changing the image size, use this option to
specify an option in case the movie needs to be scaled to the new dimensions.
Letterbox will scale the source proportionally to fit into the clean aperture, adding
black bars to the top and bottom or sides as necessary. Crop centers, scales, and
trims to the clean aperture. Fit Within Dimensions adjusts to the destination size by
fitting to the longest side, scaling if necessary.
Â Frame Rate: In most cases, your video will look better if you choose a number that is
exactly divisible by the FPS (frames per second) of your source. For example, if your
source is captured at 30 FPS, choose a frame rate of 10 or 15. Don’t choose a rate
larger than that of your source material.
Â Key Frame: The more often you specify a key frame (the lower the number), the
better the video quality, but the bigger the file.
If you choose MP4 from the File Format pop-up menu and H.264 from the Video
Format pop-up menu, and then click Video Options, you get the following additional
options:
Â Restrict Profile(s) to: If you need the file to play on a device that conforms to one or
more of the standard’s profiles, check those profiles here.
Â Encoding Mode: Choose whether you want the best quality or faster encoding.
MPEG-4 Audio Export Options
When you export a movie to MPEG-4 format (by choosing File > Export and then
choosing “Movie to MPEG-4”), you access the following options by clicking Options and
then clicking Audio.
Â Audio Format: Choose your audio compressor (codec) here. If your source movie has
only one audio track and it is already compressed, you can choose “Pass through” so
that the audio doesn’t get compressed again.Chapter 4 Exporting Files with QuickTime Pro 51
Â Data Rate: As with video, the more kilobits per second, the better the audio quality.
Â Channels: Choose between mono (1 channel) or stereo (2 channels).
Â Output Sample Rate: Available only with AAC audio. It’s best to match the sample
rate to that of the target device.
Â Encoding Quality: Available only with AAC audio. The Good setting is optimized for
the highest-speed encoding, for higher-quality, choose Best for 16-bit audio, or Better
if your audio source is 24-bit.
MPEG-4 Streaming Export Options
When you export a movie to MPEG-4 format (by choosing File > Export and then
choosing “Movie to MPEG-4”), you access the following options by clicking Options and
then clicking Streaming.
If you’re going to deliver the exported file using RTSP streaming, select “Enable
streaming.”
Streamed data must be sent in smaller-size packets. Some networks have limitations on
packet size and packet duration. If your network provider gives you information about
size limitations, you can change the packet size and the maximum packet duration to
comply with your delivery network. Otherwise, use the default values.
Exporting 3G Files
QuickTime Player can import and play back files for use on 3G networks—high-speed
mobile networks that enable multimedia to be sent between mobile devices.
QuickTime supports standards for nearly any kind of 3G mobile network.
To import a 3G file, choose File > Open File and then select the file. You can also open a
3G file in QuickTime by dragging it to the QuickTime icon in the Dock or doubleclicking the file (Mac OS X only).
With QuickTime Pro, you can export video, audio, and text to one of the many 3G
formats that QuickTime supports.
To export a file to the 3G format:
1 Open the movie you want to export in QuickTime Player, then choose File > Export.
2 Choose “Movie to 3G” from the Export pop-up menu.
To adjust settings such as file format, compression, and distribution restrictions, click
Options. The options you choose depend on the mobile network over which you’ll
deliver the file and the capabilities of the viewer’s phone. The following sections
describe the options in detail.52 Chapter 4 Exporting Files with QuickTime Pro
3G File Format Export Options
After you choose File > Export and click Options, the first two items in the File Format
pop-up menu are the standard formats.
Â 3GPP is for GSM networks. With this format, you can use:
Â MPEG-4, H.263, or H.264 video
Â AAC or AMR audio
Â 3G timed text
Â 3GPP2 is for CDMA 2000 networks. With this format, you can use:
Â MPEG-4, H.263, or H.264 video
Â AAC, AMR, or QCELP audio
Â 3G timed text
Â Movie fragments (enables playback to start sooner for longer movies, since only
the fragment, not the whole movie, must fit on the handset)
The remaining formats are provided for specific networks. With these formats, you can
restrict distribution so that a file can’t be shared from the recipient’s phone (set this
option in the Advanced pane). These formats may limit the acceptable file size or data
rate; check with the service provider for more information.
Â 3GPP (Mobile MP4) is for NTT DoCoMo’s i-motion 3G service. With this format, you
can use the 3GPP options described above.
Â 3GPP2 (EZmovie) is for KDDI’s 3G network service. This format provides the same
options as 3GPP2 (described above), except for AMR audio support.
Â AMC (EZmovie) is for KDDI subscribers with AMC-capable phones. With this format,
you can use:
Â MPEG-4 video
Â QCELP audio
Â KDDI’s text format
3G Video Export Options
Â Video Format: If your source movie has only one video track and it is already
compressed, you can choose “Pass through” (so that the video doesn’t get
compressed again).
Â Data Rate: The more kilobits per second (kbps), the better the movie quality. For
best playback, however, don’t choose a data rate higher than the available
bandwidth.
Â Optimized for: If you choose H.264 from the Video Format pop-up menu, choose
your intended delivery method from the “Optimized for” pop-up menu. This setting
tells the codec how much the data rate can vary above and below the data rate you
choose.Chapter 4 Exporting Files with QuickTime Pro 53
Â Image Size: If you’re sending the file to a mobile phone, choose one of the
standards. Current maintains the source material size; the resulting file may not play
on a mobile phone. To choose a size not listed in the pop-up menu, choose Custom.
Â Preserve Aspect Ratio Using: If you are changing the image size, use this option to
specify an option in case the movie needs to be scaled to the new dimensions.
Letterbox will scale the source proportionally to fit into the clean aperture, adding
black bars to the top and bottom or sides as necessary. Crop centers, scales, and
trims to the clean aperture. Fit Within Dimensions adjusts to the destination size by
fitting to the longest side, scaling if necessary.
Â Frame Rate: In most cases, your video will look better if you choose a number that is
exactly divisible by the FPS (frames per second) of your source. For example, if your
source is captured at 30 FPS, choose a frame rate of 10 or 15. Don’t choose a rate
larger than that of your source material.
Â Key Frame: The more often you specify a key frame (the lower the number), the
better the video quality, but the bigger the file.
These additional options are available when you click Video Options:
Â Re-sync markers: Adds re-sync markers inside the video frames to help with packet
loss recovery when streaming.
Â Encoding Mode: With H.264 video, you can speed up the compression process (for
preview purposes, for example) by choosing “Faster encode (Single-pass).” With the
default option, “Best quality (Multi-pass),” the codec determines how many passes
are needed to compress the data for the best quality.
3G Audio Export Options
When you export a movie to 3G format (by choosing File > Export and then choosing
“Movie to 3G”), you access the following options by clicking Options and then clicking
Audio.
Â Audio Format: If your source movie has only one audio track and it is already
compressed, you can choose “Pass through” (so that the audio doesn’t get
compressed again).
Â Data Rate: As with video, the more kilobits per second, the better the audio quality.
Â Channels: Choose between mono (1 channel) or stereo (2 channels).
Â Frames per sample: Available only with AMR audio, this option enables exported
audio data to be packed more efficiently.
Â Silence detection: Available only with AMR audio, this option detects audio portions
with low signal levels and adjusts the data rate of the output accordingly.
Â Output Sample Rate: Available only with AAC audio. It’s best to match the sample
rate to that of the target device.
Â Encoding Quality: Available only with AAC audio. By choosing Best, you can get
higher-quality audio but it takes longer to encode.54 Chapter 4 Exporting Files with QuickTime Pro
3G Text Options
When you export a movie to 3G format (by choosing File > Export and then choosing
“Movie to 3G”), you access the following options by clicking Options and then clicking
Text.
These options are available if your movie has a text track (credits, titles, subtitles, and so
on).
Some mobile devices can’t play text in a movie. To allow the movie to play only if the
text can be displayed on the receiving device, select “Require text capability on
handset.” Deselect this checkbox to allow the audio and video to play even if the text
can’t be displayed on the device.
3G Streaming Options
When you export a movie to 3G format (by choosing File > Export and then choosing
“Movie to 3G”), you access the following options by clicking Options and then clicking
Streaming.
To create a file for RTSP streaming to QuickTime Player, select “Enable streaming.” This
option creates a hint track (instructions necessary for streaming a file).
“Optimize for server” helps the server to process the file faster, but increases the file
size.
3G Advanced Options
When you export a movie to 3G format (by choosing File > Export and then choosing
“Movie to 3G”), you access the following options by clicking Options and then clicking
Advanced.
If your file is in Mobile MP4 or EZmovie format, you can restrict distribution so that
once the file is on a handset it can’t be sent or copied anywhere else. You can specify
how many times the file can play back on the handset once downloaded, or make the
file expire after a certain number of days or on a certain date.
“Fragment movie” enables the file to download via HTTP in small pieces so that
playback can start faster and so that larger files can be played on the handset (only the
fragment, not the entire movie, must fit on the handset at one time). 55
Appendix
Shortcuts and Tips
Learn keyboard shortcuts and other tips for using
QuickTime efficiently.
QuickTime Player Keyboard Shortcuts
QuickTime Player and QuickTime Pro provide keyboard shortcuts for most playback
options. When available, each of these shortcuts appears to the right of its associated
menu item. A few keyboard shortcuts have no menu equivalents.
For this control Press
Play/pause Space bar
Play or pause all movies Command-Return
Play movie backward Shift–double-click, Command–Left Arrow
Stop playback and go back one frame Left Arrow
Stop playback and go forward one frame Right Arrow
Go to beginning of selection or movie Option–Left Arrow
Go to end of selection or movie Option–Right Arrow
Turn volume up Up Arrow
Turn volume down Down Arrow
Turn volume up to maximum level Option–Up Arrow
Turn volume down to minimum level Option–Down Arrow56 Appendix Shortcuts and Tips
QuickTime Pro Keyboard Shortcuts
For this control Press (Mac OS X) Press (Windows)
Play/pause Space bar Space bar
Play or pause all movies Command-Return Control-Enter
Play movie backward Shift–double-click
Command–Left Arrow
Shift–double-click
Stop playback and go back one
frame
Left Arrow Left Arrow
Stop playback and go forward
one frame
Right Arrow Right Arrow
Go to beginning of selection or
movie
Option–Left Arrow Control–Left Arrow
Go to end of selection or movie Option–Right Arrow Control–Right Arrow
Turn volume up Up Arrow Up Arrow
Turn volume down Down Arrow Down Arrow
Turn volume up to maximum
level
Option–Up Arrow Control–Up Arrow
Turn volume down to minimum
level
Option–Down Arrow Control–Down Arrow
To do this... Press
Enter full-screen mode Command-F
Exit full-screen mode Command-period or Esc
Play movie at half size Command-0
Play movie at normal size Command-1
Play movie at double size Command-2
Play movie at full size Command-3
Move In marker to playhead location I
Move Out marker to playhead location O
Extend selection to the left Option–Shift–Left Arrow
Extend selection to the right Option–Shift–Right Arrow
Extend selection to point clicked in LCD Shift-clickAppendix Shortcuts and Tips 57
Automating QuickTime Player with AppleScript
In Mac OS X, you can use AppleScript to automate QuickTime Player functions. For
example, you can open a movie and tell it to play for a specific duration; automate the
conversion of movies from one format to another; adjust track playback properties
such as start time, volume, and layer; or adjust movie properties such as copyright and
author.
To determine all of the AppleScript commands you can use to control QuickTime
Player, install AppleScript and look at the QuickTime Player AppleScript dictionary.
1 Open Script Editor.
2 Choose File > Open Dictionary.
3 Select QuickTime Player.
Sample QuickTime Player scripts can be found on the AppleScript website
(www.apple.com/applescript/quicktime).
To do this Press (Mac OS X) Press (Windows)
Enter full-screen mode Command-F Control-F
Exit full-screen mode Command-period or Esc Control-period or Esc
Play movie at half size Command-0 Control-0
Play movie at normal size Command-1 Control-1
Play movie at double size Command-2 Control-2
Play movie at full size Command-3 Control-3
Move In marker to playhead
location
I I
Move Out marker to playhead
location
O O
Extend selection to the left Option–Shift–Left Arrow
Extend selection to the right Option–Shift–
Right Arrow
Extend selection to point clicked
in LCD
Shift-click58 Appendix Shortcuts and Tips
Automating QuickTime Player on Windows
In Windows, you can use JavaScript, Visual Basic, or other Active Scripting languages to
automate QuickTime Player functions. As with AppleScript on Mac OS X, you can
control movie playback, convert movies from one format to another, adjust movie and
track properties, and more.
There are three QuickTime Player objects available for use:
Â QuickTimePlayerApp
The application object. This object has a Players property which returns a collection
of the QuickTime Player windows. The Quit method exits the program.
Â QuickTimePlayers
Use this object to enumerate player windows; the Remove and Add methods permit
the removal and creation of new QuickTime Player windows.
Â QuickTimePlayer
This object has properties and methods to open movies, control the window’s
position and appearance, and to interact with its menus. The QTControl property
returns the ActiveX control hosting the window’s movie.
To examine the QuickTime Player or QuickTime Control interfaces in detail, look at the
Apple QuickTime Player Library 1.0 or Apple QuickTime Control 2.0 interfaces in a COM
object browser. 59
Glossary
Glossary
AIFF (Audio Interchange File Format) An audio file format used widely on the web.
aspect ratio The relationship between the height and width of an image.
audio channel Audio tracks can contain one or more channels of audio data. Each
channel represents the sound directed to a particular speaker. For instance, stereo
tracks contain two audio channels.
audio channel label Each audio channel may be labeled to specify where its sound
should be directed. In a stereo track, the channels are typically labeled Left and Right.
In a 5.1 surround sound track, there are labels for Left, Right, Center, Left Surround,
Right Surround, and LFE Screen (the subwoofer).
bandwidth The capacity of a network connection, measured in bits or bytes per
second (bps or Bps), for carrying data.
BMP A bitmapped graphics format used for still images in the Windows environment.
bitmapped Represented by pixels.
chapter list A list of “locations” in a movie. A user can choose an item from the chapter
list to go to that point in the movie.
codec From “compressor/decompressor.” A codec is technology for compressing and
decompressing data. Codecs can be implemented in software, hardware, or a
combination of the two. Codecs can by “lossy” or “lossless,” depending on whether data
is lost during compression.
compression The process of reducing the data size of a file.
Darwin Streaming Server A technology for delivering media over the Internet in real
time. Based on the same code as Apple’s QuickTime Streaming Server (QTSS), Darwin
Streaming Server is an open-source streaming server.60 Glossary
Fast Start A method of delivering a movie so that it can start playing before it is fully
downloaded.
frame A single image in a movie.
frame rate The number of frames displayed per second.
GIF (Graphics Interchange Format) A file format for images.
hint track In a streamed movie, a hint track specifies for the server how the movie’s
content is to be transmitted.
hot spot A place in a virtual reality movie where the user can interact with the movie
using the mouse.
Instant-On A technology that dramatically improves access to streaming content for
broadband users.
JPEG (Joint Photographic Experts Group) A standard for compressing still images.
layer In QuickTime movies, how an image is displayed depends on its layer; images
with lower layer numbers are displayed on top.
MIDI (Musical Instrument Digital Interface) A software and hardware standard set by
the music industry that enables electronic instruments to communicate with one
another and with computers.
MP3 (MPEG-1 layer 3) A format for compressing music.
MPEG-4 An ISO standard based on the QuickTime file format that defines multimedia
file and compression formats.
node In QuickTime VR, a point from which an object or panorama can be viewed.
NTSC (National Television System Committee) The organization that defines North
American broadcast standards. The term NTSC video also refers to the video standard
defined by the committee, which is 29.97 fps, 525 lines per frame, and interlaced.
PAL (Phase Alternation by Line) A video format used by many European countries and
other countries outside North America. The PAL standard is 25 fps, 625 lines per frame,
and interlaced.
PICT A Mac OS picture file format that does not apply compression to an image and
therefore maintains the same quality level from copy to copy.
pixel The onscreen dots that form text and graphics. A contraction of the words picture
and element.
plug-in Software that helps a web browser interpret certain types of media files.Glossary 61
PNG (Portable Network Graphics) A file format for images.
poster In QuickTime, a still image, usually a single frame from a movie, used to
represent the movie to users.
protocol A set of standards for sending and receiving information on a network.
QTSS (QuickTime Streaming Server) A technology used to deliver media over the
Internet in real time.
QuickTime Player An application that opens and plays QuickTime movies, as well as
many other kinds of files.
QuickTime Pro A version of QuickTime Player with advanced features, primarily the
addition of editing capabilities.
QuickTime VR A QuickTime media type with which users can interact with threedimensional places and objects.
reference movie A file that contains the location of one or more media files. A
reference file linked from a webpage, for example, can direct a QuickTime Player to the
version encoded for a particular connection speed.
RGB Red, green, blue; a way of representing colors onscreen.
RTSP (Real-Time Streaming Protocol) A protocol for controlling a stream of real-time
multimedia content. Sources of data can include both live feeds and stored digital
video.
sprite An image that is defined once and is then animated by commands that change
its position or appearance.
streaming Delivery of video or audio data over a network in real time, in packets
instead of in a single file download.
TIFF (Tagged Image File Format) A format for graphics, commonly used to transfer
bitmapped images between applications.
track A single data type in a QuickTime movie. A movie may contain one or more
tracks.
tween track A track that modifies the display of other tracks.
virtual reality (VR) The effect achieved by QuickTime VR, where users can manipulate
objects or environments.
wav A Windows format for sound files.Index
62
Index
3G files
exporting 51–53
A
A/V Controls 18
animations 27
annotations 38
AppleScript 57
audio
adding an audio track 33
audio controls 18, 34
B
balance
changing for an audio track 34
balance controls 18
bass level 18, 34
bit rate. See data rate
browser
playing movies in a 12
C
Cache checkbox 25
chapter lists 12, 39
color
changing a movie’s border 24
compressing audio and video 42–53
connection speed 14
content guide 19
converting files to QuickTime 28
copy-protected movies 17
cropping movies 31
D
data rate 14, 44, 47, 50, 52
dimensions of a movie
changing 20, 45
determining 35
disk cache 13
displays
using more than one 23
E
editing QuickTime movies 30–39
email
sharing movies via 29
Empty Download Cache checkbox 13
“Enable kiosk mode” checkbox 22
Encoding Mode 53
equalizer 11, 19
exporting movies 42–53
F
Fast Start 47
Favorites 17
file formats 9
filters (special effects) 45
firewalls 14
frame rate 18, 27, 44, 50, 53
full-screen mode 19
H
help
getting additional 10
onscreen 10
hinting 47
HomePage 29
HTTP 14
I
importing files 9
Instant-On streaming 14
Internet
connection speed 14
preparing movies for delivery over the 46–48
saving movies from the 27
sharing movies via the 29
J
jog shuttle 18
K
keyboard shortcuts 55
key frame options 44
L
languages 37
Layer control 34Index 63
locked media files 17
looping 20
M
media keys 17
memory options 25
MIDI 16
MIME Settings 15
Mirror Displays 23
monitors. See displays
movie controller 41
Movie Download Cache Size slider 13
MPEG-4 files
exporting 49–51
Multi-pass mode 53
Mute checkbox 32, 34
N
new features in QuickTime 7 7
O
Open Image Sequence command 27
opening files 9, 11
opening files automatically 18
opening more than one movie at a time 20
Open Recent command 17
P
pass through 53
pasting items into a movie 35
playback options 13, 18, 41
playhead 11
playing movies 11
playing sound 19
“Play movies automatically” checkbox 13
poster frames 41
Preferences 18
“Preload this track” checkbox 25, 41
Preview application 16
protocols 14
Q
QuickTime Player Preferences 18
QuickTime plug-in 12
QuickTime Pro
defined 6
getting 23
QuickTime Streaming 47
QuickTime VR movies 15
QuickTime website 13
R
recording audio and video 25
reference movies 13, 26, 27, 48
repeating a movie 20
resizing a movie 38
rotating a movie 38
RTSP 14
S
“Save movies in disk cache” checkbox 13
saving a movie 27
secured media files 17
selecting part of a movie 30
self-contained movies 26
sharing movies 29
Show Movie Info command 18
Single-pass mode 53
size
changing movie 20, 45
slideshow
creating from still images 27
slideshows 24, 27
Solo checkbox 32, 34
special effects 45
still images
converting to slideshow 27
exporting frames from a QuickTime movie 28
viewing and modifying 16
streaming 47
subtitles 22
system requirements 9
T
technical support 10
text
adding a text track 35
finding 22
overlaying a movie with text 36
specifying font styles 36
titles 22
tracks 32–37
adding an audio track 33
adding a text track 35
disabling 32
transparency 39
treble level 18, 34
Trim to Selection 31
V
versions
getting new versions of QuickTime 10
video frame
changing the size of 45
video masks 39
virtual reality movies 15
volume 11, 34
adjusting during playback 12
changing sound track volume 34
W
web. See Internet

Event Handling Guide
for iOSContents
About Events in iOS 6
At a Glance 6
An Application Receives Multitouch Events When Users Touch its Views 6
An Application Receives Motion Events When Users Move the Device 7
Remote-Control Events Are Sent When Users Manipulate Multimedia Controls 7
How to Use this Book 7
See Also 8
Event Types and Delivery 9
UIKit Event Objects and Types 9
Event Delivery 11
Responder Objects and the Responder Chain 11
Motion Event Types 14
Multitouch Events 16
Events and Touches 17
Approaches for Handling Touch Events 18
Regulating Touch Event Delivery 19
Handling Multitouch Events 20
The Event-Handling Methods 20
Basics of Touch-Event Handling 21
Handling Tap Gestures 24
Handling Swipe and Drag Gestures 27
Handling a Complex Multitouch Sequence 29
Hit-Testing 33
Forwarding Touch Events 35
Handling Events in Subclasses of UIKit Views and Controls 37
Best Practices for Handling Multitouch Events 37
Gesture Recognizers 39
Gesture Recognizers Simplify Event Handling 39
Recognized Gestures 39
Gestures Recognizers Are Attached to a View 40
Gestures Trigger Action Messages 41
2011-03-10 | © 2011 Apple Inc. All Rights Reserved.
2Discrete Gestures and Continuous Gestures 41
Implementing Gesture Recognition 42
Preparing a Gesture Recognizer 43
Responding to Gestures 44
Interacting with Other Gesture Recognizers 46
Requiring a Gesture Recognizer to Fail 46
Preventing Gesture Recognizers from Analyzing Touches 47
Permitting Simultaneous Gesture Recognition 48
Regulating the Delivery of Touches to Views 48
Default Touch-Event Delivery 48
Affecting the Delivery of Touches to Views 49
Creating Custom Gesture Recognizers 50
State Transitions 50
Implementing a Custom Gesture Recognizer 52
Motion Events 56
Shaking-Motion Events 56
Getting the Current Device Orientation 58
Setting Required Hardware Capabilities for Accelerometer and Gyroscope Events 59
Accessing Accelerometer Events Using UIAccelerometer 59
Choosing an Appropriate Update Interval 61
Isolating the Gravity Component from Acceleration Data 61
Isolating Instantaneous Motion from Acceleration Data 62
Core Motion 63
Handling Accelerometer Events Using Core Motion 65
Handling Rotation-Rate Data 68
Handling Processed Device-Motion Data 72
Remote Control of Multimedia 76
Preparing Your Application for Remote-Control Events 76
Handling Remote-Control Events 77
Document Revision History 79
2011-03-10 | © 2011 Apple Inc. All Rights Reserved.
3
ContentsFigures, Tables, and Listings
Event Types and Delivery 9
Figure 1-1 The responder chain in iOS 13
Listing 1-1 Event-type and event-subtype constants 9
Multitouch Events 16
Figure 2-1 A multitouch sequence and touch phases 17
Figure 2-2 Relationship of a UIEvent object and its UITouch objects 18
Figure 2-3 All touches for a given touch event 22
Figure 2-4 All touches belonging to a specific window 22
Figure 2-5 All touches belonging to a specific view 23
Listing 2-1 Detecting a double-tap gesture 24
Listing 2-2 Handling a single-tap gesture and a double-tap gesture 25
Listing 2-3 Tracking a swipe gesture in a view 27
Listing 2-4 Dragging a view using a single touch 28
Listing 2-5 Storing the beginning locations of multiple touches 30
Listing 2-6 Retrieving the initial locations of touch objects 30
Listing 2-7 Handling a complex multitouch sequence 31
Listing 2-8 Determining when the last touch in a multitouch sequence has ended 33
Listing 2-9 Calling hitTest: on a view’s CALayer object 34
Listing 2-10 Overriding hitTest:withEvent: 34
Listing 2-11 Forwarding touch events to “helper” responder objects 35
Gesture Recognizers 39
Figure 3-1 Path of touch objects when gesture recognizer is attached to a view 41
Figure 3-2 Discrete versus continuous gestures 42
Figure 3-3 Possible state transitions for gesture recognizers 51
Table 3-1 Gestures recognized by the gesture-recognizer classes of the UIKit framework 40
Listing 3-1 Creating and initializing discrete and continuous gesture recognizers 43
Listing 3-2 Handling pinch, pan, and double-tap gestures 44
Listing 3-3 Implementation of a “checkmark” gesture recognizer. 53
Listing 3-4 Resetting a gesture recognizer 55
Motion Events 56
Figure 4-1 Core Motion classes 64
2011-03-10 | © 2011 Apple Inc. All Rights Reserved.
4Figure 4-2 Right-hand rule 71
Table 4-1 Common update intervals for acceleration events 61
Listing 4-1 Becoming first responder 56
Listing 4-2 Handling a motion event 57
Listing 4-3 Configuring the accelerometer 60
Listing 4-4 Receiving an accelerometer event 60
Listing 4-5 Isolating the effects of gravity from accelerometer data 62
Listing 4-6 Getting the instantaneous portion of movement from accelerometer data 62
Listing 4-7 Configuring the motion manager and starting updates 66
Listing 4-8 Sampling and filtering accelerometer data 67
Listing 4-9 Creating the CMMotionManager object and setting up for gyroscope updates 70
Listing 4-10 Starting and stopping gyroscope updates 71
Listing 4-11 Starting and stopping device-motion updates 73
Listing 4-12 Getting the change in attitude prior to rendering 74
Remote Control of Multimedia 76
Listing 5-1 Preparing to receive remote-control events 76
Listing 5-2 Ending the receipt of remote-control events 77
Listing 5-3 Handling remote-control events 77
2011-03-10 | © 2011 Apple Inc. All Rights Reserved.
5
Figures, Tables, and ListingsEvents are objects sent to an application to inform it of user actions. In iOS, events can take many forms:
multitouch events, motion events—for example, from device accelerometers—and events for controlling
multimedia. (This last type of event is known as a remote-control event because it originates from a headset
or other external accessory.)
Multitouch events
Remote-control events
Accelerometer events
anApp
The UIKit and Core Motion frameworks are responsible for event propagation and delivery in iOS.
At a Glance
An Application Receives Multitouch Events When Users Touch its Views
The Multi-Touch interface of iPhones, iPads, and iPod touches generates low-level events when users touch
views of an application. The application sends these events (as UIEvent objects) to the view on which the
touches occurred. That view typically analyzes the touches represented by each event object and responds in
an appropriate manner.
2011-03-10 | © 2011 Apple Inc. All Rights Reserved.
6
About Events in iOSApplications are frequently interested in interpreting the touches a user makes as a common gesture, such as
a tap or swipe gesture. These applications can make use of UIKit classes called gesture recognizers, each of
which is designed to recognize a specific gesture.
Relevant Chapters:: “Event Types and Delivery” (page 9), “Multitouch Events” (page 16), “Gesture
Recognizers” (page 39)
An Application Receives Motion Events When Users Move the Device
Motion events come in different forms, and you can handle them using different frameworks. When users
shake the device, the UIKit delivers a UIEvent object to an application; these shaking-motion events are
gestures often used to trigger undo and redo actions. If you want your application to receive high-rate, continuous
accelerometer and gyroscope data, use the Core Motion framework. (Only certain devices have a gyroscope.)
You may also use the UIAccelerometer class to receive and handle accelerometer data.
Relevant Chapters:: “Event Types and Delivery” (page 9), “Motion Events” (page 56)
Remote-Control Events Are Sent When Users Manipulate Multimedia Controls
By conforming to an Apple-provide specification, headsets and other external accessories can send (via the
UIKit framework) remote-control events to an application capable of playing audio or video. The view hosting
the multimedia can receive the events and thereby control the audio video according to the user’s command
(for example, pausing or fast-forwarding).
Relevant Chapters:: “Event Types and Delivery” (page 9), “Remote Control of Multimedia” (page
76)
How to Use this Book
Regardless of the type of event you’re interested in, you should first read “Event Types and Delivery” (page
9). This chapter provides essential background information.
About Events in iOS
How to Use this Book
2011-03-10 | © 2011 Apple Inc. All Rights Reserved.
7See Also
Some iPhones and other devices have GPS and compass hardware that also generate low-level data delivered
to an application for processing. Location Awareness Programming Guide discusses how to receive and handle
this data.
Many sample code projects in the iOS Reference Library have code that illustrates the handling of multitouch
events and the use of gesture recognizers. Among these are the following projects: Touches, CopyPasteTile ,
and SimpleGestureRecognizers.
About Events in iOS
See Also
2011-03-10 | © 2011 Apple Inc. All Rights Reserved.
8An iPhone, iPad, or iPod touch device has multiple items of hardware that generate streams of input data an
application can access. The Multi-Touch technology enables the direct manipulation of views, including the
virtual keyboard. Three accelerometers measure acceleration along the three spatial axes. A gyroscope (only
on some device models) measures the rate of rotation around the three axes. The Global Positioning System
(GPS) and compass provide measurements of location and orientation. Each of these hardware systems, as
they detect touches, device movements, and location changes, produce raw data that is passed to system
frameworks. The frameworks package the data and deliver them as events to an application for processing.
The following sections identify these frameworks and describe how events are packaged and delivered to
applications for handling.
Note: This document describes touch events, motion events, and remote control events only. For
information on handling GPS and magnetometer (compass) data, see Location Awareness
Programming Guide .
UIKit Event Objects and Types
An event is an object that represents a user action detected by hardware on the device and conveyed to
iOS—for example, a finger touching the screen or hand shaking the device. Many events are instances of the
UIEvent class of the UIKit framework. A UIEvent object may encapsulate state related to the user event,such
asthe associated touches. It also recordsthe moment the event was generated. As a user action takes place—for
example, as fingers touch the screen and move across its surface—the operating system continually sends
event objects to an application for handling.
UIKit currently recognizes three types of events: touch events, “shaking” motion events, and remote-control
events. The UIEvent class declares the enum constants shown in Listing 1-1.
Listing 1-1 Event-type and event-subtype constants
typedef enum {
UIEventTypeTouches,
UIEventTypeMotion,
2011-03-10 | © 2011 Apple Inc. All Rights Reserved.
9
Event Types and DeliveryUIEventTypeRemoteControl,
} UIEventType;
typedef enum {
UIEventSubtypeNone = 0,
UIEventSubtypeMotionShake = 1,
UIEventSubtypeRemoteControlPlay = 100,
UIEventSubtypeRemoteControlPause = 101,
UIEventSubtypeRemoteControlStop = 102,
UIEventSubtypeRemoteControlTogglePlayPause = 103,
UIEventSubtypeRemoteControlNextTrack = 104,
UIEventSubtypeRemoteControlPreviousTrack = 105,
UIEventSubtypeRemoteControlBeginSeekingBackward = 106,
UIEventSubtypeRemoteControlEndSeekingBackward = 107,
UIEventSubtypeRemoteControlBeginSeekingForward = 108,
UIEventSubtypeRemoteControlEndSeekingForward = 109,
} UIEventSubtype;
Each event has one of these event type and subtype constants associated with it, which you can accessthrough
the type and subtype properties of UIEvent. The event type includes touch events, motion events, and
remote control events. In iOS 3.0, there is a shake-motion subtype (UIEventSubtypeMotionShake) and
many remote-control subtypes; touch events always have a subtype of UIEventSubtypeNone.
A remote-control event originates as commands from the system transport controls or an external accessory
conforming to an Apple-provided specification, such as a headset. They are intended to allow users to control
multimedia content using those controls and external accessories. Remote-control events are new with iOS
4.0 and are described in detail in “Remote Control of Multimedia” (page 76).
You should never retain a UIEvent object in your code. If you need to preserve the current state of an event
object for later evaluation, you should copy and store those bits of state in an appropriate manner (using an
instance variable or a dictionary object, for example).
A device running iOS can send other types of events, broadly considered, to an application for handling. These
events are not UIEvent objects, but still encapsulate a measurement of some hardware-generated values.
“Motion Event Types” (page 14) discusses these other events.
Event Types and Delivery
UIKit Event Objects and Types
2011-03-10 | © 2011 Apple Inc. All Rights Reserved.
10Event Delivery
The delivery of an event to an object for handling occurs along a specific path. As described in “Preparing Your
Application for Remote-Control Events” (page 76), when users touch the screen of a device, iOS recognizes
the set of touches and packages them in a UIEvent object that it places in the active application’s event queue.
If the system interprets the shaking of the device as a motion event, an event object representing that event
is also placed in the application’s event queue. The singleton UIApplication object managing the application
takes an event from the top of the queue and dispatches it for handling. Typically, it sends the event to the
application’s key window—the window currently the focusfor user events—and the window object representing
that window sends the event to an initial object for handling. That object is different for touch events and
motion events.
● Touch events. The window object uses hit-testing and the responder chain to find the view to receive the
touch event. In hit-testing, a window calls hitTest:withEvent: on the top-most view of the view
hierarchy; this method proceeds by recursively calling pointInside:withEvent: on each view in the
view hierarchy that returns YES, proceeding down the hierarchy until it finds the subview within whose
bounds the touch took place. That view becomes the hit-test view.
If the hit-test view cannot handle the event, the event travels up the responder chain as described in
“Responder Objects and the Responder Chain” (page 11) until the system finds a view that can handle it.
A touch object (described in “Events and Touches” (page 17)) is associated with its hit-test view for its
lifetime, even if the touch represented by the object subsequently moves outside the view.
“Hit-Testing” (page 33) discusses some of the programmatic implications of hit-testing.
● Motion and remote-control events. The window object sends each shaking-motion or remote-control
event to the first responder for handling. (The first responder is described in “Responder Objects and the
Responder Chain.”
Although the hit-test view and the first responder are often the same view object, they do not have to be the
same.
The UIApplication object and each UIWindow object dispatches eventsin the sendEvent: method. (These
classes declare a method with the same signature). Because these methods are funnel pointsfor events coming
into an application, you can subclass UIApplication or UIWindow and override the sendEvent: method
to monitor events (which is something few applications would need to do). If you override these methods, be
sure to call the superclass implementation (that is, [super sendEvent:theEvent]); never tamper with the
distribution of events.
Responder Objects and the Responder Chain
The preceding discussion mentions the concept of responders. What is a responder object and how does it fit
into the architecture for event delivery?
Event Types and Delivery
Event Delivery
2011-03-10 | © 2011 Apple Inc. All Rights Reserved.
11A responder object is an object that can respond to events and handle them. UIResponder is the base class
for all responder objects, also known as, simply, responders. It defines the programmatic interface not only for
event handling but for common responder behavior. UIApplication, UIView, and all UIKit classes that
descend from UIView (including UIWindow) inherit directly or indirectly from UIResponder, and thus their
instances are responder objects.
The first responder is the responder object in an application (usually a UIView object) that is designated to
be the first recipient of events other than touch events. A UIWindow object sends the first responder these
events in messages, giving it the first shot at handling them. To receive these messages, the responder object
must implement canBecomeFirstResponder to return YES; it must also receive a becomeFirstResponder
message (which it can invoke on itself). The first responder isthe first view in a window to receive the following
type of events and messages:
● Motion events—via calls to the UIResponder motion-handling methods described in “Shaking-Motion
Events” (page 56)
● Remote-control events—via calls to the UIResponder method remoteControlReceivedWithEvent:
● Action messages—sent when the user manipulates a control (such as a button or slider) and no target is
specified for the action message
● Editing-menu messages—sent when userstap the commands of the editing menu (described in “Displaying
and Managing the Edit Menu”)
The first responder also plays a role in text editing. A text view or text field that is the focus of editing is made
the first responder, which causes the virtual keyboard to appear.
Note: Applications must explicitly set a first responder to handle motion events, action messages,
and editing-menu messages; UIKit automatically sets the text field or text view a user taps to be the
first responder.
If the first responder or the hit-test view doesn’t handle an event, UIKit may pass the event (via message) to
the next responder in the responder chain to see if it can handle it.
The responder chain is a linked series of responder objects along which an event, action message, or
editing-menu message is passed. It allows responder objects to transfer responsibility for handling an event
to other, higher-level objects. An event proceeds up the responder chain as the application looks for an object
Event Types and Delivery
Event Delivery
2011-03-10 | © 2011 Apple Inc. All Rights Reserved.
12capable of handling the event. Because the hit-test view is also a responder object, an application may also
take advantage of the responder chain when handing touch events. The responder chain consists of a series
of next responders (each returned by the nextResponder method) in the sequence depicted in Figure 1-1.
Figure 1-1 The responder chain in iOS
superview
window
View
View
View
UIApplication
View controller
Window
superview
When the system delivers a touch event, it first sends it to a specific view. For touch events, that view is the
one returned by hitTest:withEvent:; for “shaking”-motion events, remote-control events, action messages,
and editing-menu messages, that view is the first responder. If the initial view doesn’t handle the event, it
travels up the responder chain along a particular path:
1. The hit-test view or first responder passes the event or message to its view controller if it has one; if the
view doesn’t have a view controller, it passes the event or message to its superview.
2. If a view or its view controller cannot handle the event or message, it passes it to the superview of the view.
3. Each subsequentsuperview in the hierarchy followsthe pattern described in the first two stepsif it cannot
handle the event or message.
4. The topmost view in the view hierarchy, if it doesn’t handle the event or message, passes it to the window
object for handling.
5. The UIWindow object, if it doesn’t handle the event or message, passesit to the singleton application object.
If the application object cannot handle the event or message, it discards it.
If you implement a custom view to handle “shaking”-motion events, remote-control events, action messages,
or editing-menu messages, you should not forward the event or message to nextResponder directly to send
it up the responder chain. Instead invoke the superclass implementation of the current event-handling
method—let UIKit handle the traversal of the responder chain.
Event Types and Delivery
Event Delivery
2011-03-10 | © 2011 Apple Inc. All Rights Reserved.
13Motion Event Types
Motion events come from two hardware sources on a device: the three accelerometers and the gyroscope,
which is available only some devices. An accelerometer measures changes in velocity over time along a given
linear path. The combination of accelerometers lets you detect movement of the device in any direction. You
can use this data to track both sudden movements in the device and the device’s current orientation relative
to gravity. A gyroscope measures the rate of rotation around each of the three axes. (Although there are three
accelerometers, one for each axis, the remainder of this document refers to them as a single entity.)
The Core Motion framework is primarily responsible for accessing raw accelerometer and gyroscope data and
feeding that data to an application for handling. In addition, Core Motion processes combined accelerometer
and gyroscope data using special algorithms and presents that refined motion data to applications. Motion
eventsfrom Core Motion are represented by three data objects, each encapsulating one or more measurements:
● A CMAccelerometerData object encapsulates a structure that captures the acceleration along each of
the spatial axes.
● A CMGyroData object encapsulates a structure that captures the rate of rotation around each of the three
spatial axes.
● A CMDeviceMotion object encapsulates several different measurements, including attitude and more
useful measurements of rotation rate and acceleration.
Core Motion is apart from UIKit architectures and conventions. There is no connection with the UIEvent model
and there is no notion of first responder or responder chain. It delivers motion events directly to applications that
request them.
The CMMotionManager class is the central access point for Core Motion. You create an instance of the class,
specify an update interval (either explicitly or implicitly), request that updates start, and handle the motion
events as they are delivered. “Core Motion” (page 63) describes this procedure in full detail.
An alternative to Core Motion, at least for accessing accelerometer data, is the UIAccelerometer class of the
UIKit framework. When you use this class, accelerometer events are delivered as UIAcceleration objects.
Although UIAccelerometer is part of UIKit, it is also separate from the UIEvent and responder-chain
architectures. See “Accessing Accelerometer Events Using UIAccelerometer” (page 59) for information on using
the UIKit facilities.
Event Types and Delivery
Motion Event Types
2011-03-10 | © 2011 Apple Inc. All Rights Reserved.
14Notes: The UIAccelerometer and UIAcceleration classes will be deprecated in a future release,
so if your application handles accelerometer events, it should transition to the Core Motion API.
In iOS 3.0 and later, if you are trying to detect specific types of motion as gestures—specifically
shaking motions—you should consider handling motion events (UIEventTypeMotion) instead of
using the accelerometer interfaces. If you want to receive and handle high-rate, continuous motion
data, you should instead use the Core Motion accelerometer API. Motion events are described in
“Shaking-Motion Events” (page 56).
Event Types and Delivery
Motion Event Types
2011-03-10 | © 2011 Apple Inc. All Rights Reserved.
15Note: This chapter contains information that used to be in iOS App Programming Guide . The
information in this chapter has not been updated specifically for iOS 4.0.
Touch events in iOS are based on a Multi-Touch model. Instead of using a mouse and a keyboard, users touch
the screen of the device to manipulate objects, enter data, and otherwise convey their intentions. iOS recognizes
one or more fingers touching the screen as part of a multitouch sequence . This sequence begins when the first
finger touches down on the screen and ends when the last finger is lifted from the screen. iOS tracks fingers
touching the screen throughout a multitouch sequence and records the characteristics of each of them,
including the location of the finger on the screen and the time the touch occurred. Applications often recognize
certain combinations of touches as gestures and respond to them in ways that are intuitive to users, such as
zooming in on content in response to a pinching gesture and scrolling through content in response to a flicking
gesture.
Notes: A finger on the screen affords a much different level of precision than a mouse pointer. When
a user touches the screen, the area of contact is actually elliptical and tends to be offset below the
point where the user thinks he or she touched. This “contact patch” also varies in size and shape
based on which finger is touching the screen, the size of the finger, the pressure of the finger on the
screen, the orientation of the finger, and other factors. The underlying Multi-Touch system analyzes
all of this information for you and computes a single touch point.
iOS 4.0 still reports touches on iPhone 4 (and on future high-resolution devices) in a 320x480
coordinate space to maintain source compatibility, but the resolution is twice as high in each
dimension for applications built for iOS 4.0 and later releases. In concrete terms, that means that
touchesfor applications built for iOS 4 running on iPhone 4 can land on half-point boundaries where
on older devices they land only on full point boundaries. If you have any round-to-integer code in
your touch-handling path you may lose this precision.
Many classes in UIKit handle multitouch events in ways that are distinctive to objects of the class. This is
especially true of subclasses of UIControl, such as UIButton and UISlider. Objects of these
subclasses—known as control objects—are receptive to certain types of gestures, such as a tap or a drag in a
certain direction; when properly configured, they send an action message to a target object when that gesture
occurs. Other UIKit classes handle gestures in other contexts; for example, UIScrollView provides scrolling
behavior for table views, text views, and other views with large content areas.
2011-03-10 | © 2011 Apple Inc. All Rights Reserved.
16
Multitouch EventsSome applications may not need to handle events directly; instead, they can rely on the classes of UIKit for
that behavior. However, if you create a custom subclass of UIView—a common pattern in iOS development—and
if you want that view to respond to certain touch events, you need to implement the code required to handle
those events. Moreover, if you want a UIKit object to respond to events differently, you have to create a subclass
of that framework class and override the appropriate event-handling methods.
Events and Touches
In iOS, a touch is the presence or movement of a finger on the screen that is part of a unique multitouch
sequence. For example, a pinch-close gesture has two touches: two fingers on the screen moving toward each
other from opposite directions. There are simple single-finger gestures, such as a tap, or a double-tap, a drag,
or a flick (where the user quickly swipes a finger across the screen). An application might recognize even more
complicated gestures; for example, an application might have a custom control in the shape of a dial that users
“turn” with multiple fingers to fine-tune some variable.
A UIEvent object of type UIEventTypeTouches represents a touch event. The system continually sends
these touch-event objects (or simply, touch events) to an application as fingers touch the screen and move
acrossitssurface. The event provides a snapshot of all touches during a multitouch sequence, most importantly
the touchesthat are new or have changed for a particular view. As depicted in Figure 2-1, a multitouch sequence
begins when a finger first touches the screen. Other fingers may subsequently touch the screen, and all fingers
may move across the screen. The sequence ends when the last of these fingers is lifted from the screen. An
application receives event objects during each phase of any touch.
Figure 2-1 A multitouch sequence and touch phases
UITouchPhaseBegan UITouchPhaseEnded
Touch 1
down
UITouchPhaseBegan
Touch 2
down
UITouchPhaseMoved
Touch 1 and 2
moved
Touch 1 and 2
up
Touches, which are represented by UITouch objects, have both temporal and spatial aspects. The temporal
aspect, called a phase, indicates when a touch has just begun, whether it is moving or stationary, and when it
ends—that is, when the finger is lifted from the screen.
Multitouch Events
Events and Touches
2011-03-10 | © 2011 Apple Inc. All Rights Reserved.
17The spatial aspect of touches concerns their association with the object in which they occur as well as their
location in it. When a finger touches the screen, the touch is associated with the underlying window and view
and maintains that association throughout the life of the event. If multiple touches arrive at once, they are
treated together only if they are associated with the same view. Likewise, if two touches arrive in quick
succession, they are treated as a multiple tap only if they are associated with the same view. A touch object
stores the current location and previous location (if any) of the touch in its view or window.
An event object contains all touch objects for the current multitouch sequence and can provide touch objects
specific to a view or window (see Figure 2-2). A touch object is persistent for a given finger during a sequence,
and UIKit mutates it as it tracks the finger throughout it. The touch attributes that change are the phase of the
touch, its location in a view, its previous location, and its timestamp. Event-handling code may evaluate these
attributes to determine how to respond to a touch event.
Figure 2-2 Relationship of a UIEvent object and its UITouch objects
UIEvent
UITouch
phase = UITouchPhaseBegan
locationInView = (35,50)
view = ViewA
phase = UITouchPhaseMoved
locationInView = (35,20)
view = ViewA
UITouch
phase = UITouchPhaseEnded
locationInView = (120,87)
view = ViewB
UITouch
Because the system can cancel a multitouch sequence at any time, an event-handling application must be
prepared to respond appropriately. Cancellations can occur as a result of overriding system events, such as an
incoming phone call.
Approaches for Handling Touch Events
Most applications that are interested in users’ touches on their custom views are interested in detecting and
handling well-established gestures. These gestures include tapping (one or multiple times), pinching (to zoom
a view in or out), swiping , panning or dragging a view, and using two fingers to rotate a view.
You could implement the touch-event handling code to recognize and handle these gestures, but that code
would be complex, possibly buggy, and take some time to write. Alternatively, you could simplify the
interpretation and handling of common gestures by using one of the gesture recognizer classes introduced
in iOS 3.2. To use a gesture recognizer, you instantiate it, attach it to the view receiving touches, configure it,
and assign it an action selector and a target object. When the gesture recognizer recognizes its gesture, it sends
an action message to the target, allowing the target to respond to the gesture.
Multitouch Events
Approaches for Handling Touch Events
2011-03-10 | © 2011 Apple Inc. All Rights Reserved.
18You can implement a custom gesture recognizer by subclassing UIGestureRecognizer. A custom gesture
recognizer requires you to analyze the stream of events in a multitouch sequence to recognize your distinct
gesture; to do this, you should be familiar with the information in this chapter.
For information about gesture recognizers, see “Gesture Recognizers” (page 39).
Regulating Touch Event Delivery
UIKit gives applications programmatic means to simplify event handling or to turn off the stream of UIEvent
objects completely. The following list summarizes these approaches:
● Turning off delivery of touch events. By default, a view receives touch events, but you can set its
userInteractionEnabled property to NO to turn off delivery of touch events. A view also does not
receive these events if it’s hidden or if it’s transparent.
● Turning off delivery of touch events for a period. An application can call the UIApplication method
beginIgnoringInteractionEvents and later call the endIgnoringInteractionEvents method.
The first method stops the application from receiving touch events entirely; the second method is called
to resume the receipt of such events. You sometimes want to turn off event delivery while your code is
performing animations.
● Turning on delivery of multiple touches. By default, a view ignores all but the first touch during a
multitouch sequence. If you want the view to handle multiple touches you must enable this capability for
the view. You do this programmatically by setting the multipleTouchEnabled property of your view
to YES, or in Interface Builder by setting the related attribute in the inspector for the related view.
● Restricting event delivery to a single view. By default, a view’s exclusiveTouch property is set to NO,
which means that this view does not block other views in a window from receiving touches. If you set the
property to YES, you mark the view so that, if it is tracking touches, it is the only view in the window that
is tracking touches. Other views in the window cannot receive those touches. However, a view that is
marked “exclusive touch” does not receive touches that are associated with other views in the same
window. If a finger contacts an exclusive-touch view, then that touch is delivered only if that view is the
only view tracking a finger in that window. If a finger touches a non-exclusive view, then that touch is
delivered only if there is not another finger tracking in an exclusive-touch view.
● Restricting event delivery to subviews. A custom UIView class can override hitTest:withEvent: to
restrict the delivery of multitouch events to its subviews. See “Hit-Testing” (page 33) for a discussion of
this technique.
Multitouch Events
Regulating Touch Event Delivery
2011-03-10 | © 2011 Apple Inc. All Rights Reserved.
19Handling Multitouch Events
To handle multitouch events, you must first create a subclass of a responder class. This subclass could be any
one of the following:
● A custom view (subclass of UIView)
● A subclass of UIViewController or one of its UIKit subclasses
● A subclass of a UIKit view or control class, such as UIImageView or UISlider
● A subclass of UIApplication or UIWindow (although this would be rare)
A view controller typically receives, via the responder chain, touch events initially sent to its view if that view
does not override the touch-handling methods.
For instances of your subclass to receive multitouch events, your subclass must implement one or more of the
UIResponder methods for touch-event handling, described below. In addition, the view must be visible
(neither transparent or hidden) and must have its userInteractionEnabled property set to YES, which is
the default.
The following sections describe the touch-event handling methods, describe approachesfor handling common
gestures, show an example of a responder object that handles a complex sequence of multitouch events,
discuss event forwarding, and suggest some techniques for event handling.
The Event-Handling Methods
During a multitouch sequence, the application dispatches a series of event messages to the target responder.
To receive and handle these messages, the class of a responder object must implement at least one of the
following methods declared by UIResponder, and, in some cases, all of these methods:
- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event;
- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event;
- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event;
- (void)touchesCancelled:(NSSet *)touches withEvent:(UIEvent *)event
The application sends these messages when there are new or changed touches for a given touch phase:
●
Itsendsthe touchesBegan:withEvent: message when one or more fingerstouch down on the screen.
●
It sends the touchesMoved:withEvent: message when one or more fingers move.
●
It sends the touchesEnded:withEvent: message when one or more fingers lift up from the screen.
Multitouch Events
Handling Multitouch Events
2011-03-10 | © 2011 Apple Inc. All Rights Reserved.
20●
It sends the touchesCancelled:withEvent: message when the touch sequence is cancelled by a
system event, such as an incoming phone call.
Each of these methodsis associated with a touch phase; for example, touchesBegan:withEvent: is associated
with UITouchPhaseBegan. You can get the phase of any UITouch object by evaluating its phase property.
Each message that invokes an event-handling method passes in two parameters. The first is a set of UITouch
objectsthat represent new or changed touchesfor the given phase. The second parameter is a UIEvent object
representing this particular event. From the event object you can get all touch objectsfor the event or a subset
of those touch objects filtered for specific views or windows. Some of these touch objects represent touches
that have not changed since the previous event message or that have changed but are in different phases.
Basics of Touch-Event Handling
You frequently handle an event for a given phase by getting one or more of the UITouch objects in the
passed-in set, evaluating their properties or getting their locations, and proceeding accordingly. The objects
in the set represent those touchesthat are new or have changed for the phase represented by the implemented
event-handling method. If any of the touch objects will do, you can send the NSSet object an anyObject
message; this is the case when the view receives only the first touch in a multitouch sequence (that is, the
multipleTouchEnabled property is set to NO).
An important UITouch method is locationInView:, which, if passed a parameter of self, yieldsthe location
of the touch in the coordinate system of the receiving view. A parallel method tells you the previous location
of the touch (previousLocationInView:). Properties of the UITouch instance tell you how many taps have
been made (tapCount), when the touch was created or last mutated (timestamp), and what phase it is in
(phase).
Multitouch Events
Handling Multitouch Events
2011-03-10 | © 2011 Apple Inc. All Rights Reserved.
21If for some reason you are interested in touches in the current multitouch sequence that have not changed
since the last phase or that are in a phase other than the ones in the passed-in set, you can request them from
the passed-in UIEvent object. The diagram in Figure 2-3 depicts a UIEvent object that contains four touch
objects. To get all these touch objects, you would invoke the allTouches on the event object.
Figure 2-3 All touches for a given touch event
Window B
Window A
UIEvent
UITouch
UITouch
UITouch
UITouch
View C
View A
View B
If on the other hand you are interested in only those touches associated with a specific window (Window A in
Figure 2-4), you would send the UIEvent object a touchesForWindow: message.
Figure 2-4 All touches belonging to a specific window
Window B
Window A
UIEvent
UITouch
UITouch
UITouch
UITouch
View C
View A
View B
Multitouch Events
Handling Multitouch Events
2011-03-10 | © 2011 Apple Inc. All Rights Reserved.
22If you want to get the touches associated with a specific view, you would call touchesForView: on the event
object, passing in the view object (View A in Figure 2-5).
Figure 2-5 All touches belonging to a specific view
Window B
Window A
UIEvent
UITouch
UITouch
UITouch
UITouch
View C
View A
View B
If a responder creates persistent objects while handling events during a multitouch sequence, it should
implement touchesCancelled:withEvent: to dispose ofthose objects when the system cancelsthe sequence.
Cancellation often occurs when an external event—for example, an incoming phone call—disruptsthe current
application’s event processing. Note that a responder object should also dispose of those same objects when
it receivesthe last touchesEnded:withEvent: message for a multitouch sequence. (See “Forwarding Touch
Events” (page 35) to find out how to determine the last UITouchPhaseEnded touch object in a multitouch
sequence.)
Multitouch Events
Handling Multitouch Events
2011-03-10 | © 2011 Apple Inc. All Rights Reserved.
23Important: If your custom responder class is a subclass of UIView or UIViewController, you should
implement all of the methods described in “The Event-Handling Methods” (page 20). If your class is a
subclass of any other UIKit responder class, you do not need to override all of the event-handling methods;
however, in those methods that you do override, be sure to call the superclass implementation of the
method (for example, super touchesBegan:touches withEvent:theEvent];). The reason for this
guideline issimple: All viewsthat processtouches, including your own, expect (orshould expect) to receive
a full touch-eventstream. If you prevent a UIKit responder object from receiving touchesfor a certain phase
of an event, the resulting behavior may be undefined and probably undesirable.
Handling Tap Gestures
A very common gesture in iOS applications is the tap: the user taps an object on the screen with his or her
finger. A responder object can handle a single tap in one way, a double-tap in another, and possibly a triple-tap
in yet another way. To determine the number of times the user tapped a responder object, you get the value
of the tapCount property of a UITouch object.
The best places to find this value are the methods touchesBegan:withEvent: and
touchesEnded:withEvent:. In many cases, the latter method is preferred because it corresponds to the
touch phase in which the user lifts a finger from a tap. By looking for the tap count in the touch-up phase
(UITouchPhaseEnded), you ensure that the finger is really tapping and not, for instance, touching down and
then dragging.
Listing 2-1 shows how to determine whether a double-tap occurred in one of your views.
Listing 2-1 Detecting a double-tap gesture
- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event {
}
- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event {
}
- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event {
for (UITouch *touch in touches) {
if (touch.tapCount >= 2) {
[self.superview bringSubviewToFront:self];
}
}
Multitouch Events
Handling Multitouch Events
2011-03-10 | © 2011 Apple Inc. All Rights Reserved.
24}
- (void)touchesCancelled:(NSSet *)touches withEvent:(UIEvent *)event {
}
A complication arises when a responder object wants to handle a single-tap and a double-tap gesture in
different ways. For example, a single tap might select the object and a double tap might display a view for
editing the item that was double-tapped. How is the responder object to know that a single tap is not the first
part of a double tap? Listing 2-2 (page 25) illustrates an implementation of the event-handling methods that
increases the size of the receiving view upon a double-tap gesture and decreases it upon a single-tap gesture.
The following is a commentary on this code:
1. In touchesEnded:withEvent:, when the tap count is one, the responder object sends itself a
performSelector:withObject:afterDelay: message. The selector identifies another method
implemented by the responder to handle the single-tap gesture; the second parameter is an NSValue or
NSDictionary object that holdssome state of the UITouch object; the delay issome reasonable interval
between a single- and a double-tap gesture.
Note: Because a touch object is mutated as it proceeds through a multitouch sequence, you
cannot retain a touch and assume that itsstate remainsthe same. (And you cannot copy a touch
object because UITouch does not adopt the NSCopying protocol.) Thusif you want to preserve
the state of a touch object, you should store those bits ofstate in a NSValue object, a dictionary,
or a similar object. (The code in Listing 2-2 stores the location of the touch in a dictionary but
does not use it; this code is included for purposes of illustration.)
2. In touchesBegan:withEvent:, if the tap count is two, the responder object cancels the pending
delayed-perform invocation by calling the cancelPreviousPerformRequestsWithTarget: method
of NSObject, passing itself as the argument. If the tap count is not two, the method identified by the
selector in the previous step for single-tap gestures is invoked after the delay.
3. In touchesEnded:withEvent:, if the tap count is two, the responder performs the actions necessary
for handling double-tap gestures.
Listing 2-2 Handling a single-tap gesture and a double-tap gesture
- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event {
UITouch *aTouch = [touches anyObject];
if (aTouch.tapCount == 2) {
Multitouch Events
Handling Multitouch Events
2011-03-10 | © 2011 Apple Inc. All Rights Reserved.
25[NSObject cancelPreviousPerformRequestsWithTarget:self];
}
}
- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event {
}
- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event {
UITouch *theTouch = [touches anyObject];
if (theTouch.tapCount == 1) {
NSDictionary *touchLoc = [NSDictionary dictionaryWithObject:
[NSValue valueWithCGPoint:[theTouch locationInView:self]]
forKey:@"location"];
[self performSelector:@selector(handleSingleTap:) withObject:touchLoc
afterDelay:0.3];
} else if (theTouch.tapCount == 2) {
// Double-tap: increase image size by 10%"
CGRect myFrame = self.frame;
myFrame.size.width += self.frame.size.width * 0.1;
myFrame.size.height += self.frame.size.height * 0.1;
myFrame.origin.x -= (self.frame.origin.x * 0.1) / 2.0;
myFrame.origin.y -= (self.frame.origin.y * 0.1) / 2.0;
[UIView beginAnimations:nil context:NULL];
[self setFrame:myFrame];
[UIView commitAnimations];
}
}
- (void)handleSingleTap:(NSDictionary *)touches {
// Single-tap: decrease image size by 10%"
CGRect myFrame = self.frame;
myFrame.size.width -= self.frame.size.width * 0.1;
myFrame.size.height -= self.frame.size.height * 0.1;
myFrame.origin.x += (self.frame.origin.x * 0.1) / 2.0;
myFrame.origin.y += (self.frame.origin.y * 0.1) / 2.0;
Multitouch Events
Handling Multitouch Events
2011-03-10 | © 2011 Apple Inc. All Rights Reserved.
26[UIView beginAnimations:nil context:NULL];
[self setFrame:myFrame];
[UIView commitAnimations];
}
- (void)touchesCancelled:(NSSet *)touches withEvent:(UIEvent *)event {
/* no state to clean up, so null implementation */
}
Handling Swipe and Drag Gestures
Horizontal and vertical swipes are a simple type of gesture that you can track easily from your own code and
use to perform actions. To detect a swipe gesture, you have to track the movement of the user’s finger along
the desired axis of motion, but it is up to you to determine what constitutes a swipe. In other words, you need
to determine whether the user’s finger moved far enough, if it moved in a straight enough line, and if it went
fast enough. You do that by storing the initial touch location and comparing it to the location reported by
subsequent touch-moved events.
Listing 2-3 shows some basic tracking methods you could use to detect horizontal swipes in a view. In this
example, the view stores the initial location of the touch in a startTouchPosition instance variable. As the
user’sfinger moves, the code comparesthe current touch location to the starting location to determine whether
it is a swipe. If the touch moves too far vertically, it is not considered to be a swipe and is processed differently.
If it continues along its horizontal trajectory, however, the code continues processing the event as if it were a
swipe. The processing routines could then trigger an action once the swipe had progressed far enough
horizontally to be considered a complete gesture. To detect swipe gestures in the vertical direction, you would
use similar code but would swap the x and y components.
Listing 2-3 Tracking a swipe gesture in a view
#define HORIZ_SWIPE_DRAG_MIN 12
#define VERT_SWIPE_DRAG_MAX 4
- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event {
UITouch *touch = [touches anyObject];
// startTouchPosition is an instance variable
startTouchPosition = [touch locationInView:self];
}
Multitouch Events
Handling Multitouch Events
2011-03-10 | © 2011 Apple Inc. All Rights Reserved.
27- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event {
UITouch *touch = [touches anyObject];
CGPoint currentTouchPosition = [touch locationInView:self];
// To be a swipe, direction of touch must be horizontal and long enough.
if (fabsf(startTouchPosition.x - currentTouchPosition.x) >= HORIZ_SWIPE_DRAG_MIN
&&
fabsf(startTouchPosition.y - currentTouchPosition.y) 0) {
for (UITouch *touch in touches) {
CGPoint *point = (CGPoint *)CFDictionaryGetValue(touchBeginPoints,
touch);
if (point == NULL) {
point = (CGPoint *)malloc(sizeof(CGPoint));
CFDictionarySetValue(touchBeginPoints, touch, point);
}
*point = [touch locationInView:view.superview];
}
}
}
Listing 2-6 illustrates how to retrieve those initial locations stored in the dictionary. It also gets the current
locations of the same touches. It uses these values in computing an affine transformation (not shown).
Listing 2-6 Retrieving the initial locations of touch objects
- (CGAffineTransform)incrementalTransformWithTouches:(NSSet *)touches {
NSArray *sortedTouches = [[touches allObjects]
sortedArrayUsingSelector:@selector(compareAddress:)];
// other code here ...
UITouch *touch1 = [sortedTouches objectAtIndex:0];
UITouch *touch2 = [sortedTouches objectAtIndex:1];
Multitouch Events
Handling Multitouch Events
2011-03-10 | © 2011 Apple Inc. All Rights Reserved.
30CGPoint beginPoint1 = *(CGPoint *)CFDictionaryGetValue(touchBeginPoints,
touch1);
CGPoint currentPoint1 = [touch1 locationInView:view.superview];
CGPoint beginPoint2 = *(CGPoint *)CFDictionaryGetValue(touchBeginPoints,
touch2);
CGPoint currentPoint2 = [touch2 locationInView:view.superview];
// compute the affine transform...
}
Although the code example in Listing 2-7 doesn’t use a dictionary to track touch mutations, it also handles
multiple touches during an event. It shows a custom UIView object responding to touches by animating the
movement of a “Welcome” placard around the screen as a finger moves it and changing the language of the
welcome when the user makes a double-tap gesture. (The code in this example comes from the MoveMe
sample code project, which you can examine to get a better understanding of the event-handling context.)
Listing 2-7 Handling a complex multitouch sequence
- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event {
UITouch *touch = [[event allTouches] anyObject];
// Only move the placard view if the touch was in the placard view
if ([touch view] != placardView) {
// On double tap outside placard view, update placard's display string
if ([touch tapCount] == 2) {
[placardView setupNextDisplayString];
}
return;
}
// "Pulse" the placard view by scaling up then down
// Use UIView's built-in animation
[UIView beginAnimations:nil context:NULL];
[UIView setAnimationDuration:0.5];
CGAffineTransform transform = CGAffineTransformMakeScale(1.2, 1.2);
placardView.transform = transform;
[UIView commitAnimations];
[UIView beginAnimations:nil context:NULL];
Multitouch Events
Handling Multitouch Events
2011-03-10 | © 2011 Apple Inc. All Rights Reserved.
31[UIView setAnimationDuration:0.5];
transform = CGAffineTransformMakeScale(1.1, 1.1);
placardView.transform = transform;
[UIView commitAnimations];
// Move the placardView to under the touch
[UIView beginAnimations:nil context:NULL];
[UIView setAnimationDuration:0.25];
placardView.center = [self convertPoint:[touch locationInView:self]
fromView:placardView];
[UIView commitAnimations];
}
- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event {
UITouch *touch = [[event allTouches] anyObject];
// If the touch was in the placardView, move the placardView to its location
if ([touch view] == placardView) {
CGPoint location = [touch locationInView:self];
location = [self convertPoint:location fromView:placardView];
placardView.center = location;
return;
}
}
- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event {
UITouch *touch = [[event allTouches] anyObject];
// If the touch was in the placardView, bounce it back to the center
if ([touch view] == placardView) {
// Disable user interaction so subsequent touches don't interfere with
animation
self.userInteractionEnabled = NO;
[self animatePlacardViewToCenter];
return;
}
}
Multitouch Events
Handling Multitouch Events
2011-03-10 | © 2011 Apple Inc. All Rights Reserved.
32Note: Custom views that redraw themselves in response to events they handle generally should
only set drawing state in the event-handling methods and perform all of the drawing in the
drawRect: method. To learn more about drawing view content, see View Programming Guide for
iOS .
To find out when the last finger in a multitouch sequence islifted from a view, compare the number of UITouch
objects in the passed-in set with the number of touches for the view maintained by the passed-in UIEvent
object. If they are the same, then the multitouch sequence has concluded. Listing 2-8 illustrates how to do this
in code.
Listing 2-8 Determining when the last touch in a multitouch sequence has ended
- (void)touchesEnded:(NSSet*)touches withEvent:(UIEvent*)event {
if ([touches count] == [[event touchesForView:self] count]) {
// last finger has lifted....
}
}
Remember that the passed-in set contains all touch objects associated with the receiving view that are new
or changed for the given phase whereas the touch objects returned from touchesForView: includes all
objects associated with the specified view.
Hit-Testing
Your custom responder can use hit-testing to find the subview or sublayer of itself that is "under” a touch, and
then handle the event appropriately. It does this by either calling the hitTest:withEvent: method of
UIView or the hitTest: method of CALayer; or it can override one of these methods. Responderssometimes
perform hit-testing prior to event forwarding (see “Forwarding Touch Events” (page 35)).
Note: The hitTest:withEvent: and hitTest: methods have some slightly different behaviors.
If the point passed into hitTest:withEvent: or hitTest: is outside the bounds of the view, it is ignored.
This means that subviews that are outside their superview do not receive touch events.
If you have a custom view with subviews, you need to determine whether you want to handle touches at the
subview level or the superview level. If the subviews do not handle touches by implementing
touchesBegan:withEvent:, touchesEnded:withEvent:, or touchesMoved:withEvent:, then these
messages propagate up the responder chain to the superview. However, because multiple taps and multiple
Multitouch Events
Handling Multitouch Events
2011-03-10 | © 2011 Apple Inc. All Rights Reserved.
33touches are associated with the subviews where they first occurred, the superview won’t receive these touches.
To ensure reception of all kinds of touches, the superview should override hitTest:withEvent: to return
itself rather than any of its subviews.
The example in Listing 2-9 detects when an “Info” image in a layer of the custom view is tapped.
Listing 2-9 Calling hitTest: on a view’s CALayer object
- (void)touchesEnded:(NSSet*)touches withEvent:(UIEvent*)event {
CGPoint location = [[touches anyObject] locationInView:self];
CALayer *hitLayer = [[self layer] hitTest:[self convertPoint:location
fromView:nil]];
if (hitLayer == infoImage) {
[self displayInfo];
}
}
In Listing 2-10, a responder subclass (in this case, a subclass of UIWindow) overrides hitTest:withEvent:.
It first gets the hit-test view returned by the superclass. Then, if that view is itself, it substitutes the view that
is furthest down the view hierarchy.
Listing 2-10 Overriding hitTest:withEvent:
- (UIView*)hitTest:(CGPoint)point withEvent:(UIEvent *)event {
UIView *hitView = [super hitTest:point withEvent:event];
if (hitView == self)
return [[self subviews] lastObject];
else
return hitView;
}
Multitouch Events
Handling Multitouch Events
2011-03-10 | © 2011 Apple Inc. All Rights Reserved.
34Forwarding Touch Events
Event forwarding is a technique used by some applications. You forward touch events by invoking the
event-handling methods of another responder object. Although this can be an effective technique, you should
use it with caution. The classes of the UIKit framework are not designed to receive touches that are not bound
to them; in programmatic terms, this means that the view property of the UITouch object must hold a
reference to the framework object in order for the touch to be handled. If you want to conditionally forward
touches to other responders in your application, all of these responders should be instances of your own
subclasses of UIView.
For example, let’s say an application has three custom views: A, B, and C. When the user touches view A, the
application’s window determines that it is the hit-test view and sends the initial touch event to it. Depending
on certain conditions, view A forwards the event to either view B or view C. In this case, views A, B, and C must
be aware that this forwarding is going on, and views B and C must be able to deal with touches that are not
bound to them.
Event forwarding often requires analysis of touch objectsto determine where they should be forwarded. There
are several approaches you can take for this analysis:
● With an “overlay” view (such as a common superview), use hit-testing to intercept events for analysis prior
to forwarding them to subviews (see “Hit-Testing” (page 33)).
● Override sendEvent: in a custom subclass of UIWindow, analyze touches, and forward them to the
appropriate responders. In your implementation you should alwaysinvoke the superclassimplementation
of sendEvent:.
● Design your application so that touch analysis isn’t necessary
Listing 2-11 illustrates the second technique, that of overriding sendEvent: in a subclass of UIWindow. In
this example, the object to which touch events are forwarded is a custom “helper” responder that performs
affine transformations on the view that is associated with.
Listing 2-11 Forwarding touch events to “helper” responder objects
- (void)sendEvent:(UIEvent *)event
{
for (TransformGesture *gesture in transformGestures) {
// collect all the touches we care about from the event
NSSet *touches = [gesture observedTouchesForEvent:event];
NSMutableSet *began = nil;
NSMutableSet *moved = nil;
NSMutableSet *ended = nil;
Multitouch Events
Handling Multitouch Events
2011-03-10 | © 2011 Apple Inc. All Rights Reserved.
35NSMutableSet *cancelled = nil;
// sort the touches by phase so we can handle them similarly to normal
event dispatch
for(UITouch *touch in touches) {
switch ([touch phase]) {
case UITouchPhaseBegan:
if (!began) began = [NSMutableSet set];
[began addObject:touch];
break;
case UITouchPhaseMoved:
if (!moved) moved = [NSMutableSet set];
[moved addObject:touch];
break;
case UITouchPhaseEnded:
if (!ended) ended = [NSMutableSet set];
[ended addObject:touch];
break;
case UITouchPhaseCancelled:
if (!cancelled) cancelled = [NSMutableSet set];
[cancelled addObject:touch];
break;
default:
break;
}
}
// call our methods to handle the touches
if (began) [gesture touchesBegan:began withEvent:event];
if (moved) [gesture touchesMoved:moved withEvent:event];
if (ended) [gesture touchesEnded:ended withEvent:event];
if (cancelled) [gesture touchesCancelled:cancelled withEvent:event];
}
[super sendEvent:event];
}
Multitouch Events
Handling Multitouch Events
2011-03-10 | © 2011 Apple Inc. All Rights Reserved.
36Notice that in this example that the overriding subclass does something important to the integrity of the
touch-event stream: It invokes the superclass implementation of sendEvent:.
Handling Events in Subclasses of UIKit Views and Controls
If you subclass a view or control class of the UIKit framework (for example, UIImageView or UISwitch) for
the purpose of altering or extending event-handling behavior, you should keep the following points in mind:
● Unlike in a custom view, it is not necessary to override each event-handling method.
● Always invoke the superclass implementation of each event-handling method that you do override.
● Do not forward events to UIKit framework objects.
Best Practices for Handling Multitouch Events
When handling events, both touch events and motion events, there are a few recommended techniques and
patterns you should follow.
● Always implement the event-cancellation methods.
In your implementation, you should restore the state of the view to what it was before the current
multitouch sequence, freeing any transient resourcesset up for handling the event. If you don’t implement
the cancellation method your view could be left in an inconsistent state. In some cases, another view
might receive the cancellation message.
●
If you handle events in a subclass of UIView, UIViewController, or (in rare cases) UIResponder,
● You should implement all of the event-handling methods (even if it is a null implementation).
● Do not call the superclass implementation of the methods.
●
If you handle events in a subclass of any other UIKit responder class,
● You do not have to implement all of the event-handling methods.
● But in the methods you do implement, be sure to call the superclass implementation. For example,
[super touchesBegan:theTouches withEvent:theEvent];
● Do not forward events to other responder objects of the UIKit framework.
The responders that you forward events to should be instances of your own subclasses of UIView, and
all of these objects must be aware that event-forwarding is taking place and that, in the case of touch
events, they may receive touches that are not bound to them.
● Custom views that redraw themselves in response to events should only set drawing state in the
event-handling methods and perform all of the drawing in the drawRect: method.
Multitouch Events
Best Practices for Handling Multitouch Events
2011-03-10 | © 2011 Apple Inc. All Rights Reserved.
37● Do not explicitly send events up the responder (via nextResponder); instead, invoke the superclass
implementation and let the UIKit handle responder-chain traversal.
Multitouch Events
Best Practices for Handling Multitouch Events
2011-03-10 | © 2011 Apple Inc. All Rights Reserved.
38Note: This chapter containsinformation that used to be in iPad ProgrammingGuide . The information
in this chapter has not been updated specifically for iOS 4.0.
Applicationsfor iOS are driven largely through events generated when userstouch buttons, toolbars, table-view
rows and other objects in an application’s user interface. The classes of the UIKit framework provide default
event-handling behavior for most of these objects. However, some applications, primarily those with custom
views, have to do their own event handling. They have to analyze the stream of touch objects in a multitouch
sequence and determine the intention of the user.
Most event-handling views seek to detect common gestures that users make on their surface—things such as
triple-tap, touch-and-hold (also called long press), pinching, and rotating gestures, The code for examining a
raw stream of multitouch events and detecting one or more gestures is often complex. Prior to iOS 3.2, you
cannot reuse the code except by copying it to another project and modifying it appropriately.
To help applications detect gestures, iOS 3.2 introduces gesture recognizers, objects that inherit directly from
the UIGestureRecognizer class. The following sections tell you about how these objects work, how to use
them, and how to create custom gesture recognizers that you can reuse among your applications.
Gesture Recognizers Simplify Event Handling
UIGestureRecognizer is the abstract base class for concrete gesture-recognizer subclasses (or, simply,
gesture recognizers). The UIGestureRecognizer class defines a programmatic interface and implements
the behavioral underpinnings for gesture recognition. The UIKit framework provides six gesture recognizers for
the most common gestures. For other gestures, you can design and implement your own gesture recognizer
(see “Creating Custom Gesture Recognizers” (page 50) for details).
Recognized Gestures
The UIKit framework supports the recognition of the gestures listed in Table 3-1. Each of the listed classes is a
direct subclass of UIGestureRecognizer.
2011-03-10 | © 2011 Apple Inc. All Rights Reserved.
39
Gesture RecognizersTable 3-1 Gestures recognized by the gesture-recognizer classes of the UIKit framework
Gesture UIKit class
Tapping (any number of taps) UITapGestureRecognizer
Pinching in and out (for zooming a view) UIPinchGestureRecognizer
Panning or dragging UIPanGestureRecognizer
Swiping (in any direction) UISwipeGestureRecognizer
Rotating (fingers moving in opposite directions) UIRotationGestureRecognizer
Long press (also known as “touch and hold”) UILongPressGestureRecognizer
Before you decide to use a gesture recognizer, consider how you are going to use it. Respond to gestures only
in ways that users expect. For example, a pinching gesture should scale a view, zooming it in and out; it should
not be interpreted as, say, a selection request, for which a tap is more appropriate. For guidelines about the
proper use of gestures, see iOS Human Interface Guidelines.
Gestures Recognizers Are Attached to a View
To detect its gestures, a gesture recognizer must be attached to the view that a user is touching. This view is
known as the hit-tested view. Recall that events in iOS are represented by UIEvent objects, and each event
object encapsulates the UITouch objects of the current multitouch sequence. A set of those UITouch objects
is specific to a given phase of a multitouch sequence. Delivery of events initially follows the usual path: from
operating system to the application object to the window object representing the window in which the touches
Gesture Recognizers
Gesture Recognizers Simplify Event Handling
2011-03-10 | © 2011 Apple Inc. All Rights Reserved.
40are occurring. But before sending an event to the hit-tested view, the window object sends it to the gesture
recognizer attached to that view or to any of that view’s subviews. Figure 3-1 illustrates this general path, with
the numbers indicating the order in which touches are received.
Figure 3-1 Path of touch objects when gesture recognizer is attached to a view
UIApplication
View
Gesture
Recognizer
Touch
UIWindow
1
Touch
2
Touch
3
Thus gesture recognizers act as observers of touch objects sent to their attached view or view hierarchy.
However, they are not part of that view hierarchy and do not participate in the responder chain. Gesture
recognizers may delay the delivery of touch objects to the view while they are recognizing gestures, and by
default they cancel delivery of remaining touch objects to the view once they recognize their gesture. For
more on the possible scenarios of event delivery from a gesture recognizer to its view, see “Regulating the
Delivery of Touches to Views” (page 48).
For some gestures, the locationInView: and the locationOfTouch:inView: methods of
UIGestureRecognizer enable clients to find the location of gestures or specific touches in the attached
view or its subviews. See “Responding to Gestures” (page 44) for more information.
Gestures Trigger Action Messages
When a gesture recognizer recognizes its gesture, it sends one or more action messages to one or more targets.
When you create a gesture recognizer, you initialize it with an action and a target. You may add more
target-action pairs to it thereafter. The target-action pairs are not additive; in other words, an action is only
sent to the target it was originally linked with, and not to other targets (unless they’re specified in another
target-action pair).
Discrete Gestures and Continuous Gestures
When a gesture recognizer recognizes a gesture, it sends either a single action message to its target or multiple
action messages until the gesture ends. This behavior is determined by whether the gesture is discrete or
continuous. A discrete gesture, such as a double-tap, happens just once; when a gesture recognizer recognizes
Gesture Recognizers
Gesture Recognizers Simplify Event Handling
2011-03-10 | © 2011 Apple Inc. All Rights Reserved.
41a discrete gesture, it sends its target a single action message. A continuous gesture, such as pinching, takes
place over a period and ends when the user lifts the final finger in the multitouch sequence. The gesture
recognizer sends action messages to its target at short intervals until the multitouch sequence ends.
Figure 3-2 Discrete versus continuous gestures
UITapGestureRecognizer
Tapping gesture
Pinching gesture
Touch events
Target
UIPinchGestureRecognizer Target
Action messages
Action messages
Touch events
The reference documents for the gesture-recognizer classes note whether the instances of the class detect
discrete or continuous gestures.
Implementing Gesture Recognition
To implement gesture recognition, you create a gesture-recognizer instance to which you assign a target, action,
and, in some cases, gesture-specific attributes. You attach this object to a view and then implement the action
method in your target object that handles the gesture.
Gesture Recognizers
Implementing Gesture Recognition
2011-03-10 | © 2011 Apple Inc. All Rights Reserved.
42Preparing a Gesture Recognizer
To create a gesture recognizer, you must allocate and initialize an instance of a concrete UIGestureRecognizer
subclass. When you initialize it, specify a target object and an action selector, as in the following code:
UITapGestureRecognizer *doubleFingerDTap = [[UITapGestureRecognizer alloc]
initWithTarget:self action:@selector(handleDoubleDoubleTap:)];
The action methods for handling gestures—and the selector for identifying them—are expected to conform
to one of two signatures:
- (void)handleGesture
- (void)handleGesture:(UIGestureRecognizer *)sender
where handleGesture and sender can be any name you choose. Methods having the second signature allow
the target to query the gesture recognizer for addition information. For example, the target of a
UIPinchGestureRecognizer object can ask that object for the current scale factor related to the pinching
gesture.
After you create a gesture recognizer, you must attach it to the view receiving touches—that is, the hit-test
view—using the UIView method addGestureRecognizer:. You can find out what gesture recognizers a
view currently has attached through the gestureRecognizers property, and you can detach a gesture
recognizer from a view by calling removeGestureRecognizer:.
The sample method in Listing 3-1 creates and initializes three gesture recognizers: a single-finger double-tap,
a panning gesture, and a rotation gesture. It then attaches each gesture-recognizer object to the same view.
For the singleFingerDTap object, the code specifies that two taps are required for the gesture to be
recognized. Each method adds the created gesture recognizer to a view and then releases it (because the view
now retains it).
Listing 3-1 Creating and initializing discrete and continuous gesture recognizers
- (void)createGestureRecognizers {
UITapGestureRecognizer *singleFingerDTap = [[UITapGestureRecognizer alloc]
initWithTarget:self action:@selector(handleSingleDoubleTap:)];
singleFingerDTap.numberOfTapsRequired = 2;
[self.theView addGestureRecognizer:singleFingerDTap];
[singleFingerDTap release];
UIPanGestureRecognizer *panGesture = [[UIPanGestureRecognizer alloc]
Gesture Recognizers
Implementing Gesture Recognition
2011-03-10 | © 2011 Apple Inc. All Rights Reserved.
43initWithTarget:self action:@selector(handlePanGesture:)];
[self.theView addGestureRecognizer:panGesture];
[panGesture release];
UIPinchGestureRecognizer *pinchGesture = [[UIPinchGestureRecognizer alloc]
initWithTarget:self action:@selector(handlePinchGesture:)];
[self.theView addGestureRecognizer:pinchGesture];
[pinchGesture release];
}
You may also add additional targets and actions to a gesture recognizer using the addTarget:action:
method of UIGestureRecognizer. Remember that action messages for each target and action pair are
restricted to that pair; if you have multiple targets and actions, they are not additive.
Responding to Gestures
To handle a gesture, the target for the gesture recognizer must implement a method corresponding to the
action selector specified when you initialized the gesture recognizer. For discrete gestures, such as a tapping
gesture, the gesture recognizer invokesthe method once per recognition; for continuous gestures, the gesture
recognizer invokes the method at repeated intervals until the gesture ends (that is, the last finger is lifted from
the gesture recognizer’s view).
In gesture-handling methods, the target object often gets additional information about the gesture from the
gesture recognizer; it does this by obtaining the value of a property defined by the gesture recognizer, such as
scale (for scale factor) or velocity. It can also query the gesture recognizer (in appropriate cases) for the
location of the gesture.
Listing 3-2 shows handlers for two continuous gestures: a pinching gesture (handlePinchGesture:) and a
panning gesture (handlePanGesture:). It also gives an example of a handler for a discrete gesture; in this
example, when the user double-taps the view with a single finger, the handler (handleSingleDoubleTap:)
centers the view at the location of the double-tap.
Listing 3-2 Handling pinch, pan, and double-tap gestures
- (IBAction)handlePinchGesture:(UIGestureRecognizer *)sender {
CGFloat factor = [(UIPinchGestureRecognizer *)sender scale];
self.view.transform = CGAffineTransformMakeScale(factor, factor);
}
Gesture Recognizers
Implementing Gesture Recognition
2011-03-10 | © 2011 Apple Inc. All Rights Reserved.
44- (IBAction)handlePanGesture:(UIPanGestureRecognizer *)sender {
CGPoint translate = [sender translationInView:self.view];
CGRect newFrame = currentImageFrame;
newFrame.origin.x += translate.x;
newFrame.origin.y += translate.y;
sender.view.frame = newFrame;
if (sender.state == UIGestureRecognizerStateEnded)
currentImageFrame = newFrame;
}
- (IBAction)handleSingleDoubleTap:(UIGestureRecognizer *)sender {
CGPoint tapPoint = [sender locationInView:sender.view.superview];
[UIView beginAnimations:nil context:NULL];
sender.view.center = tapPoint;
[UIView commitAnimations];
}
These action methods handle the gestures in distinctive ways:
●
In the handlePinchGesture: method, the target communicates with its gesture recognizer (sender)
to get the scale factor (scale). The method uses the scale value in a Core Graphics function that scales
the view and assigns the computed value to the view’s affine transform property.
● The handlePanGesture: method applies the translationInView: values obtained from its gesture
recognizer to a cached frame value for the attached view. When the gesture concludes, it caches the
newest frame value.
●
In the handleSingleDoubleTap: method, the target gets the location of the double-tap gesture from
its gesture recognizer by calling the locationInView: method. It then uses this point, converted to
superview coordinates, to animate the center of the view to the location of the double-tap.
The scale factor obtained in the handlePinchGesture: method, as with the rotation angle and the translation
value related to other recognizers of continuous gestures, is to be applied to the state of the view when the
gesture is first recognized. It is not a delta value to be concatenated over each handler invocation for a given
gesture.
Gesture Recognizers
Implementing Gesture Recognition
2011-03-10 | © 2011 Apple Inc. All Rights Reserved.
45A hit-test with an attached gesture recognizer does not have to be passive when there are incoming touch
events. Instead, it can determine which gesture recognizers, if any, are involved with a particular UITouch
object by querying the gestureRecognizers property. Similarly, it can find out which touches a given gesture
recognizer is analyzing for a given event by calling the UIEvent method touchesForGestureRecognizer:.
Interacting with Other Gesture Recognizers
More than one gesture recognizer may be attached to a view. In the default behavior, touch events in a
multitouch sequence go from one gesture recognizer to another in a nondeterministic order until the events
are finally delivered to the view (if at all). Often this default behavior is what you want. But sometimes you
might want one or more of the following behaviors:
● Have one gesture recognizer fail before another can start analyzing touch events.
● Prevent other gesture recognizers from analyzing a specific multitouch sequence or a touch object in that
sequence.
● Permit two gesture recognizers to operate simultaneously.
The UIGestureRecognizer class provides client methods, delegate methods, and methods overridden by
subclasses to enable you to effect these behaviors.
Requiring a Gesture Recognizer to Fail
You might want a relationship between two gesture recognizers so that one can operate only if the other one
fails. For example, recognizer A doesn’t begin analyzing a multitouch sequence until recognizer B fails and,
conversely, if recognizer B does recognize its gesture, recognizer A never looks at the multitouch sequence.
An example where you might specify this relationship is when you have a gesture recognizer for a single tap
and another gesture recognizer for a double tap; the single-tap recognizer requires the double-tap recognizer
to fail before it begins operating on a multitouch sequence.
The method you call to specify this relationship is requireGestureRecognizerToFail:. After sending the
message, the receiving gesture recognizer must stay in the UIGestureRecognizerStatePossible state
until the specified gesture recognizer transitions to UIGestureRecognizerStateFailed. If the specified
gesture recognizer transitions to UIGestureRecognizerStateRecognized or
UIGestureRecognizerStateBegan instead, then the receiving recognizer can proceed, but no actionmessage
is sent if it recognizes its gesture.
Gesture Recognizers
Interacting with Other Gesture Recognizers
2011-03-10 | © 2011 Apple Inc. All Rights Reserved.
46Note: In the case of the single-tap versus double-tap gestures, if a single-tap gesture recognizer
doesn’t require the double-tap recognizer to fail, you should expect to receive yoursingle-tap actions
before your double-tap actions, even in the case of a double tap. This is expected and desirable
behavior because the best user experience generally involvesstackable actions. If you want double-tap
and single-tap gesture recognizersto have mutually exclusive actions, you can require the double-tap
recognizer to fail. You won't get any single-tap actions on a double tap, but any single-tap actions
you do receive will necessarily lag behind the user's touch input. In other words, there is no way to
know if the user double tapped until after the double-tap delay,so the single-tap gesture recognizer
cannot send its action until that delay has passed.
For a discussion of gesture-recognition states and possible transition between these states, see “State
Transitions” (page 50).
Preventing Gesture Recognizers from Analyzing Touches
You can prevent gesture recognizers from looking at specific touches or from even recognizing a gesture. You
can specify these “prevention” relationships using either delegation methods or overriding methods declared by
the UIGestureRecognizer class.
The UIGestureRecognizerDelegate protocol declares two optional methods that prevent specific gesture
recognizers from recognizing gestures on a case-by-case basis:
● gestureRecognizerShouldBegin: — This method is called when a gesture recognizer attempts to
transition out of UIGestureRecognizerStatePossible. Return NO to make it transition to
UIGestureRecognizerStateFailed instead. (The default value is YES.)
● gestureRecognizer:shouldReceiveTouch: —This method is called before the window object calls
touchesBegan:withEvent: on the gesture recognizer when there are one or more new touches. Return
NO to prevent the gesture recognizer from seeing the objects representing these touches. (The default
value is YES.)
In addition,there are two UIGestureRecognizermethods(declared in UIGestureRecognizerSubclass.h)
that effect the same behavior as these delegation methods. A subclass can override these methods to define
class-wide prevention rules:
- (BOOL)canPreventGestureRecognizer:(UIGestureRecognizer
*)preventedGestureRecognizer;
- (BOOL)canBePreventedByGestureRecognizer:(UIGestureRecognizer
*)preventingGestureRecognizer;
Gesture Recognizers
Interacting with Other Gesture Recognizers
2011-03-10 | © 2011 Apple Inc. All Rights Reserved.
47Permitting Simultaneous Gesture Recognition
By default, no two gesture recognizers can attempt to recognize their gestures simultaneously. But you can
change this behavior by implementing
gestureRecognizer:shouldRecognizeSimultaneouslyWithGestureRecognizer:, an optional
method of the UIGestureRecognizerDelegate protocol. This method is called when the recognition of the
receiving gesture recognizer would block the operation of the specified gesture recognizer, or vice versa.
Return YES to allow both gesture recognizers to recognize their gestures simultaneously.
Note: Returning YES is guaranteed to allow simultaneous recognition, but returning NO is not
guaranteed to prevent simultaneous recognition because the other gesture's delegate may return
YES.
Regulating the Delivery of Touches to Views
Generally, a window delivers UITouch objects (packaged in UIEvent objects) to a gesture recognizer before
it delivers them to the attached hit-test view. But there are some subtle detours and dead-ends in this general
delivery path that depend on whether a gesture is recognized. You can alter this delivery path to suit the
requirements of your application.
Default Touch-Event Delivery
By default a window in a multitouch sequence delays the delivery of touch objects in Ended phases to the
hit-test view and, if the gesture is recognized, both prevents the delivery of current touch objects to the view
and cancels touch objects previously received by the view. The exact behavior depends on the phase of touch
objects and on whether a gesture recognizer recognizes its gesture or fails to recognize it in a multitouch
sequence.
To clarify this behavior, consider a hypothetical gesture recognizer for a discrete gesture involving two touches
(that is, two fingers). Touch objects enter a system and are passed from the UIApplication object to the
UIWindow object for the hit-test view. The following sequence occurs when the gesture is recognized:
1. The window sendstwo touch objectsin the Began phase (UITouchPhaseBegan) to the gesture recognizer,
which doesn’t recognize the gesture. The window sends these same touches to the view attached to the
gesture recognizer.
2. The window sendstwo touch objectsin the Moved phase (UITouchPhaseMoved) to the gesture recognizer,
and the recognizer still doesn’t detect its gesture. The window then sends these touches to the attached
view.
Gesture Recognizers
Regulating the Delivery of Touches to Views
2011-03-10 | © 2011 Apple Inc. All Rights Reserved.
483. The window sends one touch object in the Ended phase (UITouchPhaseEnded) to the gesture recognizer.
This touch object doesn’t yield enough information for the gesture, but the window withholds the object
from the attached view.
4. The window sends the other touch object in the Ended phase. The gesture recognizer now recognizes its
gesture and so it sets its state to UIGestureRecognizerStateRecognized. Just before the first (or
only) action message issent, the view receives a touchesCancelled:withEvent: message to invalidate
the touch objects previously sent (in the Began and Moved phases). The touches in the Ended phase are
canceled.
Now assume that the gesture recognizer in the last step instead decides that this multitouch sequence it’s
been analyzing is not its gesture. It sets its state to UIGestureRecognizerStateFailed. The window then
sends the two touch objects in the Ended phase to the attached view in a touchesEnded:withEvent:
message.
A gesture recognizer for a continuous gesture goes through a similar sequence, except that it is more likely to
recognize its gesture before touch objectsreach the Ended phase. Upon recognizing its gesture, itsetsitsstate
to UIGestureRecognizerStateBegan. The window sends all subsequent touch objects in the multitouch
sequence to the gesture recognizer but not to the attached view.
Note: For a discussion of gesture-recognition states and possible transition between these states,
see “State Transitions” (page 50).
Affecting the Delivery of Touches to Views
You can change the values of three UIGestureRecognizer properties to alter the default delivery path of
touch objects to views in certain ways. These properties and their default values are:
cancelsTouchesInView (default of YES)
delaysTouchesBegan (default of NO)
delaysTouchesEnded (default of YES)
If you change the default values of these properties, you get the following differences in behavior:
● cancelsTouchesInView set to NO — Causes touchesCancelled:withEvent: to not be sent to the
view for any touches belonging to the recognized gesture. As a result, any touch objects in Began or
Moved phases previously received by the attached view are not invalidated.
● delaysTouchesBegan set to YES — Ensures that when a gesture recognizer recognizes a gesture, no
touch objects that were part of that gesture are delivered to the attached view. This setting provides a
behavior similar to that offered by the delaysContentTouches property on UIScrollView; in this
Gesture Recognizers
Regulating the Delivery of Touches to Views
2011-03-10 | © 2011 Apple Inc. All Rights Reserved.
49case, when scrolling begins soon after the touch begins, subviews of the scroll-view object never receive
the touch, so there is no flash of visual feedback. You should be careful about this setting because it can
easily make your interface feel unresponsive.
● delaysTouchesEnded set to NO — Prevents a gesture recognizer that's recognized its gesture after a
touch has ended from canceling that touch on the view. For example, say a view has a
UITapGestureRecognizer object attached with its numberOfTapsRequired set to 2, and the user
double-taps the view. If this property is set to NO, the view gets the following sequence of messages:
touchesBegan:withEvent:, touchesEnded:withEvent:, touchesBegan:withEvent:, and
touchesCancelled:withEvent:. With the property set to YES, the view gets
touchesBegan:withEvent:, touchesBegan:withEvent:, touchesCancelled:withEvent:, and
touchesCancelled:withEvent:. The purpose of this property is to ensure that a view won't complete
an action as a result of a touch that the gesture will want to cancel later.
Creating Custom Gesture Recognizers
If you are going to create a custom gesture recognizer, you need to have a clear understanding of how gesture
recognizers work. The following section gives you the architectural background of gesture recognition, and
the subsequent section goes into details of actually creating a gesture recognizer.
State Transitions
Gesture recognizers operate in a predefined state machine. They transition from one state to another depending
on whether certain conditions apply. The following enum constants from UIGestureRecognizer.h define
the states for gesture recognizers:
typedef enum {
UIGestureRecognizerStatePossible,
UIGestureRecognizerStateBegan,
UIGestureRecognizerStateChanged,
UIGestureRecognizerStateEnded,
UIGestureRecognizerStateCancelled,
UIGestureRecognizerStateFailed,
UIGestureRecognizerStateRecognized = UIGestureRecognizerStateEnded
} UIGestureRecognizerState;
Gesture Recognizers
Creating Custom Gesture Recognizers
2011-03-10 | © 2011 Apple Inc. All Rights Reserved.
50The sequence of states that a gesture recognizer may transition through varies, depending on whether a
discrete or continuous gesture is being recognized. All gesture recognizers start in the Possible state
(UIGestureRecognizerStatePossible). They then analyze the multitouch sequence targeted at their
attached hit-test view, and they either recognize their gesture or fail to recognize it. If a gesture recognizer
does not recognize its gesture, it transitions to the Failed state(UIGestureRecognizerStateFailed); this
is true of all gesture recognizers, regardless of whether the gesture is discrete or continuous.
When a gesture is recognized, however, the state transitions differ for discrete and continuous gestures. A
recognizer for a discrete gesture transitions from Possible to Recognized
(UIGestureRecognizerStateRecognized). A recognizer for a continuous gesture, on the other hand,
transitionsfrom Possible to Began (UIGestureRecognizerStateBegan) when it first recognizesthe gesture.
Then it transitionsfrom Began to Changed (UIGestureRecognizerStateChanged), and subsequently from
Changed to Changed every time there is a change in the gesture. Finally, when the last finger in the multitouch
sequence is lifted from the hit-test view, the gesture recognizer transitions to the Ended state
(UIGestureRecognizerStateEnded), which is an aliasfor the UIGestureRecognizerStateRecognized
state. A recognizer for a continuous gesture can also transition from the Changed state to a Cancelled state
(UIGestureRecognizerStateCancelled) if it determines that the recognized gesture no longer fits the
expected pattern for its gesture. Figure 3-3 illustrates these transitions.
Figure 3-3 Possible state transitions for gesture recognizers
Possible Began Changed Cancelled
Gesture cancelled — continuous gestures
Possible Began Changed Ended
Recognizes gestures — continuous gestures
Possible Recognized
Recognizes gesture — discrete gestures
Possible Failed
Fails to recognize gesture — all gesture recognizers
Gesture Recognizers
Creating Custom Gesture Recognizers
2011-03-10 | © 2011 Apple Inc. All Rights Reserved.
51Note: The Began, Changed, Ended, and Cancelled states are not necessarily associated with UITouch
objects in corresponding touch phases. They strictly denote the phase of the gesture itself, not the
touch objects that are being recognized.
When a gesture is recognized, every subsequent state transition causes an action message to be sent to the
target. When a gesture recognizer reaches the Recognized or Ended state, it is asked to reset its internal state
in preparation for a new attempt at recognizing the gesture. The UIGestureRecognizer class then sets the
gesture recognizer’s state back to Possible.
Implementing a Custom Gesture Recognizer
To implement a custom gesture recognizer, first create a subclass of UIGestureRecognizer in Xcode. Then,
add the following import directive in your subclass’s header file:
#import
Next copy the following method declarations from UIGestureRecognizerSubclass.h to your header file;
these are the methods you override in your subclass:
- (void)reset;
- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event;
- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event;
- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event;
- (void)touchesCancelled:(NSSet *)touches withEvent:(UIEvent *)event;
You must be sure to call the superclass implementation (super) in all of the methods you override.
Examine the declaration of the state property in UIGestureRecognizerSubclass.h. Notice that it is now
given a readwrite option instead of readonly (in UIGestureRecognizer.h). Your subclass can now
change its state by assigning UIGestureRecognizerState constants to the property.
The UIGestureRecognizer class sends action messages for you and controls the delivery of touch objects to
the hit-test view. You do not need to implement these tasks yourself.
Gesture Recognizers
Creating Custom Gesture Recognizers
2011-03-10 | © 2011 Apple Inc. All Rights Reserved.
52Implementing the Multitouch Event-Handling Methods
The heart of the implementation for a gesture recognizer are the four methods touchesBegan:withEvent:,
touchesMoved:withEvent:, touchesEnded:withEvent:, and touchesCancelled:withEvent:. You
implement these methods much as you would implement them for a custom view.
Note: See “Handling Multi-Touch Events” in iOS App Programming Guide in “Document Revision History”
for information about handling events delivered during a multitouch sequence.
The main difference in the implementation of these methods for a gesture recognizer is that you transition
between states at the appropriate moment. To do this, you must set the value of the state property to the
appropriate UIGestureRecognizerState constant. When a gesture recognizer recognizes a discrete gesture,
it sets the state property to UIGestureRecognizerStateRecognized. If the gesture is continuous, it sets
the state property first to UIGestureRecognizerStateBegan; then, for each change in position of the
gesture, it sets (or resets) the property to UIGestureRecognizerStateChanged. When the gesture ends,
it sets state to UIGestureRecognizerStateEnded. If at any point a gesture recognizer realizes that this
multitouch sequence is not its gesture, it sets its state to UIGestureRecognizerStateFailed.
Listing 3-3 is an implementation of a gesture recognizer for a discrete single-touch “checkmark” gesture (actually
any V-shaped gesture). It records the midpoint of the gesture—the point at which the upstroke begins—so
that clients can obtain this value.
Listing 3-3 Implementation of a “checkmark” gesture recognizer.
- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event {
[super touchesBegan:touches withEvent:event];
if ([touches count] != 1) {
self.state = UIGestureRecognizerStateFailed;
return;
}
}
- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event {
[super touchesMoved:touches withEvent:event];
if (self.state == UIGestureRecognizerStateFailed) return;
CGPoint nowPoint = [[touches anyObject] locationInView:self.view];
CGPoint prevPoint = [[touches anyObject] previousLocationInView:self.view];
if (!strokeUp) {
Gesture Recognizers
Creating Custom Gesture Recognizers
2011-03-10 | © 2011 Apple Inc. All Rights Reserved.
53// on downstroke, both x and y increase in positive direction
if (nowPoint.x >= prevPoint.x && nowPoint.y >= prevPoint.y) {
self.midPoint = nowPoint;
// upstroke has increasing x value but decreasing y value
} else if (nowPoint.x >= prevPoint.x && nowPoint.y About and press the
Center button until you get to the serial number, or look on the
back of iPod nano.Chapter 1 iPod nano Basics 7
Browsing Music Using Cover Flow
You can browse your music collection using Cover Flow, a visual way to flip through
your library.
To use Cover Flow:
1 From the Music menu, choose Cover Flow.
2 Use the Click Wheel to move through your album art or press the Next/Fast-forward
and Previous/Rewind buttons.
3 Select an album and press the Center button.
4 Use the Click Wheel to select a song and press the Center button to play it.
Scrolling Quickly Through Long Lists
If you have more than 100 songs, videos, or other items, you can scroll quickly through
a long list by moving your thumb quickly on the Click Wheel.
Note: Not all languages are supported.
To scroll quickly:
1 Move your thumb quickly on the Click Wheel, to display a letter of the alphabet on the
screen.
2 Use the Click Wheel to navigate the alphabet until you find the first letter of the item
you’re looking for. This takes you to the first item in the list beginning with that letter.
Items beginning with a symbol or number appear before the letter “A.”
3 Lift your thumb momentarily to return to normal scrolling.
4 Use the Click Wheel to finish navigating to the item you want.
Searching Music
You can search iPod nano for songs, playlists, album titles, artist names, audio podcasts,
and audiobooks. The search feature doesn’t search videos, notes, calendar items,
contacts, or lyrics.
Note: Not all languages are supported.
To search iPod nano:
1 From the Music menu, choose Search.
2 Enter a search string by using the Click Wheel to navigate the alphabet and pressing
the Center button to enter each character.
iPod nano starts searching as soon as you enter the first character, displaying the
results on the search screen. For example, if you enter “b,” then iPod nano displays all
music items containing the letter “b.” If you enter “ab,” iPod nano displays all items
containing that sequence of letters.
To enter a space, press the Next/Fast-forward button.8 Chapter 1 iPod nano Basics
To delete the previous character, press the Previous/Rewind button.
3 Press Menu to display the results list, which you can now navigate.
Items appear in the results list with icons identifying their type: song, video, artist,
album, audiobook, or podcast.
To return to Search (if Search is highlighted in the menu), press the Center button.
Turning off the Click Wheel Sound
When you scroll through menu items, you can hear a clicking sound through the
iPod nano internal speaker. If you like, you can turn the Click Wheel sound off.
To turn off the Click Wheel sound:
m Choose Settings and set Clicker to Off.
To turn the Click Wheel sound on again, set Clicker to On.
Disabling iPod nano Controls
If you don’t want to turn iPod nano on or activate controls accidentally, you can make
them inactive using the Hold switch.
m Slide the Hold switch to HOLD (so you can see the orange bar).Chapter 1 iPod nano Basics 9
Using iPod nano Menus
When you turn on iPod nano, you see the main menu. Choose menu items to perform
functions or go to other menus. Icons along the top of the screen show iPod nano
status.
Adding or Removing Items from the Main Menu
You might want to add often-used items to the iPod nano main menu. For example,
you can add a Songs item to the main menu, so you don’t have to choose Music before
you choose Songs.
To add or remove items from the main menu:
1 Choose Settings > Main Menu.
2 Choose each item you want to appear in the main menu. A checkmark indicates which
items have been added.
Setting the Backlight Timer
You can set the backlight to turn on and illuminate the screen for a certain amount of
time when you press a button or use the Click Wheel. The default is 10 seconds.
m Choose Settings > Backlight Timer, and then choose the time you want. Choose “Always
On” to prevent the backlight from turning off.
Display item Function
Menu title Displays the title of the current menu.
Lock icon The Lock icon appears when the Hold switch (on the bottom of
iPod nano) is set to HOLD. This indicates that the iPod nano
controls are disabled.
Play status The Play (“) icon appears when a song, video, or other item is
playing. The Pause (1) icon appears when the item is paused.
Battery status The Battery icon shows the approximate remaining battery charge.
Menu items Use the Click Wheel to scroll through menu items. Press the Center
button to choose an item. An arrow next to a menu item indicates
that choosing it leads to another menu or screen.
Menu title
Menu items
Battery status
Play status
Lock icon10 Chapter 1 iPod nano Basics
Setting the Screen Brightness
You can adjust the brightness of the iPod nano screen by moving a slider.
m Choose Settings > Brightness, and then use the Click Wheel to move the slider. Moving
it to the left dims the screen; moving it to the right increases the screen brightness.
You can also set the brightness during a slideshow or video. Press the Center button to
bring up or dismiss the brightness slider.
Setting the Language
iPod nano can be set to use different languages.
m Choose Settings > Language, and then choose a language from the list.
Getting Information About iPod nano
You can get details about your iPod nano, such as how much space is available, how
many songs, videos, photos, and other items you have, and the serial number, model,
and software version.
To get information about iPod nano:
m Choose Settings > About, and press the Center button to cycle through the screens of
information.
Resetting All Settings
You can reset all the items on the Settings menu to their default setting.
m Choose Settings > Reset Settings, and then choose Reset.
Connecting and Disconnecting iPod nano
You connect iPod nano to your computer to add music, videos, photos, and files, and to
charge the battery. Disconnect iPod nano when you’re done.
Connecting iPod nano
To connect iPod nano to your computer:
m Plug the included iPod Dock Connector to USB 2.0 cable into a high-powered USB 2.0
port on your computer, and then connect the other end to iPod nano.
If you have an iPod Dock, you can connect the cable to a USB 2.0 port on your
computer, connect the other end to the Dock, and then put iPod nano in the Dock.Chapter 1 iPod nano Basics 11
Note: The USB port on most keyboards doesn’t provide enough power. You must
connect iPod nano to a USB 2.0 port on your computer, unless your keyboard has a
high-powered USB 2.0 port.
By default, iTunes syncs songs on iPod nano automatically when you connect it to your
computer. When iTunes is finished, you can disconnect iPod nano.
Note: You can sync songs while your battery is charging.
If you connect iPod nano to a different computer and it’s set to sync music
automatically, iTunes prompts you before syncing any music. If you click Yes, the songs
and other audio files already on iPod nano will be erased and replaced with songs and
other audio files on the computer iPod nano is connected to. For more information
about adding music to iPod nano and using iPod nano with more than one computer,
see Chapter 2, “Music Features,” on page 17.12 Chapter 1 iPod nano Basics
Disconnecting iPod nano
It’s important not to disconnect iPod nano from your computer while music is being
synced. You can easily see if it’s OK to disconnect iPod nano by looking at the
iPod nano screen.
Important: Don’t disconnect iPod nano if you see the “Connected” or “Sync in Progress”
messages. You could damage files on iPod nano. If you see one of these messages, you
must eject iPod nano before disconnecting it.
If you set iPod nano to manage songs manually (see “Managing iPod nano Manually”
on page 24) or enable iPod nano for disk use (see “Using iPod nano as an External Disk”
on page 46), you must always eject iPod nano before disconnecting it.
If you see the main menu or a large battery icon, you can disconnect iPod nano.
Important: If you see one of these messages, you must eject
iPod nano before disconnecting it.Chapter 1 iPod nano Basics 13
To eject iPod nano:
m Click the Eject (C) button next to iPod nano in the list of devices in the iTunes source
list.
If you’re using a Mac, you can also eject iPod nano by dragging the iPod nano icon on
the desktop to the Trash.
If you’re using a Windows PC, you can also eject iPod nano in My Computer or by
clicking the Safely Remove Hardware icon in the Windows system tray and selecting
iPod nano.
To disconnect iPod nano:
1 Unplug the headphones if they’re attached.
2 Disconnect the cable from iPod nano. If iPod nano is in the Dock, simply remove it.
If your Dock connector is larger than the one shown, squeeze both sides of the
connector while removing.
You can safely disconnect iPod nano while either of these messages is displayed.14 Chapter 1 iPod nano Basics
About the iPod nano Battery
iPod nano has an internal, non-user-replaceable battery. For best results, the first time
you use iPod nano, let it charge for about three hours or until the battery icon in the
status area of the display shows that the battery is fully charged. If iPod nano isn’t used
for a while, the battery might need to be charged.
The iPod nano battery is 80-percent charged in about 1.5 hours and fully charged in
about three hours. If you charge iPod nano while adding files, playing music, viewing
videos, or viewing a slideshow, it might take longer.
Charging the iPod nano Battery
You can charge the iPod nano battery in two ways:
Â Connect iPod nano to your computer.
Â Use the Apple USB Power Adapter, available separately.
To charge the battery using your computer:
m Connect iPod nano to a USB 2.0 port on your computer. The computer must be turned
on and not in sleep mode (some Mac models can charge iPod nano while in sleep
mode).
If the battery icon on the iPod nano screen shows the Charging screen, the battery is
charging. If it shows the Charged screen, the battery is fully charged.
If you don’t see the charging screen, iPod nano might not be connected to a
high-power USB port. Try another USB port on your computer. Chapter 1 iPod nano Basics 15
Important: If a “Charging, Please Wait” or “Connect to Power” message appears on the
iPod nano screen, the battery needs to be charged before iPod nano can communicate
with your computer. See “If iPod nano displays a “Connect to Power” message” on
page 58.
If you want to charge iPod nano when you’re away from your computer, you can
purchase the Apple USB Power Adapter.
To charge the battery using the Apple USB Power Adapter:
1 Connect the AC plug adapter to the power adapter (they might already be connected).
2 Connect the iPod Dock Connector to USB 2.0 cable to the power adapter, and plug the
other end of the cable into iPod nano.
3 Plug the power adapter into a working electrical outlet.
WARNING: Make sure the power adapter is fully assembled before plugging it into an
electrical outlet.
AC plug adapter
(The plug on your Power Adapter may look different.)
USB Power Adapter
iPod Dock Connector to USB 2.0 Cable16 Chapter 1 iPod nano Basics
Understanding Battery States
When iPod nano isn’t connected to a power source, a battery icon in the top-right
corner of the iPod nano screen shows approximately how much charge is left.
If iPod nano is connected to a power source, the battery icon changes to show that the
battery is charging or fully charged.
You can disconnect and use iPod nano before it’s fully charged.
Note: Rechargeable batteries have a limited number of charge cycles and might
eventually need to be replaced. Battery life and number of charge cycles vary by use
and settings. For more information, go to www.apple.com/batteries.
Battery less than 20% charged
Battery about halfway charged
Battery fully charged
Battery charging (lightning bolt)
Battery fully charged (plug)2
 17
2 Music Features
With iPod nano, you can take your music and audio collection
with you wherever you go. Read this chapter to learn about
adding music and listening to iPod nano.
You use iPod nano by importing songs, audiobooks, movies, TV shows, music videos,
and podcasts into your computer and then adding them to iPod nano. Read on to learn
more about the steps in this process, including:
Â Getting music from your CD collection, hard disk, or the iTunes Store (part of iTunes
and available in some countries only) into the iTunes application on your computer
Â Organizing your music and other audio into playlists, if you want
Â Adding playlists, songs, audiobooks, videos, and podcasts to iPod nano
Â Listening to music or other audio on the go
About iTunes
iTunes is the software application you use with iPod nano. iTunes can sync music,
audiobooks, podcasts, and more with iPod nano. When you connect iPod nano to your
computer, iTunes opens automatically.
This guide explains how to use iTunes to download songs and other audio and video to
your computer, create personal compilations of your favorite songs (called playlists),
add them to iPod nano, and adjust iPod nano settings.
iTunes also has many other features. You can make your own CDs that play in standard
CD players (if your computer has a CD-recordable drive); listen to streaming Internet
radio; watch videos and TV shows; rate songs according to preference; and much more.
For information about using these iTunes features, open iTunes and choose
Help > iTunes Help.18 Chapter 2 Music Features
Importing Music into Your iTunes Library
To listen to music on iPod nano, you first need to get that music into iTunes on your
computer.
There are three ways of getting music and other audio into iTunes:
Â Purchase music, audiobooks, and videos, or download podcasts online from the
iTunes Store.
Â Import music and other audio from audio CDs.
Â Add music and other audio that’s already on your computer to your iTunes library.
Purchasing Songs and Downloading Podcasts Using the iTunes Store
If you have an Internet connection, you can easily purchase and download songs,
albums, audiobooks, and videos online using the iTunes Store. You can also subscribe
to and download podcasts.
To purchase music online using the iTunes Store, you set up an Apple account in
iTunes, find the songs you want, and then buy them. If you already have an Apple
account, or if you have an America Online (AOL) account (available in some countries
only), you can use that account to sign in to the iTunes Store and buy songs.
Note: You don’t need an iTunes Store account to download or subscribe to podcasts.
To sign in to the iTunes Store:
m Open iTunes and then:
Â If you already have an iTunes account, choose Store > Sign In.
Â If you don’t already have an iTunes account, choose Store > Create Account and follow
the onscreen instructions to set up an Apple account or enter your existing Apple
account or AOL account information.Chapter 2 Music Features 19
To find songs, audiobooks, videos, and podcasts:
You can browse or search the iTunes Store to find the album, song, or artist you’re
looking for. Open iTunes and select iTunes Store in the source list.
Â To browse the iTunes Store, choose a category (for example, Music) on the left side of
the main page in the iTunes Store. You can choose a genre, look at new releases, click
one of the featured songs, look at Top Songs and more, or click Browse under Quick
Links in the main iTunes Store window.
Â To browse for podcasts, click the Podcasts link on the left side of the main page in the
iTunes Store.
Â To browse for videos, click the Movies, TV Shows, or Music Videos link on the left side
of the main page in the iTunes Store.
Â To search the iTunes Store, type the name of an album, song, artist, or composer in the
search field.
Â To narrow your search, type something in the search field, press Return or Enter on
your keyboard, and then click links in the Search Bar at the top of the results page.
For example, to narrow your search to songs and albums, click the Music link.
Â To search for a combination of items, click Power Search in the Search Results window.
Â To return to the main page of the iTunes Store, click the Home button in the status line
at the top of the window.
To buy a song, album, movie, TV show, music video, or audiobook:
1 Select iTunes Store in the source list, and then find the item you want to buy.
You can double-click a song or other item to listen to a portion of it and make sure it’s
what you want. You can view movie trailers or TV show previews. (If your network
connection is slower than 128 kbps, choose iTunes > Preferences, and in the Store pane,
select the “Load complete preview before playing” checkbox.)
2 Click Buy Song, Buy Album, Buy Movie, Buy Episode, Buy Video, or Buy Book.
Some items have other options, such as TV shows that let you buy a season pass for all
episodes.
The song or other item is downloaded to your computer and charged to the credit card
listed on your Apple or AOL account.
To download or subscribe to a podcast:
1 Select iTunes Store in the source list.
2 Click the Podcasts link on the left side of the main page in the iTunes Store.
3 Browse for the podcast you want to download.
Â To download a single podcast episode, click the Get Episode button next to the
episode.20 Chapter 2 Music Features
Â To subscribe to a podcast, click the Subscribe button next to the podcast graphic.
iTunes downloads the most recent episode. As new episodes become available, they
are automatically downloaded to iTunes when you connect to the Internet.
For more information, see “Adding Podcasts to iPod nano” on page 25 and “Watching
and Listening to Podcasts” on page 31.
Adding Songs Already on Your Computer to Your iTunes Library
If you have songs on your computer encoded in file formats that iTunes supports, you
can easily add the songs to iTunes.
To add songs on your computer to your iTunes library:
m Drag the folder or disk containing the audio files to Library in the iTunes source list (or
choose File > Add to Library and select the folder or disk). If iTunes supports the song
file format, the songs are automatically added to your iTunes library.
You can also drag individual song files to iTunes.
Note: Using iTunes for Windows, you can convert nonprotected WMA files to AAC or
MP3 format. This can be useful if you have a library of music encoded in WMA format.
For more information, open iTunes and choose Help > iTunes Help.
Importing Music From Your Audio CDs Into iTunes
Follow these instructions to get music from your CDs into iTunes.
To import music from an audio CD into iTunes:
1 Insert a CD into your computer and open iTunes.
If you have an Internet connection, iTunes gets the names of the songs on the CD from
the Internet (if available) and lists them in the window.
If you don’t have an Internet connection, you can import your CDs and, later, when you’re
connected to the Internet, choose Advanced > Get CD Track Names. iTunes will bring in
the track names for the imported CDs.
If the CD track names aren’t available online, you can enter the names of the songs
manually. For more information, see “Entering Song Names and Other Details” on
page 21.
With song information entered, you can browse for songs in iTunes or on iPod by title,
artist, album, and more.
2 Click to remove the checkmark next to any song you don’t want to import.
3 Click the Import button. The display area at the top of the iTunes window shows how
much time it will take to import each song.
Note: By default, iTunes plays songs as they are imported. If you’re importing a lot of
songs, you might want to stop the songs from playing to improve performance.Chapter 2 Music Features 21
4 To eject the CD, click the Eject (C) button.
You cannot eject a CD until the import is done.
5 Repeat these steps for any other CDs with songs you want to import.
Entering Song Names and Other Details
To enter CD song names and other information manually:
1 Select the first song on the CD and choose File > Get Info.
2 Click Info.
3 Enter the song information.
4 Click Next to enter information for the next song.
5 Click OK when you finish.
Adding Lyrics
You can enter song lyrics in plain text format into iTunes so that you can view the song
lyrics on iPod nano while the song is playing.
To enter lyrics into iTunes:
1 Select a song and choose File > Get Info.
2 Click Lyrics.
3 Enter song lyrics in the text box.
4 Click Next to enter lyrics for the next song.
5 Click OK when you finish.
For more information, see “Viewing Lyrics on iPod nano” on page 30.
Adding Album Artwork
Music you purchase from the iTunes Store includes album artwork, which your
iPod nano can display. You can add album artwork for music you’ve imported from CDs,
if you have the album art on your computer.
To add album artwork to iTunes:
1 Select a song and choose File > Get Info.
2 Click Artwork.
3 Click Add, navigate to the artwork file, and click Choose.
4 Use the slider to adjust the size of the artwork.
5 Click Next to add artwork for the next song or album.
6 Click OK when you finish.
For more information, see “Viewing Album Artwork on iPod nano” on page 31.22 Chapter 2 Music Features
Organizing Your Music
Using iTunes, you can organize songs and other items into lists, called playlists, in any
way you want. For example, you can make playlists with songs to listen to while
exercising, or playlists with songs for a particular mood.
You can also make Smart Playlists that update automatically based on rules you define.
When you add songs to iTunes that match the rules, they automatically get added to
the Smart Playlist.
You can make as many playlists as you like using any of the songs in your iTunes library.
Adding a song to a playlist or later removing it doesn’t remove it from your library.
To make a playlist in iTunes:
1 Click the Add (+) button or choose File > New Playlist.
2 Type a name for the playlist.
3 Click Music in the Library list, and then drag a song or other item to the playlist.
To select multiple songs, hold down the Shift key or the Command (x) key on a Mac,
or the Shift key or the Control key on a Windows PC, as you click each song.
To make a Smart Playlist:
m Choose File > New Smart Playlist and define the rules for your playlist.
Note: To make playlists on iPod nano when iPod nano isn’t connected to your
computer, see “Making On-The-Go Playlists on iPod nano” on page 27.
Adding Music and Podcasts to iPod nano
After your music is imported and organized in iTunes, you can easily add it to
iPod nano.
To set how music is added from your computer to iPod nano, you connect iPod nano to
your computer, and then use iTunes preferences to choose iPod nano settings.Chapter 2 Music Features 23
You can set iTunes to add music to iPod nano in three ways:
Â Sync all songs and playlists: When you connect iPod nano, it’s automatically updated
to match the songs and other items in your iTunes library. Any other songs on
iPod nano are deleted.
Â Sync selected playlists: When you connect iPod nano, it’s automatically updated to
match the songs in playlists you select in iTunes.
Â Manually add music to iPod nano: When you connect iPod nano, you can drag songs
and playlists individually to iPod nano, and delete songs and playlists individually
from iPod nano. Using this option, you can add songs from more than one computer
without erasing songs from iPod nano. When you manage music yourself, you must
always eject iPod nano from iTunes before you can disconnect it.
Syncing Music Automatically
By default, iPod nano is set to sync all songs and playlists when you connect it to your
computer. This is the simplest way to add music to iPod nano. You just connect
iPod nano to your computer, let it add songs, audiobooks, videos, and other items
automatically, and then disconnect it and go. If you added any songs to iTunes since
the last time you connected iPod nano, they are synced with iPod nano. If you deleted
songs from iTunes, they are removed from iPod nano.
To sync music with iPod nano:
m Simply connect iPod nano to your computer. If iPod nano is set to sync automatically,
the update begins.
Important: The first time you connect iPod nano to a computer, a message asks if you
want to sync songs automatically. If you accept, all songs, audiobooks, and videos are
erased from iPod nano and replaced with the songs and other items from that
computer. If you don’t accept, you can still add songs to iPod nano manually without
erasing any of the songs already on iPod nano.
While music is being synced from your computer onto iPod nano, the iTunes status
window shows progress, and you see a sync icon next to the iPod nano icon in the
source list.
When the update is done, a message in iTunes says “iPod update is complete.”
Syncing Music From Selected Playlists onto iPod nano
Setting iTunes to sync selected playlists to iPod nano is useful if the music in your
iTunes library doesn’t all fit on iPod nano. Only the music in the playlists you select is
synced to iPod nano.
To set iTunes to sync music from selected playlists onto iPod nano:
1 In iTunes, select iPod nano in the source list and click the Music tab.
2 Select “Sync music” and then choose “Selected playlists.”24 Chapter 2 Music Features
3 Select the playlists you want.
4 To include music videos and display album artwork, select those options.
5 Click Apply.
Note: If “Sync only checked songs and videos” is selected in the Summary pane, iTunes
syncs only items that are checked.
Managing iPod nano Manually
Setting iTunes to let you manage iPod nano manually gives you the most flexibility for
managing music and video on iPod nano. You can add and remove individual songs
(including music videos) and videos (movies and TV shows). Also, you can add music
and videos from multiple computers to iPod nano without erasing items already on
iPod nano.
Note: Setting iPod nano to manually manage music and video turns off the automatic
sync options in the Music, Movies, and TV Shows panes. You cannot manually manage
one and automatically sync another at the same time.
To set iTunes to let you manage music and video on iPod nano manually:
1 In iTunes, select iPod nano in the source list and click the Summary tab.
2 In the Options section, select “Manually manage music and video.”
3 Click Apply.
Note: When you manage songs and video yourself, you must always eject iPod nano
from iTunes before you disconnect it.
To add a song, video, or other item to iPod nano:
1 Click Music or another Library item in the iTunes source list.
2 Drag a song or other item to the iPod nano icon in the source list.
To remove a song, video, or other item from iPod nano:
1 In iTunes, select iPod nano in the source list.
2 Select a song or other item on iPod nano and press the Delete or Backspace key on
your keyboard.
If you manually remove a song or other item from iPod nano, it isn’t deleted from your
iTunes library.
To make a new playlist on iPod nano:
1 In iTunes, select iPod nano in the source list, and then click the Add (+) button or
choose File > New Playlist.
2 Type a name for the playlist.
3 Click an item, such as Music, in the Library list, and then drag songs or other items to
the playlist.Chapter 2 Music Features 25
To add songs to or remove songs from a playlist on iPod nano:
m Drag a song to a playlist on iPod nano to add the song. Select a song in a playlist and
press the Delete key on your keyboard to delete the song.
If you set iTunes to manage music manually, you can reset it later to sync automatically.
To reset iTunes to sync all music automatically on iPod nano:
1 In iTunes, select iPod nano in the source list and click the Music tab.
2 Select “Sync music” and then choose “All songs and playlists.”
3 Click Apply.
The update begins automatically.
Note: If “Only sync checked items” is selected in the Summary pane, iTunes syncs only
items that are checked in your Music and other libraries.
Adding Podcasts to iPod nano
The settings for adding podcasts to iPod nano are unrelated to the settings for adding
songs. Podcast update settings don’t affect song update settings, and vice versa. You
can set iTunes to automatically sync all or selected podcasts, or you can add podcasts
to iPod nano manually.
To set iTunes to update the podcasts on iPod nano automatically:
1 In iTunes, select iPod nano in the source list and click the Podcasts tab.
2 In the Podcasts pane, select “Sync … episodes” and choose the number of episodes
you want in the pop-up menu.
3 Click “All podcasts” or “Selected podcasts.” If you click “Selected podcasts,” also select
the podcasts in the list that you want to sync.
4 Click Apply.
When you set iTunes to sync iPod nano podcasts automatically, iPod nano is updated
each time you connect it to your computer.
Note: If “Only sync checked items” is selected in the Summary pane, iTunes syncs only
items that are checked in your Podcasts and other libraries.
To manually manage podcasts:
1 In iTunes, select iPod nano in the source list and click the Summary tab.
2 Select “Manually manage music and videos” and click Apply.
3 Select the Podcasts library in the source list and drag the podcasts you want to
iPod nano.26 Chapter 2 Music Features
Playing Music
After you add music and other audio to iPod nano, you can listen to it. Use the Click
Wheel and Center button to browse for a song, audiobook, video, or podcast.
To browse for and play a song:
m Choose Music, browse for a song, and press the Play/Pause button.
Note: When you browse for music videos in the Music menu, you only hear the music.
When you browse for them in the Videos menu, you also see the video.
When a song is playing, the Now Playing screen appears. The following table describes
the elements on the Now Playing screen of iPod nano.
When you see the Now Playing screen, you can use the Click Wheel to change the
volume. You can press the Center button multiple times from the Now Playing screen
to get to other information and options, such as the scrubber bar, rating bullets, shuffle
settings, lyrics, podcast information, and more. The scrubber bar displays a diamond to
show where you are in the track, along with elapsed and remaining times. Press the
Menu button to return to the previous screen.
Now Playing screen item Function
Shuffle (¡) icon Appears if iPod nano is set to shuffle songs or albums.
Repeat (⁄) icon Appears if iPod nano is set to repeat all songs. The Repeat Once
(!) icon appears if iPod nano is set to repeat one song.
Album art Shows the album art, if it’s available.
Song information Displays the song title, artist, and album title.
Rating Displays stars if you rate the song.
Song number Shows the number of the song that’s playing within the current
sequence of songs.
Song time progress bar Shows the elapsed and remaining times for the song that’s playing.
Shuffle icon
Repeat icon
Song time
Song information,
rating, and sequence
number
Album artChapter 2 Music Features 27
Setting iPod nano to Shuffle Songs
You can set iPod nano to play songs, albums, or your entire library in random order.
To set iPod nano to shuffle and play all your songs:
m Choose Shuffle Songs from the iPod nano main menu.
iPod nano begins playing songs from your entire music library in random order,
skipping audiobooks and podcasts.
To set iPod nano to always shuffle songs or albums:
1 Choose Settings from the iPod nano main menu.
2 Set Shuffle to either Songs or Albums.
When you set iPod nano to shuffle songs by choosing Settings > Shuffle, iPod nano
shuffles songs within the list (for example, album or playlist) you choose to play.
When you set iPod nano to shuffle albums, it plays all the songs on an album in order,
and then randomly selects another album in the list and plays through it in order.
To set shuffle options from the Now Playing screen:
m Press the Center button until you see the shuffle icon. Choose Songs, Albums, or Off.
Setting iPod nano to Repeat Songs
You can set iPod nano to repeat a song over and over, or repeat songs within the list
you choose to play.
To set iPod nano to repeat songs:
m Choose Settings from the iPod nano main menu.
Â To repeat all songs in the list, set Repeat to All.
Â To repeat one song over and over, set Repeat to One.
Customizing the Music Menu
You can add items to or remove them from the Music menu, just as you do with the
main menu. For example, you can add a Compilations item to the Music menu, so you
can easily choose compilations that are put together from various sources.
To add or remove items from the Music menu:
1 Choose Settings > Music Menu.
2 Choose each item you want to appear in the main menu. A checkmark indicates which
items have been added. To revert to the original Music menu settings, choose Reset
Menu.
Making On-The-Go Playlists on iPod nano
You can make playlists on iPod nano, called On-The-Go Playlists, when iPod nano isn’t
connected to your computer.28 Chapter 2 Music Features
To make an On-The-Go playlist:
1 Select a song, and then press and hold the Center button until the song title flashes.
2 Choose other songs you want to add.
3 Choose Music > Playlists > On-The-Go to view and play your list of songs.
You can also add a list of songs. For example, to add an album, highlight the album
title and press and hold the Center button until the album title flashes.
To play songs in the On-The-Go playlist:
m Choose Music > Playlists > On-The-Go and choose a song.
To remove a song from the On-The-Go playlist:
m Select a song in the playlist, and hold down the Center button until the song title
flashes.
To clear the entire On-The-Go playlist:
m Choose Music > Playlists > On-The-Go > Clear Playlist and then click Clear.
To save the On-The-Go playlists on iPod nano:
m Choose Music > Playlists > On-The-Go > Save Playlist.
The first playlist is saved as “New Playlist 1” in the Playlists menu. The On-The-Go
playlist is cleared. You can save as many playlists as you like. After you save a playlist,
you can no longer remove songs from it.
To copy the On-The-Go playlists to your computer:
m If iPod nano is set to update songs automatically (see “Syncing Music Automatically” on
page 23), and you make an On-The-Go playlist, the playlist is automatically copied to
iTunes when you connect iPod nano. You see the new On-The-Go playlist in the list of
playlists in iTunes. You can rename, edit, or delete the new playlist, just as you would
any playlist in iTunes.
Rating Songs
You can assign a rating to a song (from 1 to 5 stars) to indicate how much you like it.
You can use song ratings to help you create Smart Playlists automatically in iTunes.
To rate a song:
1 Start playing the song.
2 From the Now Playing screen, press the Center button until the five Rating bullets
appear.
3 Use the Click Wheel to choose a rating (represented by stars).
Note: You cannot assign ratings to video podcasts.Chapter 2 Music Features 29
Setting the Maximum Volume Limit
You can choose to set a limit for the maximum volume on iPod nano and assign a
combination to prevent the setting from being changed.
To set the maximum volume limit for iPod nano:
1 Choose Settings > Volume Limit.
The volume control shows the current volume.
2 Use the Click Wheel to select the maximum volume limit.
You can press Play to hear the currently selected song play while you select the
maximum volume limit.
3 Press Play/Pause to set the maximum volume limit.
A triangle on the volume bar indicates the maximum volume limit.
4 Press the Menu button to accept the maximum volume limit without requiring a
combination to change it. Or, on the Enter Combination screen, set a combination to
require that the combination be entered to change the maximum volume limit.
5 To enter a combination:
Â Use the Click Wheel to select a number for the first position. Press the Center button
to confirm your choice and move to the next position.
Â Use the same method to set the remaining numbers of the combination. You can use
the Next/Fast-forward button to move to the next position and the Previous/Rewind
button to move to the previous position. Press the Center button in the final position
to confirm the entire combination.
Note: The volume of songs and other audio may vary depending on how the audio
was recorded or encoded. See “Setting Songs to Play at the Same Volume Level” on
page 30 for information about how to set a relative volume level in iTunes and on
iPod nano. Volume level may also vary if you use different earphones or headphones.
With the exception of the iPod Radio Remote, accessories that connect through the
iPod Dock Connector don’t support volume limits.
If you set a combination, you must enter it before you can change or remove the
maximum volume limit.
To change the maximum volume limit:
1 Choose Settings > Volume Limit.
2 If you set a combination, enter it by using the Click Wheel to select the numbers and
pressing the Center button to confirm them.
3 Use the Click Wheel to change the maximum volume limit.
4 Press the Play/Pause button to accept the change.30 Chapter 2 Music Features
To remove the maximum volume limit:
1 If you’re currently listening to iPod nano, press Pause.
2 Choose Settings > Volume Limit.
3 If you set a combination, enter it by using the Click Wheel to select the numbers and
pressing the Center button to confirm them.
4 Use the Click Wheel to move the volume limit to the maximum level on the volume bar.
This removes any restriction on volume.
5 Press the Play/Pause button to accept the change.
Note: If you forget the combination, you can restore iPod nano. See “Updating and
Restoring iPod Software” on page 61 for more information.
Setting Songs to Play at the Same Volume Level
iTunes can automatically adjust the volume of songs, so they play at the same relative
volume level. You can set iPod nano to use the iTunes volume settings.
To set iTunes to play songs at the same sound level:
1 In iTunes, choose iTunes > Preferences if you’re using a Mac, or choose
Edit > Preferences if you’re using a Windows PC.
2 Click Playback and select Sound Check, and then click OK.
To set iPod nano to use the iTunes volume settings:
m Choose Settings and set Sound Check to On.
If you haven’t activated Sound Check in iTunes, setting it on iPod nano has no effect.
Using the Equalizer
You can use equalizer presets to change the sound on iPod nano to suit a particular
music genre or style. For example, to make rock music sound better, set the equalizer
to Rock.
To use the equalizer to change the sound on iPod nano:
m Choose Settings > EQ and choose an equalizer preset.
If you assigned an equalizer preset to a song in iTunes and the iPod nano equalizer is
set to Off, the song plays using the iTunes setting. See iTunes Help for more
information.
Viewing Lyrics on iPod nano
If you enter lyrics for a song in iTunes (see “Adding Lyrics” on page 21) and then add
the song to iPod nano, you can view the lyrics on iPod nano.
To view lyrics on iPod nano while a song is playing:
m On the Now Playing screen, press the Center button until you see the lyrics. The screen
displays the lyrics, which you can scroll through as the song plays.Chapter 2 Music Features 31
Viewing Album Artwork on iPod nano
By default, iTunes is set to allow you to view album artwork on iPod nano. If the
artwork is available, you’ll see it on iPod nano in the album list and when you play
music from the album.
To set iTunes to display album artwork on iPod nano:
1 In iTunes, select iPod nano in the source list and click the Music tab.
2 Choose “Display album artwork on your iPod.”
To see album artwork on iPod nano:
m Play a song that has album artwork.
For more information about album artwork, open iTunes and choose Help > iTunes
Help.
Watching and Listening to Podcasts
Podcasts are downloadable audio or video shows you get at the iTunes Store. You can
listen to audio podcasts and watch video podcasts. Podcasts are organized by shows,
episodes within shows, and chapters within episodes. If you stop watching or listening
to a podcast and go back to it later, the podcast begins playing from where you left off.
To watch or listen to a podcast:
1 From the main menu, choose Podcasts, and then choose a show.
Shows appear in reverse chronological order so that you can watch or listen to the
most recent one first. You see a blue dot next to shows and episodes you haven’t
watched or listened to yet.
2 Choose an episode to play it.
The Now Playing screen displays the show, episode, and date information, along with
elapsed and remaining time. Press the Center button to see more information about
the podcast. If the podcast includes artwork, you also see a picture. Podcast artwork
can change during an episode, so you might see several pictures during the podcast.
If the podcast you’re watching or listening to has chapters, you can press the
Next/Fast-forward or Previous/Rewind button to skip to the next chapter or the
beginning of the current chapter in the podcast.
For more information about podcasts, open iTunes and choose Help > iTunes Help.
Then search for “podcasts.”32 Chapter 2 Music Features
Listening to Audiobooks
You can purchase and download audiobooks from the iTunes Store or from
audible.com and listen to them on iPod nano.
You can use iTunes to add audiobooks to iPod nano the same way you add songs. If
you stop listening to an audiobook on iPod nano and go back to it later, the audiobook
begins playing from where you left off. iPod nano skips audiobooks when set to shuffle.
If the audiobook you’re listening to has chapters, you can press the Next/Fast-forward
or Previous/Rewind button to skip to the next chapter or the beginning of the current
chapter in the audiobook.
You can play audiobooks at speeds faster or slower than normal.
To set audiobook play speed:
m Choose Settings > Audiobooks and choose a speed.
Setting the play speed only affects audiobooks purchased from the iTunes Store or
audible.com.
Listening to FM Radio
You can listen to radio using the optional iPod Radio Remote accessory for iPod nano.
iPod Radio Remote attaches to iPod nano using the Dock connector cable. When you’re
using iPod Radio Remote, you see a Radio menu item on the iPod nano main menu. For
more information, see the iPod Radio Remote documentation.3
 33
3 Video Features
You can purchase movies, TV shows, and music videos, rent
movies, and download video podcasts at the iTunes Store,
and then add them to your iPod nano. You can watch videos
on iPod nano or on a TV connected to iPod nano. Read this
chapter to learn about downloading and viewing videos.
Purchasing or Renting Videos and Downloading
Video Podcasts
To purchase videos—movies, TV shows, and music videos—or rent movies online from
the iTunes Store (part of iTunes and available in some countries only), you set up an
Apple account in iTunes, find the videos you want, and then buy or rent them. If you
already have an Apple account, or if you have an America Online (AOL) account
(available in some countries only), you can use that account to sign in to the iTunes
Store and buy videos or rent movies.
To sign in to the iTunes Store:
m Open iTunes and then:
Â If you already have an iTunes account, choose Store > Sign In.
Â If you don’t already have an iTunes account, choose Store > Create Account and follow
the onscreen instructions to set up an Apple account or enter your existing Apple
account or AOL account information.34 Chapter 3 Video Features
To browse videos in the iTunes Store:
1 In iTunes, select iTunes Store in the source list.
2 Click an item (Movies, TV Shows, or Music Videos) in the iTunes Store list on the left.
You can also find some music videos as part of an album or other offer.
Videos in iTunes and in the iTunes Store have a display () icon next to them.
To buy or rent a video:
1 Select iTunes Store in the source list, and then find the item you want to buy or rent.
2 Click Buy Video, Buy Episode, Buy Season, Buy Movie, or Rent Movie.
Purchased videos appear when you select Movies (under Library) or Purchased (under
Store) in the source list. Rented videos appear when you select Rented Movies (under
Library).
To download a video podcast:
Video podcasts appear alongside other podcasts in the iTunes Store. You can subscribe
to them and download them just as you would other podcasts. You don’t need an
iTunes Store account to download podcasts. See “Purchasing Songs and Downloading
Podcasts Using the iTunes Store” on page 18 for instructions.
Converting Your Own Videos to Work with iPod nano
You can view other video files on iPod nano, such as videos you create in iMovie on a
Mac or videos you download from the Internet. Import the video into iTunes, convert it
for use with iPod nano, if necessary, and then add it to iPod nano.
iTunes supports all the video formats that QuickTime supports. For more information,
choose Help > QuickTime Player Help from the QuickTime Player menu bar.
To import a video into iTunes:
m Drag the video file to your iTunes library.
Some videos may be ready for use with iPod nano after you import them to iTunes. If
you try to add a video to iPod nano (see “Syncing Videos Automatically” on page 35 for
instructions), and a message says the video can’t play on iPod nano, then you must
convert the video for use with iPod nano.
To convert a video for use with iPod nano:
1 Select the video in your iTunes library.
2 Choose Advanced > “Convert Selection to iPod.”
Depending on the length and content of a video, converting it for use with iPod nano
can take several minutes to several hours.
Note: When you convert a video for use with iPod nano, the original video remains in
your iTunes library. Chapter 3 Video Features 35
For more information about converting video for iPod nano, go to
www.info.apple.com/kbnum/n302758.
Adding Videos to iPod nano
You add movies and TV shows to iPod nano much the same way you add songs. You
can set iTunes to sync all movies and TV shows to iPod nano automatically when you
connect iPod nano, or you can set iTunes to sync only selected playlists. Alternatively,
you can manage movies and TV shows manually. Using this option, you can add videos
from more than one computer without erasing videos already on iPod nano.
Note: Music videos are managed with songs, under the Music tab in iTunes.
See “Adding Music and Podcasts to iPod nano” on page 22.
Important: If you rent a movie from the iTunes Store and add it to iPod nano, you will
only be able to view it on iPod nano. Once you add a rented movie to iPod nano, it
can’t be transferred again.
Syncing Videos Automatically
By default, iPod nano is set to sync all videos when you connect it to your computer.
This is the simplest way to add videos to iPod nano. You just connect iPod nano to your
computer, let it add videos and other items automatically, and then disconnect it and
go. If you added any videos to iTunes since the last time you connected iPod nano,
they are added to iPod nano. If you deleted videos from iTunes, they are removed from
iPod nano.
You can set iPod nano to sync videos automatically when you connect it to your
computer.
To sync videos to iPod nano:
m Simply connect iPod nano to your computer. If iPod nano is set to sync automatically,
the syncing begins.36 Chapter 3 Video Features
Important: The first time you connect iPod nano to a different computer and have the
automatic sync option set, a message asks if you want to sync songs and videos
automatically. If you accept, all songs, videos, and other items are deleted from
iPod nano and replaced with the songs, videos, and other items in the iTunes library on
that computer. If you don’t accept, you can still add videos to iPod nano manually
without deleting any of the videos already on iPod nano.
iTunes includes a feature to sync purchased items from iPod nano to another computer.
For more information, see iTunes Help.
While videos are being synced from your computer to iPod nano, the iTunes status
window shows progress and the iPod nano icon in the source list flashes red.
When the update is done, a message in iTunes says “iPod update is complete.”
Syncing Selected Videos to iPod nano
Setting iTunes to sync selected videos to iPod nano is useful if you have more videos in
your iTunes library than will fit on iPod nano. Only the videos you specify are synced
with iPod nano. You can sync selected videos or selected playlists that contain videos.
To set iTunes to sync unwatched or selected movies to iPod nano:
1 In iTunes, select iPod nano in the source list and click the Movies tab.
2 Select “Sync movies.”
3 Select the movies or playlists you want.
Unwatched movies: Select “… unwatched movies” and choose the number you want
from the pop-up menu.
Selected movies or playlists: Click “Selected …,” choose “movies” or “playlists” from the
pop-up menu, and then select the movies or playlists you want.
4 Click Apply.
Note: If “Only sync checked items” is selected in the Summary pane, iTunes syncs only
items that are checked in your Movies and other libraries.
To set iTunes to sync most recent episodes or selected TV shows to iPod nano:
1 In iTunes, select iPod nano in the source list and click the TV Shows tab.
2 Select “Sync … episodes” and choose the number of episodes you want from the popup menu.
3 Click “Selected …” and choose “TV shows” or “playlists” from the pop-up menu.
4 Select the movies or playlists you want to sync.
5 Click Apply.
Note: If “Only sync checked items” is selected in the Summary pane, iTunes syncs only
items that are checked in your TV Shows and other libraries.Chapter 3 Video Features 37
Managing Videos Manually
Setting iTunes to let you manage iPod nano manually gives you the most flexibility for
managing videos on iPod nano. You can add and remove movies, TV shows, and other
items individually. You can also add videos from multiple computers to iPod nano
without removing videos already on iPod nano. See “Managing iPod nano Manually”
on page 24.
Adding Video Podcasts to iPod nano
You add video podcasts to iPod nano the same way you add other podcasts (see
page 25). If a podcast has a video component, the video plays when you choose it from
Podcasts.
If you set iTunes to manage movies and TV shows manually, you can reset iTunes later
to sync them automatically. If you set iTunes to sync automatically after you’ve been
manually managing iPod nano, you lose any items on iPod nano that aren’t part of your
iTunes library.
To reset iTunes to sync all movies automatically on iPod nano:
1 In iTunes, select iPod nano in the source list and click the Movies tab.
2 Select “Sync movies” and then select “All movies.”
3 Click Apply.
Note: If “Only sync checked items” is selected in the Summary pane, iTunes syncs only
items that are checked in your Movies and other libraries.
To reset iTunes to sync all TV shows automatically on iPod nano:
1 In iTunes, select iPod nano in the source list and click the TV Shows tab.
2 Select “Sync … episodes” and choose “all” from the pop-up menu.
3 Select “All TV shows.”
4 Click Apply.
Note: If “Only sync checked items” is selected in the Summary pane, iTunes syncs only
items that are checked in your TV Shows and other libraries.
Viewing and Listening to Videos
You can view and listen to videos on iPod nano. If you have an AV cable from Apple
(available separately at www.apple.com/ipodstore), you can watch videos from
iPod nano on TV.38 Chapter 3 Video Features
Viewing and Listening to Videos on iPod nano
Videos you add to iPod nano appear in the Videos menus. Music videos also appear in
Music menus.
To view a video on iPod nano:
m Choose Videos and browse for a video.
When you play the video, you see and hear it.
To listen to a music video’s sound or a video podcast’s sound without playing the
video:
m Choose Music and browse for a music video or a video podcast.
When you play the video, you hear it but don’t see the video.
Watching Videos on a TV Connected to iPod nano
If you have an AV cable from Apple, you can watch videos on a TV connected to your
iPod nano. First you set iPod nano to display videos on a TV, then connect iPod nano to
your TV, and then play a video.
Note: Use the Apple Component AV Cable, the Apple Composite AV Cable, or the
Apple AV Connection Kit. Other similar RCA-type cables might not work. You can
purchase the cables at www.apple.com/ipodstore.
To set iPod nano to display videos on a TV:
m Choose Videos > Settings, and then set TV Out to Ask or On.
If you set TV Out to Ask, iPod nano gives you the option of displaying videos on TV or
on iPod nano every time you play a video.
You can also set video to display full screen or widescreen, and set video to display on
PAL or NTSC devices.
To set TV settings:
m Choose Videos > Settings, and then follow the instructions below.
To set Do this
Video to display on PAL or
NTSC TVs
Set TV Signal to PAL or NTSC.
PAL and NTSC refer to TV broadcast standards. Your TV might use
either of these, depending on the region where it was purchased.
If you aren’t sure which your TV uses, check the documentation
that came with your TV.
The format of your external TV Set TV Screen to Widescreen for 16:9 format or Standard for 4:3
format.
Video to fit to your screen Set “Fit to Screen” to On.
If you set “Fit to Screen” to Off, widescreen videos display in
letterbox format on iPod nano or a standard (4:3) TV screen.
Captions to display Set Captions to On.Chapter 3 Video Features 39
To use the Apple Component AV Cable to connect iPod nano to your TV:
1 Plug the red, green, and blue video connectors into the component video input
(Y, Pb, and Pr) ports on your TV.
You can also use the Apple Composite AV cable. If you do, plug in the yellow video
connector into the video input port on your TV. Your TV must have RCA video and
audio ports.
2 Plug the white and red audio connectors into the left and right analog audio input
ports, respectively, on your TV.
3 Plug the iPod Dock Connector into your iPod nano or Universal Dock.
4 Plug the USB connector into your USB Power Adapter or your computer to keep your
iPod nano charged.
5 Turn on iPod nano and your TV or receiver to start playing.
Make sure you set TV Out on your iPod nano to On.
Note: The ports on your TV or receiver may differ from the ports in the illustration.
To view a video on your TV:
1 Connect iPod nano to your TV (see above).
2 Turn on your TV and set it to display from the input ports connected to iPod nano. See
the documentation that came with your TV for more information.
3 On iPod nano, choose Videos and browse for a video.
USB Power
Adapter
iPod Left audio (white)
Dock Connector
USB
connector
Television
Video in (Y, Pb, Pr)
Right audio (red)4
40
4 Photo Features
You can import digital photos to your computer and add
them to iPod nano. You can view your photos on iPod nano
or as a slideshow on your TV. Read this chapter to learn about
importing and viewing photos.
Importing Photos
You can import digital photos from a digital camera to your computer, and then add
them to iPod nano for viewing. You can connect iPod nano to a TV and view photos as
a slideshow with music.
Importing Photos from a Camera to Your Computer
You can import photos from a digital camera or a photo card reader.
To import photos to a Mac using iPhoto:
1 Connect the camera or photo card reader to your computer. Open iPhoto (located in
the Applications folder) if it doesn’t open automatically.
2 Click Import.
Images from the camera are imported into iPhoto.
You can import other digital images into iPhoto, such as images you download from
the web. For more information about importing and working with photos and other
images, open iPhoto and choose Help > iPhoto Help.Chapter 4 Photo Features 41
iPhoto is available for purchase as part of the iLife suite of applications at
www.apple.com/ilife. iPhoto might already be installed on your Mac, in the
Applications folder.
If you don’t have iPhoto, you can import photos using Image Capture.
To import photos to a Mac using Image Capture:
1 Connect the camera or photo card reader to your computer.
2 Open Image Capture (located in the Applications folder) if it doesn’t open
automatically.
3 To choose specific items to import, click Download Some. Or to download all items,
click Download All.
To import photos to a Windows PC:
m Follow the instructions that came with your digital camera or photo application.
Adding Photos From Your Computer to iPod nano
You can add photos to iPod nano from a folder on your hard disk. If you have a Mac
and iPhoto 4.0.3 or later, you can sync iPhoto albums automatically. If you have a
Windows PC and Adobe Photoshop Album 2.0 or later, or Adobe Photoshop Elements
3.0 or later, you can sync photo collections automatically.
Adding photos to iPod nano the first time might take some time, depending on how
many photos are in your photo library.
To sync photos from a Mac or Windows PC to iPod nano using a photo application:
1 In iTunes, select iPod nano in the source list and click the Photos tab.
2 Select “Sync photos from: …”
Â On a Mac, choose iPhoto from the pop-up menu.
Â On a Windows PC, choose Photoshop Album or Photoshop Elements from the
pop-up menu.
Note: Some versions of Photoshop Album and Photoshop Elements don’t support
collections. You can still use them to add all your photos.42 Chapter 4 Photo Features
3 If you want to add all your photos, select “All photos and albums.” If you want to keep
your photos organized by event, select “… events” and choose an option from the popup menu. If you want to add photos from only certain albums, select “Selected albums”
and select the albums you want.
4 Click Apply.
Each time you connect iPod nano to your computer, photos are synced automatically.
To add photos from a folder on your hard disk to iPod nano:
1 Drag the images you want into a folder on your computer.
If you want images to appear in separate photo albums on iPod nano, create folders
inside the main image folder, and drag images into the new folders.
2 In iTunes, select iPod nano in the source list and click the Photos tab.
3 Select “Sync photos from: …”
4 Choose “Choose Folder” from the pop-up menu and select your image folder.
5 Click Apply.
When you add photos to iPod nano, iTunes optimizes the photos for viewing.
Full-resolution image files aren’t transferred by default. Adding full-resolution image
files is useful, for example if you want to move them from one computer to another,
but isn’t necessary for viewing the images at full quality on iPod nano.
To add full-resolution image files to iPod nano:
1 In iTunes, select iPod nano in the source list and click the Photos tab.
2 Select “Include full-resolution photos.”
3 Click Apply.
iTunes copies the full-resolution versions of the photos to the Photos folder on
iPod nano.
To delete photos from iPod nano:
1 In iTunes, select iPod nano in the source list and click the Photos tab.
2 Select “Sync photos from: …”
Â On a Mac, choose iPhoto from the pop-up menu.
Â On a Windows PC, choose Photoshop Album or Photoshop Elements from the pop-up
menu.
3 Choose “Selected albums” and deselect the albums you no longer want on iPod nano.
4 Click Apply.Chapter 4 Photo Features 43
Adding Photos from iPod nano to a Computer
If you add full-resolution photos from your computer to iPod nano using the previous
steps, they’re stored in a Photos folder on iPod nano. You can connect iPod nano to a
computer and put these photos onto the computer. iPod nano must be enabled for
disk use (see “Using iPod nano as an External Disk” on page 46).
To add photos from iPod nano to a computer:
1 Connect iPod nano to the computer.
2 Drag image files from the Photos folder or DCIM folder on iPod nano to the desktop or
to a photo editing application on the computer.
Note: You can also use a photo editing application, such as iPhoto, to add photos
stored in the Photos folder. See the documentation that came with the application for
more information.
To delete photos from the Photos folder on iPod nano:
1 Connect iPod nano to the computer.
2 Navigate to the Photos folder on iPod nano and delete the photos you no longer want.
Viewing Photos
You can view photos on iPod nano manually or as a slideshow. If you have an optional
AV cable from Apple (for example, Apple Component AV Cable), you can connect
iPod nano to a TV and view photos as a slideshow with music.
Viewing Photos on iPod nano
To view photos on iPod nano:
1 On iPod nano, choose Photos > All Photos. Or choose Photos and a photo album to see
only the photos in the album. Thumbnail views of the photos might take a moment to
appear.
2 Select the photo you want and press the Center button to view a full-screen version.44 Chapter 4 Photo Features
From any photo-viewing screen, use the Click Wheel to scroll through photos. Press the
Next/Fast-forward or Previous/Rewind button to skip to the next or previous screen of
photos. Press and hold the Next/Fast-forward or Previous/Rewind button to skip to the
last or first photo in the library or album.
Viewing Slideshows
You can view a slideshow, with music and transitions if you choose, on iPod nano. If
you have an optional AV cable from Apple, you can view the slideshow on a TV.
To set slideshow settings:
m Choose Photos > Settings, and then follow these instructions:
To set Do this
Slideshows to display on
iPod nano
Set TV Out to Ask or Off.
Slideshows to display on TV Set TV Out to Ask or On.
If you set TV Out to Ask, iPod nano gives you the option of showing
slideshows on TV or on iPod nano every time you start a slideshow.
How long each slide is shown Choose Time Per Slide and pick a time.
The music that plays during
slideshows
Choose Music and choose a playlist. If you’re using iPhoto, you can
choose From iPhoto to copy the iPhoto music setting. Only the
songs that you’ve added to iPod nano play.
Slides to repeat Set Repeat to On.
Slides to display in random
order
Set Shuffle Photos to On.
Slides to display with
transitions
Choose Transitions and choose a transition type.
Slides to show on PAL
or NTSC TVs
Set TV Signal to PAL or NTSC.
PAL and NTSC refer to TV broadcast standards. Your TV might use
either of these, depending on the region where it was purchased.
If you aren’t sure which your TV uses, check the documentation
that came with your TV.Chapter 4 Photo Features 45
To view a slideshow on iPod nano:
m Select any photo, album, or roll, and press the Play/Pause button. Or select any
full-screen photo and press the Center button. To pause, press the Play/Pause button.
To skip to the next or previous photo, press the Next/Fast-forward or Previous/Rewind
button.
To connect iPod nano to a TV:
1 Connect the optional Apple Component or Composite AV cable to iPod nano.
Note: Use the Apple Component AV Cable, Apple Composite AV Cable, or Apple AV
Connection Kit. Other similar RCA-type cables won’t work. You can purchase the cables
at www.apple.com/ipodstore.
2 Connect the video and audio connectors to the ports on your TV (for an illustration,
see page 39).
Your TV must have RCA video and audio ports.
To view a slideshow on a TV:
1 Connect iPod nano to a TV (see above).
2 Turn on your TV and set it to display from the input ports connected to iPod nano. See
the documentation that came with your TV for more information.
3 On iPod nano, select any photo or album and press the Play/Pause button. Or select
any full-screen photo and press the Center button. To pause, press the Play/Pause
button. To skip to the next or previous photo, press the Next/Fast-forward or Previous/
Rewind button.
If you selected a playlist in Photos > Settings > Music, the playlist plays automatically
when you start the slideshow. The photos display on your TV and advance
automatically according to settings in the Slideshow > Settings menu.5
46
5 Extra Features and Accessories
iPod nano can do a lot more than play songs. And you can do
a lot more with it than listen to music.
Read this chapter to find out more about the extra features of iPod nano, including
how to use it as an external disk, alarm, or sleep timer; show the time of day in other
parts of the world; display notes; and sync contacts, calendars, and to-do lists. Learn
about how to use iPod nano as a stopwatch and to lock the screen, and about the
accessories available for iPod nano.
Using iPod nano as an External Disk
You can use iPod nano as an external disk to store data files.
Note: To add music and other audio or video files to iPod nano, you must use iTunes.
For example, you won’t see songs you add using iTunes in the Mac Finder or in
Windows Explorer. Likewise, if you copy music files to iPod nano in the Mac Finder or
Windows Explorer, you won’t be able to play them on iPod nano.
To enable iPod nano as an external disk:
1 In iTunes, select iPod nano in the source list and click the Summary tab.
2 In the Options section, select “Enable disk use.”
3 Click Apply.
When you use iPod nano as an external disk, the iPod nano disk icon appears on the
desktop on Mac, or as the next available drive letter in Windows Explorer on a Windows
PC.
Note: Clicking Summary and selecting “Manually manage music and videos” in the
Options section also enables iPod nano to be used as an external disk. Drag files to and
from iPod nano to copy them.
If you use iPod nano primarily as a disk, you might want to keep iTunes from opening
automatically when you connect iPod nano to your computer.Chapter 5 Extra Features and Accessories 47
To prevent iTunes from opening automatically when you connect iPod nano to your
computer:
1 In iTunes, select iPod nano in the source list and click the Summary tab.
2 In the Options section, deselect “Open iTunes when this iPod is connected.”
3 Click Apply.
Using Extra Settings
You can set the date and time, clocks in different time zones, and alarm and sleep
features on iPod nano. You can use iPod nano as a stopwatch or to play games, and you
can lock the iPod nano screen.
Setting and Viewing the Date and Time
The date and time are set automatically from your computer’s clock when you connect
iPod nano, but you can change the settings.
To set date and time options:
1 Choose Settings > Date & Time.
2 Choose one or more of the following options:
Adding Clocks for Other Time Zones
To add clocks for other time zones:
1 Choose Extras > Clocks.
2 On the Clocks screen, click the Center button and choose Add.
3 Choose a region and then choose a city.
The clocks you add appear in a list. The last clock you added appears last.
To Do this
Set the date Choose Date. Use the Click Wheel to change the selected value.
Press the Center button to move to the next value.
Set the time Choose Time. Use the Click Wheel to change the selected value.
Press the Center button to move to the next value.
Specify the time zone Choose Time Zone and use the Click Wheel to select a city in
another time zone.
Specify the status of Daylight
Savings Time (DST)
Choose DST and press the Center button to turn DST on or off.
Display the time in 24-hour
format
Choose 24 Hour Clock and press the Center button to turn the
24-hour format on or off.
Display the time in the title bar Choose Time in Title and press the Center button to turn the option
on or off. 48 Chapter 5 Extra Features and Accessories
To delete a clock:
1 Choose Extras > Clocks.
1 Choose the clock.
2 Choose Delete.
Setting the Alarm
You can set an alarm for any clock on iPod nano.
To use iPod nano as an alarm clock:
1 Choose Extras > Alarms.
2 Choose Create Alarm and set one or more of the following options:
To delete an alarm:
1 Choose Extras > Alarms.
2 Choose the alarm and then choose Delete.
Setting the Sleep Timer
You can set iPod nano to turn off automatically after playing or other content for a
specific period of time.
To set the sleep timer:
1 Choose Extras > Alarms.
2 Choose Sleep Timer and choose how long you want iPod nano to play.
Using the Stopwatch
You can use the stopwatch as you exercise to track your overall time and, if you’re
running on a track, your lap times. You can play music while you use the stopwatch.
To Do this
Turn the alarm on Choose Alarm and choose On.
Set the time Choose Time. Use the Click Wheel to change the selected value.
Press the Center button to move to the next value.
Set the date Choose Date. Use the Click Wheel to change the selected value.
Press the Center button to move to the next value.
Choose a sound Choose Tones or a playlist. If you choose Tones, select Beep to hear
the alarm through the internal speaker. If you choose a playlist,
you’ll need to connect iPod nano to speakers or headphones to
hear the alarm.
Set a repeat option Choose Repeat and choose an option (for example, “weekdays”).
Name the alarm Choose Label and choose an option (for example, “Wake up”).Chapter 5 Extra Features and Accessories 49
To use the stopwatch:
1 Choose Extras > Stopwatch.
2 Press the Play/Pause button to start the timer.
3 Press the Center button to record lap times. Up to three lap times show beneath the
overall time.
4 Press the Play/Pause button to stop the overall timer, or choose Resume to start the
timer again.
5 Choose New Timer to start a new stopwatch session.
Note: After you start the stopwatch, iPod nano stays on as long as you display the
Timer screen and the timer continues to run. If you start the stopwatch and then go to
another menu, and iPod nano isn’t playing music or a video, the stopwatch timer stops
and iPod nano turns off automatically after a few minutes.
To review or delete a logged stopwatch session:
1 Choose Extras > Stopwatch.
The current log and a list of saved sessions appear.
2 Choose a log to view session information.
iPod nano stores stopwatch sessions with dates, times, and lap statistics. You see the
date and time the session started; the total time of the session; the shortest, longest,
and average lap times; and the last several lap times.
3 Press the Center button and choose Delete Log to delete the chosen log, or Clear Logs
to delete all current logs.
Playing Games
iPod nano comes with three games: iQuiz, Klondike, and Vortex.
To play a game:
m Choose Extras > Games and choose a game.
You can purchase additional games from the iTunes Store (in some countries) to play
on iPod nano. After purchasing games in iTunes, you can add them to iPod nano by
syncing them automatically or by managing them manually.
To buy a game:
1 In iTunes, select iTunes Store in the source list.
2 Choose iPod Games from the iTunes Store list.
3 Select the game you want and click Buy Game.50 Chapter 5 Extra Features and Accessories
To sync games automatically to iPod nano:
1 In iTunes, select iPod nano in the source list and click the Games tab.
2 Select “Sync games.”
3 Click “All games” or “Selected games.” If you click “Selected games,” also select the
games you want to sync.
4 Click Apply.
Locking the iPod nano Screen
You can set a combination to prevent iPod nano from being used by someone without
your permission. When you lock an iPod nano that isn’t connected to a computer, you
must enter a combination to unlock and use it.
Note: This is different from the Hold button in that the Hold button prevents iPod nano
buttons from being pressed accidentally. The combination prevents another person
from using iPod nano.
To set a combination for iPod nano:
1 Choose Extras > Screen Lock.
2 On the New Combination screen, enter a combination:
Â Use the Click Wheel to select a number for the first position. Press the Center button
to confirm your choice and move to the next position.
Â Use the same method to set the remaining numbers of the combination. You can use
the Next/Fast-forward button to move to the next position and the Previous/Rewind
button to move to the previous position. Press the Center button in the final
position.
3 On the Confirm Combination screen, enter the combination to confirm it, or press
Menu to exit without locking the screen.
When you finish, you return to the Screen Lock screen, where you can lock the screen
or reset the combination. Press the Menu button to exit without locking the screen.
To lock the iPod nano screen:
m Choose Extras > Screen Lock > Lock.
If you just finished setting your combination, Lock will already be selected on the
screen. Just press the Center button to lock iPod.
When the screen is locked, you see a picture of a lock.
Note: You might want to add the Screen Lock menu item to the main menu so that
you can quickly lock the iPod nano screen. See “Adding or Removing Items from the
Main Menu” on page 9.Chapter 5 Extra Features and Accessories 51
When you see the lock on the screen, you can unlock the iPod nano screen in two
ways:
Â Press the Center button to enter the combination on iPod nano. Use the Click Wheel
to select the numbers and press the Center button to confirm them. If you enter the
wrong combination, the lock remains. Try again.
Â Connect iPod nano to the primary computer you use it with, and iPod nano
automatically unlocks.
Note: If you try these methods and you still can’t unlock iPod nano, you can restore
iPod nano. See “Updating and Restoring iPod Software” on page 61.
To change a combination you’ve already set:
1 Choose Extras > Screen Lock > Reset.
2 On the Enter Combination screen, enter the current combination.
3 On the New Combination screen, enter and confirm a new combination.
Note: If you can’t remember the current combination, the only way to clear it and enter
a new one is to restore the iPod nano software. See “Updating and Restoring iPod
Software” on page 61.
Syncing Contacts, Calendars, and To-Do Lists
iPod nano can store contacts, calendar events, and to-do lists for viewing on the go.
If you’re using Mac OS X v10.4 or later, you can use iTunes to sync the contact and
calendar information on iPod nano with Address Book and iCal. If you’re using any
version of Mac OS X earlier than 10.4, you can use iSync to sync your information.
Syncing information using iSync requires iSync 1.1 or later, and iCal 1.0.1 or later.
If you’re using Windows 2000 or Windows XP, and you use Windows Address Book or
Microsoft Outlook 2003 or later to store your contact information, you can use iTunes
to sync the address book information on iPod nano. If you use Microsoft Outlook 2003
or later to keep a calendar, you can also sync calendar information.
To sync contacts or calendar information using Mac OS X v10.4 or later:
1 Connect iPod nano to your computer.
2 In iTunes, select iPod nano in the source list and click the Contacts tab.
3 Do one of the following:
Â To sync contacts, in the Contacts section, select “Sync Address Book contacts,” and
select an option:
Â To sync all contacts automatically, select “All contacts.”
Â To sync selected groups of contacts automatically, select “Selected groups” and
select the groups you want to sync.52 Chapter 5 Extra Features and Accessories
Â To copy contacts’ photos to iPod nano, when available, select “Include contacts’
photos.”
When you click Apply, iTunes updates iPod nano with the Address Book contact
information you specified.
Â To sync calendars, in the Calendars section, select “Sync iCal calendars,” and choose
an option:
Â To sync all calendars automatically, choose “All calendars.”
Â To sync selected calendars automatically, choose “Selected calendars” and select
the calendars you want to sync.
When you click Apply, iTunes updates iPod nano with the calendar information you
specified.
To sync contacts and calendars with a Mac and iSync using a version of Mac OS X
earlier than v10.4:
1 Connect iPod nano to your computer.
2 Open iSync and choose Devices > Add Device. You need to do this step only the first
time you use iSync with iPod nano.
3 Select iPod nano and click Sync Now. iSync puts information from iCal and Mac Address
Book onto iPod nano.
The next time you want to sync iPod nano, you can simply open iSync and click Sync
Now. You can also choose to have iPod nano sync automatically when you connect it.
Note: iSync syncs information from your computer with iPod nano. You can’t use iSync
to sync information from iPod nano to your computer.
To sync contacts or calendars using Windows Address Book or Microsoft Outlook for
Windows:
1 Connect iPod nano to your computer.
2 In iTunes, select iPod nano in the source list and click the Contacts tab.
3 Do one of the following:
Â To sync contacts, in the Contacts section, select “Sync contacts from” and choose
Windows Address Book or Microsoft Outlook from the pop-up menu. Then select
which contact information you want to sync.
Â To sync calendars from Microsoft Outlook, in the Calendars section, select “Sync
calendars from Microsoft Outlook.”
4 Click Apply.
You can also add contact and calendar information to iPod nano manually. iPod nano
must be enabled as an external disk (see “Using iPod nano as an External Disk” on
page 46).Chapter 5 Extra Features and Accessories 53
To add contact information manually:
1 Connect iPod nano and open your favorite email or contacts application. You can add
contacts using Palm Desktop, Microsoft Outlook, Microsoft Entourage, and Eudora,
among others.
2 Drag contacts from the application’s address book to the Contacts folder on iPod nano.
In some cases, you might need to export contacts and then drag the exported file or
files to the Contacts folder. See the documentation for your email or contacts
application.
To add appointments and other calendar events manually:
1 Export calendar events from any calendar application that uses the standard iCal
format (filenames end in .ics) or vCal format (filenames end in .vcs).
2 Drag the files to the Calendars folder on iPod nano.
Note: To add to-do lists to iPod nano manually, save them in a calendar file with a .ics
or .vcs extension.
To view contacts on iPod nano:
m Choose Extras > Contacts.
To sort contacts by first or last name:
m Choose Settings > Sort By, and press the Center button to choose First or Last.
To view calendar events:
m Choose Extras > Calendars.
To view to-do lists:
m Choose Extras > Calendars > To Do’s.
Storing and Reading Notes
You can store and read text notes on iPod nano if it’s enabled as an external disk (see
page 46).
1 Save a document in any word-processing application as a text (.txt) file.
2 Place the file in the Notes folder on iPod nano.
To view notes:
m Choose Extras > Notes.54 Chapter 5 Extra Features and Accessories
Recording Voice Memos
You can record voice memos using an optional iPod nano-compatible microphone
(available for purchase at www.apple.com/ipodstore). You can store voice memos on
iPod nano and sync them with your computer. You can set iPod nano to record at lowquality mono (22.05 kHz) to save space, or high-quality stereo (44.1 kHz) for better
sound.
Note: Voice memos cannot be longer than two hours. If you record for more than two
hours, iPod nano automatically starts a new voice memo to continue your recording.
To record a voice memo:
1 Connect a microphone to the Dock connector port on iPod nano.
2 Set Quality to Low or High.
3 To begin recording, choose Record.
4 Hold the microphone a few inches from your mouth and speak. To pause recording,
choose Pause.
5 When you finish, choose Stop and Save. Your saved recording is listed by date and time.
To play a recording:
m Choose Extras > Voice Memos and select the recording.
Note: You won’t see a Voice Memos menu item if you’ve never connected a
microphone to iPod nano.
To sync voice memos with your computer:
Voice memos are saved in a Recordings folder on iPod in the WAV file format. If you
enable iPod nano for disk use, you can drag voice memos from the folder to copy
them.
If iPod nano is set to sync songs automatically (see “Syncing Music Automatically” on
page 23) and you record voice memos, the voice memos are automatically synced to a
playlist in iTunes (and removed from iPod nano) when you connect iPod nano. You see
the new Voice Memos playlist in the source list.
Learning About iPod nano Accessories
iPod nano comes with some accessories, and many other accessories are available at
www.apple.com/ipodstore.
To purchase iPod nano accessories, go to www.apple.com/ipodstore. Chapter 5 Extra Features and Accessories 55
Available accessories include:
Â iPod Radio Remote
Â Nike + iPod Sport Kit
Â Apple Universal Dock
Â Apple Component AV Cable
Â Apple Composite AV Cable
Â Apple AV Connection Kit
Â Apple USB Power Adapter
Â iPod In-Ear Headphones
Â World Travel Adapter Kit
Â iPod Socks
Â iPod Earphones
Â Third-party accessories—such as speakers, headsets, cases, car stereo adapters,
power adapters, and more
To use the earphones:
m Plug the earphones into the Headphones port. Then place the earbuds in your ears as
shown.
WARNING: Permanent hearing loss may occur if earbuds or headphones are used at
high volume. You can adapt over time to a higher volume of sound that may sound
normal but can be damaging to your hearing. If you experience ringing in your ears or
muffled speech, stop listening and have your hearing checked. The louder the volume,
the less time is required before your hearing could be affected. Hearing experts
suggest that to protect your hearing:
Â Limit the amount of time you use earbuds or headphones at high volume.
Â Avoid turning up the volume to block out noisy surroundings.
Â Turn the volume down if you can’t hear people speaking near you.
For information about setting a maximum volume limit on iPod, see “Setting the
Maximum Volume Limit” on page 29.
The earphones
cord is adjustable.6
56
6 Tips and Troubleshooting
Most problems with iPod nano can be solved quickly by
following the advice in this chapter.
General Suggestions
Most problems with iPod nano can be solved by resetting it. First, make sure iPod nano
is charged.
To reset iPod nano:
1 Toggle the Hold switch on and off (slide it to HOLD and then back again).
2 Press and hold the Menu and Center buttons for at least 6 seconds, until the
Apple logo appears.
If iPod nano won’t turn on or respond
Â Make sure the Hold switch isn’t set to HOLD.
Â The iPod nano battery might need to be recharged. Connect iPod nano to your
computer or to an Apple USB Power Adapter and let the battery recharge. Look for
the lightning bolt icon on the iPod nano screen to verify that iPod nano is receiving a
charge.
The 5 Rs: Reset, Retry, Restart, Reinstall, Restore
Remember these five basic suggestions if you have a problem with iPod nano. Try
these steps one at a time until your issue is resolved. If one of the following doesn’t
help, read on for solutions to specific problems.
Â Reset iPod nano. See “General Suggestions,” below.
Â Retry with a different USB port if you cannot see iPod nano in iTunes.
Â Restart your computer, and make sure you have the latest software updates
installed.
Â Reinstall iTunes software from the latest version on the web.
Â Restore iPod nano. See “Updating and Restoring iPod Software” on page 61.Chapter 6 Tips and Troubleshooting 57
To charge the battery, connect iPod nano to a USB 2.0 on your computer. Connecting
iPod nano to a USB port on your keyboard won’t charge the battery, unless your
keyboard has a high-powered USB 2.0 port.
Â Try the 5 Rs, one by one, until iPod nano responds.
If you want to disconnect iPod nano, but you see the message “Connected” or “Sync
in Progress”
Â If iPod nano is syncing music, wait for it to complete.
Â Select iPod nano in the iTunes source list and click the Eject (C) button.
Â If iPod nano disappears from the list of devices in the iTunes source list, but you still
see the “Connected” or “Sync in Progress” message on the iPod nano screen,
disconnect iPod nano.
Â If iPod nano doesn’t disappear from the list of devices in the iTunes source list, drag
the iPod nano icon from the desktop to the Trash (if you’re using a Mac) or, if you’re
using a Windows PC, eject the device in My Computer or click the Safely Remove
Hardware icon in the system tray and select iPod nano. If you still see the
“Connected” or “Sync in Progress” message, restart your computer and eject
iPod nano again.
If iPod nano isn’t playing music
Â Make sure the Hold switch isn’t set to HOLD.
Â Make sure the headphone connector is pushed in all the way.
Â Make sure the volume is adjusted properly. A maximum volume limit might have
been set. You can change or remove it by using Settings > Volume Limit. See “Setting
the Maximum Volume Limit” on page 29.
Â iPod nano might be paused. Try pressing the Play/Pause button.
Â Make sure you’re using iTunes 7.4 or later (go to www.apple.com/ipod/start). Songs
purchased from the iTunes Store using earlier versions of iTunes won’t play on
iPod nano until you upgrade iTunes.
Â If you’re using the iPod Universal Dock, make sure the iPod nano is seated firmly in
the Dock and make sure all cables are connected properly.
If you connect iPod nano to your computer and nothing happens
Â Make sure you have installed the latest iTunes software from
www.apple.com/ipod/start.
Â Try connecting to a different USB port on your computer.
Note: A USB 2.0 port is recommended to connect iPod nano. USB 1.1 is significantly
slower than USB 2.0. If you have a Windows PC that doesn’t have a USB 2.0 port, in
some cases you can purchase and install a USB 2.0 card. For more information, go to
www.apple.com/ipod.
Â iPod nano might need to be reset (see page 56). 58 Chapter 6 Tips and Troubleshooting
Â If you’re connecting iPod nano to a portable or laptop computer using the iPod Dock
Connector to USB 2.0 Cable, connect the computer to a power outlet before
connecting iPod nano.
Â Make sure you have the required computer and software. See “If you want to doublecheck the system requirements” on page 60.
Â Check the cable connections. Unplug the cable at both ends and make sure no
foreign objects are in the USB ports. Then plug the cable back in securely. Make sure
the connectors on the cables are oriented correctly. They can be inserted only one
way.
Â Try restarting your computer.
Â If none of the previous suggestions solves your problems, you might need to restore
iPod nano software. See “Updating and Restoring iPod Software” on page 61.
If iPod nano displays a “Connect to Power” message
This message may appear if iPod nano is exceptionally low on power and the battery
needs to be charged before iPod nano can communicate with your computer. To
charge the battery, connect iPod nano to a USB 2.0 port on your computer.
Leave iPod nano connected to your computer until the message disappears and
iPod nano appears in iTunes or the Finder. Depending on how depleted the battery is,
you may need to charge iPod nano for up to 30 minutes before it will start up.
To charge iPod nano more quickly, use the optional Apple USB Power Adapter.
Note: Connecting iPod nano to a USB port on your keyboard won’t charge the battery,
unless your keyboard has a high-powered USB 2.0 port.
If iPod nano displays a “Use iTunes to restore” message
Â Make sure you have the latest version of iTunes on your computer (download it from
www.apple.com/ipod/start).
Â Connect iPod nano to your computer. When iTunes opens, follow the onscreen
prompts to restore iPod nano.
Â If restoring iPod nano doesn’t solve the problem, iPod nano may need to be repaired.
You can arrange for service at the iPod Service & Support website:
www.apple.com/support/ipod
If songs or data sync more slowly over USB 2.0
Â If you sync a large number of songs or amount of data using USB 2.0 and the
iPod nano battery is low, iPod nano syncs the information at a reduced speed in
order to conserve battery power.
Â If you want to sync at higher speeds, you can stop syncing and keep the iPod nano
connected so that it can recharge, or connect it to the optional iPod USB 2.0 Power
Adapter. Let iPod nano charge for about an hour, and then resume syncing your
music or data.Chapter 6 Tips and Troubleshooting 59
If you can’t add a song or other item to iPod nano
The song may have been encoded in a format that iPod nano doesn’t support. The
following audio file formats are supported by iPod nano. These include formats for
audiobooks and podcasting:
Â AAC (M4A, M4B, M4P, up to 320 Kbps)
Â Apple Lossless (a high-quality compressed format)
Â MP3 (up to 320 Kbps)
Â MP3 Variable Bit Rate (VBR)
Â WAV
Â AA (audible.com spoken word, formats 2, 3, and 4)
Â AIFF
A song encoded using Apple Lossless format has full CD-quality sound, but takes up
only about half as much space as a song encoded using AIFF or WAV format. The same
song encoded in AAC or MP3 format takes up even less space. When you import music
from a CD using iTunes, it’s converted to AAC format by default.
Using iTunes for Windows, you can convert nonprotected WMA files to AAC or MP3
format. This can be useful if you have a library of music encoded in WMA format.
iPod nano doesn’t support WMA, MPEG Layer 1, MPEG Layer 2 audio files, or
audible.com format 1.
If you have a song in iTunes that isn’t supported by iPod nano, you can convert it to a
format iPod nano supports. For more information, see iTunes Help.
If you accidentally set iPod nano to use a language you don’t understand
You can reset the language.
1 Press and hold Menu until the main menu appears.
2 Choose the sixth menu item (Settings).
3 Choose the last menu item (Reset Settings).
4 Choose the left item (Reset) and select a language.
Other iPod nano settings, such as song repeat, are also reset.
Note: If you added or removed items from the iPod nano main menu (see “Adding or
Removing Items from the Main Menu” on page 9) the Settings menu item may be in a
different place. If you can’t find the Reset Settings menu item, you can restore
iPod nano to its original state and choose a language you understand. See “Updating
and Restoring iPod Software” on page 61.
If you can’t see videos or photos on your TV
Â You must use RCA-type cables made specifically for iPod nano, such as the Apple
Component or Apple Composite AV cables, to connect iPod nano to your TV. Other
similar RCA-type cables won’t work.60 Chapter 6 Tips and Troubleshooting
Â Make sure your TV is set to display images from the correct input source (see the
documentation that came with your TV for more information).
Â Make sure all cables are connected correctly (see “Watching Videos on a TV
Connected to iPod nano” on page 38).
Â Make sure the yellow end of the Apple Composite AV Cable is connected to the
video port on your TV.
Â If you’re trying to watch a video, go to Videos > Settings and set TV Out to On, and
then try again. If you’re trying to view a slideshow, go to Photos > Slideshow Settings
and set TV Out to On, and then try again.
Â If that doesn’t work, go to Videos > Settings (for video) or Photos > Settings (for a
slideshow) and set TV Signal to PAL or NTSC, depending on which type of TV you
have. Try both settings.
If you want to double-check the system requirements
To use iPod nano, you must have:
Â One of the following computer configurations:
Â A Mac with a USB 2.0 port
Â A Windows PC with a USB 2.0 or a USB 2.0 card installed
Â One of the following operating systems:
Â Mac OS X v10.4.9 or later
Â Windows Vista
Â Windows XP Home or Professional with Service Pack 2 or later
Â iTunes 7.6 or later (iTunes can be downloaded from www.apple.com/ipod/start)
If your Windows PC doesn’t have a USB 2.0 port, you can purchase and install a USB 2.0
card. For more information on cables and compatible USB cards, go to
www.apple.com/ipod.
On the Mac, iPhoto 4.0.3 or later is recommended for adding photos and albums to
iPod nano. This software is optional. iPhoto might already be installed on your Mac.
Check the Applications folder. If you have iPhoto 4 you can update it by choosing
Apple () > Software Update.
On a Windows PC, iPod nano can sync photo collections automatically from Adobe
Photoshop Album 2.0 or later, and Adobe Photoshop Elements 3.0 or later, available at
www.adobe.com. This software is optional.
On both Mac and Windows PC, iPod nano can sync digital photos from folders on your
computer’s hard disk.Chapter 6 Tips and Troubleshooting 61
If you want to use iPod nano with a Mac and a Windows PC
If you’re using iPod nano with a Mac and you want to use it with a Windows PC, you
must restore the iPod software for use with the PC (see “Updating and Restoring iPod
Software” on page 61). Restoring the iPod software erases all data from iPod nano,
including all songs.
You cannot switch from using iPod nano with a Mac to using it with a Windows PC
without erasing all data on iPod nano.
If you lock the iPod nano screen and can’t unlock it
Normally, if you can connect iPod nano to the computer it’s authorized to work with,
iPod nano automatically unlocks. If the computer authorized to work with iPod nano is
unavailable, you can connect iPod nano to another computer and use iTunes to restore
iPod software. See the next section for more information.
If you want to change the screen lock combination and you can’t remember the
current combination, you must restore the iPod software and then set a new
combination.
Updating and Restoring iPod Software
You can use iTunes to update or restore iPod software. It’s recommended that you
update iPod nano to use the latest software. You can also restore the software, which
puts iPod nano back to its original state.
Â If you choose to update, the software is updated, but your settings and songs aren’t
affected.
Â If you choose to restore, all data is erased from iPod nano, including songs, videos,
files, contacts, photos, calendar information, and any other data. All iPod nano
settings are restored to their original state.
To update or restore iPod nano:
1 Make sure you have an Internet connection and have installed the latest version of
iTunes from www.apple.com/ipod/start.
2 Connect iPod nano to your computer.
3 In iTunes, select iPod nano in the source list and click the Summary tab.
The Version section tells you whether iPod nano is up to date or needs a newer version
of the software.
4 Click Update to install the latest version of the software.
5 If necessary, click Restore to restore iPod nano to its original settings (this erases all data
from iPod nano). Follow the onscreen instructions to complete the restore process.7
62
7 Safety and Cleaning
Read the following important safety and handling
information for Apple iPods.
Keep the iPod Safety Guide and the features guide for your iPod handy for future
reference.
Important Safety Information
Handling iPod Do not bend, drop, crush, puncture, incinerate, or open iPod.
Avoiding water and wet locations Do not use iPod in rain, or near washbasins or other
wet locations. Take care not to spill any food or liquid into iPod. In case iPod gets wet,
unplug all cables, turn iPod off, and slide the Hold switch (if available) to HOLD before
cleaning, and allow it to dry thoroughly before turning it on again.
Repairing iPod Never attempt to repair iPod yourself. iPod does not contain any userserviceable parts. For service information, choose iPod Help from the Help menu in
iTunes or go to www.apple.com/support/ipod. The rechargeable battery in iPod should
be replaced only by an Apple Authorized Service Provider. For more information about
batteries, go to www.apple.com/batteries.
± Read all safety information below and operating instructions before using
iPod to avoid injury.
WARNING: Failure to follow these safety instructions could result in fire, electric shock,
or other injury or damage.Chapter 7 Safety and Cleaning 63
Using the Apple USB Power Adapter (available separately) If you use the Apple USB
Power Adapter (sold separately at www.apple.com/ipodstore) to charge iPod, make
sure that the power adapter is fully assembled before you plug it into a power outlet.
Then insert the Apple USB Power Adapter firmly into the power outlet. Do not connect
or disconnect the Apple USB Power Adapter with wet hands. Do not use any power
adapter other than an Apple iPod power adapter to charge your iPod.
The iPod USB Power Adapter may become warm during normal use. Always allow
adequate ventilation around the iPod USB Power Adapter and use care when handling.
Unplug the iPod USB Power Adapter if any of the following conditions exist:
Â The power cord or plug has become frayed or damaged.
Â The adapter is exposed to rain, liquids, or excessive moisture.
Â The adapter case has become damaged.
Â You suspect the adapter needs service or repair.
Â You want to clean the adapter.
Avoiding hearing damage Permanent hearing loss may occur if earbuds or
headphones are used at high volume. Set the volume to a safe level. You can adapt
over time to a higher volume of sound that may sound normal but can be damaging to
your hearing. If you experience ringing in your ears or muffled speech, stop listening
and have your hearing checked. The louder the volume, the less time is required before
your hearing could be affected. Hearing experts suggest that to protect your hearing:
Â Limit the amount of time you use earbuds or headphones at high volume.
Â Avoid turning up the volume to block out noisy surroundings.
Â Turn the volume down if you can’t hear people speaking near you.
For information about how to set a maximum volume limit on iPod, see “Setting the
Maximum Volume Limit” on page 29.
Using headphones safely Use of headphones while operating a vehicle is not
recommended and is illegal in some areas. Be careful and attentive while driving. Stop
using iPod if you find it disruptive or distracting while operating any type of vehicle or
performing any other activity that requires your full attention.
Avoiding seizures, blackouts, and eye strain If you have experienced seizures or
blackouts, or if you have a family history of such occurrences, please consult a
physician before playing video games on iPod (if available). Discontinue use and
consult a physician if you experience: convulsion, eye or muscle twitching, loss of
awareness, involuntary movements, or disorientation. When watching videos or playing
games on iPod (if available), avoid prolonged use and take breaks to prevent eye strain.64 Chapter 7 Safety and Cleaning
Important Handling Information
Carrying iPod iPod contains sensitive components, including, in some cases, a hard
drive. Do not bend, drop, or crush iPod. If you are concerned about scratching iPod,
you can use one of the many cases sold separately.
Using connectors and ports Never force a connector into a port. Check for
obstructions on the port. If the connector and port don’t join with reasonable ease,
they probably don’t match. Make sure that the connector matches the port and that
you have positioned the connector correctly in relation to the port.
Keeping iPod within acceptable temperatures Operate iPod in a place where the
temperature is always between 0º and 35º C (32º to 95º F). iPod play time might
temporarily shorten in low-temperature conditions.
Store iPod in a place where the temperature is always between -20º and 45º C
(-4º to 113º F). Don’t leave iPod in your car, because temperatures in parked cars can
exceed this range.
When you’re using iPod or charging the battery, it is normal for iPod to get warm. The
exterior of iPod functions as a cooling surface that transfers heat from inside the unit to
the cooler air outside.
Keeping the outside of iPod clean To clean iPod, unplug all cables, turn iPod off, and
slide the Hold switch (if available) to HOLD. Then use a soft, slightly damp, lint-free
cloth. Avoid getting moisture in openings. Don’t use window cleaners, household
cleaners, aerosol sprays, solvents, alcohol, ammonia, or abrasives to clean iPod.
Disposing of iPod properly For information about the proper disposal of iPod,
including other important regulatory compliance information, see “Regulatory
Compliance Information” on page 66.
NOTICE: Failure to follow these handling instructions could result in damage to iPod
or other property.8
 65
8 Learning More, Service,
and Support
You can find more information about using iPod nano in
onscreen help and on the web.
The following table describes where to get more iPod-related software and service
information.
To learn about Do this
Service and support,
discussions, tutorials, and
Apple software downloads
Go to: www.apple.com/support/ipodnano
Using iTunes Open iTunes and choose Help > iTunes Help.
For an online iTunes tutorial (available in some areas only), go to:
www.apple.com/support/itunes
Using iPhoto (on Mac OS X) Open iPhoto and choose Help > iPhoto Help.
Using iSync (on Mac OS X) Open iSync and choose Help > iSync Help.
Using iCal (on Mac OS X) Open iCal and choose Help > iCal Help.
The latest information on
iPod nano
Go to: www.apple.com/ipodnano
Registering iPod nano To register iPod nano, install iTunes on your computer and connect
iPod nano.
Finding the iPod nano serial
number
Look at the back of iPod nano or choose Settings > About and
press the Center button. In iTunes (with iPod nano connected to
your computer), select iPod nano in the source list and click the
Settings tab.
Obtaining warranty service First follow the advice in this booklet, the onscreen help, and
online resources. Then go to: www.apple.com/support/ipodnano/
service66
Regulatory Compliance Information
FCC Compliance Statement
This device complies with part 15 of the FCC rules.
Operation is subject to the following two conditions:
(1) This device may not cause harmful interference,
and (2) this device must accept any interference
received, including interference that may cause
undesired operation. See instructions if interference
to radio or TV reception is suspected.
Radio and TV Interference
This computer equipment generates, uses, and can
radiate radio-frequency energy. If it is not installed
and used properly—that is, in strict accordance with
Apple’s instructions—it may cause interference with
radio and TV reception.
This equipment has been tested and found to
comply with the limits for a Class B digital device in
accordance with the specifications in Part 15 of FCC
rules. These specifications are designed to provide
reasonable protection against such interference in a
residential installation. However, there is no
guarantee that interference will not occur in a
particular installation.
You can determine whether your computer system is
causing interference by turning it off. If the
interference stops, it was probably caused by the
computer or one of the peripheral devices.
If your computer system does cause interference to
radio or TV reception, try to correct the interference
by using one or more of the following measures:
Â Turn the TV or radio antenna until the interference
stops.
Â Move the computer to one side or the other of the
TV or radio.
Â Move the computer farther away from the TV or
radio.
Â Plug the computer in to an outlet that is on a
different circuit from the TV or radio. (That is, make
certain the computer and the TV or radio are on
circuits controlled by different circuit breakers or
fuses.)
If necessary, consult an Apple Authorized Service
Provider or Apple. See the service and support
information that came with your Apple product. Or,
consult an experienced radio/TV technician for
additional suggestions.
Important: Changes or modifications to this product
not authorized by Apple Inc. could void the EMC
compliance and negate your authority to operate
the product.
This product was tested for EMC compliance under
conditions that included the use of Apple peripheral
devices and Apple shielded cables and connectors
between system components.
It is important that you use Apple peripheral devices
and shielded cables and connectors between system
components to reduce the possibility of causing
interference to radios, TV sets, and other electronic
devices. You can obtain Apple peripheral devices and
the proper shielded cables and connectors through
an Apple Authorized Reseller. For non-Apple
peripheral devices, contact the manufacturer or
dealer for assistance.
Responsible party (contact for FCC matters only):
Apple Inc. Product Compliance, 1 Infinite Loop
M/S 26-A, Cupertino, CA 95014-2084, 408-974-2000.
Industry Canada Statement
This Class B device meets all requirements of the
Canadian interference-causing equipment
regulations.
Cet appareil numérique de la classe B respecte
toutes les exigences du Règlement sur le matériel
brouilleur du Canada.
VCCI Class B Statement
Korea Class B Statement
(ૺૺဧ ઠધබ 67
Russia
European Community
Disposal and Recycling Information
Your iPod must be disposed of properly according to
local laws and regulations. Because this product
contains a battery, the product must be disposed of
separately from household waste. When your iPod
reaches its end of life, contact Apple or your local
authorities to learn about recycling options.
For information about Apple’s recycling program,
go to: www.apple.com/environment/recycling
Deutschland: Dieses Gerät enthält Batterien. Bitte
nicht in den Hausmüll werfen. Entsorgen Sie dieses
Gerätes am Ende seines Lebenszyklus entsprechend
der maßgeblichen gesetzlichen Regelungen.
Nederlands: Gebruikte batterijen kunnen worden
ingeleverd bij de chemokar of in een speciale
batterijcontainer voor klein chemisch afval (kca)
worden gedeponeerd.
China:
Taiwan:
European Union—Disposal Information:
This symbol means that according to local laws and
regulations your product should be disposed of
separately from household waste. When this product
reaches its end of life, take it to a collection point
designated by local authorities. Some collection
points accept products for free. The separate
collection and recycling of your product at the time
of disposal will help conserve natural resources and
ensure that it is recycled in a manner that protects
human health and the environment.
Apple and the Environment
At Apple, we recognize our responsibility to
minimize the environmental impacts of our
operations and products.
For more information, go to:
www.apple.com/environment
© 2008 Apple Inc. All rights reserved. Apple, the Apple logo, FireWire,
iCal, iLife, iPhoto, iPod, iPod Socks, iTunes, Mac, Macintosh, and Mac OS
are trademarks of Apple Inc., registered in the U.S. and other countries.
Finder, the FireWire logo, and Shuffle are trademarks of Apple Inc.
iTunes Store is a service mark of Apple Inc. NIKE is a trademark of NIKE,
Inc. and its affiliates and is used under license. Other company and
product names mentioned herein may be trademarks of their
respective companies.
Mention of third-party products is for informational purposes only and
constitutes neither an endorsement nor a recommendation. Apple
assumes no responsibility with regard to the performance or use of
these products. All understandings, agreements, or warranties, if any,
take place directly between the vendors and the prospective users.
Every effort has been made to ensure that the information in this
manual is accurate. Apple is not responsible for printing or clerical
errors.
The product described in this manual incorporates copyright
protection technology that is protected by method claims of certain
U.S. patents and other intellectual property rights owned by
Macrovision Corporation and other rights owners. Use of this
copyright protection technology must be authorized by Macrovision
Corporation and is intended for home and other limited viewing uses
only unless otherwise authorized by Macrovision Corporation. Reverse
engineering or disassembly is prohibited.
Apparatus Claims of U.S. Patent Nos. 4,631,603, 4,577,216, 4,819,098 and
4,907,093 licensed for limited viewing uses only.
019-1149/01-2008Index
68
Index
A
accessories for iPod 54
adding album artwork 21
adding menu items 9, 27
adding music
disconnecting iPod 12
from more than one computer 23, 35
manually 24
methods 22
On-The-Go playlists 28
tutorial 65
adding photos
about 40
all or selected photos 41, 42
automatically 41
from computer to iPod 41
from iPod to computer 43
full-resolution image 42
address book, syncing 51
Adobe Photoshop Album 60
Adobe Photoshop Elements 60
alarms
deleting 48
setting 48
album artwork
adding 21
viewing 31
albums, purchasing 19
audiobooks
purchasing 19
setting play speed 32
AV cables 38, 39, 45
B
backlight
setting timer 9
turning on 6, 9
battery
charge states when disconnected 16
charging 14
rechargeable 16
replacing 16
very low 15, 58
viewing charge status 14
brightness setting 10
browsing
iTunes Store 19
podcasts 19
quickly 7
songs 6, 26
videos 6, 19
with Cover Flow 7
buttons
Center 5
disabling with Hold switch 6
Eject 13
buying. See purchasing
C
calendar events, syncing 51
Center button, using 5, 26
Charging, Please Wait message 15, 58
charging the battery
about 14
using the iPod USB Power Adapter 15
using your computer 14
when battery very low 15, 58
cleaning iPod 64
Click Wheel
browsing songs 26
turning off the Click Wheel sound 8
using 5
clocks
adding for other time zones 47
settings 47
close captions 38
compilations 27
component AV cable 38, 39, 45
composite AV cable 38, 39, 45
computer
adding photos to iPod 41
charging the battery 14
connecting iPod 10
getting photos from iPod 43
importing photos from camera 40Index 69
problems connecting iPod 57
requirements 60
connecting iPod
about 10
charging the battery 14
to a TV 39, 45
Connect to Power message 15
contacts
sorting 53
syncing 51
controls
disabling with Hold switch 8
using 5
converting unprotected WMA files 59
converting videos for use with iPod 34
Cover Flow 7
customizing the Music menu 27
D
data files, storing on iPod 46
date and time
setting 47
viewing 47
determining battery charge 16
diamond icon on scrubber bar 6
digital photos. See photos
disconnecting iPod
about 10
during music update 12
ejecting first 12
instructions 13
troubleshooting 57
disk, using iPod as 46
displaying time in title bar 47
downloading
podcasts 19
video podcasts 34
See also adding; syncing
E
Eject button 13
ejecting before disconnecting 12
external disk, using iPod as 46
F
fast-forwarding a song or video 6
features of iPod 4
file formats, supported 59
finding your iPod serial number 6
fit video to screen 38
full-resolution images 42
G
games 49
getting help 65
getting information about your iPod 10
getting started with iPod 60
H
handling information 62
hearing loss warning 55
help, getting 65
Hold switch 6, 8
I
iCal, getting help 65
Image Capture, importing photos to a Mac 41
images. See photos
importing contacts, calendars, and to-do lists. See
syncing
importing photos
from camera to computer 40
See also adding photos
importing videos 34
iPhoto
getting help 40, 65
importing photos from camera 40
recommended version 60
iPod Dock 10
iPod Dock Connector 10
iPod Updater application 61
iPod USB power adapter 14
iSync, getting help 65
iTunes
ejecting iPod 13
getting help 65
setting not to open automatically 46
Sound Check 30
Store 19
iTunes Library, adding songs 20
iTunes Store
browsing 19
browsing videos 34
searching 19
signing in 18, 33
L
language
resetting 59
specifying 10
letterbox 38
library, adding songs 20
lightning bolt on battery icon 14
locating your iPod serial number 6
locking iPod screen 50
lyrics
adding 21
viewing on iPod 3070 Index
M
Mac OS X operating system 60
main menu
adding or removing items 9
opening 5
settings 9, 27
main menu, returning to 6
managing iPod manually 24
manually adding 24
maximum volume limit, setting 29
memos, recording 54
menu items
adding or removing 9, 27
choosing 6
returning to main menu 6
returning to previous menu 6
modifying playlists 24
movies
syncing 37
syncing selected 36
See also videos
music
iPod not playing 57
purchasing 19
rating 28
setting for slideshows 44
tutorial 65
See also adding music; songs
Music menu, customizing 27
music videos
syncing 24
See also videos
N
navigating quickly 7
notes, storing and reading 53
Now Playing screen
moving to any point in a song or video 6
scrubber bar 6
shuffling songs or albums 27
NTSC TV 38, 44
O
On-The-Go playlists
copying to computer 28
making 27
rating songs 28
saving 28
operating system requirements 60
overview of iPod features 4
P
PAL TV 38, 44
pausing
a song 6
a video 6
phone numbers, syncing 51
photo collections, adding automatically 41
photo library 41
photos
adding and viewing 40
deleting 42, 43
full-resolution 42
importing to Windows PC 41
importing using Image Capture 41
syncing 41, 42
viewing on iPod 43
playing
games 49
songs 6
videos 6
playlists
adding songs 6, 24
making on iPod 27
modifying 24
On-The-Go 27
setting for slideshows 45
plug on battery icon 14
podcasting 31
podcasts
browsing 19
downloading 19
downloading video podcasts 34
listening 31
subscribing 19
updating 25
ports
RCA video and audio 39, 45
USB 60
power adapter safety 63
Power Search in iTunes Store 19
previous menu, returning to 6
problems. See troubleshooting
purchasing songs, albums, audiobooks 19
purchasing videos 34
Q
quick navigation 7
R
radio accessory 32
random play 6
rating songs 28
RCA video and audio ports 39, 45
rechargeable batteries 16
recording voice memos 54
registering iPod 65
relative volume, playing songs at 30
removing menu items 9, 27
repairing iPod 62Index 71
replacing battery 16
replaying a song or video 6
requirements
computer 60
operating system 60
reset all settings 10
resetting iPod 6, 56
resetting the language 59
restore message 58
restoring iPod software 61
rewinding a song or video 6
S
Safely Remove Hardware icon 13
safety considerations
setting up iPod 62
safety information 62
saving On-The-Go playlists 28
screen lock 50
scrolling quickly 7
scrubber bar 6
searching
iPod 7
iTunes Store 19
Select button. See Center button
serial number 6, 10
serial number, locating 65
service and support 65
sets of songs. See playlists
setting combination for iPod 50
settings
about your iPod 10
alarm 48
audiobook play speed 32
backlight timer 9
brightness 10
Click Wheel sound 8
date and time 47
language 10
main menu 9, 27
PAL or NTSC TV 38, 44
playing songs at relative volume 30
repeating songs 27
reset all 10
shuffle songs 27
sleep timer 48
slideshow 44
TV 38
volume limit 29
shuffling songs on iPod 6, 27
sleep mode and charging the battery 14
sleep timer, setting 48
slideshows
background music 44
random order 44
setting playlist 45
settings 44
viewing on iPod 45
software
getting help 65
iPhoto 60
iPod Updater 61
support versions 60
updating 61
songs
adding to On-The-Go playlists 6
browsing 6
browsing and playing 26
entering names 21
fast-forwarding 6
pausing 6
playing 6
playing at relative volume 30
purchasing 19
rating 28
repeating 27
replaying 6
rewinding 6
shuffling 6, 27
skipping ahead 6
viewing lyrics 21
See also music
sorting contacts 53
Sound Check 30
standard TV 38
stopwatch 48, 49
storing
data files on iPod 46
notes on iPod 53
subscribing to podcasts 19
supported operating systems 60
suppressing iTunes from opening 46
syncing
address book 51
movies 37
music 22
music videos 24
photos 41, 42
selected movies 36
selected videos 36
to-do lists 51
TV shows 37
videos 35
See also adding
T
third-party accessories 55
time, displaying in title bar 47
timer, setting for backlight 9
time zones, clocks for 4772 Index
title bar, displaying time 47
to-do lists, syncing 51
transitions for slides 44
troubleshooting
connecting iPod to computer 57
cross-platform use 61
disconnecting iPod 57
iPod not playing music 57
iPod won’t respond 56
resetting iPod 56
restore message 58
safety considerations 62
setting incorrect language 59
slow syncing of music or data 58
software update and restore 61
TV slideshows 59
unlocking iPod screen 61
turning iPod on and off 6
tutorial 65
TV
connecting to iPod 39, 45
PAL or NTSC 38, 44
settings 38
viewing slideshows 39, 45
TV shows
syncing 37
See also videos
U
unlocking iPod screen 51, 61
unresponsive iPod 56
unsupported audio file formats 59
updating and restoring software 61
USB 2.0 port
recommendation 60
slow syncing of music or data 58
USB port on keyboard 11, 57
Use iTunes to restore message in display 58
V
video captions 38
video podcasts
downloading 33, 34
viewing on a TV 38
videos
adding to iPod 35
browsing 6
browsing in iTunes Store 19, 34
converting 34
fast-forwarding 6
importing into iTunes 34
pausing 6
playing 6
purchasing 33, 34
replaying 6
rewinding 6
skipping ahead 6
syncing 35
viewing on a TV 38
viewing on iPod 38
viewing album artwork 31
viewing lyrics 30
viewing music videos 38
viewing photos 43
viewing slideshows
on a TV 39, 45
on iPod 45
settings 44
troubleshooting 59
voice memos
recording 54
syncing with your computer 54
volume
changing 6
setting maximum limit 29
W
warranty service 65
widescreen TV 38
Windows
importing photos 41
supported operating systems 60
troubleshooting 61
WMA files, converting 59

iTunes Video and Audio Asset Guide
5.0

 Contents
Overview 4
Introduction 4
Changes Made in this Release 4
What’s New in the iTunes Video and Audio Asset Guide 5.0? 4
Music Audio Content Profiles 6
Music Audio Source Profile 6
Pre-Cut Ringtone Source Profile 6
Music Album Cover Art Profile 7
Music Digital Booklet Profile 7
Content Considerations 8
Music Video Content Profiles 9
Music Video SD Source Profile 9
NTSC 9
PAL 10
Music Video HD Source Profile 10
Music Video Audio Source Profile 11
Music Video Audio/Video Container 11
Music Video Screen Capture Image Profile 12
Television Content Profiles 13
HD TV Source Profile 13
SD TV Source Profile 14
NTSC 14
PAL 14
TV Audio Source Profile 15
MPEG-2 Program Stream Container 15
QuickTime Container 16
TV Audio/Video Container 16
MPEG-2 Program Stream Container 16
QuickTime Container 16
TV Closed Captioning Profile 17
TV Cover Art Profile 18
2012-05-22 | © 2012 Apple Inc. All Rights Reserved.
2TV Content Considerations 19
Film Content Profiles 20
Film HD Source Profile 20
Film SD Source Profile 20
NTSC 20
PAL 21
Film Audio Source Profile 21
Film Audio/Video and Alt-Audio Container 22
Film Closed Captioning Profile 23
Film iTunes Timed Text Profile 23
Film Dub Card Video Profile 24
Dub Card Video Profile 24
Film Chapter Image Profile 25
Film Poster Art Profile 25
Film Content Considerations 26
XML 27
Revision History 28
Previous Spec Revisions 28
Audio Channel Assignments 30
How to Apply Audio Channel Assignments 30
Table 1: Audio Channel Assignment Labels 36
2012-05-22 | © 2012 Apple Inc. All Rights Reserved.
3
ContentsThis document provides detailed delivery information for all accepted media and files for the iTunes Store,
including music, music video, television, and movies. If further details are required, contact your iTunes Technical
Representative.
Introduction
Quality is important to us at iTunes. We expect to receive the highest-quality assets available. Our product
must meet or exceed the quality of the physical product already out in the marketplace. For example, if 5.1
surround sound or closed captions exist on the physical version of the product, those must be provided. If the
physical product gives the chapters actual names (as opposed to Chapter 1, Chapter 2, and so on), then our
product should have those same chapter titles. If the album is in stereo, stereo audio must be provided.
Changes Made in this Release
Date/Version Changes Made
Album cover art and poster art requirements have changed. Removed
TIFF from the list of recommended image formats and removed DPI
requirements. Added delivery requirements for dub card video. 96Khz
audio is now supported.
May 30, 2012 - Version 5.0
For a complete history of changes, see “Previous Spec Revisions” (page 28).
What’s New in the iTunes Video and Audio Asset Guide 5.0?
Music: Album Cover Art
Album cover art must be at least 1400 x 1400 pixels (2400 x 2400 pixels recommended for best results) with
a 1:1 aspect ratio. The file must be a high-quality JPEG with .jpg extension or PNG with .png extension. Do
not increase the size of a smaller image to meet the minimum size standard. Excessively blurry or pixelated
images will be rejected.
2012-05-22 | © 2012 Apple Inc. All Rights Reserved.
4
Overviewdummy tet to make page break Music: Audio Source Profile
The iTunes Store accepts audio with a sampling rate of 96Khz and 24-bit resolution for album tracks and
ringtones.
TV: Cover Art
TV cover art must be at least 1400 x 1400 pixels (2400 x 2400 pixels recommended for best results) with a 1:1
aspect ratio. The file must be a high-quality JPEG with .jpg extension or PNG with .png extension. Do not
increase the size of a smaller image to meet the minimum size standard. Excessively blurry or pixelated images
will be rejected.
Film: Poster Art
Poster art must be at least 1400 x 2100 pixels with a 2:3 aspect ratio. The file must be a high-quality JPEG with
.jpg extension or PNG with .png extension. Don't increase the size of a smaller image to meet the minimum
size standard. Excessively blurry or pixelated images will be rejected.
Film: Dub Card Video
Added delivery requirements for dub card video files. See “Film Dub Card Video Profile” (page 24).
Overview
Changes Made in this Release
2012-05-22 | © 2012 Apple Inc. All Rights Reserved.
5Music Audio Source Profile
The iTunes Store accepts audio with a sampling rate of 44.1Khz and 16-bit or 24-bit resolution and 96Khz with
24-bit resolution. Note that the audio source must be stereo unless it does not exist.
Uncompressed audio formats supported are:
Format Container Type Qualified CODEC
Pulse-Code Modulation (PCM) WAV (.wav)
QuickTime http://www.apple.com/quicktime
iTunes http://www.apple.com/itunes
Apple Lossless (ALAC) M4A (.m4a)
CAF (.caf) iTunes Producer
Free Lossless Audio Codec (FLAC) FLAC (.flac) FLAC http://flac.sourceforge.net
All other audio formats will be rejected.
Important All audio must be generated using a CODEC qualified and approved by Apple.
Pre-Cut Ringtone Source Profile
The iTunes Store accepts pre-cut ringtones with a sampling rate of 44.1 kHz and 16-bit or 24-bit resolution and
96Khz with 24-bit resolution. Note that the audio source must be stereo unless it does not exist. The audio file
must be lossless and be one of these formats: WAV, FLAC, ALAC. The minimum length is 5 seconds and the
maximum length is 30 seconds.
See the table above for the uncompressed audio formats that are supported. All other audio formats will be
rejected.
2012-05-22 | © 2012 Apple Inc. All Rights Reserved.
6
Music Audio Content ProfilesImportant All audio must be generated using a CODEC qualified and approved by Apple.
Music Album Cover Art Profile
●
JPEG with .jpg extension (quality unconstrained) or PNG with .png extension
● Color space: RGB (screen standard)
● Minimum size of 1400 x 1400 pixels. 2400 x 2400 pixels recommended for best results.
●
Images must be square
● File formats: JPEG or PNG (100% quality)
● 1:1 aspect ratio
Do not increase the size of a smaller image to meet the minimum size standard. Excessively blurry or pixelated
images will be rejected.
Important CMYK (print standard) images will not be accepted.
Music Digital Booklet Profile
● PDF format with .pdf extension
● Four-page minimum
● No more than 10 MB in size
● All fonts embedded
● 11 in x 8.264 in (28 cm x 21 cm)
● RGB color
● Horizontal presentation
● All images full-bleed as shown in sample pages
Important These booklets are expressly designed for the iTunes Store format, and cannot be reproductions
of the liner notes with borders to increase their size.
Music Audio Content Profiles
Music Album Cover Art Profile
2012-05-22 | © 2012 Apple Inc. All Rights Reserved.
7Content Considerations
● When saving as PDF, make sure the document opens full screen with no negative space surrounding the
document.
●
If the digital booklet is many pages, consider using fewer images or optimizing images to achieve lower
overall file size.
● Printer’s marks are not allowed.
● You cannot sell or advertise other products or services. No other promotional sites are allowed.
● No links to anything outside of the booklet, except to the artist and/or label website(s).
● No time-sensitive information (for example, a promotion or dates for an upcoming tour or concert).
Music Audio Content Profiles
Music Digital Booklet Profile
2012-05-22 | © 2012 Apple Inc. All Rights Reserved.
8Note Chaptering is not supported for music videos.
Music Video SD Source Profile
NTSC
● MPEG-2 Program Stream Main Profile
● 4:2:0 chroma sampling
●
ITU-R BT.601 color space
● 15 Mbps minimum
● Long GOP
● 640 fixed horizontal dimension
● Variable size vertical dimension depending on aspect ratio of source, maximum size of 480
● Square pixel aspect ratio (1:1)
● Native frame rate of original source:
● 29.97 interlaced frames per second video source can be delivered either interlaced or de-interlaced
properly tagged as progressive
● 24 frames per second must be delivered progressive
● 23.976 frames per second for inverse telecine must be delivered progressive; must not be delivered
interlaced or delivery will fail
● Field dominance must be properly tagged (top field first, bottom field first, or progressive)
● Telecine materials will not be accepted
● For mixed frame rate material please contact your iTunes Technical Representative
●
Interlaced content must be tagged non-progressive and field ordering must be defined in the stream.
● Crop inactive pixels and maintain fields. All edges must have active pixels for greater than 90% of the
duration of the video.
2012-05-22 | © 2012 Apple Inc. All Rights Reserved.
9
Music Video Content ProfilesPAL
● MPEG-2 Program Stream Main Profile
● 4:2:0 chroma sampling
●
ITU-R BT.601 color space
● 15 Mbps minimum
● Long GOP
● 640 fixed horizontal dimension
● Variable size vertical dimension depending on aspect ratio of source, maximum size of 480
● Square pixel aspect ratio (1:1)
● Native frame rate of original source:
● 25 interlaced frames per second sourced from video must be delivered de-interlaced and properly
tagged as progressive
● 24 and 25 frames per second sourced from film must be delivered progressive
● 23.976 frames per second for inverse telecine must be delivered progressive; must not be delivered
interlaced or delivery will fail
● Field dominance must be properly tagged (top field first, bottom field first, or progressive)
● Telecine or interlaced materials will not be accepted
● For mixed frame rate material please contact your iTunes Technical Representative
● Crop inactive pixels. All edges must have active pixels for greater than 90% of the duration of the video.
Important All video must begin and end with at least one black frame.
Music Video HD Source Profile
● Apple ProRes 422 (HQ)
● VBR expected at ~220 Mbps
● 1920 x 1080 square pixel aspect ratio material
● Native frame rate of original source:
● 29.97 interlaced frames per second for video sourced
● 24 or 25 progressive frames per second for film sourced
● 23.976 progressive frames for inverse telecine sourced from film
Music Video Content Profiles
Music Video HD Source Profile
2012-05-22 | © 2012 Apple Inc. All Rights Reserved.
10● Telecine materials will not be accepted
● HD source may be delivered matted: letterbox, pillarbox, or windowbox.
● The HD source may be delivered in its full-frame state with metadata included to specify the crop
rectangle. See “Music Video Single” in the iTunes Package Music Specification for details.
●
If the HD source file is not delivered matted or if there are no inactive pixels, we recommend setting
all crop dimension attributes to '0' (zero).
Important All video must begin and end with at least one black frame.
Music Video Audio Source Profile
If 5.1 Surround is available for a music video audio source, the audio should be delivered in 5.1 Surround in
addition to providing a stereo version; otherwise the audio may be delivered in Stereo only.
Surround
● LPCM in either Big Endian or Little Endian, 16-bit or 24-bit, at least 48kHz
● Expected channels: L, R, C, LFE, Ls, Rs
Stereo
● MPEG-1 layer II stereo
● 384 kpbs
● 48Khz
●
Included in the same file as the delivered video
Music Video Audio/Video Container
● Deliver all content in an MPEG-2 Program Stream file container
● The .mpg file extension is expected for all MPEG-2 content
● Audio must be delivered muxed with the video stream
Music Video Content Profiles
Music Video Audio Source Profile
2012-05-22 | © 2012 Apple Inc. All Rights Reserved.
11Note Closed-captioning is currently not supported for music videos.
Music Video Screen Capture Image Profile
● Screen capture from delivered video
●
JPEG with .jpg extension (quality unconstrained) or PNG with .png extension
● RGB (screen standard)
● Minimum dimensions: Must be 640 x 100 pixels.
● Variable size vertical dimension. Must be same aspect ratio as video source, with a maximum size of 480.
● Only the active pixel area may be included.
Do not increase the size of a smaller image to meet the minimum size standard. Excessively blurry or pixelated
images will be rejected. Images must be taken directly from the video.
Important CMYK (print standard) images will not be accepted.
Music Video Content Profiles
Music Video Screen Capture Image Profile
2012-05-22 | © 2012 Apple Inc. All Rights Reserved.
12HD TV Source Profile
● Apple ProRes 422 (HQ)
●
ITU-R BT.709 color space, file tagged correctly as 709
● VBR expected at 88-220 Mbps
● 1920 x 1080 or 1280 x 720 square pixel aspect ratio material*
● 23.976, 24, 25, 29.97 frame rates are supported
● Native frame rate of original source:
● 29.97 interlaced frames per second video source can be delivered either interlaced or de-interlaced
properly tagged as progressive
● 24 and 25 frames per second must be delivered progressive
● 23.976 frames per second for inverse telecine must be delivered progressive; must not be delivered
interlaced or delivery will fail
● Field dominance must be properly tagged (top field first, bottom field first, or progressive)
● Fields and frames may not be duplicated or eliminated to create a broadcast frame rate (for example,
telecine, NTSC to PAL conversion)
● For mixed frame rate material please contact your iTunes Technical Representative
●
Interlaced content must be correctly tagged as interlaced and field ordering must be defined in the
QuickTime container.
● Crop dimensions should be supplied in the metadata for content with inactive pixels due to letterbox,
pillarbox, or windowbox. Please refer to the iTunes Package TV Specification for further information.
● Content upscaled from SD will be rejected.
* If your mezzanine library is not stored in HD D5 or HDCam-SR, contact your iTunes Technical Representative.
2012-05-22 | © 2012 Apple Inc. All Rights Reserved.
13
Television Content ProfilesSD TV Source Profile
NTSC
● MPEG-2 Program Stream Main Profile
● 4:2:0 chroma sampling
●
ITU-R BT.601 color space
● 15 Mbps minimum
● Long GOP
● 640 fixed horizontal dimension
● Variable size vertical dimension depending on aspect ratio of source, maximum size of 480
● Square pixel aspect ratio (1:1)
● Native frame rate of original source:
● 29.97 interlaced frames per second video source can be delivered either interlaced or de-interlaced
properly tagged as progressive
● 24 frames per second must be delivered progressive
● 23.976 frames per second for inverse telecine must be delivered progressive; must not be delivered
interlaced or delivery will fail
● Field dominance must be properly tagged (top field first, bottom field first, or progressive)
● Fields and frames may not be duplicated or eliminated to create a broadcast frame rate (for example,
telecine, NTSC to PAL conversion)
● For mixed frame rate material please contact your iTunes Technical Representative
●
Interlaced content must be tagged non-progressive and field ordering must be defined in the stream.
● Crop inactive pixels and maintain fields. All edges must have active pixels for greater than 90% of the
duration of the video.
● Content may NOT be delivered letterbox, pillarbox, or windowbox.
PAL
● MPEG-2 Program Stream Main Profile
● 4:2:0 chroma sampling
●
ITU-R BT.601 color space
● 15 Mbps minimum
Television Content Profiles
SD TV Source Profile
2012-05-22 | © 2012 Apple Inc. All Rights Reserved.
14● Long GOP
● 640 fixed horizontal dimension
● Variable size vertical dimension depending on aspect ratio of source, maximum size of 480
● Square pixel aspect ratio (1:1)
● Native frame rate of original source:
● 25 interlaced frames per second sourced from video must be delivered de-interlaced and properly
tagged as progressive
● 24 and 25 frames per second sourced from film must be delivered progressive
● 23.976 frames per second for inverse telecine must be delivered progressive; must not be delivered
interlaced or delivery will fail
● Field dominance must be properly tagged (top field first, bottom field first, or progressive)
●
Interlaced materials will not be accepted
● Fields and frames may not be duplicated or eliminated to create a broadcast frame rate (for example,
telecine, NTSC to PAL conversion)
● For mixed frame rate material please contact your iTunes Technical Representative
● Crop inactive pixels. All edges must have active pixels for greater than 90% of the duration of the video.
● Content may NOT be delivered letterbox, pillarbox, or windowbox.
Important All video must begin and end with at least one black frame.
TV Audio Source Profile
MPEG-2 Program Stream Container
Stereo
● MPEG-1 layer II
● 384 kpbs
● 48Khz
●
Included in the same file as the delivered video
Television Content Profiles
TV Audio Source Profile
2012-05-22 | © 2012 Apple Inc. All Rights Reserved.
15QuickTime Container
Surround
● LPCM in either Big Endian or Little Endian, 16-bit or 24-bit, at least 48kHz
● Expected channels: L, R, C, LFE, Ls, Rs
Stereo
● LPCM in either Big Endian or Little Endian, 16-bit or 24-bit, at least 48kHz
● Expected Dolby Pro Logic channels: Lt, Rt or expected stereo channels: L, R
TV Audio/Video Container
MPEG-2 Program Stream Container
● Deliver all content in an MPEG-2 Program Stream file container.
● The .mpg file extension is expected for all MPEG-2 content.
● Audio must be delivered muxed with the video stream.
QuickTime Container
● Deliver all content in a QuickTime .mov file container.
● The QuickTime .mov file extension is expected for all audio and video content.
Television Content Profiles
TV Audio/Video Container
2012-05-22 | © 2012 Apple Inc. All Rights Reserved.
16● Each audio channel must have an assignment. The channel assignments must match one of the options
below. Note that "Lt" and "Rt" are only used for Dolby matrix audio mixdown. If audio doesn't conform,
contact your iTunes Technical Representative.
Option 1
5.1 Surround Tracks Stereo Tracks
L R C Lfe Ls Rs Lt Rt
Track 1 -- six channels Track 2
L R C Lfe Ls Rs Lt Rt
Track 3
One track containing all Surround channels; Matrix Stereo with Lt in one track and Rt channel in another track
L R C Lfe Ls Rs Lt Rt
Option 2
Track 1 Track 2 Track 3 Track 4 Track 5 Track 6 Track 7 Track 8
One track for each channel
Option 3
Track 1 -- six channels Track 2 -- two channels
L R C Lfe Ls Rs Lt Rt
One track containing all Surround channels; Matrix Stereo with Lt and Rt channels in one track
L R C Lfe Ls Rs
Option 4
Track 1 Track 2 Track 3 Track 4 Track 5 Track 6
One track for each Surround channel; Matrix Stereo with Lt and Rt channels in one track
Track 7 -- two channels
Lt Rt
Option 5
No Surround. Stereo with L in one track and R in another track
L R
Track 1 Track 2
Option 6
No Surround. Stereo with both L and R channels in one track
Track 1 -- two channels
L R
Important Refer to “Table 1: Audio Channel Assignment Labels” (page 36) for label descriptions and “How
to Apply Audio Channel Assignments” (page 30) for instructions on applying audio channel assignments.
TV Closed Captioning Profile
Note Closed captioning can only be sent with ProRes files.
● English text in EIA 608 format.
● Delivered in the same package with the video it references.
●
In a Scenarist SCC formatted file, using .scc file extension.
Television Content Profiles
TV Closed Captioning Profile
2012-05-22 | © 2012 Apple Inc. All Rights Reserved.
17● SCC files must be 29.97 regardless of frame rate of the movie file. Note: Captioning workflows utilizing
23.976 FPS timecodes can be accepted but the timecodes will be regarded as 29.97 FPS.
● SCC files should preserve the timecode mode (drop or non-drop) used in your captioning process, not
necessarily the mode represented in the QuickTime movie source.
● SCC files must be validated for proper sync against the associated video file using QuickTime 7 Pro.
● Captionsshould display and synchronize to within one second of the initial, audible dialog to be represented
in text.
The timecodes of the captions are relative to the start of the program, and not the QuickTime movie'stimecode
track.
Currently, the iTunes Store does not support EIA 708 (ATSC closed captioning) or Teletext.
MacCaption is a tool you can use to create .scc files: http://www.cpcweb.com/products/. (Note that this
product is not endorsed by Apple. Apple cannot and does not provide support for third-party products.)
Note If closed caption data is available for any broadcast or web delivery system, it must be suppled
to iTunes.
TV Cover Art Profile
●
JPEG with .jpg extension (quality unconstrained) or PNG with .png extension
● RGB (screen standard)
● 1400 x 1400 pixels minimum size (2400 x 2400 recommended for best results)
● 1:1 aspect ratio
Do not increase the size of a smaller image to meet the minimum size standard. Excessively blurry or pixelated
images will be rejected.
Important CMYK (print standard) images will not be accepted.
Television Content Profiles
TV Cover Art Profile
2012-05-22 | © 2012 Apple Inc. All Rights Reserved.
18TV Content Considerations
● No bugs or logos should be visible during the body of the video.
● No tune-ins should be visible during the body of the video. Tune-ins are only acceptable at the end of the
video.
● No ratings or advisories should be displayed at any time during the video.
● Network cards at the beginning and end of the video are accepted as long as they are visible less than
five (5) seconds.
● Commercials or other promotional material, including URLs, are NOT accepted. For more details, please
contact your iTunes Technical Representative.
● Commercial black may be a maximum of 5 seconds.
● Previews must contain content suitable for a general audience.
● Previews must not have opening or ending credits and should not start on a black frame.
● A minimum of 1 black frame at the beginning and end of each video is required.
Television Content Profiles
TV Content Considerations
2012-05-22 | © 2012 Apple Inc. All Rights Reserved.
19Film HD Source Profile
● Apple ProRes 422 (HQ)
●
ITU-R BT.709 color space, file tagged correctly as 709
● VBR expected at ~220 Mbps
● 1920 x 1080 square pixel aspect ratio material
● Native frame rate of original source:
● 29.97 interlaced frames per second for video sourced
● 24 or 25 progressive frames per second for film sourced
● 23.976 progressive frames for inverse telecine sourced from film
● Telecine materials will not be accepted
● Content may be delivered matted: letterbox, pillarbox, or windowbox.
Important All videos must begin and end with at least one black frame.
Film SD Source Profile
NTSC
● Apple ProRes 422 (HQ)
● VBR expected at 40-60 Mbps
● 720 x 480 or 720 x 486 encoded pixels; for display at either 853 x 480 for 16:9 content or 640 x 480 for 4:3
content
● All encoded content must include pixel aspect ratio (pasp) that defines content as either 4:3 or 16:9.
● Native frame rate of original source:
● 29.97 frames per second video source can be delivered interlaced
● 24 frames per second must be delivered progressive
2012-05-22 | © 2012 Apple Inc. All Rights Reserved.
20
Film Content Profiles● 23.976 frames per second for inverse telecine must be delivered progressive; must not be delivered
interlaced or delivery will fail
● Telecine materials will not be accepted
● Content may be delivered matted: letterbox, pillarbox, or windowbox.
PAL
● Apple ProRes 422 (HQ)
● VBR expected at 40-60 Mbps
● 720 x 576 encoded pixels; for display at either 1024 x 576 for 16:9 content or 768 x 576 for 4:3 content
● All encoded content must include pixel aspect ratio (pasp) that defines content as either 4:3 or 16:9.
● Native frame rate of original source:
● 24 and 25 frames per second sourced from film must be delivered progressive
● 23.976 frames per second for inverse telecine must be delivered progressive; must not be delivered
interlaced or delivery will fail
● Telecine materials will not be accepted
● Content may be delivered matted: letterbox, pillarbox, or windowbox.
25 fps interlaced PAL films are NOT supported.
Important All videos must begin and end with at least one black frame.
Film Audio Source Profile
For every film that 5.1 Surround audio is available in any competing format or market, it must be provided to
iTunes in addition to the stereo tracks.
Surround
● LPCM in either Big Endian or Little Endian, 16-bit or 24-bit, at least 48kHz
● Expected channels: L, R, C, LFE, Ls, Rs
Stereo
● LPCM in either Big Endian or Little Endian, 16-bit or 24-bit, at least 48kHz
● Expected Dolby Pro Logic channels: Lt, Rt or expected stereo channels: L, R
Film Content Profiles
Film Audio Source Profile
2012-05-22 | © 2012 Apple Inc. All Rights Reserved.
21Film Audio/Video and Alt-Audio Container
● Deliver all content in a QuickTime .mov file container.
● The QuickTime .mov file extension is expected for all audio and video content.
● Each audio channel must have an assignment. The channel assignments must match one of the options
below:
Option 1
5.1 Surround Tracks Stereo Tracks
L R C Lfe Ls Rs Lt Rt
Track 1 -- six channels Track 2
L R C Lfe Ls Rs Lt Rt
Track 3
One track containing all Surround channels; Matrix Stereo with Lt in one track and Rt channel in another track
L R C Lfe Ls Rs Lt Rt
Option 2
Track 1 Track 2 Track 3 Track 4 Track 5 Track 6 Track 7 Track 8
One track for each channel
Option 3
Track 1 -- six channels Track 2 -- two channels
L R C Lfe Ls Rs Lt Rt
One track containing all Surround channels; Matrix Stereo with Lt and Rt channels in one track
L R C Lfe Ls Rs
Option 4
Track 1 Track 2 Track 3 Track 4 Track 5 Track 6
One track for each Surround channel; Matrix Stereo with Lt and Rt channels in one track
Track 7 -- two channels
Lt Rt
Option 5
No Surround. Stereo with L in one track and R in another track
L R
Track 1 Track 2
Option 6
No Surround. Stereo with both L and R channels in one track
Track 1 -- two channels
L R
Important Refer to “Table 1: Audio Channel Assignment Labels” (page 36) for label descriptions and
“How to Apply Audio Channel Assignments” (page 30) for instructions on applying audio channel
assignments.
Note For more information on alternate audio, see the “Assets and Data Files” section in the
iTunes Package Film Specification .
Film Content Profiles
Film Audio/Video and Alt-Audio Container
2012-05-22 | © 2012 Apple Inc. All Rights Reserved.
22Film Closed Captioning Profile
● English text in EIA 608 format.
● Delivered in the same package with the video it references.
●
In a Scenarist SCC formatted file, using .scc file extension.
● SCC files must be 29.97 regardless of frame rate of the movie file. Note: Captioning workflows utilizing
23.976 FPS timecodes can be accepted but the timecodes will be regarded as 29.97 FPS.
● SCC files should preserve the timecode mode (drop or non-drop) used in your captioning process, not
necessarily the mode represented in the QuickTime movie source.
● SCC files must be validated for proper sync against the associated video file using QuickTime 7 Pro.
● Captionsshould display and synchronize to within one second of the initial, audible dialog to be represented
in text.
The timecodes of the captions are relative to the start of the program, and not the QuickTime movie'stimecode
track.
Currently, the iTunes Store does not support EIA 708 (ATSC closed captioning) or Teletext.
MacCaption is a tool you can use to create .scc files: http://www.cpcweb.com/products/. (Note that this product
is not endorsed by Apple. Apple cannot and does not provide support for third-party products.)
Note The closed caption file must be provided unless it does not exist.
Film iTunes Timed Text Profile
Below is a summary of delivery requirements for iTunes Timed Text. Refer to Chapter 5 in the iTunes Package
Film Specification for complete details.
● Delivered in an iTunes Timed Text (iTT) formatted file, using .itt file extension.
● Delivered in the same package with the video it references as an asset in the block.
● Only one div element is allowed in an iTT document.
● timeBase must be set to smpte.
● dropMode must be set to "dropNTSC" or "nonDrop"; iTunes Timed Text does not support dropPAL.
● Only sansSerif may be specified as the typeface in fontFamily.
Film Content Profiles
Film Closed Captioning Profile
2012-05-22 | © 2012 Apple Inc. All Rights Reserved.
23The iTT file format is a subset of the Timed Text Markup Language, Version 1.0 W3C Candidate Recommendation
23 February 2010 (TTML) (http://www.w3.org/TR/2010/CR-ttaf1-dfxp-20100223/) from the World Wide Web
Consortium (W3C) (http://w3.org/). All iTT documents are TTML documents that use the restricted subset of
TTML.
Film Dub Card Video Profile
The full feature-length video asset is comprised of a set of data files, which play specific roles for their asset.
The following table describes the optional data file for dub card video.
Asset Data File Description
Type
A video-only sequence containing one or more still
credits specific to the locale-matched audio. iTunes
products will include dub credit video sequencesfor
the associated audio dubs following the main
program.
Locale: Required
Role: video.end.dub_credits
An optional data file containing
the credits associated with an
audio track.
Full
Dub Card Video Profile
● Apple ProRes 422 (HQ)
● Movie correctly tagged with color parameter: ITU BT.709
● Video dimensions, pixel aspect ratio, and frame rate must match full program video
● Minimum of 4 seconds per dub card
● Crop dimensions from full program video will be applied to all dub card video — effective crop must
match full program video
● Crop attributes must not be supplied for dub card video
● Sound tracks should not be supplied for dub card video — sound tracks will be ignored
● Dub card video will be deinterlaced if necessary so the field order does not need to match — progressive
is preferred
● Dissolves and scrolling credits are not supported
● First and last frames do not need to be black frames
Film Content Profiles
Film Dub Card Video Profile
2012-05-22 | © 2012 Apple Inc. All Rights Reserved.
24Film Chapter Image Profile
●
JPEG with .jpg extension (quality unconstrained)
● RGB (screen standard)
● Must be same aspect ratio as video source
● 640 minimum horizontal dimension (larger for HD sourced)
● Variable size vertical dimension (based on aspect ratio of video source)
● Only active pixel area may be included
● Chapter images must be cropped (no letterbox, pillarbox, or windowbox)
● Chapter images must contain picture content
● Chapter image files must be unique with different checksums
Important CMYK (print standard) images will not be accepted.
Film Poster Art Profile
●
JPEG with .jpg extension (quality unconstrained) or PNG with .png extension
● RGB (screen standard)
● 1400 x 2100 pixels minimum size
● 2:3 aspect ratio
● Poster art (one-sheet) from film. Must contain key art and title. DVD cover, release date, website, or
promotional tagging may not be included.
● Poster art must not display film ratings.
Do not increase the size of a smaller image to meet the minimum size standard. Excessively blurry or pixelated
images will be rejected.
Important CMYK (print standard) images will not be accepted.
Film Content Profiles
Film Chapter Image Profile
2012-05-22 | © 2012 Apple Inc. All Rights Reserved.
25Film Content Considerations
● The full movie asset should not contain FBI, MPAA, or release date tagging.
● The trailer asset should not contain FBI, MPAA, or release date tagging.
● A minimum of 1 black frame at the beginning and end of each video is required.
● Trailer should be same aspect ratio as the full asset.
● Promotional bumpers, including URLs, are NOT accepted. For more details, please contact your iTunes
Technical Representative.
● Trailers must contain content suitable for a general audience.
● Poster art should not contain DVD tagging, release date tagging, or website tagging.
Film Content Profiles
Film Content Considerations
2012-05-22 | © 2012 Apple Inc. All Rights Reserved.
26● All XML must be encoded in UTF-8.
● No byte order markers (BOM) can be used.
● There should be no null data or empty tags in the XML. If not used, elements should be removed.
● The XML must be formatted to use line breaks and indentations.
For further information, please refer to the appropriate media type metadata specification, or consult with
your iTunes Technical Representative.
2012-05-22 | © 2012 Apple Inc. All Rights Reserved.
27
XMLPrevious Spec Revisions
The following table lists the previously-released specifications and the revisions:
Date/Version Summary
Added crop dimensions for TV. Clarified content considerations for
TV. Clarified closed captioning for TV. Added delivery requirements
for iTT files.
September 22, 2011 - Version
4.8
Clarified delivery requirements for 5.1 audio and closed captioning.
Added the profile for closed captioning for TV. Film poster art
requirements have changed.
July 13, 2011 - Version 4.7
Revision 2
Clarified HD cropping for TV. Added color space requirement for HD
film source. Clarified closed captioning text for film.
April 15, 2011 - Version 4.7
Removed assetspecificationsfor books(a new iBookstore asset guide
has been created). Renamed this asset guide to: iTunes Video and
Audio Asset Guide .
February 9, 2011 - Version 4.6
Clarified surround sound for HD music video audio source profile.
Clarified delivery of HD source for music videos. Added a chapter for
book source profiles. Put back 25 fps in the HD TV source profile that
was incorrectly removed. Added two new best practice items to the
TV Content Considerations section.
November 5, 2010 - Version
4.5
Added source profile for HD music video and cropping information.
Clarified album cover art. Added surround sound to HD music video
audio source profile.
August 5, 2010 - Version 4.4
Clarified that ALAC in a CAF container is allowed. Added source profile
for pre-cut ringtones. Clarified that film ratings should not appear on
poster art.
February 3, 2010 - Version 4.3
December 18, 2009 - Version Clarified quality standards. Clarified closed captioning.
4.2
November 10, 2009 - Version Clarified audio requirements for music and film.
4.1
2012-05-22 | © 2012 Apple Inc. All Rights Reserved.
28
Revision HistoryDate/Version Summary
Added best practices content for Film. Clarified requirements for SCC
files.
September 11, 2009 - Version
4.0
Clarified image and audio requirements. Clarified frame rate
requirements for TV.
July 1, 2009 - Version 3.3.2
Added support for PNG format images for cover art, poster art, and
video screen captures. PNG images are not currently supported for
chapter thumbnail images.
May 12, 2009 - Version 3.3.1
Added updated PAL support for film. Added closed-captioning to Film
Content Profile. Added 24-bit support for audio. Added best practices
content for TV. Clarified how to send stereo sound for Film and TV.
March 17, 2009 - Version 3.3
Added audio source specification to Music Audio Content Profile,
added HD format to Television Content Profile and Appendix I, which
provides audio channel assignments instructions.
October 1, 2008 - Version 3.2
Complete reformatting of the Guide. Separation of content type
profiles. Addition of Movie HD and SD specification. Addition of image
specifications for TV and Film.
May 8, 2008 - Version 3.1.1
April 2, 2007 - Version 2.3 Introduction of Asset Specification Guide.
Revision History
Previous Spec Revisions
2012-05-22 | © 2012 Apple Inc. All Rights Reserved.
29How to Apply Audio Channel Assignments
Step 1: Open the Movie Properties window from the Window > Show Movie Properties menu.
Important You must use the Pro version of QuickTime.
2012-05-22 | © 2012 Apple Inc. All Rights Reserved.
30
Audio Channel AssignmentsStandard Movie Properties window:
Audio Channel Assignments
How to Apply Audio Channel Assignments
2012-05-22 | © 2012 Apple Inc. All Rights Reserved.
31Step 2: Go to the View > Columns menu and choose Channels. You may add additional columns like ID, Data
Rate, and so on.
Audio Channel Assignments
How to Apply Audio Channel Assignments
2012-05-22 | © 2012 Apple Inc. All Rights Reserved.
32Notice the Channels column in the following screenshot indicates the audio tracks are Mono.
Step 3: Select the sound track to make the audio channel assignment and click the Audio Settings tab.
Audio Channel Assignments
How to Apply Audio Channel Assignments
2012-05-22 | © 2012 Apple Inc. All Rights Reserved.
33Step 4: To make the Channel Assignment, choose the appropriate setting from the pop-up menu. Repeat this
process for each audio track.
In this example all the tracks have been properly assigned for the channel assignments of Option 2 asindicated
in the Audio/Video Containersection for“Television Content Profiles” (page 13) and “Film Content Profiles” (page
20).
Audio Channel Assignments
How to Apply Audio Channel Assignments
2012-05-22 | © 2012 Apple Inc. All Rights Reserved.
34Notice the Channels column in the following screenshot no longer indicates the audio tracks are Mono.
Noticethisindicatestheassignment.
Thisshouldnotindicatemono.
Step 5: Save the file.
Step 6: Open the Movie Inspector from the Window > Show Movie Inspector menu to verify assignments
were applied correctly.
Audio Channel Assignments
How to Apply Audio Channel Assignments
2012-05-22 | © 2012 Apple Inc. All Rights Reserved.
35Table 1: Audio Channel Assignment Labels
Label Description
L Left
R Right
C Center
LFE LFE Screen
Ls Left Surround
Rs Right Surround
Lt* Left Total
Rt* Right Total
* Lt and Rt are supported in the latest version of QuickTime.
Audio Channel Assignments
How to Apply Audio Channel Assignments
2012-05-22 | © 2012 Apple Inc. All Rights Reserved.
36Apple Inc.
© 2012 Apple Inc.
All rights reserved.
No part of this publication may be reproduced,
stored in a retrievalsystem, or transmitted, in any
form or by any means, mechanical, electronic,
photocopying, recording, or otherwise, without
prior written permission of Apple Inc., with the
following exceptions: Any person is hereby
authorized to store documentation on a single
computer for personal use only and to print
copies of documentation for personal use
provided that the documentation contains
Apple’s copyright notice.
The Apple logo is a trademark of Apple Inc.
No licenses, express or implied, are granted with
respect to any of the technology described in this
document. Apple retains all intellectual property
rights associated with the technology described
in this document. This document is intended to
assist application developers to develop
applications only for Apple-labeled computers.
Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010
.Mac is a registered service mark of Apple Inc.
iBookstore is a service mark of Apple Inc.
iTunes Store is a registered service mark of Apple
Inc.
Apple, the Apple logo, iBook, iBooks, iTunes,
Logic, Mac, and QuickTime are trademarks of
Apple Inc., registered in the United States and
other countries.
DEC is a trademark of Digital Equipment
Corporation.
Dolby and Pro Logic are trademarks of Dolby
Laboratories.
Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THIS
DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE.ASARESULT, THISDOCUMENT IS PROVIDED
“AS IS,” AND YOU, THE READER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY AND ACCURACY.
IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL,OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS DOCUMENT, even if advised of
the possibility of such damages.
THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple dealer,
agent, or employee is authorized to make any
modification, extension, or addition to this warranty.
Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have other
rights which vary from state to state.

Apple Remote Desktop
Administrator’s Guide
Version 3K Apple Computer, Inc.
© 2006 Apple Computer, Inc. All rights reserved.
The owner or authorized user of a valid copy of Apple
Remote Desktop software may reproduce this
publication for the purpose of learning to use such
software. No part of this publication may be reproduced
or transmitted for commercial purposes, such as selling
copies of this publication or for providing paid for
support services.
The Apple logo is a trademark of Apple Computer, Inc.,
registered in the U.S. and other countries. Use of the
“keyboard” Apple logo (Option-Shift-K) for commercial
purposes without the prior written consent of Apple
may constitute trademark infringement and unfair
competition in violation of federal and state laws.
Apple, the Apple logo, AirPort, AppleScript, AppleTalk,
AppleWorks, FireWire, iBook, iMac, iSight, Keychain, Mac,
Macintosh, Mac OS, PowerBook, QuickTime, and Xserve
are trademarks of Apple Computer, Inc., registered in the
U.S. and other countries.
Apple Remote Desktop, Bonjour, eMac, Finder, iCal, and
Safari are trademarks of Apple Computer, Inc.
Adobe and Acrobat are trademarks of Adobe Systems
Incorporated.
Java and all Java-based trademarks and logos are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries.
UNIX is a registered trademark in the United States and
other countries, licensed exclusively through
X/Open Company, Ltd.
019-0629/02-28-06 3
3 Contents
Preface 9 About This Book
10 Using This Guide
10 Remote Desktop Help
10 Notation Conventions
11 Where to Find More Information About Apple Remote Desktop
Chapter 1 13 Using Apple Remote Desktop
13 Administering Computers
15 Deploying Software
18 Taking Inventory
21 Housekeeping
22 Supporting Users
23 Providing Help Desk Support
25 Interacting with Students
26 Finding More Information
Chapter 2 28 Getting to Know Remote Desktop
28 Remote Desktop Human Interface Guide
29 Remote Desktop Main Window
31 Task Dialogs
32 Control and Observe Window
33 Multiple-Client Observe Window
34 Report Window
35 Changing Report Layout
36 Configuring Remote Desktop
36 Customizing the Remote Desktop Toolbar
36 Setting Preferences for the Remote Desktop Administrator Application
37 Interface Tips and Shortcuts
Chapter 3 39 Installing Apple Remote Desktop
39 System Requirements for Apple Remote Desktop
40 Network Requirements
40 Installing the Remote Desktop Administrator Software
41 Setting Up an Apple Remote Desktop Client Computer for the First Time4 Contents
41 Upgrading the Remote Desktop Administrator Software
42 Upgrading the Client Software
42 Method #1—Remote Upgrade Installation
43 Method #2—Manual Installation
43 Upgrading Apple Remote Desktop Clients Using SSH
44 Creating a Custom Client Installer
46 Considerations for Managed Clients
46 Removing or Disabling Apple Remote Desktop
46 Uninstalling the Administrator Software
47 Disabling the Client Software
48 Uninstalling the Client Software from Client Computers
Chapter 4 49 Organizing Client Computers Into Computer Lists
49 Finding and Adding Clients to Apple Remote Desktop Computer Lists
50 Finding Clients by Searching the Local Network
50 Finding Clients by Searching a Network Range
51 Finding Clients by Network Address
52 Finding Clients by File Import
52 Making a New Scanner
53 Making and Managing Lists
53 About Apple Remote Desktop Computer Lists
54 Creating an Apple Remote Desktop Computer List
54 Deleting Apple Remote Desktop Lists
54 Creating a Smart Computer List
55 Editing a Smart Computer List
55 Creating a List of Computers of from Existing Computer Lists
56 Importing and Exporting Computer Lists
56 Transferring Computer Lists from Apple Remote Desktop 3 to a New Administrator
Computer
57 Transferring Remote Desktop 2 Computer Lists to a New Remote Desktop 3
Administrator Computer
57 Transferring Old v1.2 Computer Lists to a New Administrator Computer
Chapter 5 59 Understanding and Controlling Access Privileges
59 Apple Remote Desktop Administrator Access
61 Setting Apple Remote Desktop Administrator Access Authorization and Privileges
Using Local Accounts
62 Apple Remote Desktop Administrator Access Using Directory Services
62 Creating Administrator Access Groups
65 Enabling Directory Services Group Authorization
65 Apple Remote Desktop Guest Access
66 Apple Remote Desktop Nonadministrator Access
67 Virtual Network Computing AccessContents 5
68 Command-Line SSH Access
68 Managing Client Administration Settings and Privileges
69 Getting an Administration Settings Report
69 Changing Client Administrator Privileges
Chapter 6 71 Setting Up the Network and Maintaining Security
71 Setting Up the Network
72 Using Apple Remote Desktop with Computers in an AirPort Wireless Network
73 Getting the Best Performance
73 Maintaining Security
75 Remote Desktop Authentication and Data Transport Encryption
75 Encrypting Observe and Control Network Data
76 Encrypting Network Data During Copy Items and Install Packages Tasks
Chapter 7 77 Interacting with Users
78 Controlling
78 Controlling Apple Remote Desktop Clients
79 Control Window Options
80 Switching the Control Window Between Full Size And Fit-To-Window
80 Switching Between Control and Observe Modes
80 Sharing Control with a User
81 Hiding a User’s Screen While Controlling
81 Capturing the Control Window to a File
81 Switching Control Session Between Full Screen and In a Window
82 Sharing Clipboards for Copy and Paste
82 Controlling VNC Servers
83 Setting up a Non–Mac OS X VNC Server
84 VNC Control Options
85 Configuring an Apple Remote Desktop Client to be Controlled by a VNC Viewer
85 Observing
87 Changing Observe Settings While Observing
88 Changing Screen Titles While Observing
88 Viewing a User’s Account Picture While Observing
88 Viewing a Computer’s System Status While at the Observe Window
90 Shortcuts in the Multiple Screen Observe Window
90 Observing a Single Computer
91 Observing Multiple Computers
91 Observing a Computer in Dashboard
92 Sending Messages
92 Sending One-Way Messages
92 Interactive Chat
93 Viewing Attention Requests
93 Sharing Screens6 Contents
93 Sharing a Screen with Client Computers
94 Monitoring a Screen Sharing Tasks
94 Interacting with Your Apple Remote Desktop Administrator
94 Requesting Administrator Attention
95 Canceling an Attention Request
95 Changing Your Observed Client Icon
Chapter 8 96 Administering Client Computers
96 Keeping Track of Task Progress and History
97 Enabling a Task Notification Script
98 Getting Active Task Status
98 Using the Task Feedback Display
98 Stopping a Currently Running Task
99 Getting Completed Task History
99 Saving a Task for Later Use
100 Creating and Using Task Templates
101 Editing a Saved Task
101 Installing Software Using Apple Remote Desktop
101 Installing by Package and Metapackage
103 Installing Software on Offline Computers
104 Installing by Using the Copy Items Command
104 Using Installers from Other Companies
105 Upgrading Software
106 Copying Files
107 Copy Options
108 Copying from Administrator to Clients
109 Copying Using Drag and Drop
110 Restoring Items from a Master Copy
111 Creating Reports
111 Collecting Report Data
112 Using a Task Server for Report Data Collection
113 Report Database Recommendations and Bandwidth Usage
114 Auditing Client Usage Information
116 Finding Files, Folders, and Applications
118 Comparing Software
119 Auditing Hardware
124 Testing Network Responsiveness
125 Exporting Report Information
126 Using Report Windows to Work with Computers
127 Maintaining Systems
127 Deleting Items
128 Emptying the Trash
128 Setting the Startup DiskContents 7
129 Renaming Computers
129 Synchronizing Computer Time
130 Setting Computer Audio Volume
131 Repairing File Permissions
131 Adding Items to the Dock
132 Changing Energy Saver Preferences
133 Changing Sharing Preferences for Remote Login
133 Setting Printer Preferences
135 Managing Computers
135 Opening Files and Folders
136 Opening Applications
137 Quitting Applications Without Logging Out the User
137 Putting a Computer to Sleep
138 Waking Up a Computer
138 Locking a Computer Screen
139 Displaying a Custom Picture on a Locked Screen
139 Unlocking a Computer Screen
140 Disabling a Computer Screen
140 Logging In a User at the Login Window
141 Logging Out the Current User
141 Restarting a Computer
142 Shutting Down a Computer
143 UNIX Shell Commands
143 Send UNIX Command Templates
145 Executing a Single UNIX Command
145 Executing Scripts Using Send UNIX Command
147 Built-in Command-Line Tools
152 Automating Functions
152 Setting the Client’s Data Reporting Policy
153 Creating a Template Data Reporting Policy
154 Designating the Task Server and Setting the Report Data Collection Location
155 Scheduled Tasks
156 Using AppleScript with Remote Desktop
159 Using Automator with Remote Desktop
Appendix A 161 Icon and Port Reference
161 Client Status Icons
161 Apple Remote Desktop Status Icons
162 List Menu Icons
162 Task Status Icons
163 System Status Icons (Basic)
163 System Status Icons (Detailed)
164 TCP and UDP Port Reference8 Contents
Appendix B 165 Report Field Definitions Reference
165 System Overview Report
167 Storage Report
169 USB Devices Report
169 FireWire Devices Report
169 Memory Report
169 PCI Cards Report
170 Network Interfaces Report
172 Network Test Report
172 Administration Settings Report
173 Application Usage Report
173 User History Report
Appendix C 174 AppleScript Remote Desktop Suite
174 Classes and Commands for the Remote Desktop Application.
Appendix D 180 PostgreSQL Schema Sample
Index 182 9
Preface
About This Book
What Is Apple Remote Desktop?
Apple Remote Desktop is easy-to-use, powerful, open standards-based, desktop
management software for all your networked Macs. IT professionals can remotely
control and configure systems, install software, offer interactive online help to end
users, and assemble detailed software and hardware reports for an entire Mac network.
You can use Apple Remote Desktop to:
Â Manage client computers and maintain, update, and distribute software
Â Collect more than 200 system-information attributes for any Mac on your network
Â Store the results in an SQL database and view the information using any of several
hardware or software reports
Â Control and manage multiple computer systems simultaneously, making shutdown,
restart, and sending UNIX commands fast and easy
Â Provide help and remote assistance to users when they encounter problems
Â Interact with users by sending text messages, observing and controlling users’
screens, and sharing their screens with other client users
You can use Apple Remote Desktop to manage your client systems. IT administrators
use Remote Desktop in education and business to simplify and empower the
management of their organizations computer assets. For system administrators, Apple
Remote Desktop can be used to administer large numbers of servers, like a virtual
Keyboard-Video-Mouse (KVM) sharing unit. In computer administration environments,
it’s the ideal solution for managing remote systems, reducing administration costs, and
increasing productivity.
Apple Remote Desktop can also be used by educators to facilitate instruction in
computer labs or one-on-one learning initiatives. Used in a classroom, Apple Remote
Desktop enhances the learning experience and allows teachers to monitor and control
students’ computers.10 Preface About This Book
Using This Guide
The Apple Remote Desktop Administrator’s Guide contains chapters to help you use
Remote Desktop. It contains overviews and explanations about Apple Remote
Desktop’s features and commands. It also explains how to install and configure Apple
Remote Desktop on clients, how to administer client computers, and how to use
Remote Desktop to interact with computer users.
This guide is provided on the Apple Remote Desktop installation disc and on the Apple
Remote Desktop support website as a fully searchable, bookmarked PDF file. You can
use Apple’s Preview application or Adobe (Acrobat) Reader to browse the contents of
this guide as well as search for specific terms, features, or tasks.
Remote Desktop Help
Remote Desktop Help is available using Help Viewer. To open Remote Desktop Help,
choose Help > Remote Desktop Help. The help files contain the same information
found in this guide, and are useful when trying to accomplish a task when this guide is
unavailable.
Additionally, the Remote Desktop Help contains new information, corrections, and latebreaking information about Apple Remote Desktop. The most up-to-date information is
available through Remote Desktop Help before it’s available on the web as an updated
PDF file.
Notation Conventions
This guide and Remote Desktop Help contain step-by-step procedures to help you use
Remote Desktop’s commands effectively. In many tasks shown in this manual and in
Remote Desktop Help, you need to choose menu commands, which look like this:
Choose Edit > Clear.
The first term after Choose is the name of a menu in the Remote Desktop menu bar.
The next term (or terms) are the items you choose from that menu.Preface About This Book 11
Terminal Command Conventions
Commands or command parameters that you might type, along with other text that
normally appears in a Terminal window, are shown in this font. For example:
You can use the doit command to get things done.
When a command is shown on a line by itself as you might type it in a Terminal
window, it follows a dollar sign that represents the shell prompt. For example:
$ doit
To use this command, type “doit” without the dollar sign at the command prompt in a
Terminal window, then press the Return key.
Where to Find More Information About Apple Remote
Desktop
For additional information related to Apple Remote Desktop, try these resources.
You’ll find more information in the Apple Remote Desktop Read Me file and on the
Apple Remote Desktop website:
www.apple.com/remotedesktop/
You can find the most recent edition of the Apple Remote Desktop Administrator’s Guide at:
Â the Apple Server Division Documentation page
www.apple.com/server/documentation/
Â the Remote Desktop section of Apple.com, and
www.apple.com/remotedesktop/
Â the Help Menu in the Remote Desktop application
Notation Indicates
monospaced font A command or other Terminal text
$ A shell prompt
[text_in_brackets] An optional parameter
(one|other) Alternative parameters (type one or the other)
underlined A parameter you must replace with a value
[...] A parameter that may be repeated
 A displayed value that depends on your configuration or settings12 Preface About This Book
The Apple Remote Desktop Support website provides a database of technical articles
about product issues, use, and implementation:
www.apple.com/support/remotedesktop/
To provide feedback about Apple Remote Desktop, visit the feedback page:
www.apple.com/feedback/remotedesktop.html
For details about how to join the Apple Remote Desktop Mailing list, visit:
lists.apple.com/mailman/listinfo/remote-desktop/
To share information and learn from others in online discussions, visit the Apple
Remote Desktop Discussions Forum:
discussions.info.apple.com/appleremotedesktop/
For more information about PostgreSQL go to:
www.postgresql.org
For more information about using Apple products for IT professionals go to:
apple.com/itpro/1
 13
1 Using Apple Remote Desktop
Apple Remote Desktop helps you keep Macintosh computers
and the software running on them up to date and trouble
free. And it lets you interact directly with Macintosh users to
provide instructional and troubleshooting support.
This chapter describes the main aspects of Apple Remote Desktop’s administration and
user interaction capabilities and tells you where to find complete instructions for using
them.
Administering Computers
Apple Remote Desktop lets you perform a wide range of client hardware and software
administrative activities remotely, from an administrator computer (a computer on
which administrator software resides):
Â Keep users’ software up to date by using Apple Remote Desktop to deploy software
and related files to client computers.
Â Create reports that inventory the characteristics of client computer software and
hardware.
Â Use Apple Remote Desktop’s remote administration capabilities to perform
housekeeping tasks for client computers.14 Chapter 1 Using Apple Remote Desktop
You can administer client computers individually, but most Apple Remote Desktop
features can be used to manage multiple computers at the same time. For example, you
may want to install or update the same applications on all the computers in a particular
department. Or you may want to share your computer screen to demonstrate a task to
a group of users, such as students in a training room.
To manage multiple computers with a single action, you define Apple Remote Desktop
computer lists. A computer list is a group of computers that you want to administer
similarly. Computer lists let you group and organize computers for administration.
Setting up computer lists is easy; you simply scan the network or import the identity of
computers from files.
A particular computer can belong to more than one list, giving you a lot of flexibility
for multicomputer management. A computer can be categorized by its type (laptop,
desktop), its physical location (building 3, 4th floor), its use (marketing, engineering,
computing), and so forth.
Once you’ve set up computer lists, you can perform most of the computer
administration activities described next for groups of client computers.
Marketing department Engineering departmentChapter 1 Using Apple Remote Desktop 15
Deploying Software
Apple Remote Desktop lets you distribute software and related files to client computers
from your Apple Remote Desktop administrator computer or from a computer running
Mac OS X Server.
Distributing Installer Packages
You can distribute and automatically install packages in .pkg and .mpkg formats. Apple
Remote Desktop lets you install software and software updates on one or more client
computers without user interaction or interruption, or even if no user is logged in. After
installation, Apple Remote Desktop erases the installer files. If the computers need to
be restarted, as they do following an operating system update, you can restart them
from Apple Remote Desktop.
Xserve cluster node Marketing department Engineering department
Deploy
configuration files
Deploy
drag-and-drop
application folders
Deploy
install packages
(.pkg or .mpkg)
Network
install images
NetBoot
images
Deploy UNIX
shell scripts
Set startup
partition
Administrator
computer
Mac OS X Server16 Chapter 1 Using Apple Remote Desktop
For example, you can use Apple Software Update to download an iCal update or an
operating system update to a test computer. If the update works as expected and
introduces no compatibility issues, copy the installer package to the administrator
computer to distribute to computers that need upgrading. Note that this approach
conserves Internet bandwidth, because only one copy of the package needs to be
downloaded.
You can also use Apple Remote Desktop to deploy new versions of computational
software to Xserve computers in a cluster node.
You can use the PackageMaker tool (included on the Apple Remote Desktop
installation CD and with Apple’s developer tools) to create your own installer packages,
such as when you want to:
Â Distribute school project materials or business forms and templates
Â Automate the installation of multiple installer packages
Â Deploy custom applications
Before performing remote installations, you can send an Apple Remote Desktop text
message to notify users, perhaps letting them know that you’ll be using Apple Remote
Desktop to lock their screens at a particular time before you start the installation.
Using Network Install Images
You can also distribute and install software, including the Mac OS X operating system,
by using Network Install images.
On Mac OS X Server, use the Network Image Utility to create a Network Install image.
You can create the image by cloning a system that’s already installed and set up, or by
using an installation disc or an image downloaded using Apple Software Update. If you
choose to auto-install, you won’t have to interact with each computer. On the Apple
Remote Desktop administrator computer, set the startup disk of remote client systems
to point to the Network Install image, and then remotely reboot the clients to initiate
installation.
Before initiating installations that require computers to be restarted afterwards, send
an Apple Remote Desktop text message to client users to notify them of a pending
installation. For example, tell users you’ll log them off at 5:00 p.m. to install an
operating system update.
Using NetBoot Images
Another kind of system image you can create using Mac OS X Server is a NetBoot
image. Like a Network Install image, a client computer uses NetBoot images to start up.
Unlike a Network Install image, the boot software is not installed on the client system.
Instead, it resides on a remote server. It is recommended you use a NetBoot image that
has Apple Remote Desktop installed and configured. Otherwise, administering the
computer using Apple Remote Desktop after starting up from NetBoot is impossible.Chapter 1 Using Apple Remote Desktop 17
Client computers that boot from a NetBoot image get a fresh system environment
every time they start up. For this reason, using NetBoot images is useful when a
particular computer is shared by several users who require different work environments
or refreshed work environments, or when you want to start a new experiment or use a
different computing environment in a cluster node.
You can use Apple Remote Desktop to set the startup disks of client systems to point to
the NetBoot image, and then restart the systems remotely using Apple Remote
Desktop. Users can also choose a NetBoot image for startup by using the Startup Disk
pane of System Preferences. With just a few clicks you can reconfigure all the
computers in a lab or cluster without having to manually restart and configure each
computer individually.
Distributing Preference Files
Managed computers often require a standard set of preferences for each instance of an
application. Use Apple Remote Desktop to distribute preference files when you need to
replace or update a application preferences. For example, you can copy a standardized
preference file to the currently logged in user’s Library/Preferences folder.
Using UNIX Shell Scripts
You can use Apple Remote Desktop to distribute and run UNIX shell scripts on client
computers.
For example, a script can mount an AFP server volume, from which it downloads a disk
image to client computers. The script might also download an installer package and
then perform a command-line installation.
On an Xserve in a cluster node, you could also run a script that mounts an Xserve RAID
disk designed for high throughput and then downloads large data sets for processing.
You can also use Apple Remote Desktop to distribute AppleScript files that automate
PDF workflows, or job instructions for computational clusters.
Distributing Drag-and-Drop Applications
You can distribute and install self-contained (drag-and-drop) applications by copying
them to one or more client computers. Use this approach, for example, to distribute
application updates.
Verifying Installations
To check whether an installation has been completed successfully, use Apple Remote
Desktop’s remote control capabilities.
For example, you can start an application remotely, or search for particular files. You can
also use the File Search report to verify that all files for an application are installed
correctly.18 Chapter 1 Using Apple Remote Desktop
Taking Inventory
Apple Remote Desktop lets you capture data describing the attributes of client
computers, then generate reports based on the data.
You specify how often you want to capture data, the data you want to capture, and the
computers you want to profile. You can collect data just before generating a report if
you need up-to-the-minute information. Or you can schedule data to be collected by
Apple Remote Desktop at regular intervals and stored in its built-in SQL (Structured
Query Language) database for use on an as-needed basis.
You can also specify where you want the database to reside—on the local
administrator computer, or on a server where the Apple Remote Desktop administrator
software is installed and always running, so data can be captured on an ongoing basis.
Using the collected data, Apple Remote Desktop generates reports tailored to your
specifications.
Xserve cluster node Marketing department Engineering department
Administrator
computer
Mac OS X Server
ARD SQL
database
ARD SQL
database
SQL toolsChapter 1 Using Apple Remote Desktop 19
File Search Report
Use the File Search report to search client systems for specific files and folders and to
audit installed applications.
This report can help you find out how many copies of a particular application are in use
so you don’t violate license agreements.
Spotlight File Search
Use the Spotlight Search report to search Tiger client systems for specific files and
folders. The information in the report is updated as files matching your search change
on the client systems.
Software Version Report
Use the Software Version report to make sure that all users have the latest application
versions appropriate for their systems.
Software Difference Report
Use the Software Difference report to detect application versions that are out of date,
nonstandard, or unacceptable for some other reason. Or, you can learn whether a user
has installed an application that shouldn’t be installed.
System Overview Report
The System Overview report makes visible a wide variety of client computer
characteristics. Using this report, you can review information about a client’s AirPort
setup, computer and display characteristics, devices, network settings, system
preferences, printer lists, and key software attributes.
There are numerous uses for this report, such as identifying problems or verifying
system configurations before installing new software, or determining how many
devices of a particular type (such as scanners) are in a particular lab.
Hardware Reports
Several reports provide details about particular hardware used by client computers—
storage, FireWire devices, USB devices, network interfaces, memory, and PCI cards.
Use these reports to determine, for example, which computers need more memory,
which computer has the fastest processor speed, and how much free space is left on a
particular disk.
Administration Settings Report
Use the Administration Settings report to determine which Apple Remote Desktop
administrator privileges are enabled or disabled for you in the Sharing pane of System
Preferences on individual client computers.
User History Report
Use the User History report to show you who has logged in to a client, how they
logged in, and for how long.20 Chapter 1 Using Apple Remote Desktop
Application Usage Report
Use the Application Usage report to find out which applications have been running on
your client computers and who ran those applications.
Network Test Report
A Network Test report helps you measure and troubleshoot the communication
between your administrator computer and your client computers. The Network
Interfaces report might also help troubleshooting network hardware issues.
Use this report to help identify reasons for network communication problems that
could affect Apple Remote Desktop. For example, if you’re unable to copy items to
particular client computers from the administrator computer, you may find you have a
bad connection to the computers. Using this information can help you isolate the
problem to a particular cable or hub.
Generating Your Own Reports
Because the Apple Remote Desktop database is in standard SQL format, you can also
use your favorite SQL scripts to query, sort, and analyze the collected data. In addition,
you can export data from the database into a file so you can import it for viewing in a
different program, such as a spreadsheet application.Chapter 1 Using Apple Remote Desktop 21
Housekeeping
Apple Remote Desktop provides several ways to remotely control client computers for
housekeeping activities, which you can conduct using one or more Apple Remote
Desktop windows.
Managing Power State
Use Apple Remote Desktop to control the power state of client computers.
For example, you may need to have all computers turned off during maintenance of a
power generation unit or during a holiday shutdown. You can send an Apple Remote
Desktop text message reminding users to shut down their computers at a particular
time. Any computers still running when you need to start maintenance can be
detected and shut down remotely with Apple Remote Desktop.
Xserve cluster node Marketing department Engineering department
Administrator
computer
Execute UNIX
shell script
Restart/
shutdown/sleep
Remote screen
control
Empty
Trash
Set startup
partition
Send text
notification
Mac OS X Server
NetBoot
images22 Chapter 1 Using Apple Remote Desktop
Locking Computer Screens
You can lock the screens of client computers for specified durations when you don’t
want the computers to be used. For example, you may need to perform network
maintenance and want to make sure computers don’t use the network for a few hours.
You can display custom pictures or text messages on locked computer screens to let
users know when the computers are available again.
Reclaiming Disk Space
Periodically empty the Trash on client computers to conserve disk space.
Automating Periodic Maintenance
Use AppleScript and UNIX shell scripts to automate periodic maintenance, such as
checking permissions or deleting log files.
Controlling Screens
Use Apple Remote Desktop’s remote screen control to perform activities on the
desktop of Xserve computers, or use graphical applications on them. Apple Remote
Desktop replaces the need for KVM (keyboard-video-mouse) switches for accessing
Xserve computers without a monitor attached.
You can also remotely control a user’s computer to help determine reasons for slow
performance or other problems.
Changing Startup Disks
Change the startup disk of a client computer to perform diagnostic or troubleshooting
activities.
For example, start up a computer using a server-based NetBoot image that’s been set
up for troubleshooting. When you’re finished, reset the startup disk to the original boot
volume.
Managing Shared Computers
On computers that are shared among users, check for files that need to be deleted,
close applications, log users off, or perform other activities needed to prepare
computers for the next users.
Supporting Users
Apple Remote Desktop lets you interact with users from your administrator computer
in these ways:
Â Provide help: respond to users who need help by using Apple Remote Desktop to
receive user requests and to remotely diagnose and fix problems.
Â Interact: conduct instructional interactions with students in a school or corporate
training environment—from controlling or observing student screens to sharing your
screen with all your students in order to perform a demonstration.Chapter 1 Using Apple Remote Desktop 23
Providing Help Desk Support
When a user is having trouble, Apple Remote Desktop provides several ways to interact
with the user and his or her computer to diagnose and fix the problem.
Requesting Help
A user can discreetly notify you of a problem by sending a request for help using an
Apple Remote Desktop text message.
Users initiate requests using the commands in the menu that appears when they click
the Apple Remote Desktop icon in the menu bar. A notification on the administrator
computer alerts you to the message, and you can use several techniques to obtain
more information and troubleshoot the problem.
Chatting with the User
Conduct two-way Apple Remote Desktop text communication with the user to obtain
more information.
Screen Monitoring
Use Apple Remote Desktop to observe the user’s screen if you need more details to
understand the problem.
Marketing department Engineering department
Copy
items
Administrator
computer
Control, observe, and
share screens
Use
text chat24 Chapter 1 Using Apple Remote Desktop
Screen Controlling
Use Apple Remote Desktop to control the user’s screen in order to diagnose and fix the
problem. You may have unlimited control, or a user can grant you temporary guest
access so you can control the computer only during troubleshooting.
There are two levels of control available. You can take complete control of the user’s
computer, or you can share control of the keyboard and mouse with the user.
Screen Sharing
If the problem is caused by incorrect actions by the user, share your screen with the
user as you demonstrate the correct way to perform the action.
Using Reports
Use hardware and software reports as diagnostic tools to determine whether the client
computer setup is part of the problem. For example, if a user can’t save his or her work,
the storage report can help you determine whether it’s a disk space issue.
Deploying New Software or Files
If software or configuration settings are part of the problem, use Apple Remote
Desktop to copy new configuration files, installer packages, or other items to client
computers.Chapter 1 Using Apple Remote Desktop 25
Interacting with Students
Apple Remote Desktop helps instructors teach more efficiently by letting them interact
with student computers individually or as a group.
Using Text Messages
Send Apple Remote Desktop text messages to communicate with students. For
example, notify them that a classroom activity will start soon or that they have ten
minutes to finish an examination.
Monitoring Student Computers
View student computer screens on your computer, so you can monitor student
activities or assess how well they’re able to perform a particular task. You can also
monitor the applications running on any student’s computer.
Sharing Screens
Display your screen or a student’s screen on other student computers for training and
demonstration purposes.
Controlling Screens
Show students how to perform tasks by controlling their screens from your computer,
opening applications and using files as required.
Classroom
Administrator
computer
Observe and
share one or
multiple screens
One-to-one
help desk support
Broadcast
text messages
Lock
screens
Distribute
items electronically
Open applications
or files
Control
screen
Log out
students26 Chapter 1 Using Apple Remote Desktop
Locking Screens
Lock student screens to prevent students from using their computer when you want
them to focus on other activities.
Terminating Computer Use
Remotely log students out or shut down their computers at the end of a class or
school day.
Distributing and Collecting Files
Distribute handouts electronically, at a time that won’t disrupt class activities or when
they’re needed for the next class activity, and collect homework files.
Automating Website Access
Open a webpage on all student computers. Drag a URL from Safari to your desktop,
then copy it to student computers and open it in Safari. You can also copy files and
open them in the appropriate applications on student computers.
Providing One-to-One Assistance
Provide help when a student needs it, conducting private and discreet computer-tocomputer interactions.
Finding More Information
You’ll find detailed instructions for performing the tasks highlighted in this chapter—
and more—throughout this manual.
To learn more about See information for Starting on page
Remote Dekstop interface Window and icon functions page 28
Computer lists Creating computer lists page 49
Apple Remote Desktop
administration
Administrator privileges
Administrator computers
page 59
Controlling screens Controlling page 78
Observing screens Observing page 85
Deploying software Installing software
Upgrading software
page 101
Distributing files Copying files page 106
Taking inventory Data collection options
Auditing software
Auditing hardware
Network responsiveness
Customizing reports
Exporting report data
page 111
Client use reporting User login accounting
Application usage
page 114Chapter 1 Using Apple Remote Desktop 27
Additional information can be obtained at several Apple websites:
Â For information about NetBoot and Network Install, download the system imaging
administration guide at:
www.apple.com/server/documentation
Â You can find PackageMaker’s documentation at Apple’s Developer Connection:
http://developer.apple.com/documentation/DeveloperTools/Conceptual/
SoftwareDistribution/index.html?
Housekeeping tasks Deleting items
Emptying the Trash
Setting startup volumes
Renaming computers
Sleeping and waking
Locking screens
Logging users out
Restart and shutdown
page 127
Automating tasks Configuring data gathering
Scheduling tasks
Using UNIX shell scripts
page 152
To learn more about See information for Starting on page2
28
2 Getting to Know Remote Desktop
Remote Desktop is the administrator application for Apple
Remote Desktop. Its attractive interface is powerful, yet
simple to use. Remote Desktop’s interface is customizable,
allowing you to get the information you want quickly, the
way you want it.
This chapter contains screenshots and short descriptions of Remote Desktop’s interface,
as well as detailed instructions for customizing the appearance and preferences of the
application. You will learn about:
Â “Remote Desktop Human Interface Guide” on page 28
Â “Configuring Remote Desktop” on page 36
Â “Interface Tips and Shortcuts” on page 37
Remote Desktop Human Interface Guide
The following sections give basic information about the human interface of Remote
Desktop, Apple Remote Desktop’s administrator application.
Â “Remote Desktop Main Window” on page 29
Â “Task Dialogs” on page 31
Â “Control and Observe Window” on page 32
Â “Multiple-Client Observe Window” on page 33
Â “Report Window” on page 34
Â “Changing Report Layout” on page 35Chapter 2 Getting to Know Remote Desktop 29
Remote Desktop Main Window
The main window of Remote Desktop has a customizable toolbar, groups of lists, tasks,
and scanners on the left, and the main window area to the right. “List Menu Icons” on
page 162 contains icons seen in the list menu of the main window.
A All Computers list: The All Computers list is a list of all client computers that you plan to
administer. It includes all the clients you have authenticated to, as well as the client computers
that you plan to authenticate to. Computers need to be in the All Computers list before you can
command or administer them. If you have a 10-client license, the All Computers list can contain
only 10 computers.
B Apple Remote Desktop computer lists: A list of computers you create to group computers in
ways that are convenient for you. Any list is a subset of the client computers in the All
Computers list. If you add a computer directly to a computer list, it is added automatically to the
All Computers list as well.
C Smart computer lists: A smart computer list is a list of computers which is a subset of the client
computers in the All Computers list that meet a predetermined criteria. Smart Computer lists
update themselves based on your criteria compared to the contents of the All Computers list.
D Group folders: Groups are tools to help you organize all your possible lists, tasks, and scanners.
Groups look like folders, and can be collapsed to hide the group contents.
E Saved tasks: Saved tasks are listed in the left portion of the main window. They have the icon of
the type of task and have a user-changeable name.
A
B
C
D
E
F
G
I
H
K L
J30 Chapter 2 Getting to Know Remote Desktop
F Scanner: Scanners find clients to add to the All Computers list. You can make new scanners and
customize them for your needs.
See “Making a New Scanner” on page 52.
G Task server list: This lists tasks delegated to the Task Server, rather than run those run directly
from the application. When all the target computers have come online and participated in the
task, the task is labeled as complete.
H Active tasks list: This list shows all tasks that are currently running or scheduled and
uncompleted.
I Task history list: The task history list shows a list of most recently run tasks, as defined in the
Remote Desktop preferences. You can inspect each task by double-clicking it. Once a task is
completed (whether successfully or not) it is moved to the Task History list.
J Task status icon: These icons represent the current state of a task. See “Task Status Icons” on
page 162.
K Client status icon: Icon representing the current state of a client computer. See “Client Status
Icons” on page 161.
L Customizable toolbar: The toolbar can be fully customized with icons of your most-used Apple
Remote Desktop features.Chapter 2 Getting to Know Remote Desktop 31
Task Dialogs
When you click a task, a dialog appears to let you set task parameters or confirm the
task.
A Task type header: This header area shows you the kind of task represented.
B Saved task name: When you save a task, you name it for your own use.
C Task configuration area: This area is different for every task. It’s where you set operating
parameters for the task to be performed.
D Participating computers: This area shows you the computers that will be affected by the task.
You can add or remove computers in this area without changing computer list membership.
E Schedule task button: When you click this button in a task dialog, you can set a time to
perform the task as well as repeat the task. See “Scheduled Tasks” on page 155 for more
information.
F Save task button: When you click this button in a task dialog, you can name and save the task
as configured. Saved tasks appear in the left side of Remote Desktop’s main window.
G Task templates: This control allows you to save current task configuration settings, or apply
previously saved settings to the current task. These templates are stored on a per-task basis.
For example, the Send UNIX Commands template pop-up has an extensive list of built-in
templates, while other tasks may have none.
A B G
C
D
E
F32 Chapter 2 Getting to Know Remote Desktop
Control and Observe Window
This window is the same for both controlling and observing a single client. The only
difference is the state of the Observe or Control toggle button. When it’s selected, you
have control over the remote client.
A Observe or control toggle: When this button is selected, you have control over the remote
client.
B Share mouse control: When this button is selected, you share mouse control with the user.
C Fit screen in window: When this button is selected, the remote client is scaled to the Control
window size.
D Lock computer screen for control: When this button is selected, the remote client screen
shows a lock, and your view allows you to view the client desktop normally.
E Capture screen to file: When this button is clicked, the remote client screen is saved to a local
file at the selected image quality.
F Fit screen to full display: When this button is selected, your display doesn’t show your
computer desktop, only that of the remote computer, at full possible resolution.
G Get clipboard from client: When this button is clicked, the contents of the remote client
Clipboard are transferred to the local Clipboard.
A B C D E F G H
J
IChapter 2 Getting to Know Remote Desktop 33
Multiple-Client Observe Window
When you observe many clients at the same time, they all appear in the same window.
If you have more computers than will fit in the window, they are divided across several
pages.
H Send clipboard to the client: When clicked, the remote client Clipboard receives the contents
of the local Clipboard.
I Image Quality: Adjusts the screen color depth from black and white to millions of colors.
J Desktop of Controlled Computer: Resize this window from the lower right corner.
A Page Delay: Adjusts the number of seconds before automatically advancing to the next page of
screens.
B Computers Per Page: Adjusts the number of client screens visible on each page.
C Image Quality: Adjusts the screen color depth from black and white to millions of colors.
D Display Computer Information: Shows the computer information area, which contains desktop
titles, account pictures, and status icons.
E Computer title selector: Changes the titles displayed underneath the client screens (you can
choose the computer name, IP address, or hostname).
F Account picture: Shows the login icon of the currently logged in user.
H A B C I
G
E
I
D
F34 Chapter 2 Getting to Know Remote Desktop
Report Window
Reports serve as valuable shortcuts when you’re copying files and organizing computer
lists.
G Computer status: Shows basic computer status beneath each client screen.
H Cycle through pages: Manually advances to the next page of screens.
I View Options: Reveals the view option controls.
J Observed computers: Contains the scaled desktops of the observed client computers.
A Report category: Most reports have subcategories to help you find the information you want.
In the report window, you switch between the subcategories using these tabs.
B Save report to file: Saves the report to a plain text file.
C Print: Formats and prints the report window.
D Open selected: Opens the item selected in the report. The item opens on the client computer.
C B A
C B D E FChapter 2 Getting to Know Remote Desktop 35
Changing Report Layout
You can customize report layouts for your own purposes. By default, reports include a
column for each information type you selected before running the report, in the order
presented in the report dialog. The columns in the report are initially sorted by
computer name.
You can resize or rearrange the columns of a report, as well as sort the rows by column.
Additionally, in the File Search report, you can choose what information is displayed
about a found item. By default, the item name, kind, parent path, actual size, and
modification date are displayed.
To change what information is displayed:
1 In the File Search report window, select or deselect each report column as desired.
2 After making your selections, click Generate Report as usual.
When the report window appears, you can rearrange the columns or sort by a different
column.
E Delete selected: Deletes the item selected in the report from the remote computer.
F Copy to this computer: Copies selected items to the administrator computer.
Report column If checked, will show
Name The item name
Parent path The path to the folder that the item is in
Full path The full file path
Extension The file extension indicating the file type (.app, .zip, .jpg)
Date modified The last date and time the file was changed and saved
Date created The date and time the file was created
Actual size Actual file size, in kilobytes or megabytes
Size on disk Amount of disk space used by the file, in kilobytes
Kind File, folder, or application
Invisible A checkmark indicating whether it is visible in the Finder
Version number If an application, the version reported
Version string If an application, the version reported
Owner The item owner’s short name
Group The item’s group name
Permissions The item’s UNIX permissions (for example, -rw-r--r--)
Locked A checkmark indicating whether it is a locked file36 Chapter 2 Getting to Know Remote Desktop
Configuring Remote Desktop
You can configure the Remote Desktop administrator application to meet your work
needs. Remote Desktop has an interface that is both flexible and functional.
Customizing the Remote Desktop Toolbar
The Remote Desktop application has a fully customizable toolbar, which provides a
quick way to perform tasks. To perform a task, just click the appropriate icon in the
toolbar. To show or hide the toolbar, click the toolbar button in the upper-right corner
of the application window. You can add, remove, or rearrange the task icons in the
toolbar to suit your needs.
To customize the application toolbar:
1 Choose Window > Customize Toolbar.
2 Drag your favorite toolbar items or the default set of items to the toolbar. To remove an
item, drag it from the toolbar. To rearrange items, drag them into the order you prefer.
3 Choose whether to display toolbar items as text, icons, or both. Selecting “Use Small
Size” shrinks the items in the toolbar.
Setting Preferences for the Remote Desktop Administrator Application
In Remote Desktop preferences, you can select options that affect how the
administrator application interacts with client computers.
To open the Preferences window:
Â Choose Remote Desktop > Preferences.
In the General pane, you can set:
Â What double-clicking a client computer does (Get Info, Control, Observe, Text Chat)
Â Whether to show the client idle time
Â What warnings may appear when quitting the application
Â A new serial number
Â A new Remote Desktop application password
In the Control & Observe pane, you can set:
Â Whether a remote screen is shown in a window or a full screen
Â Whether control of the mouse and keyboard is shared with the client computer
when the client is controlled
Â Whether a remote screen is shown at its actual size in a window or if it shrinks to fit
the window
In the Task Server pane, you can set:
Â Whether Remote desktop is using another computer as a Task Server, or whether this
copy of Remote Desktop is being used as a Task ServerChapter 2 Getting to Know Remote Desktop 37
Â Whether other Apple Remote Desktop administrators can access your local Task
Server
Â Whether clients collect user and application tracking data
Â A saved template for scheduling client reporting policies
In the Labels pane, you can set:
Â Label colors and text for labeling computers
In the Tasks pane, you can set:
Â Whether to automatically change focus to the active task
Â Whether to execute a notification script on task completion
Â Limits on task history list contents and time until removed
In the Security pane, you can set:
Â Whether to accept messages from client users
Â Whether to allow control of the computer while Remote Desktop is active
Â The default encryption preference for control and observe sessions
Â The default encryption preference for Copy Items and Install Packages tasks
Â Which features of Remote Desktop are available to nonadministrator users
See “Apple Remote Desktop Nonadministrator Access” on page 66.
Interface Tips and Shortcuts
There are a number of features of the Remote Desktop interface which make it
particularly flexible and powerful. The following lists a few built-in shortcuts to features
which can make using Remote Desktop more productive.
Computers can be selected from any window
Any computer in any window—report windows, task windows, computer lists, observe
windows—can be a target for some task. For example, if you are observing 10
computer screens and need to send a text message to one, select the screen with a
single click and then choose Interact > Send Text Message. Likewise, if you get a
software report on 50 computers and notice that one of the computers is missing
some vital piece of software, you can drop that software onto the selected computer
within the report window.
Treating all windows as possible computer selection lists for tasks may save you lots of
time switching between the Remote Desktop window and other windows as you
accomplish your work.38 Chapter 2 Getting to Know Remote Desktop
Drag and drop works on configuration dialogs
Configuration dialogs accept dragged items. Computer lists in the dialogs accept
dragged computers. The Copy Items dialog accepts dragged files to copy, without
having to browse the file system for them. Save yourself time and effort by dragging
available items to dialogs rather than browsing for them.
Making lists from reports or other lists
You may need to make a list based on the outcome of some report, but you don’t
know which computers will need to be included. After getting a report and sorting on
the desired column, you can select the computers and make a new list from the
selection. If you double-click the list icon, you open another window containing the
computers in the list. This is useful for comparing lists, or for using the new window as
a source from which to drag computers to other lists.
Saved Tasks and Task Templates save you time
You may spend a lot of time coming up with the perfect software search to find exactly
what you need. You shouldn’t recreate that search every time you need it. Save your
tasks, and duplicate them. With a little editing, you can have a number of similar saved
tasks for specific uses. Alternatively, you can use task templates to save settings across
task dialogs, applying the same settings through various tasks.3
 39
3 Installing Apple Remote Desktop
To use Apple Remote Desktop, install the administration
software on the administrator computer first, and then install
and enable the client software on the computers you want to
manage. You’ll need your install disc, the serial number, and
either the printed Welcome instructions, or these instructions.
This chapter describes how to install Apple Remote Desktop for system administration
and user interaction and gives complete setup instructions. You can learn about:
Â “System Requirements for Apple Remote Desktop” on page 39
Â “Installing the Remote Desktop Administrator Software” on page 40
Â “Setting Up an Apple Remote Desktop Client Computer for the First Time” on page 41
Â “Upgrading the Remote Desktop Administrator Software” on page 41
Â “Upgrading the Client Software” on page 42
Â “Creating a Custom Client Installer” on page 44
Â “Considerations for Managed Clients” on page 46
Â “Removing or Disabling Apple Remote Desktop” on page 46
System Requirements for Apple Remote Desktop
Administrator and client computers:
Â Mac OS X or Mac OS X Server version 10.3.9 or later (Mac OS X version 10.4 or later is
required for some features).
Â Mac OS Extended (HFS+) formatted hard disk.
Â For observing and controlling other platforms: a system running VNC-compatible
server software.
NetBoot and Network Install (optional)
Â Mac OS X Server version 10.3 or 10.4 with NetBoot and Network Install services
enabled40 Chapter 3 Installing Apple Remote Desktop
Network Requirements
Â Ethernet (recommended), AirPort, FireWire, or other network connection
See “Setting Up the Network” on page 71 for more information.
Installing the Remote Desktop Administrator Software
To set up Apple Remote Desktop on administrator computers, you install the software
on the computer you plan to use to administer remote computers. Then, you open the
application setup assistant, and add to the main list of computers.
To install Apple Remote Desktop on an administrator computer:
1 Insert the Apple Remote Desktop installation disc.
2 Double-click the Remote Desktop installer package and follow the onscreen
instructions.
The Remote Desktop application will be installed in the Applications folder.
3 Launch Remote Desktop (in the Applications folder).
The Remote Desktop Setup Assistant appears.
4 Enter the serial number.
The serial number can be found on the Apple Remote Desktop Welcome document
that came with your software.
Optionally, enter a registration name and organization.
5 Click Continue.
6 Enter a Remote Desktop application password and verify it.
The Remote Desktop application password is used to encrypt names and passwords of
client computers for Apple Remote Desktop. You can store this password in your
keychain for convenience, or you can require that the password be entered each time
you open Remote Desktop.
7 If you have another unlimited-licensed copy of Apple Remote Desktop acting as a Task
Server (a dedicated computer running Remote Desktop for report data collection and
delegated install tasks), enter the server address and click Continue.
8 Set the default data collection scope and time for newly administered computers.
These settings will be stored as the default upload schedule, which can be applied to
computers when you add them for administration. For more detailed information, see
“Setting the Client’s Data Reporting Policy” on page 152.
9 Click Done.
The main application window appears.Chapter 3 Installing Apple Remote Desktop 41
10 Configure some client computers for administration, find them in a scanner, and add
them to a computer list. See:
Â “Setting Up an Apple Remote Desktop Client Computer for the First Time” on page 41
Â “Finding and Adding Clients to Apple Remote Desktop Computer Lists” on page 49
Setting Up an Apple Remote Desktop Client Computer for the
First Time
The following section contains information on setting up Apple Remote Desktop 3 on
client computers. Since Apple Remote Desktop v1.2 was included with Mac OS X v10.3
computers and Apple Remote Desktop v2.2 was installed with Mac OS X v10.4
computers, all Apple Remote Desktop 3 client installations are upgrade installations,
even if you are setting up clients for the first time.
See “Upgrading the Client Software” on page 42 for more information.
If the Apple Remote Desktop client software was removed from the computer, you can
install a fresh copy of the most recent client software by installing Apple Remote
Desktop manually.
See “Method #2—Manual Installation” on page 43 for more information.
If you’re setting up Mac OS X Server for the first time using Server Setup Assistant, you
can enable Apple Remote Desktop as one of the initial services. This allows you to
administer a server immediately after server software installation by providing Remote
Desktop with the user name and password of the default system administrator.
Upgrading the Remote Desktop Administrator Software
Upgrading Remote Desktop is just like installing it for the first time. The only difference
is that the final button in the installer reads “Upgrade” rather than “Install.” The installer
upgrades existing software to its latest version, imports previously created lists, and
restarts the underlying processes after completion.
See “Installing the Remote Desktop Administrator Software” on page 40, for detailed
instructions.
If you are upgrading from version 1.2 and changing administrator computers, you’ll
need to transfer your existing computer lists. See “Transferring Old v1.2 Computer Lists
to a New Administrator Computer” on page 57. Be sure to transfer your lists from Apple
Remote Desktop v1.2 to the new computer before upgrading to Apple Remote Desktop
3. If you upgrade from version 1.2 to version 3 on the same administrator computer,
this list migration is done for you.42 Chapter 3 Installing Apple Remote Desktop
Upgrading the Client Software
This section contains information on installing Apple Remote Desktop 3 on client
computers. Since Apple Remote Desktop client software was automatically included on
the clients running Mac OS X v10.3 and v10.4, all Apple Remote Desktop 3 installations
are upgrade installations, even if you are setting up clients for the first time.
You can only upgrade Apple Remote Desktop v1.x and v2.x computers if they meet the
minimum system requirements (see “System Requirements for Apple Remote Desktop”
on page 39). Please note that there is no supported “downgrade” to any previous
version, and if you upgrade the client computers to version 3, you will not be able to
administer them with earlier versions of Remote Desktop.
There are two methods to upgrade the client computer’s software.
Method #1—Remote Upgrade Installation
This method works best with existing clients already configured using a previous
version of Apple Remote Desktop. If used with existing administered clients, use
Remote Desktop to identify those clients running a previous version. You may then
upgrade them to the latest version. The main benefit of this upgrade method is the
ease of installation and the retention of previous client settings, if any.
This method only works for Apple Remote Desktop 1.2 clients and later. Earlier versions
of Apple Remote Desktop like 1.0 must be upgraded to version 1.2 using Mac OS X’s
Software Update, or they must be updated manually. See “Method #2—Manual
Installation” on page 43 for more information.
To upgrade existing client software remotely using Apple Remote Desktop:
1 Enable the existing version of Apple Remote Desktop on the client computers.
2 Configure the clients for administration.
See “Setting Apple Remote Desktop Administrator Access Authorization and Privileges
Using Local Accounts” on page 61.
3 If the client computers are not in an existing Remote Desktop computer list, find the
client computers using an Apple Remote Desktop scanner.
See “Finding and Adding Clients to Apple Remote Desktop Computer Lists” on page 49
for more information.
4 Select the client computers to be upgraded.
5 Choose Manage > Upgrade Client Software.
6 Click Upgrade.Chapter 3 Installing Apple Remote Desktop 43
Method #2—Manual Installation
This method works best if you have never enabled Apple Remote Desktop on your
clients and have an existing software distribution infrastructure. This method also
allows for the greatest power and configuration flexibility. Also, if you don’t want Apple
Remote Desktop to upgrade your clients using the Upgrade Client Software feature,
you can perform a manual upgrade.
The custom installer not only installs the needed software but also prepares and
configures the client computer for administration and can be configured to add or edit
user names and passwords for Apple Remote Desktop authentication.
To manually upgrade the client software:
1 Use Remote Desktop to create a client software installer package.
For detailed instructions, see “Creating a Custom Client Installer” on page 44.
2 Copy and install the package on the client computers. You need the name and
password of a user with administrator privileges on the computer to install the
package.
There are several ways to do this. For example, you can:
Â Distribute the package by removable media, such as a CD.
Â Copy the installer to the clients over the network using file sharing.
Â Copy the installer to the clients using command-line tools like scp (if ssh is enabled),
and use Apple’s command-line installation tool, “installer,” to install the package
remotely. This process is described in detail in “Upgrading Apple Remote Desktop
Clients Using SSH” on page 43.
Â Add the custom installer package to a Network Install image, using System Image
Utility to automatically include the software and your custom settings when clients
install the operating system using Mac OS X Server 10.4’s NetBoot and Network
Install features.
Upgrading Apple Remote Desktop Clients Using SSH
You may not be able to or want to use Remote Desktop to upgrade existing clients to
Apple Remote Desktop 3. If the clients have SSH enabled (called Remote Login in
System Preferences), and are available on the network, you can still upgrade the client
computers.
You still need to use Remote Desktop to create a custom installer package. You also
need the user name and password of a user with system administrator privileges on
the client computer.
Warning: Custom install packages that create user names contain sensitive password
data. Take care to store such custom installers securely.44 Chapter 3 Installing Apple Remote Desktop
To upgrade existing client software using SSH:
1 Create the custom client installer package.
For detailed instructions, see “Creating a Custom Client Installer” on page 44.
2 Open the Terminal application (located in /Applications/Utilities/).
3 Copy the installer package to the client computer by typing:
$ scp -r @:
For other options, see the scp man page.
4 Log in to the client computer by typing:
$ ssh @
For other options, see the ssh man page.
5 On the client computer, install the package by typing:
$ sudo installer -pkg -target /
For other options, see installer man page.
Creating a Custom Client Installer
To install the Apple Remote Desktop client software on computers, you use the
administrator application, Remote Desktop, to create a custom client installer. The
custom client installer not only installs the Apple Remote Desktop system software, but
can create user names and passwords on the client computer with their Apple Remote
Desktop privileges already assigned. You’ll use an assistant to create a custom client
installer package. Any values set in the custom installer will apply to all the computers
that receive the installation.
While creating a custom installer, you will have a chance to create new Apple Remote
Desktop administrator user names with passwords, and automatically set Apple
Remote Desktop access privileges and preferences.
To create the client installer:
1 Open Remote Desktop.
2 Choose File > Create Client Installer.
The Custom Installer Setup Assistant appears.
3 Choose to create a custom installer and click Continue.
If you choose not to create a custom installer, you can create a basic installer that sets
no preferences on the client computer.
Warning: Custom installer packages that create user names contain sensitive
password data. Take care to store and transmit such custom installers securely.Chapter 3 Installing Apple Remote Desktop 45
4 Click Continue to begin creating a custom installer.
5 Choose whether to start Remote Desktop sharing at system startup.
This changes the setting found in the Sharing pane of System Preferences.
6 Choose whether to hide or show the Apple Remote Desktop menu bar icon.
7 Click Continue.
8 Choose whether to create a new user for Apple Remote Desktop login. Click Continue.
A new user account can be created to grant Apple Remote Desktop administrator
privileges. Creating a new user account does not overwrite existing user accounts or
change existing user passwords.
If you choose not to create a new user account, skip to step 10 after clicking Continue.
9 Add a new user by clicking Add and filling in the appropriate information.
Click OK after adding each user, and click Continue when you’re ready to go on.
10 Choose whether to assign Apple Remote Desktop administrator access privileges to
Directory Services groups.
If you choose to do so, select “Enable directory-based administration.”
See “Apple Remote Desktop Administrator Access Using Directory Services” on page 62
for more information on using this method to grant Apple Remote Desktop
administrator access.
11 Choose whether to assign Apple Remote Desktop administrator access privileges to
specific users. Click Continue.
If you choose not to assign administrator access privileges, skip to step 14.
12 Click Add to designate a user to receive Apple Remote Desktop access privileges.
13 Provide the user’s short name and set the privileges as desired.
See “Apple Remote Desktop Administrator Access” on page 59 for more information.
Click OK after each user, and click Continue when you’re ready to go on.
14 Choose whether to allow temporary guest control by requesting permission on the
client computers.
See “Considerations for Managed Clients” on page 46 for more information.
15 Choose whether to allow non–Apple VNC viewers to control the client computers, and
click Continue.
See “Virtual Network Computing Access” on page 67 for more information.
16 If desired, select and enter information in any or all of the four System Data fields.
This information appears in Apple Remote Desktop System Overview reports. For
example, you can enter an inventory number for the computer, a serial number, or a
user’s name and telephone number.46 Chapter 3 Installing Apple Remote Desktop
17 Click Continue.
18 Select a location for the installer.
19 Click Continue to create the installer.
An installer metapackage (.mpkg file) is created in the designated location.
20 Click Done.
Considerations for Managed Clients
If you plan on restricting what applications can open on a managed client, you’ll need
to make sure that Apple Remote Desktop’s processes are allowed to run. A managed
client is a client computer whose environment is governed by Mac OS X Server’s
Workgroup Manager. The following options need to be enabled in Workgroup
Manager’s client and group application preference settings:
Â “Allow approved applications to launch non-approved applications”
Â “Allow UNIX tools to run”
Removing or Disabling Apple Remote Desktop
Apple Remote Desktop’s client components are bundled as part of Mac OS X and
Mac OS X Server. You may choose to remove or disable parts of it to fit your own
personal computing needs. The following section describes how to uninstall or disable
key Apple Remote Desktop components.
Uninstalling the Administrator Software
To remove the administrator software completely, you must remove the application,
the encrypted list of computer user names and passwords, and the client information
database.
To remove the administrator software:
1 Drag the Remote Desktop application to the Trash.
2 Empty the Trash.
3 Delete the Apple Remote Desktop database from /var/db/RemoteManagement/ using
the following commands in the Terminal application:
$ sudo rm -rf /var/db/RemoteManagement
4 Delete the Remote Desktop preferences files using the following commands in the
Terminal application.
$ sudo rm /Library/Preferences/com.apple.RemoteDesktop.plist
$ sudo rm /Library/Preferences/com.apple.RemoteManagement.plist
$ rm ~/Library/Preferences/com.apple.RemoteDesktop.plistChapter 3 Installing Apple Remote Desktop 47
5 Delete the Remote Desktop documentation using the following commands in the
Terminal application.
sudo rm -r /Library/Documentation/Applications/RemoteDesktop
6 Delete the Apple Remote Desktop support files from /Library/Application Support/
using the following commands in the Terminal application:
$ rm -rf ~/Library/Application\ Support/Remote\ Desktop/
$ sudo rm -rf /Library/Application\ Support/Apple\ Remote\ Desktop/
7 Delete the Apple Remote Desktop installation receipts from /Library/Receipts/ using
the following commands in the Terminal application:
$ rm -r /Library/Receipts/RemoteDesktopAdmin*
$ rm -r /Library/Receipts/RemoteDesktopRMDB*
8 Delete the Apple Remote Desktop Dashboard Widget (after closing every instance of
the Widget) using the following commands in the Terminal application:
$ sudo rm -r /Library/Widgets/Remote\ Desktop/
Disabling the Client Software
You may want to temporarily disable Apple Remote Desktop on a client without
removing the software.
To disable the client software on a client computer:
1 On the client computer, open System Preferences and click Sharing.
If necessary, enter the user name and password of a user with administrator privileges
on that computer.
2 Deselect Apple Remote Desktop in the Sharing pane.
3 Quit System Preferences.
Apple Remote Desktop is now disabled and the underlying software is deactivated.
Alternately, you can disable only the administrator privileges by doing the following:
a Click Access Privileges.
b Deselect each user account that you enabled for Apple Remote Desktop
administration.
c Click OK.
d Quit System Preferences.
Warning: Because Apple Remote Desktop is part of the default Mac OS X 10.3 and
10.4 installation, do not remove the Apple Remote Desktop client components.48 Chapter 3 Installing Apple Remote Desktop
Uninstalling the Client Software from Client Computers
To remove Apple Remote Desktop client software from Mac OS X clients, you need to
remove a number of software components from each client system.
To uninstall client software:
1 Open Terminal (located in /Applications/Utilities).
2 Delete the client pieces from /System/Library/ using the following commands in the
Terminal application:
$ sudo rm -rf /System/Library/CoreServices/Menu\ Extras/RemoteDesktop.menu
$ sudo rm -rf /System/Library/CoreServices/RemoteManagement/
$ sudo rm -rf /System/Library/PreferencePanes/ARDPref.prefPane
$ sudo rm -rf /System/Library/StartupItems/RemoteDesktopAgent/
3 Delete the client preferences from /Library/Preferences/ using the following command
in the Terminal application:
$ sudo rm /Library/Preferences/com.apple.ARDAgent.plist
$ sudo rm /Library/Preferences/com.apple.RemoteManagement.plist
4 Delete the client installation receipts from /Library/Receipts/ using the following
command in the Terminal application:
$ sudo rm -r /Library/Receipts/RemoteDesktopClient*
$ sudo rm -rf /var/db/RemoteManagement/
Warning: It is not recommended that you uninstall the client software. Disabling the
client software is sufficient to stop Apple Remote Desktop system activity. See
“Disabling the Client Software” on page 47 for instructions.4
 49
4 Organizing Client Computers Into
Computer Lists
Apple Remote Desktop uses lists of client computers to
logically organize the client computers under your control.
Connecting to client computers on the network and adding
them to your list is necessary to administer them.
This chapter describes finding clients and organizing them into lists for Apple Remote
Desktop administration and user interaction. You can learn about:
Â “Finding and Adding Clients to Apple Remote Desktop Computer Lists” on page 49
Â “Making and Managing Lists” on page 53
Â “Importing and Exporting Computer Lists” on page 56
Finding and Adding Clients to Apple Remote Desktop
Computer Lists
Before you can audit, control, or maintain any client, you need to add it to an Apple
Remote Desktop computer list. To find computers that aren’t on the local subnet, your
local network’s routers and firewalls must be properly configured to pass network
“pings,” and TCP/UDP packets on ports 3283 and 5900.
Remote Desktop has four different methods for discovering possible clients: searching
the local networks, searching a range of IP addresses, using a specific IP address or
domain name, and importing a list of IP addresses. Once you have found a potential
client, you see the following default information:
Search column Description
(none) Displays a small icon indicating whether the computer is already in the
Master List.
(none) Displays a small icon showing what kind of access the client is capable of.
See “Client Status Icons” on page 161.
Name The name given to the computer in the Sharing pane of System
Preferences.
IP Address The computer’s IP address, if any.50 Chapter 4 Organizing Client Computers Into Computer Lists
If you want to change the default display list for the scanner, you can select Edit >
View Options and choose any of the other available options (which include Computer
Info Fields, Ethernet ID, Label, or others).
To add a computer to a computer list, you first authenticate to the computer.
Authenticated computers are found in the All Computers list in the Remote Desktop
window. You can add a computer to the All Computers list without authenticating, but
you will be unable to administer the client until you provide a valid user name and
password.
Finding Clients by Searching the Local Network
When you select a local network scanner, Remote Desktop sends a subnet broadcast to
computers in the same subnets as the administrator computer. All possible clients on
the local subnets appear in a list on the right side of the Remote Desktop window.
To search for clients on the local network:
1 Select a scanner at the left of the Remote Desktop window.
2 Select Local Network.
All responding clients are listed in the Remote Desktop window.
3 Select the desired computers.
4 Drag the selected computers to the All Computers list.
5 Authenticate by providing a user name and password for an Apple Remote Desktop
administrator.
The computer is now in your All Computers list.
Finding Clients by Searching a Network Range
To locate computers by network range, you provide a beginning and ending IP address
to scan, and Apple Remote Desktop queries each IP address in that range in sequence,
asking if the computer is a client computer. This method works best when searching for
clients outside the local subnet, but on the local area network.
Alternatively, you can use a text file that contains IP address ranges (in this format
“192.168.0.1-192.168.3.20”), and use text file import to find clients. See “Finding Clients by
File Import” on page 52.
DNS Name The computer’s DNS name, found by reverse lookup, if any.
ARD Version Apple Remote Desktop client software version.
Network Interface Which interface the client responded through.
Search column DescriptionChapter 4 Organizing Client Computers Into Computer Lists 51
To search a range of network addresses:
1 Select a scanner at the left of the Remote Desktop window.
2 Select Network Range.
3 Enter the beginning and ending IP address.
4 Click the Refresh button.
All responding clients are listed in the Remote Desktop window.
5 Select the desired computers.
6 Drag the selected computers to the All Computers list.
7 Authenticate by providing a user name and password for an Apple Remote Desktop
administrator.
The computer is now in your All Computers list.
Finding Clients by Network Address
If you know the exact IP address or fully qualified domain name of a computer, you can
use that IP address or domain name to add the computer to your All Computers list.
To add a specific address immediately to the All Computers list:
1 Choose File > Add By Address.
2 Enter the IP address or fully qualified domain name.
3 Enter the user name and password.
4 Choose whether to verify the name and password before adding it to the All
Computers list.
5 Click Add.
Alternatively you use the scanner to try an address or domain name and check
availability before attempting to add it to the All Computers list.
To search for a specific address:
1 Select a scanner at the left of the Remote Desktop window.
2 Select Network Address.
3 Enter the IP address or fully qualified domain name in the Address field.
4 Click the Refresh button.
If the client responds successfully, it is listed in the Remote Desktop window.
5 Select the desired computers.
6 Drag the selected computers to the All Computers list.
7 Authenticate by providing a user name and password for an Apple Remote Desktop
administrator.
The computer is now in your All Computers list.52 Chapter 4 Organizing Client Computers Into Computer Lists
Finding Clients by File Import
You can import a list of computers into Apple Remote Desktop by importing a file
listing the computers’ IP addresses. The list can be in any file format (text, spreadsheet,
word processor) and must contain either IP addresses or fully qualified domain names
(such as foo.example.com).
File import also allows you to add ranges of IP addresses by expressing the range in the
following format: xxx.xxx.xxx.xxx-yyy.yyy.yyy.yyy. For example, a text file with the line
“192.168.0.2-192.168.2.200” would add all IP addresses in that address range.
To import a list of computers from a file:
1 Select a scanner at the left of the Remote Desktop window.
2 Select File Import.
3 Browse for the file by clicking the Open File button, or drag a file into the window.
Alternatively, you can enter the file’s pathname in the File field.
All responding clients are listed in the Remote Desktop window.
4 Select the desired computers.
5 Drag the selected computers to the All Computers list.
6 Authenticate by providing a user name and password for an Apple Remote Desktop
administrator.
The computer is now in your All Computers list.
Making a New Scanner
You may want several scanners in order to search for specific address ranges or to do
other types of searches. You can make and save your own scanner so you can quickly
do the search at any time.
You can rename scanners to make them easy to identify.
To make a custom search list:
1 Choose File > New Scanner.
2 Rename the newly created scanner.
3 Select the scanner icon.
4 Choose a search type from the pop-up menu to the right.Chapter 4 Organizing Client Computers Into Computer Lists 53
5 Customize the search by entering the specific parameters for the search (such as an IP
address range, or file location).
You can find out how to customize the search in the following sections:
Â “Finding Clients by Searching the Local Network” on page 50
Â “Finding Clients by Searching a Network Range” on page 50
Â “Finding Clients by Network Address” on page 51
Â “Finding Clients by File Import” on page 52
6 Click the Refresh button.
All responding clients are listed in the Remote Desktop window.
Select your scanner icon and click the Refresh button whenever you want to run the
search.
Making and Managing Lists
You use lists to organize and perform management tasks on client computers. You can
make groups of lists, and rearrange the lists by dragging them up and down the left
side of the main window. Apple Remote Desktop has several different kinds of lists. The
following section describes the kinds of lists, and explains how to create lists and use
them for client management.
About Apple Remote Desktop Computer Lists
Apple Remote Desktop displays computers in lists in the main section of the Remote
Desktop window. The default computer list is called the All Computers list. This is a full
list of all possible clients that you have located and authenticated to. You can create
other lists to group the computers on your network in any way you wish.
Computer lists have the following capabilities:
Â You can create as many lists as you want.
Â The All Computers list can have up to the number of computers your license allows.
Â Computers can appear in more than one list.
Â Lists can be made in any grouping you can imagine: geographic, functional,
hardware configuration, even color.
Â Click a list name and keep the mouse over the list name, you can edit the list name.
Â If you double-click the list icon, you open another window containing the computers
in the list.54 Chapter 4 Organizing Client Computers Into Computer Lists
Creating an Apple Remote Desktop Computer List
You can make more specific, targeted lists of computers from your All Computers list.
The easiest way to make a new list is to use computers already in the All Computers list.
You can also create blank lists and add computers to them later.
To create an Apple Remote Desktop computer list:
1 Select the All Computers list icon in the main Remote Desktop window.
2 Select the computers you want to add to the new list.
3 Choose File > New List From Selection.
4 Name the computer list.
Alternatively, you can choose File > New List to create a blank list and drag computers
from the All Computers list, or from the scanner search results, to the blank list.
Deleting Apple Remote Desktop Lists
You can delete Apple Remote Desktop computer lists and scanner lists that you
created. You cannot delete the All Computers list, Task Server list, or Task History list.
To delete a list:
m Select the list and press the Delete key.
Creating a Smart Computer List
You can create a computer list which automatically populates based on custom criteria.
Once you create a smart list, any computer added to the All Computers list (or other
specified list) which matches the criteria will automatically be added to the smart list.
You can match any or all of the following criteria:
Â Name
Â IP Address
Â DNS Name
Â Label
Â Apple Remote Desktop version
Â Startup Volume
Â Installed RAM
Â CPU Information
Â Machine Model
Â Mac OS version
Â Computer is in List
In order to use a smart list which populates from any list except the All Computers list,
you need to add the “Computer is in List” criterion and specify the source list.Chapter 4 Organizing Client Computers Into Computer Lists 55
To create a smart computer list:
1 Choose File > New Smart List.
2 Name the smart computer list.
3 Choose “any” or “all” criteria to match.
4 Select the attribute to select by, using the pop-up windows and text entry field.
5 Add any other criteria with the Add (+) button.
6 Click OK.
The new smart list appears in Remote Desktop’s main window.
Editing a Smart Computer List
You may want to edit the smart lists you have created. The editing window is the same
as the one used to create the smart list. The options available are the same as those
listed in “Creating a Smart Computer List” on page 54.
To edit a smart computer list:
1 Select the smart list in Remote Desktop’s main window.
2 Choose File > Edit Smart List.
3 Change the smart computer list as desired.
Creating a List of Computers of from Existing Computer Lists
You may want a list which combines the results of several different lists and smart lists.
You can create aggregate lists by using the “Computer is in List” option. The list created
will have the computers from the source lists, but not indicate which source list they
came from.
To create an list of computer lists:
1 Create the lists which will serve as the sources of the smart list.
See “Creating an Apple Remote Desktop Computer List” on page 54 or “Creating a
Smart Computer List” on page 54 for more information.
2 Create the Smart List which will draw its computers from the previously created lists.
“Creating a Smart Computer List” on page 54 for more information.
3 In the Smart List creation dialog, choose to match all of the stated conditions.
4 For the first condition, select “Computer is in List.”
5 Select a source list from the pop-up menu.
6 Add another condition by clicking the Add (+) button.
7 Repeat steps 4-6, adding Computer Lists for all of the source lists.56 Chapter 4 Organizing Client Computers Into Computer Lists
8 Add other conditions and criteria as desired.
9 Create the final Smart List by clicking OK.
The new Smart List appears in Remote Desktop’s main window.
Importing and Exporting Computer Lists
When setting up Apple Remote Desktop 3, you may not necessarily use the same
computer you used for the previous version of Apple Remote Desktop. Rather than
create new lists of client computers, you can transfer existing lists between computers,
with benefits and limitations depending on the transfer circumstance. The following
sections will help you import or export your computer lists.
Â “Transferring Computer Lists from Apple Remote Desktop 3 to a New Administrator
Computer” on page 56
Â “Transferring Remote Desktop 2 Computer Lists to a New Remote Desktop 3
Administrator Computer” on page 57
Â “Transferring Old v1.2 Computer Lists to a New Administrator Computer” on page 57
Transferring Computer Lists from Apple Remote Desktop 3 to a New
Administrator Computer
You may want to move your existing computer lists to the new administrator computer
running Apple Remote Desktop 3. Lists transferred in this way retain their client
computers as well as the original name of the list. You can only use these instructions
to move computer lists between administrator computers which run Apple Remote
Desktop 3. When you import or export a computer list, the user name and password
used for Apple Remote Desktop authentication are not exported. Once you’ve
imported the computer list, you will still need to authenticate to the computers.
To transfer the computer lists:
1 In the main Remote Desktop window, select the list you want to move.
2 Choose File > Export List.
3 Select a name and a file location for the exported list.
The default file name is the list name. Changing the file name, however, does not
change the list name.
4 Click Save.
A .plist file is created in the desired location.
The XML-formatted .plist file is a plain text file that can be inspected with Apple’s
Property List Editor or a text editor.
5 Copy the exported file to the desired administrator computer.
6 On the new administrator computer, launch Remote Desktop.
7 Choose File > Import List.Chapter 4 Organizing Client Computers Into Computer Lists 57
8 Select the exported list, and click Open.
The list now appears in Remote Desktop’s main window.
Transferring Remote Desktop 2 Computer Lists to a New Remote
Desktop 3 Administrator Computer
If you are installing Apple Remote Desktop 3 on a computer different from the version
2.x administrator computer, you may want to move your existing computer lists to the
new administrator computer running Apple Remote Desktop 3. When you import or
export a computer list, the user name and password used for Apple Remote Desktop
authentication are not exported. Once you’ve imported the computer list, you will still
need to authenticate to the computers.
To transfer the computer lists:
1 In the main Remote Desktop window, select the list you want to move.
2 Make sure Remote Desktop lists the computer’s name and IP address.
3 Choose File > Export Window.
4 Select a name and a file location for the exported list, and click Save.
The default file name is the window’s title.
5 Copy the exported file to the desired administrator computer.
6 On the new administrator computer, launch Remote Desktop.
7 Using the Scanner, add the clients by File Import.
See “Finding Clients by File Import” on page 52, for detailed instructions.
The list now appears in Remote Desktop’s main window.
8 Select the computers in the list.
9 Choose File > New List From Selection.
The new list now appears in Remote Desktop’s main window.
Transferring Old v1.2 Computer Lists to a New Administrator
Computer
If you are installing Apple Remote Desktop 3 on a computer other than an older
administrator computer using Apple Remote Desktop 1.2, you need to move your
existing computer lists to the new administrator computer before installing version 3.
These instructions only apply when moving Apple Remote Desktop 1.2 computer lists
to a new computer.
Throughout these instructions, the computer with the original lists is the “source
computer.” The computer that will have Apple Remote Desktop 3 installed is the “target
computer.”58 Chapter 4 Organizing Client Computers Into Computer Lists
To transfer the computer lists:
1 Open Keychain Access (located in /Applications/Utilities) on the source computer.
2 Choose File > New Keychain.
3 Name the new keychain, and click Create.
4 Enter a password for the new keychain.
This is a temporary password that you will use to retrieve the information in the
keychain. Do not use your login password or other sensitive password.
5 If necessary, click Show Keychains to show the administrator keychain.
6 Select the source computer’s main keychain.
If the keychain is locked, unlock it and authenticate.
7 Select only the Apple Remote Desktop entries in the keychain.
8 Drag the Apple Remote Desktop entries to the newly created keychain.
9 Provide the source computer keychain password for each entry.
10 Quit Keychain Access on the source computer.
11 Copy the newly created keychain from the source computer (~/Library/Keychains/
) to the same location on the target computer.
You can copy the keychain over the network, or use a removable storage drive.
12 On the target computer, open Keychain Access in the Finder.
13 Choose File > Add Keychain.
14 Select the keychain that was copied from the source computer, and click Open.
15 If necessary, click Show Keychains to show the keychains.
16 Unlock the newly imported keychain, using the password designated for that keychain.
17 Select the Apple Remote Desktop entries.
18 Drag the Apple Remote Desktop entries to the main keychain on the target computer.
Provide the temporary keychain password for each entry.
19 Quit Keychain Access on the source computer.
When you open Apple Remote Desktop on the new computer, you will notice that the
computer lists from the old computer are available.5
 59
5 Understanding and Controlling
Access Privileges
There are several different ways to access and authenticate to
Apple Remote Desktop clients. Some depend on Apple
Remote Desktop settings, and others depend on other client
settings, or third-party administration tools.
This chapter explains the various access types, their configuration, and their uses.
You can learn about:
Â “Apple Remote Desktop Administrator Access” on page 59
Â “Apple Remote Desktop Administrator Access Using Directory Services” on page 62
Â “Apple Remote Desktop Guest Access” on page 65
Â “Apple Remote Desktop Nonadministrator Access” on page 66
Â “Virtual Network Computing Access” on page 67
Â “Command-Line SSH Access” on page 68
Â “Managing Client Administration Settings and Privileges” on page 68
Apple Remote Desktop Administrator Access
Access privileges allow an Apple Remote Desktop administrator to add computers to a
list and then interact with them. If no access privileges are allowed on a client
computer, that computer cannot be used with Apple Remote Desktop. Access
privileges are defined in the Apple Remote Desktop section of the Sharing pane of the
client computers’ System Preferences.
The recommended access privileges for a client computer depend on how it’s used.
Â If the computer is used in a public area, such as a computer lab, you may want to
allow administrators full access privileges.
Â If the computer is used by one person, you may not want to give administrators full
access privileges. Also, you may want a user who administers his or her own
computer to take responsibility for creating passwords and setting the access
privileges for the computer60 Chapter 5 Understanding and Controlling Access Privileges
The following table shows the settings in the Apple Remote Desktop settings in the
Sharing Preference pane and the features of Remote Desktop that they correspond to.
For example, if you want a certain administrator to be rename computer file sharing
names, you will need to grant that user that privilege by selecting “Change Settings”.
checkbox in the Apple Remote Desktop settings in the Sharing Preference pane on the
client computer.
Select To allow administrators to
[bookmark: name] Select any other privileges. (If you select only this box, the
administrator can see the client computer in the Computer Status
window and include it in Network Test reports.)
Generate reports Create hardware and software reports using the Report menu; use
Set Reporting Policy and Spotlight Search.
Open and quit applications Use these Manage menu commands: Open Application, Open
Items, Send UNIX Command and Log Out Current User.
Change settings Use these Manage menu commands: Rename Computer, Send
UNIX Command and Set Startup Disk.
Delete and replace items Use these Manage menu commands: Copy Items, Install Packages,
Send UNIX Command and Empty Trash. Also delete items from
report windows.
This item must be enabled in order to use the Upgrade Client
Software feature.
Send text messages Use these Interact menu commands: Send Message and Chat.
Restart and shut down Use these Manage menu commands: Sleep, Wake Up, Restart,
Send UNIX Command, and Shut Down.
This item must be enabled in order to use the Upgrade Client
Software feature.
Copy items Use these Manage menu and Server menu commands: Copy
Items, Send UNIX Command and Install Packages.
This item must be enabled in order to use the Upgrade Client
Software and Change Client Settings features.
Control Use these Interact menu commands: Control, Share Screen, Lock
and Unlock Screen.
This item must be enabled in order to use the Upgrade Client
Software and Change Client Settings features.Chapter 5 Understanding and Controlling Access Privileges 61
Setting Apple Remote Desktop Administrator Access Authorization
and Privileges Using Local Accounts
To prepare a client for administration, you activate the existing version of Apple
Remote Desktop on the client computer and set Apple Remote Desktop administrator
access privileges by using the Sharing pane of the computer’s System Preferences. You
set access privileges separately for each user account on the computer. Follow the
steps in this section to set access privileges on each client computer.
Note: You can skip this step if you create a custom installer that automatically enables
your desired client settings.
To make changes on a client computer, you must have the name and password of a
user with administrator privileges on the computer.
To set administrator privileges on a computer:
1 On the client computer, open System Preferences and click Sharing.
If the preference pane is locked, click the lock and then enter the user name and
password of a user with administrator privileges on that computer.
2 Select Apple Remote Desktop in the Sharing service pane.
3 Click Access Privileges.
4 Select each user that you want enabled for Apple Remote Desktop administration
authentication.
5 Select a listed user whose access privileges you want to set, and then make the
changes you want to the access privileges. Your changes take effect immediately.
Hint: Holding down the Option key while clicking the user’s checkbox will
automatically select all the following checkboxes for access.
See “Apple Remote Desktop Administrator Access” on page 59 for more information.
6 Repeat for additional users whose access privileges you want to set.
7 If desired, enter information in any or all of the four Computer Information fields.
This information appears in Apple Remote Desktop System Overview reports and
optionally in the computer list views. For example, you can enter an inventory number
for the computer, a serial number, or a user’s name and telephone number.
8 Click OK.
9 To activate the Apple Remote Desktop client, make sure to select the Apple Remote
Desktop checkbox, or select Apple Remote Desktop and click Start.62 Chapter 5 Understanding and Controlling Access Privileges
Apple Remote Desktop Administrator Access Using Directory
Services
You can also grant Apple Remote Desktop administrator access without enabling any
local users at all by enabling group-based authorization if the client computers are
bound to a directory service. When you use specially named groups from your
Directory Services master domain, you don’t have to add users and passwords to the
client computers for Apple Remote Desktop access and privileges.
When Directory Services authorization is enabled on a client, the user name and
password you supply when you authenticate to the computer are checked in the
directory. If the name belongs to one of the Apple Remote Desktop access groups, you
are granted the access privileges assigned to the group.
Creating Administrator Access Groups
In order to use Directory Services authorization to determine access privileges, you
need to create groups and assign them privileges. There are two ways of doing this:
Method #1
You can create groups and assign them privileges through the mcx_setting attribute
on any of the following records: any computer record, any computer list record, or the
guest computer record.
To create an administrator access group:
1 Create groups as usual.
If you are using Mac OS X Server, you use Workgroup Manager to make them.
2 After you have created groups, you edit either the computer record of the computer to
be administered, its computer list record, or the guest computer record.
3 Use a text editor, or the Apple Developer tool named Property List Editor to build the
mcx_setting attribute XML. The XML contains some administrator privilege key
designations (ard_admin, ard_reports, etc.), and the groups that you want to possess
those privileges. The following privilege keys have these corresponding Remote
Desktop management privileges:Chapter 5 Understanding and Controlling Access Privileges 63
In the XML, you name a privilege key and make the value the name of the group or
groups you want to possess the privilege.
Use the sample XML below to make your management/key designation XML.
4 When you have created the snippet of XML, you enter this whole snippet into a
computer record or computer list record.
If you are using Workgroup Manager, you enable the preference to “Show All Records
Tab and Inspector” and use the Inspector to copy the entire snippet of XML the value
which corresponds to the “MCXSettings” attribute name.
Management Privilege ard_admin ard_reports ard_manage ard_interact
Generate reports X X X
Open and quit applications X X
Change settings X X
Copy items X X
Delete and replace items X X
Send messages X X X
Restart and shut down X X
Control X X
Observe X X
Show being observed X X64 Chapter 5 Understanding and Controlling Access Privileges
For more information on using Workgroup Manager, and Open Directory, see their
documentation at:
www.apple.com/server/documentation
The following is the sample XML format you need to use to assign management
privileges via MCX keys. It assigns the above “ard_interact” privileges to the groups
named “some_group” and “staff.” It also assigns the “ard_manage” privileges to the
group named “staff,” the “ard_admin” privileges to the group “my_admin_group,” and
leaves no group with the “ard_reports” privilege set. Here’s the XML:

 mcx_application_data

 com.apple.remotedesktop

 Forced

 mcx_preference_settings

 ard_interact

 some_group
 staff

 ard_manage

 staff

 ard_admin

 my_admin_group

 ard_reports

This example attribute defines four privileges, although any of them may be left out.Chapter 5 Understanding and Controlling Access Privileges 65
Method #2
You can create groups with special names that correspond to the privilege keys above:
ard_admin, ard_reports, ard_manage, and ard_interact. The corresponding privileges
are automatically assigned to these specially named groups. If you have already created
these groups for use with Apple Remote Desktop 2, they will continue to work as
expected with Apple Remote Desktop 3.
Enabling Directory Services Group Authorization
In order to enable group-based authorization for Apple Remote Desktop access, you
create the appropriate groups in your Directory Services master directory domain.
To complete this task, you need to be the Directory Services administrator and have
access to your organization’s users and groups server.
To enable Apple Remote Desktop authorization by group:
1 Use one of the methods in the section “Creating Administrator Access Groups” to
create groups with Apple Remote Desktop access privileges assigned to them.
2 Add users to the groups.
3 Make sure the client computers to be administered are bound to your directory system.
4 Set the clients to use directory authorization by using the Change Client Settings
feature or make a custom installer.
5 Choose to enable directory-based administration on the clients using Directory Access
found in /Applications/Utilities/.
Apple Remote Desktop Guest Access
You can configure an Apple Remote Desktop client to give temporary, one-time access
to an Apple Remote Desktop administrator who does not have a user name or
password for the client computer. Each time the Apple Remote Desktop administrator
would like to control the client computer, he or she must request permission from the
remote client’s user.
Warning: Granting access to control a screen is the most powerful feature in Apple
Remote Desktop, and can be equivalent to unrestricted access.66 Chapter 5 Understanding and Controlling Access Privileges
To allow guest access:
1 On the client computer, open System Preferences and click Sharing.
If prompted, enter the user name and password of a user with administrator privileges
on that computer.
2 Select Apple Remote Desktop in the Sharing pane.
3 Click Access Privileges.
4 Select “Guests may request permission to control screen.”
5 Click OK.
Apple Remote Desktop Nonadministrator Access
Remote Desktop can operate in what is referred to as “user mode.” User mode is
activated when a nonadministrator user opens Remote Desktop to administer Apple
Remote Desktop client computers. The administrator of the computer with Remote
Desktop installed can choose which features and tasks are available to
nonadministrator users.
Limiting Features in the Administrator Application
User mode is a great way to delegate administrative tasks, or give users only the
features of Remote Desktop that they really use. For example, you might not allow
nonadministrators to copy or delete files, but you may want them to be able to
observe client screens and send messages to client users.
You can choose to allow nonadministrators to:
Â Observe, control, and share screens
Â Lock and unlock screens
Â Send text messages and chat
Â Sleep and wake client computers
Â Log out users
Â Restart and shut down computers
Â Open or quit files and applications
Â Rename computers
Â Generate reports and software searches
Â Copy items, delete items, and empty the Trash
Â Create Apple Remote Desktop custom client installers
Â Upgrade clients and change client settings
Â Install packages
Â Set the client computer’s startup volume
Â Set the client’s data reporting policy
Â Send UNIX commandsChapter 5 Understanding and Controlling Access Privileges 67
Each of these features can be enabled or disabled independently of each other, or you
can enable all of Remote Desktop’s features for nonadministrator users.
To enable User Mode:
1 Make sure you are logged in as an administrator user.
2 Open Remote Desktop.
3 Choose Remote Desktop > Preferences.
4 Click the Security button.
5 Enable or disable features, as desired.
6 Close the Preference’s window.
Virtual Network Computing Access
You can use Apple Remote Desktop to access a Virtual Network Computing (VNC)
server and view and interact with the server’s screen. VNC access is determined by the
VNC server software. To access a VNC server, it is only necessary to know the IP address
or fully qualified domain name and the password designated in the VNC server
software.
This password does not necessarily correspond to any other password on the system,
and is determined by the VNC configuration.
VNC access is similar to Apple Remote Desktop’s Control command. It allows you to use
your keyboard and mouse to control a VNC server across a network. It doesn’t give any
other Apple Remote Desktop administrator privileges except those of the currently
logged-in user.
Non-Apple VNC viewers can control Apple Remote Desktop clients if the client allows it.
Allowing a non-Apple VNC viewer access to an Apple Remote Desktop client is less
secure than using Apple Remote Desktop to control the client. The VNC protocol
implemented in third-party VNC viewers may not encrypt keystrokes sent over the
network, so sensitive information can be intercepted.
Warning: Granting VNC access to control a screen is the most powerful feature in
Apple Remote Desktop, and can be equivalent to unrestricted access.68 Chapter 5 Understanding and Controlling Access Privileges
To allow VNC access:
1 On the client computer, open System Preferences and click Sharing.
If prompted, enter the user name and password of a user with administrator privileges
on that computer.
2 Select Apple Remote Desktop in the Sharing pane.
3 Click Access Privileges.
4 Select “VNC viewers may control screen with password.”
5 Enter a VNC password.
Command-Line SSH Access
Command-line SSH access is not granted or managed using Remote Desktop. This type
of access is managed in the Sharing pane of System Preferences (called “Remote
Login”) and is separate from Apple Remote Desktop access types. When you log in to a
client remotely using SSH, you have the user privileges assigned to the user name and
password. These may or may not include computer administrator privileges.
You can use SSH to access a client using a user account created for Apple Remote
Desktop, but you are limited to performing whatever tasks were allowed to that user
when the account was created. Conversely, only the users specified in the Apple
Remote Desktop access privileges can access a computer using Apple Remote Desktop.
Apple Remote Desktop privileges are completely separate and distinct from local
computer administrator UNIX privileges.
Managing Client Administration Settings and Privileges
Regular audits of administration settings can help maintain a secure Remote Desktop
administration environment. Using the various administrator options given with Apple
Remote Desktop administrator privileges, you can create specialized logins for certain
tasks, limiting potentially disruptive power of certain sub-administrators. The following
section gives detailed instructions for checking the administrator privilege settings of
client computers, and changing those settings.
Warning: Do not use the same password as any local user or Apple Remote Desktop
login.Chapter 5 Understanding and Controlling Access Privileges 69
Getting an Administration Settings Report
You can query active Apple Remote Desktop clients for a report on what commands
they are accepting from your administrator authentication.
The report is a list of the Apple Remote Desktop administrator access types each with
an “On” or “Off” to indicate whether that access type is available to you.
To get an administration settings report:
1 Select a computer list in the Remote Desktop window.
2 Select one or more computers in the selected computer list.
3 Choose Report > Administration Settings.
4 Click Get Report.
Changing Client Administrator Privileges
Once the client computers are able to be administered, you can change the
administrator access privileges for multiple computers simultaneously, using the
Change Client Settings command. If you are using Directory Services to designate
administrator privileges, you don’t need to change the settings on the clients.
To make changes on a client, you must have the name and password of a user with
administrator privileges on the computer. Additionally, you must already have the
Control privilege.
Note: You do not have to make a selection on every page of the assistant. You can click
Continue to move to the next set of settings.
To change administrator privileges on each computer:
1 Select a computer list.
2 Select one or more computers in the selected computer list.
3 Choose Manage > Change Client Settings.
The client assistant appears. Click Continue.
4 Choose whether to start Remote Desktop sharing at system startup.
This changes the setting found in the Sharing pane of System Preferences.
5 Choose whether to hide or show the Apple Remote Desktop menu bar icon.
6 Click Continue.
7 Choose whether to create a new user for Apple Remote Desktop login. Click Continue.
New users can be used to grant Apple Remote Desktop administrator privileges.
Creating a new user does not overwrite existing users or change existing user
passwords.
If you choose not to create a new user, skip to step 9 after clicking Continue.70 Chapter 5 Understanding and Controlling Access Privileges
8 Add a new user by clicking Add and filling in the appropriate information.
Click OK after adding each user, and click Continue when you’re ready to go on.
9 Choose whether to assign Apple Remote Desktop administrator access privileges to
Directory Services groups.
If you choose to do so, select “Enable directory-based administration.”
See “Apple Remote Desktop Administrator Access Using Directory Services” on page 62
for more information on using this method to grant Apple Remote Desktop
administrator access.
10 Choose whether to assign Apple Remote Desktop administrator access privileges to
specific users. Click Continue.
If you choose not to assign administrator access privileges, skip to step 13.
11 Click Add to designate a user to receive Apple Remote Desktop access privileges.
12 Provide the user’s short name and assign the privileges as desired.
See “Apple Remote Desktop Administrator Access” on page 59 for more information.
Click OK after each user, and click Continue when you’re ready to go on.
13 Choose whether to allow temporary guest control by requesting permission on the
client computers.
14 Choose whether to allow non-Apple VNC viewers to control the client computers, and
click Continue.
See “Virtual Network Computing Access” on page 67 for more information.
15 If desired, select and enter information in any or all of the four System Data fields.
This information appears in Apple Remote Desktop System Overview reports. For
example, you can enter an inventory number for the computer, a serial number, or a
user’s name and telephone number.
16 Click Continue to review the clients’ settings.
17 Choose whether to execute the change using the application or a dedicated task
server.
18 Click Change to change the clients’ settings
The client configuration assistant contacts all of the selected computers and changes
their administration settings.6
 71
6 Setting Up the Network and
Maintaining Security
This chapter describes the main aspects of setting up your
network for use with Apple Remote Desktop system
administration, as well as best-practice tips for your network.
Additionally, it contains information about Apple Remote
Desktop security features, and detailed instructions for
enabling them. You can learn about:
Â “Setting Up the Network” on page 71
Â “Using Apple Remote Desktop with Computers in an AirPort Wireless Network” on
page 72
Â “Getting the Best Performance” on page 73
Â “Maintaining Security” on page 73
Setting Up the Network
Your network configuration determines Apple Remote Desktop’s performance and
usability. AirPort and AirPort Extreme networks offer slower performance than almost
any Ethernet network. Therefore, file copying, client monitoring, and reporting are
slower over AirPort and AirPort Extreme connections. Network routers and firewalls also
shape, direct, or block network traffic; these things can have an effect on Apple Remote
Desktop’s reliability and efficiency. Here are a few guidelines to keep in mind when
setting up Apple Remote Desktop on your network:
Â The more AirPort clients connected to a base station, the lower the bandwidth for
each computer. AirPort Base Stations are not considered “switched networks.”
Â Local Hostname (name using Apple’s Bonjour technology, that looks like: name.local)
browsing does not extend beyond the local subnet. Local Hostnames do not resolve
across routers like domain names do.
Â Networks with switches have fewer collisions and packet errors than networks with
hubs. This means greater reliability and speed. Consider using switches instead of
hubs.72 Chapter 6 Setting Up the Network and Maintaining Security
Â Organize computers you’re administering using Apple Remote Desktop into small
groups, and close the Remote Desktop administrator application when not in use.
This helps reduce the number of status queries, thus reducing network traffic.
Â If a client has a slow network type, consider running it in a list separate from the
faster clients. A single slow client can slow down network operations.
Â If network traffic passes through firewalls, make sure you have a large Maximum
Transmission Unit (MTU) setting (1200 or greater). Too small an MTU setting can result
in black screens when sharing or sending screens.
Â If you are using a wide-area network (WAN), or metropolitan area network (MAN),
make sure that the defrag bit is turned off in your router so packets don’t get
chunked up. This can result in black screens when sharing or sending screens.
Â Network Address Translation (NAT) networks (such as those that use the Mac OS X
Internet Sharing feature) can pose configuration and access difficulties.
If you want to use Remote Desktop from behind a NAT router to access computers
beyond the NAT router, you need to set TCP and UDP port forwarding for ports 3283
and 5900 to your administrator computer. Similarly, if you wish to access a single client
computer that is behind a NAT router, you need to set the router to forward TCP and
UDP ports 3283 and 5900 to the client computer you wish to access.
Using Apple Remote Desktop with Computers in an AirPort
Wireless Network
Using Apple Remote Desktop to observe or control client computers connected using
AirPort wireless technology can sometimes result in impaired performance or cause
communication errors to appear in the Computer Status window.
To get the best performance from Apple Remote Desktop with computers in an AirPort
wireless network:
Â Make sure that all AirPort Base Stations and all Apple Remote Desktop client
computers have the latest versions of Apple Remote Desktop software, AirPort
software, and Mac OS X software installed.
Â Limit the number of clients that connect to an AirPort Base Station. AirPort clients on
a base station receive all network communication packets sent to any one client on
that base station. Although clients ignore packets that aren’t addressed to them, CPU
resources are used to identify and discard the packet.
Â Scale the Control and Observe window. Apple Remote Desktop has server-side
scaling that will allow for less traffic across the network as you scale the window to
smaller sizes.
Â Try not to use tasks that multicast traffic such as Share Screen and File Copy. File
Copy tries to initiate a series of individual copies if there is a significant number of
multicast networking errors.Chapter 6 Setting Up the Network and Maintaining Security 73
Â Wireless networks also are not suited for multicast traffic. However Apple Remote
Desktop’s multi-observe feature is different because it doesn’t use multicast traffic.
Â Display shared screens in black and white rather than in color.
Â Configure your AirPort Base Station with a station density of High and increase the
multicast rate to 11 Mbps using AirPort Admin Utility. Using the base station density
and multicast rate settings limits the range of each AirPort Base Station’s network,
requiring client computers to be fewer than 50 meters from a base station.
Getting the Best Performance
To get the best performance when using the Share Screen, Observe, and Control
commands:
Â Use the fastest network possible. This means favoring Ethernet over AirPort,
1000Base-T over 100Base-T, and 100Base-T over 10Base-T.
Â If you’re using AirPort, adjust the multicast speed higher.
Â Don’t mix network speeds if possible.
Â Reduce the use of animation on remote computers. For example, you can simplify
Dock preference settings by turning off animation, automatic hiding and showing,
and magnification effects.
Â View the client’s screen in a smaller window when using the “fit to window” option.
Â View the client’s screen with fewer colors.
Â Use a solid color for the desktop of the screen you’re sharing.
Â Share screens only on local networks. If you share a screen with a computer
connected across a router, screen updates happen more slowly.
Â Set the Control and Observe image quality to the lowest acceptable for the given
circumstance.
Maintaining Security
Remote Desktop can be a powerful tool for teaching, demonstrating, and performing
maintenance tasks. For convenience, the administrator name and password used to
access Remote Desktop can be stored in a keychain or can be required to be typed
each time you open the application. However, the administrator name and password
for each client computer are stored in the administrator’s preferences and are strongly
encrypted.74 Chapter 6 Setting Up the Network and Maintaining Security
Administrator Application Security
Â Make use of user mode to limit what nonadministrator users can do with Remote
Desktop.
See “Apple Remote Desktop Nonadministrator Access” on page 66.
Â If you leave the Remote Desktop password in your keychain, be sure to lock your
keychain when you are not at your administrator computer.
Â Consider limiting user accounts to prevent the use of Remote Desktop.
Either in a Managed Client for Mac OS X (MCX) environment, or using the Accounts
pane in System Preferences, you can make sure only the users you designate can use
Remote Desktop.
Â Check to see if the administrator computer is currently being observed or controlled
before launching Remote Desktop (and stop it if it is).
Remote Desktop prevents users from controlling a client with a copy of Remote
Desktop already running on it at connection time, but does not disconnect existing
observe or control sessions to the administrator computer when being launched.
Although this functionality is helpful if you want to interact with a remote LAN which
is behind a NAT gateway, it is possible to exploit this feature to get secretly get
information about the administrator, administrator’s computer, and its associated
client computers.
User Privileges and Permissions Security
Â To disable or limit an administrator’s access to an Apple Remote Desktop client, open
System Preferences on the client computer and make changes to settings in the
Remote Desktop pane in the Sharing pane of System Preferences. The changes take
effect after the current Apple Remote Desktop session with the client computer
ends.
Â Remember that Apple Remote Desktop keeps working on client computers as long
as the session remains open, even if the password used to administer the computer
is changed.
Â Don’t use a user name for an Apple Remote Desktop access name and password.
Make “dummy” accounts specifically for Apple Remote Desktop password access and
limit their GUI and remote login privileges.
Password Access Security
Â Never give the Remote Desktop password to anyone.
Â Never give the administrator name or password to anyone.
Â Use cryptographically sound passwords (no words found in a dictionary; eight
characters or more, including letters, numbers and punctuation with no repeating
patterns).
Â Regularly test your password files against dictionary attack to find weak passwords.Chapter 6 Setting Up the Network and Maintaining Security 75
Â Quit the Remote Desktop application when you have finished using it. If you have
not stored the Remote Desktop password in your keychain, the application prompts
you to enter the administrator name and password when you open it again.
Physical Access Security
Â If you have stored the Remote Desktop password in your keychain, make sure the
keychain is secured and the application isn’t running while you are away from the
Remote Desktop window.
Â If you want to leave the Remote Desktop application open but need to be away from
the computer, use a password-protected screen saver and select a hot corner so you
can instantly activate the screen saver.
Remote Desktop Authentication and Data Transport Encryption
Authentication to Apple Remote Desktop clients uses an authentication method based
on a Diffie-Hellman Key agreement protocol that creates a shared 128-bit key. This
shared key is used to encrypt both the name and password using the Advanced
Encryption Standard (AES). The Diffie-Hellman key agreement protocol used in Remote
Desktop 3 is very similar to the one used in personal file sharing, with both of them
using a 512-bit prime for the shared key calculation.
With Remote Desktop 3, keystrokes and mouse events are encrypted when you control
Mac OS X client computers. Additionally, all tasks except Control and Observe screen
data, and files copied via Copy Items and Install Packages are encrypted for transit
(though you may choose to encrypt these as well by changing your application
preferences). This information is encrypted using the Advanced Encryption Standard
(AES) with the 128-bit shared key that was derived during authentication.
Encrypting Observe and Control Network Data
Although Remote Desktop sends authentication information, keystrokes, and
management commands encrypted by default, you may want additional security. You
can choose to encrypt all Observe and Control traffic, at a certain performance cost.
Encryption is done using an SSH tunnel between the participating computers. In order
to use encryption for Observe and Control tasks, the target computers must have SSH
enabled (“Remote Login” in the computer’s Sharing Preference pane). Additionally,
firewalls between the participating computers must be configured to pass traffic on
TCP port 22 (SSH well known port).
If the you are trying to control a VNC server which is not Remote Desktop, it will not
support Remote Desktop keystroke encryption. If you try to control that VNC server,
you will get a warning that the keystrokes aren’t encrypted which you will have to
acknowledge before you can control the VNC server. If you chose to encrypt all
network data, then you will not be able to control the VNC server because Remote
Desktop is not able to open the necessary SSH tunnel to the VNC server. 76 Chapter 6 Setting Up the Network and Maintaining Security
To enable Observe and Control transport encryption:
1 Choose Remote Desktop > Preferences.
2 Click the Security button.
3 In the “Controlling computers” section, select “Encrypt all network data.”
Encrypting Network Data During Copy Items and Install Packages
Tasks
Remote Desktop can send files for Copy Items and Install Packages via encrypted
transport. This option is not enabled by default, and you must either enable it explicitly
for each copy task, or in a global setting in Remote Desktop’s preferences. Even installer
package files can be intercepted if not encrypted.
To encrypt individual file copying and package installation tasks:
m In the Copy Items task or Install Packages task configuration window, select “Encrypt
network data.”
To set a default encryption preference for file copies:
1 In the Remote Desktop Preferences window, select the Security pane.
2 Check “Encrypt transfers when using Copy Items,” or “Encrypt transfers when using
Install Packages” as desired.
Alternatively, you could encrypt a file archive before copying it. The encrypted archive
could be intercepted, but it would be unreadable.7
 77
7 Interacting with Users
Apple Remote Desktop is a powerful tool for interacting with
computer users across a network. You can interact by
controlling or observing remote screens, text messaging with
remote users, or sharing your screen with others.
This chapter describes Remote Desktop’s user interaction capabilities and gives
complete instructions for using them. You can learn about:
Â “Controlling” on page 78
Â “Observing” on page 85
Â “Sending Messages” on page 92
Â “Sharing Screens” on page 93
Â “Interacting with Your Apple Remote Desktop Administrator” on page 9478 Chapter 7 Interacting with Users
Controlling
Apple Remote Desktop allows you to control remote computers as if you were sitting in
front of them. You can only control the keyboard and mouse of any one computer at a
time. There are two kinds of remote computers that Apple Remote Desktop can
control: Apple Remote Desktop clients and Virtual Network Computing (VNC) servers.
Controlling Apple Remote Desktop Clients
Apple Remote Desktop client computers can be controlled by any administrator
computer that has the Control permission set. See “Apple Remote Desktop
Administrator Access” on page 59 for more information about Apple Remote Desktop
permissions.
While you control an Apple Remote Desktop client computer, some keyboard shortcut
commands are not sent to the remote computer, but they affect the administrator
computer. These include:
Â Change Active Application (Command-Tab and Command-Shift-Tab)
Â Show or Hide Dock (Command-Option-D)
Â Log Out User (Command-Shift-Q)
Â Take Screen Shot (Command-Shift-3, -4)
Â Force Quit (Command-Option-Escape)Chapter 7 Interacting with Users 79
Also, special keys including the sound volume, screen brightness, and Media Eject keys
do not affect the client computer.
These instructions assume the that observed computer has Apple Remote Desktop
installed and configured properly (see “Setting Up an Apple Remote Desktop Client
Computer for the First Time” on page 41) and that the computer has been added to an
Apple Remote Desktop computer list (see “Finding and Adding Clients to Apple
Remote Desktop Computer Lists” on page 49).
To control an Apple Remote Desktop client:
1 Select a computer list in the Remote Desktop window.
2 Select one computer from the list.
3 Choose Interact > Control.
4 To customize the control window and session, see “Control Window Options” on
page 79.
5 Use your mouse and keyboard to perform actions on the controlled computer.
If your Remote Desktop preferences are set to share keyboard and mouse control, the
remote computer’s keyboard and mouse are active and affect the computer just as the
administrator computer’s keyboard and mouse do.
If your preferences aren’t set to share control, the remote computer’s keyboard and
mouse do not function while the administrator computer is in control.
Control Window Options
When controlling a client, the control window contains several buttons in the window
title bar which you can use to customize your remote control experience. There are
toggle buttons that switch your control session between two different states, and there
are action buttons that perform a single task. In addition to the buttons, there is a
slider for image quality.
The toggle buttons are:
Â Control mode or Observe mode
Â Share mouse control with user
Â Fit screen in window
Â Lock computer screen while you control
Â Fit screen to full display
The action buttons are:
Â Capture screen to a file
Â Get the remote clipboard contents
Â Send clipboard contents to the remote clipboard80 Chapter 7 Interacting with Users
Switching the Control Window Between Full Size And Fit-To-Window
When controlling a client, you can see the client window at full size, or scaled to fit the
control window. Viewing the client window at full size will show the client screen at its
real pixel resolution. If the controlled computer’s screen is larger than your control
window, the screen show scroll bars at the edge of the window.
To switch in-a-window control between full size and fit-to-window modes:
1 Control a client computer.
2 Click the Fit Screen In Window button in the control window toolbar.
Switching Between Control and Observe Modes
Each control session can be switched to a single-client observe session, in which the
controlled computer no longer takes mouse and keyboard input from the
administrator computer. This allows you to easily give control over to a user at the
client computer keyboard, or place the screen under observation without accidentally
affecting the client computer.
See “Observing a Single Computer” on page 90 for more information on Apple Remote
Desktop observe mode.
To switch between control and observe modes:
1 Control a client computer.
2 Click the Control/Observe toggle button in the control window toolbar.
Sharing Control with a User
You can either take complete mouse and keyboard control or share control with an
Apple Remote Desktop client user. This allows you to have more control over the client
interaction as well as prevents possible client side interference.
This button has no effect while controlling VNC servers. See “Controlling VNC Servers”
on page 82 for more information.
To switch between complete control and shared mouse modes:
1 Control a client computer.
2 Click the “Share mouse and keyboard control” button in the control window toolbar.Chapter 7 Interacting with Users 81
Hiding a User’s Screen While Controlling
Sometimes you may want to control a client computer with a user at the client
computer, but you don’t want the user to see what you’re doing. In such a case, you
can disable the client computer’s screen while preserving your own view of the client
computer. This is a special control mode referred to as “curtain mode.” You can change
what’s “behind the curtain” and reveal it when the mode is toggled back to the
standard control mode.
To switch between standard control and curtain modes:
1 Control a client computer.
2 Click the “Lock computer screen while you control” button in the control window
toolbar.
Capturing the Control Window to a File
You can take a picture of the remote screen, and save it to a file. The file is saved to the
administrator computer, and is the same resolution and color depth as the controlled
screen in the window.
To screen capture a controlled client’s screen:
1 Control a client computer.
2 Click the “Capture screen to a file” button in the control window toolbar.
3 Name the new file.
4 Click Save.
Switching Control Session Between Full Screen and In a Window
You can control a computer either in a window, or using the entire administrator
computer screen. The “Fit screen to full display” toggle button changes between these
two modes.
In full screen mode, the client computer screen is scaled up to completely fill the
administrator screen. In addition to the client screen, there are a number of Apple
Remote Desktop controls still visible overlaying the client screen.
In in-a-window mode, you can switch between fitting the client screen in the window
or showing it actual size, possibly scrolling around the window to see the entire client
screen. See “Switching the Control Window Between Full Size And Fit-To-Window” on
page 80 for more information.
To switch between full screen and in-a-window modes:
1 Control a client computer.
2 Click the “Fit screen to full display” button in the control window toolbar.82 Chapter 7 Interacting with Users
Sharing Clipboards for Copy and Paste
You can transfer data between the Clipboards of the administrator and client computer.
For example, you may want to copy some text from a file on the administrator
computer and paste it into a document open on the client computer. Similarly, you
could copy a link from the client computer’s web browser and paste it into the web
browser on the administrator computer.
The keyboard shortcuts for Copy, Cut, and Paste are always passed through to the
client computer.
To share clipboard content with the client:
1 Control a client computer.
2 Click the “Get the remote clipboard contents” button in the control window toolbar to
get the client’s Clipboard content.
3 Click the “Send clipboard contents to the remote clipboard” button in the control
window toolbar to send content to the client’s Clipboard.
Controlling VNC Servers
Virtual Network Computing (VNC) is remote control software. It allows a user at one
computer (using a “viewer”) to view the desktop and control the keyboard and mouse
of another computer (using a VNC “server”) connected over the network. For the
purposes of these instructions, VNC-enabled computers are referred to as “VNC clients.”
VNC servers and viewers are available for a variety of computing platforms. Remote
Desktop is a VNC viewer and can therefore control any computer on the network
(whether that computer is running Mac OS X, Linux, or Windows) that is:
Â Running the VNC server software
Â In an Apple Remote Desktop computer list
If the you are trying to control a VNC server which is not Remote Desktop, it will not
support Remote Desktop keystroke encryption. If you try to control that VNC server,
you will get a warning that the keystrokes aren’t encrypted which you will have to
acknowledge before you can control the VNC server. If you chose to encrypt all
network data, then you will not be able to control the VNC server because Remote
Desktop is not able to open the necessary SSH tunnel to the VNC server. For more
information, see “Encrypting Observe and Control Network Data” on page 75.
These instructions assume the observed computer has been added to an Apple
Remote Desktop computer list (see “Finding and Adding Clients to Apple Remote
Desktop Computer Lists” on page 49). When adding a VNC server to an Apple Remote
Desktop computer list, you only need to provide the VNC password, with no user name.
To control a VNC client computer:
1 Select a computer list in the Remote Desktop window.Chapter 7 Interacting with Users 83
2 Select one computer from the list.
3 Choose Interact > Control.
If the controlled computer’s screen is larger than your control window, the screen
scrolls as the pointer approaches the edge of the window.
4 To customize the control window and session, see “Control Window Options” on
page 79.
5 Use your mouse and keyboard to perform actions on the controlled computer.
Regardless of your Apple Remote Desktop preferences, controlled VNC servers share
keyboard and mouse control. The remote computer’s keyboard and mouse are active
and affect the computer just as the administrator computer’s keyboard and mouse do.
Setting up a Non–Mac OS X VNC Server
This section contains very basic, high-level steps for setting up a non–Mac OS X client
to be viewed with Remote Desktop. This section cannot give detailed instructions, since
the client operating system, VNC software, and firewall will be different.
The basic steps are:
1 Install VNC Server software on the client computer (for example, a PC, or a Linux
computer).
2 Assign a VNC password on the client computer.
3 Make sure the client’s firewall has the VNC port open (TCP 5900).
4 Make sure “Encrypt all network data” is not selected in the Security section of the
Remote Desktop Preferences.
5 Add the computer to the Remote Desktop’s All Computers list using the client’s IP
address.
6 Put the client computer’s VNC password in the Remote Desktop authentication box.
There is no user name for a VNC server, just a password.
Apple Remote Desktop Control and the PC’s Ctrl-Alt-Del
If you use Remote Desktop to administer a PC that’s running VNC, you may be
wondering how to send the Ctrl-Alt-Del command (Control-Alternate-Delete) from a
Mac to the PC. Though Mac and PC key mappings differ, you can use an alternate key
combination to send the command.
Â For full-size (desktop) keyboards, use Control-Option-Forward Delete.
Â For abbreviated keyboards (on portable computers), use Function-Control-OptionCommand-Delete.84 Chapter 7 Interacting with Users
VNC Control Options
After you have added a VNC server to a computer list (or when you are first adding it),
you can set a custom port for VNC communication, and you can designate a display to
control.
To set a custom port on an existing computer list member:
1 Select a computer list in the Remote Desktop window.
2 Select a VNC Server computer in the Remote Desktop window.
3 Choose File > Get Info.
4 Click Edit in the Info window.
5 At the end of the IP Address or fully qualified domain name, add a colon followed by
the desired port.
For example, if you want to connect to a VNC server (vncserver.example.com) that is
listening on TCP port 15900, you would enter:
vncserver.example.com:15900
6 Click Done.
To set a custom VNC port when adding a computer by address:
1 Choose File > Add By Address.
2 Enter the IP address or fully qualified domain name.
3 At the end of the IP Address or fully qualified domain name, add a colon followed by
the desired port.
For example, if you want to connect to a VNC server (vncserver.example.com) that is
listening on TCP port 15900, you would enter:
vncserver.example.com:15900
4 Enter the user name and password.
5 Click Add.
To designate a display to control:
1 Add a custom port number, as described above.
2 Use the display number for the last number in the custom port designation (display
designations start at 0 for the default primary display).
For example, f you want to control the default display on a VNC server
(vncserver.example.com) that is listening on TCP port 5900, you would enter:
vncserver.example.com:5900
If you want to control the second display, you would enter:
vncserver.example.com:5901Chapter 7 Interacting with Users 85
If you want to control the third display, you would enter:
vncserver.example.com:5902
Configuring an Apple Remote Desktop Client to be Controlled by a
VNC Viewer
When configured to do so, an Apple Remote Desktop client can be controlled with a
non–Apple VNC viewer.
Allowing a non–Apple VNC viewer access to an Apple Remote Desktop client is less
secure than using Remote Desktop to control the client. The non–Apple VNC software
expects the password to be stored in a cryptographically unsecured form and location.
To configure a client to accept VNC connections:
1 On the client computer, open System Preferences.
2 Click Sharing, select Apple Remote Desktop, then click Access Privileges.
3 Select “VNC viewers may control screen with the password.”
4 Enter a VNC password.
5 Click OK.
Observing
You may not want to control a computer, but merely monitor what is on its screen.
Observing a remote computer is similar to controlling one, except your mouse
movements and keyboard input are not sent to the remote computer. Apple Remote
Desktop client computers can be observed on any administrator computer that has the
“Observe” permission set. See “Apple Remote Desktop Administrator Access” on
page 59 for more information about Apple Remote Desktop permissions.
Warning: Do not use the same password as any user or Apple Remote Desktop
administrator. The password may not be secure.86 Chapter 7 Interacting with Users
Remote Desktop allows you to observe multiple clients on the same screen, cycling
through the list of observed computers. This allows you to monitor many screens
without having to select each one individually.
Dealing With Many Client Screens
When observing a single client, you can see the client window at full size, or scaled it to
fit the observe window. To switch between the full size and fitting to the window, click
the Fit to Window button, just as you would in a control window.
If you’re observing more clients than you’ve chosen to fit on one screen, you can cycle
through multiple pages by clicking the Previous or Next button.
Cycle Pages: Use these buttons to manually switch to the previous or next page of
screens.
Getting More Information on Observed Clients
There is a computer information area beneath each of the observed desktops. It’s
automatically disabled when the administrator is viewing more computers than the
computer information area is able to show effectively (a threshhold of about 220 pixels
across). This could happen if:
Â the initial selection of computers is too great for the window sizeChapter 7 Interacting with Users 87
Â the observe window is resized, shrinking the information beneath the threshold
Â the setting for the number of viewed machines is changed
The computer information area is reenabled when the sizes are returned to more than
the image size threshhold.
Changing Observe Settings While Observing
While you are observing multiple computers, you can adjust the Apple Remote
Desktop observe settings using the controls at the top of the observe window.
These settings will be visible after clicking View Options in the toolbar.
To change your observe settings:
Â Page Delay: Adjust the number of seconds before automatically advancing to the
next page of screens.
Â Computers per page: Adjust the number of client screens visible on each page.
Â Image Quality: Adjust the screen color depth from black and white to millions of
colors.
Â Titles: Change the titles of the displayed screens in the computer information area.
Â Account Picture: Add the currently logged-in user’s account picture under each
observed desktop.
See “Viewing a User’s Account Picture While Observing” on page 88 for more
information.
Â Computer Status: Add a status overview icon underneath the observed desktop.
See “Viewing a Computer’s System Status While at the Observe Window” on page 88
for more information.88 Chapter 7 Interacting with Users
Changing Screen Titles While Observing
While you are observing multiple computers, you can change the title underneath the
desktops shown in the observe window.
The main title can be the:
Â Name (the computer sharing name)
Â IP Address
Â Host Name
To change your observe window titles:
1 Click View Options in the observe window’s toolbar.
2 Select Display Computer Information.
3 From the Title pop-up menu, select the desired title.
4 Click Done.
Viewing a User’s Account Picture While Observing
Remote Desktop can display the user’s account picture and a user-created status
underneath the observed desktop.
The user’s account picture is their system login icon, so it might be either a picture
taken from an iSight camera, or a custom image selected in the Accounts pane of
System Preferences.
To view a user’s account picture:
1 Click View Options in the observe window’s toolbar.
2 Select Display Computer Information.
3 Select Account Picture.
4 Click Done.
Viewing a Computer’s System Status While at the Observe Window
Remote Desktop can display certain system status information underneath the
observed desktop. This information gives you a basic assessment of the following
service statistics:
Â CPU Usage
Â Disk Usage
Â Free MemoryChapter 7 Interacting with Users 89
There are two levels of detail for system statistics. The top level is a single icon (a red,
yellow, or green icon).
You show the second level of detail by placing the mouse pointer over the high-level
status icon. The icon changes to an “i” and you can click the “i” to get more information.
Clicking the icon exposes per-service status icons:
Icon Indicates
 or
One or more service statistic is red. This takes precedence over any
yellow or green indicator.
 or
One or more service statistic is yellow This takes precedence over
any green indicator.
Service is operating within established parameters.
No service informaiton available.
Service Icon Status
CPU Usage Usage is at 60% or less
Usage is between 60% to 85%
Usage is at 85% or higher
No status information is available
DIsk Usage Usage is at 90% or less
Usage is between 90% and 95%
Usage is at 95% or higher
No status information is available
Free Memory Less than 80% used
Between 80% and 95% used90 Chapter 7 Interacting with Users
To show system status in the observe window:
1 Click View Options in the observe window’s toolbar.
2 Select Display Computer Information.
3 Select Computer Status.
4 Click Done.
Shortcuts in the Multiple Screen Observe Window
You can access several Apple Remote Desktop commands using icons in the observe
window. You can customize the observe window with the commands that are most
useful to you. For example, you may want to access the Copy Items command, the Text
Chat command, and the Lock Screen command, using the buttons in the observe
window toolbar. You perform Remote Desktop tasks on any computer by selecting its
screen and choosing a task from the Remote Desktop menus or the observe window
toolbar.
Regardless of your toolbar customizations, you’ll be able to advance through pages
manually, change the titling of the observed screens, change the number of client
screens per page, change the number of seconds before paging, or change the color
depth of the observed screens.
Observing a Single Computer
When you observe a single computer, the observed screen appears in a window on
your administrator computer. If a screen saver is active when you observe the screen,
the screen saver remains in effect. The observe window contains a “Share mouse
control” button to switch to controlling the screen.
To observe a single computer:
1 Select a computer list in the Remote Desktop window.
2 Select a computer in the Remote Desktop window.
3 Choose Interact > Observe.
If the observed computer’s screen is larger than the observe window, the screen will
scroll as the pointer approaches the edge of the window.
4 To customize the single-client observe window and session, see “Control Window
Options” on page 79. The observe window’s options are the same as those of the
control window.
Over 95% used
No status information available
Service Icon StatusChapter 7 Interacting with Users 91
Observing Multiple Computers
When you observe multiple client computers, each client screen is scaled down, so that
several computers can be viewed at the same time. You can set the number of client
screens that appear at any one time. See “Setting Preferences for the Remote Desktop
Administrator Application” on page 36 for more information.
If a client has a screen saver running when you start observing, the screen saver
remains in effect.
The screens will cycle through the entire list of selected computers, a few at a time,
switching every 30 seconds, altered by the speed setting.
To observe multiple computers:
1 Select a computer list in the Remote Desktop window.
2 Select one or more computers in the selected computer list.
3 Choose Interact > Observe.
The remote computer screens appear in a window.
Observing a Computer in Dashboard
If you are using Mac OS X version 10.4 or later, you can use the Dashboard widget to
observe one client computer. The computer must be in your All Computers list and be
authenticated with permission to Observe. Apple Remote Desktop does not have to be
launched to use the widget.
To observe using Dashboard:
1 Add the computer to your All Computers list.
See “Finding and Adding Clients to Apple Remote Desktop Computer Lists” on page 49
for detailed information.
2 Activate Dashboard, and click the widget’s icon to run it.
3 Click the widget’s “Info” button to flip the widget over.
4 Supply a hostname or IP address, login name, and password or simply select the
computer you want to observe (if it’s listed).
5 Click Done.92 Chapter 7 Interacting with Users
Sending Messages
Apple Remote Desktop allows you to communicate with users of Apple Remote
Desktop client computers using text messaging. You can use text messages to give
instructions or announcements, to collaborate remotely, or troubleshoot with users.
There are two types of text messaging: one-way messages and two-way interactive
chat. Text messages and chat are available only to Apple Remote Desktop client
computers; they are not available to VNC client computers.
Sending One-Way Messages
You can use a one-way text message to send announcements or information to users
client computers. The announcements appear in front of open application windows
and can be dismissed by the user.
To send a one-way text message:
1 Select a computer list in the Remote Desktop window.
2 Select one computer from the list.
3 Choose Interact > Send Message.
4 Enter your message.
5 Click Send.
The text message appears on the screen of all the selected computers.
Interactive Chat
You can start an interactive text chat with the user of an Apple Remote Desktop client
computer. This allows instant feedback from users, so you can collaborate or
troubleshoot.
To begin an interactive chat:
1 Select a computer list in the Remote Desktop window.
2 Select one or more computers in the selected computer list.
3 Choose Interact > Chat.
4 Enter your message, one line at a time.
The message appears real-time on the user’s screen as you type.Chapter 7 Interacting with Users 93
5 Press the Return key to complete and send each line.
Viewing Attention Requests
After a client user sends an attention request, the Apple Remote Desktop administrator
can read the attention request text.
To view attention requests:
1 Choose Window > Messages From Users.
2 Select the message you want to view.
3 Click Display to view the request’s message.
Sharing Screens
Apple Remote Desktop allows you to show your screen (or the screen of a client
computer in your list) to any or all Apple Remote Desktop client computers in the same
computer list. You can, for example, show a presentation to a classroom of computers
from a single computer.
Sharing a Screen with Client Computers
You can share a client computer’s screen, or the administrator’s screen, with any
number of clients. The client screen displays what is on the shared screen, but cannot
control it in any way.
To share a computer’s screen:
1 Select a computer list in the Remote Desktop window.
2 Select on or more computers in the selected computer list.
These computers include the target computers and the source computer.
3 Choose Interact > Share Screen.
4 Select the screen to be shared.
If you want to share the Apple Remote Desktop administrator screen, select “Share your
screen.”
If you want to share a client screen, select “Share a different screen,” and drag a
computer from an Apple Remote Desktop computer list to the dialog.
5 Click Share Screen.
The selected computer shows the shared computer screen.
If the target computer’s screen resolution is lower than the shared computer’s, only the
top left part of the shared screen (up to the lowest screen resolution) is seen on the
target screen.94 Chapter 7 Interacting with Users
Monitoring a Screen Sharing Tasks
You may want to keep track of the screen sharing tasks you have begun. You can get
information on all active screen sharing tasks, and can sort the tasks by time started,
source screen, or target computers.
To view current active screen sharing tasks:
m Choose Window > Active Share Screen Tasks.
Interacting with Your Apple Remote Desktop Administrator
Users of Apple Remote Desktop client computers can initiate contact with a Remote
Desktop administrator. Clients can ask for attention from the administrator, or cancel
that attention request.
Additionally, users of Apple Remote Desktop client computers can set an identifying
icon for a Remote Desktop administrator to view. The Remote Desktop administrator
can choose whether to view the icon or not.
Requesting Administrator Attention
At times, Apple Remote Desktop client computer users need to get the attention of the
Apple Remote Desktop administrator. If an Apple Remote Desktop administrator is
currently monitoring the client computer, the client user can send an attention request.
To request administrator attention:
1 Click the Apple Remote Desktop status icon and choose Message to Administrator.
The attention request window appears.
2 If the network has more than one Apple Remote Desktop administrator available,
choose an administrator from the “Send message to” pop-up menu.
3 Enter the message.
4 Click Send.
The attention request icon appears on the administrator’s screen.Chapter 7 Interacting with Users 95
Canceling an Attention Request
If a user no longer needs the Apple Remote Desktop administrator’s attention, he or
she can cancel the attention request after it has been sent.
To cancel an attention request:
1 Click the Apple Remote Desktop status icon and choose Message to Administrator.
2 Click the Apple Remote Desktop status icon in the menu bar and choose Cancel
Message.
Changing Your Observed Client Icon
By default, the icon that the Remote Desktop administrator sees while observing is the
login icon for the currently logged-in user. If you had an iSight camera active when
setting up your computer, you may have taken a picture of yourself for your user icon.
You can change this icon, and it will change on the administrator’s observation screen.
To change your login icon:
1 Prepare the picture you want to use.
You could use a graphic file, or take a picture using an iSight camera.
2 Open System Preferences.
The System Preferences application launches.
3 Select the Accounts pane.
4 Select your account, and choose the Picture button.
5 Replace your current account picture with the new picture.
6 Close System Preferences.8
96
8 Administering Client Computers
Apple Remote Desktop gives you powerful administrative
control. You can manually or automatically get detailed
information about every computer, install software, and
maintain systems from a single administrator computer.
This chapter describes Remote Desktop’s capabilities and gives complete instructions
for using them. You can learn about:
Â “Keeping Track of Task Progress and History” on page 96
Â “Installing Software Using Apple Remote Desktop” on page 101
Â “Upgrading Software” on page 105
Â “Copying Files” on page 106
Â “Creating Reports” on page 111
Â “Maintaining Systems” on page 127
Â “Managing Computers” on page 135
Â “UNIX Shell Commands” on page 143
Â “Automating Functions” on page 152
Keeping Track of Task Progress and History
The task history area is on the left side of the Remote Desktop window (see “Remote
Desktop Main Window” on page 29) with all computer lists and scanners. Every time
you execute a task (generating a report, copying a file, restarting a computer), the task
name, affected computers, task result, and time you execute it is stored in the Task
History window (accessible via Window > Task History). The Task History list, in the main
Remote Desktop window, shows the task name and result. You can collapse the Task
History list to reduce its size.
You can select a task in the Task History list to see some information about it, and
double-click it to view a more detailed description of the task, as well as the computers
involved with it. Tasks in progress appear in the Active Tasks list, where you can stop
and restart them.Chapter 8 Administering Client Computers 97
Remote Desktop keeps track of three kinds of task progress: active, Task Server, and
completed. Active tasks are those which are currently being processed by the client
computers, and the client computers have not all reported back to the administrator
console. Some tasks are so short that they only briefly appear in the list of current tasks;
other tasks may take a long time and remain there long enough to return to the task
and view the progress as it happens. The Active Tasks list is located in the left side of
the Remote Desktop window, and has a disclosure triangle to expand or hide the list.
Task Server tasks are those which have been assigned to the task server (either the one
running on the administrator’s computer, or a remote one) which have not yet
completed for all the task participants.
Completed tasks are those which have received a task status for all participating client
computers. The task description and computer list then moves to the task history list.
The task history list is located in the left side of the Remote Desktop window, and has a
disclosure triangle for expanding or hiding the list.
In addition to the task status and notification features of Remote Desktop, you can set a
task notification shell script to run when any task has completed. This script is for all
tasks, but it can be as complex as your needs require.
Enabling a Task Notification Script
When a task completes, Remote Desktop can run a script that you create. This script is
for all completed tasks, and it must be a shell script. There is a default notification script
provided, which you can customize for your needs. The script must be a shell script, but
you can use various other scripting environments like AppleScripts with the osascript
command.
To enable a task notification script:
1 Make sure you are logged in as an administrator user.
2 Open Remote Desktop.
3 Choose Remote Desktop > Preferences.
4 Click the Tasks button.
5 Select “Enable task notification script.”
6 Choose the location of the script.
The default notification script is located at /Library/Application Support/Apple/Remote
Desktop/Notify.
7 Close the Preferences window.98 Chapter 8 Administering Client Computers
Getting Active Task Status
When you get a task’s current status, you see the progress of the task, the computers
involved, and their feedback to the administrator computer.
To get status on a currently running task:
1 Select the Active Tasks list.
2 Select the desired task in the Remote Desktop window.
The task status and computers involved are shown in the Remote Desktop window.
You can make sure the main window always shows the currently running task in the
main work area by setting a preference. Otherwise, the main window will continue to
show the last selected computer list.
To automatically show task status in the main window:
1 Make sure you are logged in as an administrator user.
2 Open Remote Desktop.
3 Choose Remote Desktop > Preferences.
4 Click the Tasks button.
5 Select “Always change focus to active task.”
6 Close the Preference’s window.
Using the Task Feedback Display
You can use the task feedback display to:
Â Retry a task on selected computers
Â Cancel a task in progress
Tasks in progress appear in the Active Tasks list, where you can stop them, or run them
again.
To use the task feedback window:
1 Select the task in the task history list or active task list.
2 Change the task as desired:
a Click the retry button to perform the task again.
b Click the stop button to cancel the active task.
Stopping a Currently Running Task
If a task is in progress and Remote Desktop is still waiting for feedback from the client
computers, you can stop the task. You use the Active Tasks list to stop the command in
progress.Chapter 8 Administering Client Computers 99
To stop a currently running task:
1 Select the Active Tasks list.
2 Select the desired task in the Remote Desktop window.
The task status and computers involved are shown in the Remote Desktop window.
3 Click the Stop button in the top-right of the main window.
Getting Completed Task History
After a task has received feedback from all the involved client computers, or they have
experienced a communication time-out, the task is moved to the Task History list. The
Task History list is located in the left side of the Remote Desktop window, and has a
disclosure triangle to expand or hide the list. This list stays populated as long you’ve set
in the Remote Desktop preferences. The Task History list can also be viewed in a
separate window with the tasks sorted by date.
To get status on a completed task:
1 Open the Task History list using the disclosure triangle.
2 Select the desired task in the Remote Desktop window.
The final task status and computers involved are shown in the Remote Desktop
window.
or
m Select Window > Task History.
The final task status and computers involved are shown in a separate window.
Saving a Task for Later Use
You may want to save a task for later, repeated use. If you find yourself repeating
certain tasks, you can save those tasks and the information about which computers go
with them. Observe and Control tasks cannot be saved.
Saved tasks appear in a list on the left side of the Remote Desktop main window.
To save a task for later use:
1 Open the task you want to save.
For example, if you want to save a Copy Items task, select Manage > Copy Items.
2 Configure the task as desired.
3 Before executing the task, click Save.
4 Name the saved task.
The task appears in a list on the left side of the Remote Desktop main window.100 Chapter 8 Administering Client Computers
Creating and Using Task Templates
In each task configuration dialog, you can save a task’s settings to a template to reuse
for future tasks of that same type. For example, if you always use certain copy options
for a Copy Items task, you can save those settings as a template, and have them apply
to any newly created Copy Items task. Once a task template is saved, you can select any
one of the saved templates from the Templates pop-up menu. Selecting a template
automatically configures the dialog box according to the saved template.
If you want to perform a task similar to an existing template, you start with that
template using the Template pop-up menu, then you customize the resulting task
configuration dialog after applying the template. For example, if you always want to
use the same Copy Items options, but you want vary the group of computers you apply
it to, you create a task template by configuring the copy options dialog without
selecting target computers and then saving it via the Templates pop-up menu. Then
whenever you make a new Copy Items task with target computers selected, you can
apply the saved settings by selecting those settings from out of the Templates pop-up
menu and add your own settings afterward.
You are free to make as many templates as you want either from existing templates or
from scratch. Once saved, a template can be made the task’s default, with all new
instances of the task opening with the default template settings. You can also edit the
task template list from the Template pop-up list, removing a template, or making it the
task default. There are existing, built-in templates for the Send UNIX Command task
which can not be removed, see “Send UNIX Command Templates” on page 143 for
more information.
Note: Templates are only stored for their own task type. For example, Copy Items saved
templates are not available for use with Rename Computer tasks, etc.
To create a task template:
1 Open a task configuration window.
You can use existing saved tasks, or a newly created task.
2 Configure the task as desired.
3 Click the Template pop-up menu, and select Save as Template.
4 Name the template, and click OK.
To apply a task template:
1 Open a task configuration window.
You can use existing saved tasks, or a newly created task.
2 Click the Template pop-up menu, and select the template you want.
The settings in the template are now applied to the dialog window.
3 If desired, customize the task further.Chapter 8 Administering Client Computers 101
Editing a Saved Task
You may want to change a previously saved task, changing whether what the task does
or changing the target computers.
To edit a saved task:
1 Double-click the saved task you want to edit.
Alternatively, you could use Control-click or right-click and choose Edit Task from
contextual menu.
2 In the task description window, change the task parameters.
You can alter task preferences, and change the computer list. Remove computers by
selecting them and pressing the Delete key; add computers by dragging them from a
list to the task.
After a task is completed, the task name, result, and time you last ran it are stored for
review. The task feedback window gives a detailed account of the task, and reports
success or failure for each participating client computer.
To view the task feedback window:
m Select the task in the Task History list.
Installing Software Using Apple Remote Desktop
There are several methods you can use to install software with Apple Remote Desktop.
The following section describes how to install software using installer packages and
metapackages, using the copy command in Remote Desktop, using installers made by
other software companies, or using NetBoot or Network Install.
Installing by Package and Metapackage
You can install new software automatically and without user intervention by copying
installer packages (.pkg or .mpkg files) to one or more remote clients. Apple Remote
Desktop copies the package to the computers you choose, runs the installer with no
visible window or user interaction required, and then erases the installer files on
completion.
Warning: Distributing copyrighted software without the appropriate license
agreement is a violation of copyright law.102 Chapter 8 Administering Client Computers
You can choose to initiate the installation of a package from the designated Task Server
rather from a Remote Desktop task. This allows you to install packages on to computers
that may not be connected to the network (with a status of “Offline”) when you run the
task. The Task Server monitors the network for the next time the offline client comes
online again. Then the Task Server performs the installation. For more information
about designating a Task Server, see “Using a Task Server for Report Data Collection” on
page 112 and “Designating the Task Server and Setting the Report Data Collection
Location” on page 154. For detailed instructions about installing via the Task Server, see
“Installing Software on Offline Computers” on page 103.
You can install multiple packages in succession. When you execute installation of
multiple packages, Remote Desktop copies over all the selected packages and then
installs them. It also detects whether a restart is required and will give you a visual cue.
You can tell the task to restart the computers upon completion, or restart the
computers manually later.
It is not possible to stop the installation of a package. Once the installation starts, it will
complete (assuming no errors occur on the client). However, you can click the Stop
button to stop remaining packages from being copied over and therefore halt the
install.
Alternatively, an administrator can use the PackageMaker application (available on the
Apple Remote Desktop CD or with the Apple Developer Tools) to create a metapackage
that contains several installers to be run in sequence. In addition to creating
metapackages, you can also use PackageMaker to create packages for custom software
that your organization may have developed. More information about making and using
packages and metapackages is available on the Apple Developer Connection website:
developer.apple.com
To copy and install software using a .pkg file:
1 Select a computer list in the Remote Desktop window.
2 Select one or more computers in the selected computer list.
3 Choose Manage > Install Packages.
4 Select a .pkg or .mpkg file to install.
Alternatively, you can drag an installer package on to the package list window.
5 Select whether to restart the target computers after installation.
6 Select the option to run the task from “This application.”
This option is preferable when installing on computers that are all currently online.
If you want to install the software via a Task Server, see “Installing Software on Offline
Computers” on page 103.Chapter 8 Administering Client Computers 103
7 Select other installation parameters, as desired.
For more information on the available options, see “Copy Options” on page 107.
Note: Client computers are not restarted automatically after an installation is complete
unless explicitly selected in the task command.
8 Click Install.
During installation, a progress bar appears in the task header in the main window. No
progress bars appear on the client computer. The copied package is deleted from the
client computer if an error occurs during installation. However, a failed installation may
leave behind other files created by the installer.
Installing Software on Offline Computers
Using Apple Remote Desktop, you can install software on a computer that is not
currently connected to the network (with a status of “Offline”). The installation does not
occur when initially ordered, but when the offline computer next becomes available.
The installation itself is handled by a designated Task Server. The Task Server will
continue to monitor the network for the next time the offline client comes online
again. For more detailed information about setting up and using a Task Server, see
“Designating the Task Server and Setting the Report Data Collection Location” on
page 154.
To install software on offline clients:
1 Select a computer list in the Remote Desktop window.
2 Select one or more computers in the selected computer list.
Any or all may be offline.
3 Choose Manage > Install Packages.
4 Select a .pkg or .mpkg file to install.
Alternatively, you can drag an installer package into the Packages list.
5 Choose whether to run the task from the Task Server designated by Remote Desktop’s
preferences.
To set up or alter the Task Server, see “Using a Task Server for Report Data Collection”
on page 112 and “Designating the Task Server and Setting the Report Data Collection
Location” on page 154.
6 Select other installation parameters, as desired.
For more information on the available options, see “Copy Options” on page 107 and
“Installing by Package and Metapackage” on page 101.
7 Click Install.104 Chapter 8 Administering Client Computers
Installing by Using the Copy Items Command
Many applications can be installed simply by copying the application or its folder to the
client computer. Consult the application’s documentation to verify that you can simply
copy the application to the hard disk to install it.
To install software by copying:
1 Select a computer list in the Remote Desktop window.
2 Select one or more computers in the selected computer list.
3 Choose Manage > Copy Items.
4 Add software to the “Items to copy” list.
For more information, see “Copying Files” on page 106.
Repeat this step until all the software you want to copy is in the list.
5 Select a destination.
There are several preset locations available in the “Place items in” pop-up menu,
including the Applications folder. If you do not see the location you want, you can
specify a full pathname.
6 Select your copy options.
See “Copy Options” on page 107 for more information on the available options.
7 Click Copy.
The software is copied to the indicated location. If the copy operation is unsuccessful,
an error message appears in the task feedback window.
Using Installers from Other Companies
The Install Packages command only works with installers that use the .pkg or .mpkg file
format, and some applications can’t be installed by simply copying the application to
the hard disk. To install software using installers with different file formats, you use a
combination of tasks.
To install software with third-party installers:
1 Select a computer list in the Remote Desktop window.
2 Select one or more computers in the selected computer list.
3 Choose Manage > Copy Items.
4 Add the software installer to the “Items to copy” list.
For more information, see “Copying Files” on page 106.
5 Select a copy destination.
6 Select After Copying Open Items.
7 Click Copy.Chapter 8 Administering Client Computers 105
The software is copied to the indicated destination. If the copy is operation
unsuccessful, an error message appears in the task feedback window.
8 Select a computer that received the copy of the installer.
9 Choose Interact > Control.
10 Control the screen of the selected computer and complete the installation process
interactively.
Upgrading Software
Upgrading software is similar to installing software. However, the method of upgrading
software depends on the original method of installation. As a general rule, upgrades
should not be done while users have their applications open. Make sure the software
to be upgraded is not running.
Upgrading consists of three main tasks:
Â Finding out if a piece needs to be updated
Â Removing the old version
Â Installing the new version
To upgrade software on client computers:
1 Run a Software Version report to determine what version of the software client
computers have.
See “Generating a Software Version Report” on page 118 to learn how to run the report.
2 Remove the old version of the software.
If the software was originally installed using a package or metapackage, it should be
removed automatically when you install the new version.
If the software was originally installed using the Copy Items command, you can delete
the old version, or simply replace the old version with the new version when you install
the new version.
If the software was originally installed using another company’s installer application,
you may need to use an uninstaller before installing the new version. Consult the
software’s manual for instructions on removing its software. If an uninstaller application
is necessary, you can copy it to each of the client computers and run it remotely.
Warning: Distributing copyrighted software without the appropriate license
agreement is a violation of copyright law.106 Chapter 8 Administering Client Computers
3 Use the appropriate installation method to install the new version of the software. For
more information, see:
Â “Installing by Package and Metapackage” on page 101
Â “Installing by Using the Copy Items Command” on page 104
Â “Using Installers from Other Companies” on page 104
Copying Files
Apple Remote Desktop makes it easy to copy items (other than the system software)
on one or more client computers.
Copying files works fastest with a small number of files. For example, ten files that are
10 KB each generally take longer than one file that is 100 KB. Consider copying a single
file archive (like a .zip or .sit file) to remote computers for faster copying. Remember
that Mac OS X applications are bundles of many smaller files. Although the application
you want to copy looks like a single file in the Finder, it may contain hundreds, or even
thousands of smaller files.
If a client computer is asleep when you attempt to copy items, Remote Desktop tries to
wake the client. If it can’t wake the client and the copy does not proceed, you should
use Remote Desktop to wake the target computer, and then attempt the copy again.Chapter 8 Administering Client Computers 107
If you choose to copy out to many client computers simultaneously, Remote Desktop
uses network multicasts to send the files. If there is a significant number of multicast
networking errors, Remote Desktop tries to copy individually to each client computer.
Copy Options
Each time you copy an item to a remote computer, you have the chance to customize
the operation to allow fine-grained control of the location and file owner of the copied
file, the network bandwidth used, and what to do in case of failure or duplicate files.
Copy Destination Locations
There are several preset destinations available in the “Place Items In” destination popup menu, including the Applications folder. If you do not see the destination you want,
you can specify a full pathname.
Owner and Group for Copied File
By default, the copied files inherit the owner and group of the enclosing destination
folder. For additional flexibility, you have several options for handing file ownership.
You can:
Â Preserve current owner
Â Set the owner to the current console user
Â Specify user and group
Encryption
You can encrypt the copy transport stream to protect the data sent across the network.
By selecting the “Encrypt network data” option, you exchange performance for security.
This option is also available in the Install Packages dialog.
Copy Failure Handling
By default, if a single computer fails to get the copied file, the copy operation continues
to all participating computers. However, there may be times when you want a copy
operation to stop if one of the copies fails. You can choose to cancel the entire copy
operation if one participating computer reports a failure. This option is also available in
the Install Packages dialog.
Network Bandwidth Limits
File copies are done at the maximum sustainable rate for the network. This allows
Apple Remote Desktop to use all the resources at its disposal to quickly and efficiently
finish the copy. Depending on what else is being done on the network, you may want
to explicitly limit the copy data transfer rate. You can set an approximate maximum
data rate in kilobytes per second for file copies. This option is also available in the Install
Packages dialog.108 Chapter 8 Administering Client Computers
More Options When the Item Already Exists
If an item with the same name as the item you selected to copy already exists at the
destination, you have several options for handing the name conflict. You can:
Â replace the existing item
Â replace the existing item if the existing item is older
Â rename the existing item
Â rename the item being copied
Â always ask which of the above options you want to use
Post-Copy Action
You can choose to open a copied item immediately after it’s copied. If you select this
option, the file will open with the parent application that created it.
Copying from Administrator to Clients
Using Apple Remote Desktop, you can copy items to any number of client computers
simultaneously.
To copy items to clients:
1 Select a computer list in the Remote Desktop window.
2 Select one or more computers in the Remote Desktop window (or any window).
3 Choose Manage > Copy Items.
4 Add software to the “Items to copy” list.
Click the Add button to browse local hard disks for items to copy, or drag files and
folders to the list.
If you want to remove an item from the list, select the item and click Remove.
Repeat this step until all the software you want to copy is in the list.
5 Select your copy options.
See “Copy Options” on page 107 for more information on the available options.
6 If you want to schedule this event for another time, or set it to repeat, click the
Schedule button.
See “Scheduled Tasks” on page 155 for more information about scheduling events.
7 Click Copy.
The software is copied to the indicated destination. If the copy is unsuccessful, an error
message appears in the task feedback window.Chapter 8 Administering Client Computers 109
Copying Using Drag and Drop
Using Apple Remote Desktop, you can copy items by dragging them between Finder
windows on your administrator computer, the Remote Desktop window, and control
windows. For example, you can drag an item from a Finder window to a selected
computer in the Remote Desktop window.
You can use this feature to collect needed files from remote computers or distribute
files between remote computers.
Copying from the Finder to a Client
You can copy files, applications, or folders from the administrator’s Finder windows to
remote computers. You can also drag items directly on to a control window.
To copy items from the Finder to a client:
1 Select a computer list in the Remote Desktop window.
2 Select one or more computers or select the desired Control window.
3 Switch to the Finder.
4 Locate the item you want to copy in the Finder.
5 Drag the item you want to copy from the Finder to the selected clients in the Remote
Desktop window or control window.
Copying onto a Control window puts the file wherever you drop it.
6 Select your copy options.
See “Copy Options” on page 107 for more information on the available options for copy
tasks.
7 Click Copy.
Copying from a Client to the Finder
Using Apple Remote Desktop, you can copy files, applications, or folders from a remote
computer to the administrator’s computer. The process requires that you find the file
you want to copy, using a report or locating them in a control window.
Note: Copied items retain their original owners and permissions.
To copy items from a client to the administrator’s computer:
1 Select a computer list in the Remote Desktop window.
2 Select one or more computers in the selected computer list.
3 Choose a file search report to find the item.
See “Finding Files, Folders, and Applications” on page 116 for more information.
4 Select the item you want to copy in the report window.
5 Drag the item you want to copy from the report window to the administrator’s Finder,
or click the Copy To This Computer button in the menu bar of the report window.110 Chapter 8 Administering Client Computers
Alternatively, you can drag items from a control window to the administrator
computer’s desktop.
Restoring Items from a Master Copy
Your client computers can restore non-system software from a master copy. This is
helpful if you want to make sure each client computer has the same software. You can
automate the software restore process by using the instructions in “Automating
Functions” on page 152.
You may want to start by creating a disk image that contains the Mac OS X applications
and items you want to copy. Alternatively, you can copy files from any local disk, such
as a hard disk, CD, disk partition, or other disk.
The Copy Items command does not copy system software that is hidden (that is, not
visible in the Finder). It can copy the Applications folder, Library folder, and Users folder,
as well as any folders at the root of the hard disk that were created by the computer’s
administrator user.
Important: You cannot use the Copy Items feature to copy Mac OS X system software
to client computers
To restore files using the Copy Items command:
1 Make a master copy of the volume that has the files to be restored.
You can use any volume, such as a spare hard disk, a CD, or a mounted disk image
(.dmg) file.
2 Mount the master copy volume on the administrator computer.
Master copy volumes must be local volumes, not mounted from over a network.
3 Open Remote Desktop.
4 Select a computer list in the Remote Desktop window.
5 Select one or more computers in the selected computer list.
6 Choose Manage > Copy Items.
7 Add the master copy volume to the Copy Items list.
8 Select your copy options.
See “Copy Options” on page 107 for more information on the available options for copy
tasks.
9 If you want to schedule this event for another time or set it to repeat, click the
Schedule button.
See “Scheduled Tasks” on page 155 for more information about scheduling events.
10 Click Copy.Chapter 8 Administering Client Computers 111
Creating Reports
Apple Remote Desktop allows you to query client computers for many kinds of
information, from installed software to network speed and reliability. Creating reports
gives you valuable information about the client computers. Reports also help when
you’re copying files and organizing computer lists.
Collecting Report Data
There are three search strategies that Apple Remote Desktop uses when searching for
report information: new data, cached data, and Spotlight data.
With a new data search, the Remote Desktop application queries a client directly, and
waits for the client computer to respond with the desired information. A new data
search gets the most recent information, but takes longer since the client computer
has to gather all the data and send it over the network to the waiting administrator
computer. New data reports are also generated by clients whose reporting policy is set
to send data only in response to a report query. See “Setting the Client’s Data
Reporting Policy” on page 152.
The next source of information is a cached data search. With a cached data search, the
application queries Apple Remote Desktop’s internal database of collected system
information (such as hardware information and system settings), file information
(including installed applications and versions, and software names), or both. You
determine how often the data is collected, and what type of data is stored. See “Setting
the Client’s Data Reporting Policy” on page 152.112 Chapter 8 Administering Client Computers
The database, which is a PostgreSQL database located at /var/db/RemoteManagement/
RMDB/ can be accessed using other tools besides Remote Desktop. To find out more
about the database schema, see “PostgreSQL Schema Sample” on page 180.
The last kind of new data search is a Spotlight search. This is not a static report on
saved data in a database, but it’s an interactive search of the client computers. A
Spotlight search can only be done on client computers running Mac OS X 10.4 or later.
Spotlight searches a comprehensive, constantly updated index that sees all the
metadata inside supported files—the “what, when and who” of every piece of
information saved on your Mac—including the kind of content, the author, edit history,
format, size, and many more details. Spotlight searches are “live” meaning that the
window reflects changes in the found files even after the command is executed.
Using a Task Server for Report Data Collection
You can use a computer other than the administrator computer to collect your report
data, if you have another unlimited-managed computer license for Apple Remote
Desktop. Using a server that is always running and has the benefits of uninterrupted
power and steady uptime, you can dedicate those computing resources to report data
collection. Such a server is referred to as a Task Server. To use a Task Server, you need:
Â a computer that will be running when the clients are set to upload their report data
Â an unlimited license for the Remote Desktop server
Â a separate unlimited license for the administrator computer
To set up a Task Server, you need to:
1 Install Remote Desktop on the server.
See “Installing the Remote Desktop Administrator Software” on page 40.
2 Configure the server to be the Task Server.
You do this via the server settings in the Remote Desktop preferences.
See “Designating the Task Server and Setting the Report Data Collection Location” on
page 154
3 Install Remote Desktop on the administrator computer.
See “Installing the Remote Desktop Administrator Software” on page 40.
4 Configure Remote Desktop on the administrator computer to use the Task Server as its
source for report data.
You do this using the server settings in the Remote Desktop preferences.
See “Designating the Task Server and Setting the Report Data Collection Location” on
page 154.
5 Set the client reporting policy to tell clients to send report information to the Task
Server.Chapter 8 Administering Client Computers 113
You do this using the Get Info window of any client computer or the client’s own Apple
Remote Desktop preferences.
See “Setting the Client’s Data Reporting Policy” on page 152 and “Creating a Template
Data Reporting Policy” on page 153.
Report Database Recommendations and Bandwidth Usage
You can have a single Apple Remote Desktop data collection database for any number
of clients. However, avoid having all the clients upload their report information at the
same time. As the number of clients grows, the network usage from the clients as they
upload their report data could come in bursts over a short period of time
overwhelming the network buffer on the Task Server. In such a case, you will probably
give yourself your own denial-of-service attack. Increasing the number of Task Server
computers can divide the network and computing load among several computers for
better performance and better network citizenship. However, since there is no way to
aggregate report data across several collectors and display it on one administrator
computer, you would need multiple administrators to balance your network load in this
manner.
If you use a single database for a large number of clients, it is recommended that you
stagger the generation of report caches over the time between which you want to run
reports. For example, if you normally run a report every week, then set 1/7th of your
clients to rebuild caches on day one, another 1/7th for the next day and so on.
Additionally, they should stagger the cache rebuild over the course of the day as well.
It is recommended that you keep in a given list the minimum number of computers
necessary for your purposes. When a list is selected, the clients in the list send status
updates at a minimum of every 20 seconds. If you have a large number of clients in a
list (for example, 1000), this makes about 50 updates a second.
Creating more lists doesn’t create more resource overhead for Remote Desktop, and
can allow you to quickly and easily administer the clients you want with a minimum
wait. Depending on your network and list sizes, you may find that smaller lists may
result in more productive and reliable administration.
What Bandwidth Does the Default System Overview Report Use on a LAN?
The average System Overview Report cache is about 20 KB. While reporting, the admin
and clients will always try to use all available bandwidth (most IP-based client/server
applications work this way). Therefore, on a 10Mbit/sec. network, the report data
collection for a single client may use 100% of the bandwidth for a period of 0.016
seconds. Assuming a list of 1000 computers, all trying to report at the same time, this
may use 100% of the bandwidth for 16 seconds. Naturally, faster networks will perform
better, and networks with a slow bottleneck like a DSL or modem line perform worse.114 Chapter 8 Administering Client Computers
System Report Size
The file system data which is uploaded to the report database (labeled “File Search
data” in the Scheduling sheet of the Task Server preference pane) contains a significant
amount of data. For a client with 10 GB of files on the hard disk, the report data
uploaded can easily reach 5 MB in size. With hundreds or thousands of clients, this
amount can add up quickly and might tax network resources. In addition, by choosing
to upload user accounting data and application usage data, you are further increasing
the size of the uploaded data for any one client. Since you may not want to store all the
possible information for a given client computer, you can customize which type of data
is collected, as desired.
Auditing Client Usage Information
With Apple Remote Desktop, you can get detailed information about who has been
using the client computers and how. There are two reports that help you audit
information about how the clients are being used:
Â the User History report
Â the Application Usage report
Generating a User History Report
The User History report is used to track who has logged in to a computer, when they
logged in and out, and how they accessed the computer. The client stores 30 days of
accumulated data, so the requested time can’t be more than the last 30 days. The
report shows the following information:
Â computer name
Â user’s short name
Â access type (login window, tty, SSH)
Â login time
Â logout time
Â remote login host (originating host to the login session: localhost, or some remote
computer)
Note: Multiple users logged in via Fast User Switching can lead to confusing or
conflicting reports. When a second or third user logs in to a computer, there is no way
of knowing which user is the active user. Session length may not reflect actual usage,
and login and logout times overlap.
User History report information is collected by default if you are installing Remote
Desktop for the first time. If you have upgraded an older version of Remote Desktop,
you need to enable its collection explicitly in the clients’ reporting policy. See “Setting
the Client’s Data Reporting Policy” on page 152 for instructions.Chapter 8 Administering Client Computers 115
To generate a User History report:
1 Select a computer list in the Remote Desktop window.
2 Select one or more computers in the selected computer list.
3 Choose Report > User History.
4 Select the time frame for the user history information.
5 Click Generate Report.
The newly generated report window appears.
Generating an Application Usage Report
The Application Usage report shows which applications have been running on a given
client, their launch and quit time, and who launched them. The client stores 30 days of
accumulated data, so the requested time can’t be more than the last 30 days. The
following fields are shown by default in the report:
Â Computer name
Â Name of application
Â Launch date
Â Total running time
Â Time as frontmost application
Â User name of process owner
Â Current state of application
Application Usage report information is collected by default if you are installing
Remote Desktop for the first time. If you have upgraded an older version of Remote
Desktop, you need to enable its collection explicitly in the clients’ reporting policy. See
“Setting the Client’s Data Reporting Policy” on page 152 for instructions.
To generate an Application Usage report:
1 Select a computer list in the Remote Desktop window.
2 Select one or more computers in the selected computer list.
3 Choose Report > Application Usage.
4 Select the time frame for application usage.
5 Click Generate Report.
The newly generated report window appears.116 Chapter 8 Administering Client Computers
Finding Files, Folders, and Applications
Apple Remote Desktop allows you to search the contents of client computer hard disks
for specific files, folders, or applications. Additionally, it can compare the results of such
searches to the items on the administrator computer. These searches can compare
software versions, fonts, applications, or installed packages.
Using Spotlight to Find Items
You can use Spotlight to find items on client computers. A Spotlight search can be
done only on client computers running Mac OS X v10.4 or later. Spotlight searches are
“live,” meaning that the window reflects changes in the found files even after the
command is executed. Spotlight searches cannot be used for offline client computers.
The Spotlight Search window is similar to the Spotlight Search window found locally
on a Mac OS X v10.4 computer. It supports many of the same features and queries as
Spotlight on a local computer. For more information on running a Spotlight search, see
Spotlight Help.
To search for software items using Spotlight:
1 Select a computer list in the Remote Desktop window.
2 Select one or more computers in the selected computer list.
3 Choose Interact > Spotlight Search.
4 Choose the desired search parameters and enter a search term.
The results are updated immediately in the window.Chapter 8 Administering Client Computers 117
The results of the search are listed in the pane at the bottom of the window.
Note: The “Home” Spotlight search location means the Home folder of the currently
logged in user.
Generating a File Search Report
The File Search report allows you to find up to a total of 32,000 items on selected
computers. The items can be files, folders, or applications, but they can only be items
accessible (or visible) in the Finder.
The search parameters include:
Â Name
Â Parent path
Â Full path
Â Extension
Â Date created
Â Date modified
Â Size on disk
Â Kind
Â Version number
Â Version string
Â Owner
Â Group
Â Lock status
The search parameters for Apple Remote Desktop are slightly different from those used
by the Finder’s Find command. For example, Apple Remote Desktop does not search by
visibility or by label. The report display can be customized as well. See “Changing
Report Layout” on page 35 for more information.
To search for software items:
1 Select a computer list in the Remote Desktop window.
2 Select one or more computers in the selected computer list.
3 Choose Report > File Search.
4 Choose the desired search parameter from the pop-up menu and enter a search term.
5 If you want to customize the report display, do so now.
For more information about the report display, see “Changing Report Layout” on
page 35 for more information.
6 To search using new data, check Rebuild Data For Report; to search using saved data
only, uncheck Rebuild Data For Report.118 Chapter 8 Administering Client Computers
7 Click Search.
The newly generated report window appears.
Comparing Software
Apple Remote Desktop has several specialized reports for comparing software on client
computers with software on the administrator computer. These reports can’t be run
comparing two client computers. One computer in the comparison must be the
administrator computer.
Generating a Software Version Report
The Software Version report compares application versions on client computers with
application versions on the administrator computer. You can select up to 10
applications to compare. Command-line tools and unbundled Java (.jar) applications do
not report their version.
To generate a Software Version report:
1 Select a computer list in the Remote Desktop window.
2 Select one or more computers in the selected computer list.
3 Choose Report > Software Version.
4 Select the software you want to compare, from the application list.
You can select up to 10 applications.
If the application you want doesn’t appear in the list, click the Add (+) button to
browse for the application.
5 To search using new data, check Rebuild Data For Report.
6 Click Generate Report.
The newly generated report window appears.
Generating a Software Difference Report
The Software Difference report compares the applications, fonts, and installed
packages of the selected client computers with those on the administrator computer.
The resulting report lists the items compared, their version, location, and whether or
not they were found on the selected client computers.
The Software Difference report can compare all executable Mac OS X and Classic
applications. Unbundled Java (.jar) applications and command-line utilities are not
included in the report. The report can compare all the fonts in the /System/Library/
Fonts/ and /Library/Fonts/, as well as the Fonts folder for the currently logged in user.
Comparing installed packages returns a list of all package receipts in /Library/Receipts/.
You can use this report to find out if your clients have the applications or fonts they
need. Comparing differences in installed packages can help you troubleshoot software
conflicts, and keep your client computers up to date.Chapter 8 Administering Client Computers 119
To generate a Software Difference report:
1 Select a computer list in the Remote Desktop window.
2 Select one or more computers in the selected computer list.
3 Choose Report > Software Difference.
4 Select the software type you want to compare.
Selecting Applications compares all executable applications. You can limit which folder
on the administrator computer Remote Desktop uses to look for applications.
Selecting Fonts compares all fonts in /Library/Fonts/, /System/Library/Fonts/, and user
font directories.
Selecting Installed Packages compares all package receipts in /Library/Receipts/.
5 To search using new data, select Rebuild data for report.
6 Click Generate Report.
The newly generated report window appears.
Auditing Hardware
You can get a report about the hardware of any client computer. Hardware information
can be accessed using a number of different reports. Although some basic hardware
information can be found in the System Overview report, several more focused
hardware reports provide more detailed information.
To get a basic System Overview report:
1 Select a computer list in the Remote Desktop window.
2 Select one or more computers in the selected computer list.
3 Choose Report > System Overview.
4 Select or deselect hardware items as desired.
5 To search using new data, select Rebuild data for report.
6 Click Get Report.
The newly generated report window appears.120 Chapter 8 Administering Client Computers
Getting Serial Numbers
Although there is no specific serial number report for Apple Remote Desktop, the serial
number of any client is in the Computer section of the System Overview Report. In
addition to using Apple Remote Desktop to retrieve a computer’s serial number, you
could use the command-line tool systemprofiler with Apple Remote Desktop’s Send
UNIX Command feature.
To generate a serial number report:
1 Select a computer list in the Remote Desktop window.
2 Select one or more computers in the selected computer list.
3 Choose Report > System Overview.
4 Select Serial Number from the Computer section.
5 Select or deselect other items as desired.
6 To search using new data, check Rebuild Data For Report.
7 Click Get Report.
The newly generated report window appears.
Getting Storage Information
The Storage report collects information about the client computer’s internal hard disks.
It can get information about the hardware itself, the volumes on the disk, file system
information, and journaling information for the disk.
For a complete listing of Storage report options, see “Report Field Definitions
Reference” on page 165.
Basic information about hard disk volumes and size can also be found in the storage
section of the System Overview report.
To generate a Storage report:
1 Select a computer list in the Remote Desktop window.
2 Select one or more computers in the selected computer list.
3 Choose Report > Storage.
4 Select the hard disk information desired.
5 To search using new data, select Rebuild Data For Report.
6 Click Get Report.
The newly generated report window appears.Chapter 8 Administering Client Computers 121
Getting FireWire Device Information
The FireWire Devices report gets information about FireWire devices connected to the
client computer. It can get the following information from a device:
Â Manufacturer
Â Model
Â Device speed
Â Software version
Â Firmware revision
For more information about FireWire Devices report options, see “Report Field
Definitions Reference” on page 165.
The number of attached FireWire devices can also be found in the Devices section of
System Overview report.
To generate a FireWire Devices report:
1 Select a computer list in the Remote Desktop window.
2 Select one or more computers in the selected computer list.
3 Choose Report > FireWire Devices.
4 Select the FireWire information desired.
5 To search using new data, select Rebuild Data For Report.
6 Click Get Report.
The newly generated report window appears.
Getting USB Device Information
The USB Devices report gets information on Universal Serial Bus devices (scanners,
keyboards, mice, and so forth) connected to the client computer. It can get the
following information from a device:
Â Product name and ID
Â Vendor name and ID
Â Device speed
Â Bus power amps
For more information about the USB Devices report options, see “Report Field
Definitions Reference” on page 165.
Basic information about attached USB devices can also be found in the Devices section
of the System Overview report.122 Chapter 8 Administering Client Computers
To generate a USB Devices report:
1 Select a computer list in the Remote Desktop window.
2 Select one or more computers in the selected computer list.
3 Choose Report > USB Devices.
4 Select the USB device information desired.
5 To search using new data, select Rebuild Data For Report.
6 Click Get Report.
The newly generated report window appears.
Getting Network Interface Information
The Network Interfaces report gets information for all network interfaces, including
inactive interfaces. It also gets detailed network, output, and Ethernet statistics from
client computers.
The Network Interfaces report can be used to find network errors or faulty network
equipment, troubleshoot network performance, and query the network settings of the
client computers.
All detailed statistics are refreshed when the client restarts, and address information
may change if your client uses DHCP to get a network address.
For a complete listing of Network Interfaces report options, see “Report Field
Definitions Reference” on page 165.
Basic information about network settings can also be found in the Network and AirPort
section of the System Overview report.
To generate a Network Interfaces report:
1 Select a computer list in the Remote Desktop window.
2 Select one or more computers in the selected computer list.
3 Choose Report > Network Interfaces.
4 Select the interface information desired.
5 To search using new data, select Rebuild Data For Report.
6 Click Generate Report.
The newly generated report window appears.Chapter 8 Administering Client Computers 123
Getting Memory Information
The Memory report gets specific information about the installed memory in a client
computer. In addition to reporting how much memory the client has, it shows
information about each memory module, including the module’s:
Â Slot identifier
Â Size, type, and speed
Memory reports can be used for managing computer resources, hardware
troubleshooting, or deciding which client computer can handle a memory-intensive
application or task.
For more information about the Memory report options, see “Report Field Definitions
Reference” on page 165.
Basic information about system memory can also be found in the Computer section of
the System Overview report.
To generate a Memory report:
1 Select a computer list in the Remote Desktop window.
2 Select one or more computers in the selected computer list.
3 Choose Report > Memory.
4 Select the module information desired.
5 To search using new data, select Rebuild Data For Report.
6 Click Get Report.
The newly generated report window appears.
Getting PCI Card Information
The PCI Cards report gets information about the PCI cards installed in a client
computer. It shows information about each PCI card, including each card’s:
Â Slot name
Â Card name, type, memory, and revision
Â Vendor and device IDs
Â ROM revision
For more information about the PCI Cards report options, see “Report Field Definitions
Reference” on page 165.
Basic information about a client’s PCI cards can also be found in the Computer section
of the System Overview report.124 Chapter 8 Administering Client Computers
To generate a PCI Cards report:
1 Select a computer list in the Remote Desktop window.
2 Select one or more computers in the selected computer list.
3 Choose Report > PCI Cards.
4 Select the PCI card information desired.
5 To search using new data, select Rebuild Data For Report.
6 Click Get Report.
The newly generated report window appears.
Testing Network Responsiveness
Apple Remote Desktop can test network responsiveness between your administrator
computer and client computers. It sends network packets to the clients and reports the
time taken to receive confirmation from the clients.
You can choose how many network packets to send, how often they are sent, and how
long the administrator computer waits for a reply before listing a packet as lost.
To generate a Network Test report:
1 Select a computer list in the Remote Desktop window.
2 Select one or more computers in the selected computer list.
3 Choose Report > Network Test.
4 Select the options you want.
Choose the number of packets sent from the Packets pop-up menu (Total Packets to
Send).
Choose how often to send the send packets from the Interval pop-up menu (Interval
Between Packets).
Choose how long to wait before reporting a packet as lost from the Time Out pop-up
menu (Packet Time Out).
5 Click Get Report.
The newly generated report window appears.
Evaluating the Network Test Report
You can use the Network Test report to diagnose whether task failures in Apple Remote
Desktop are due to network congestion or to some other factor. You may, for example,
find that a Copy Items task is failing on a particular subnet, due to network congestion
on that subnet.Chapter 8 Administering Client Computers 125
Here are some suggestions for evaluating your network performance based on this
report:
Â The number of routers between your computer and another computer can affect the
time the packets take to return. When you evaluate the times for a computer, you
should compare them to the times for a computer in the same area of the network
or with the same number of intervening routers.
Â If the maximum time for a packet to return from a computer is significantly greater
than the time for other computers in the same area of the network, there may be a
problem with the computer.
Â If a single computer has a large number of lost packets, there may be a problem with
the network connection to that computer.
Â If several computers in the same area of the network have a large number of lost
packets, there may be a network connection problem or a problem with an
intervening router or bridge.
Exporting Report Information
You can export reports into a comma-delimited or tab-delimited text file. All the
columns of information in the report window are included, and the report rows are
exported in the order they’re sorted at the time of export.
Exported reports can be put into a database, spreadsheet, or word processor for further
analysis or organization, or be sent to another administrator. You could even use
certain reports as input files for network scanners for Remote Desktop.
Alternatively, you could access the report’s SQL database directly with your own SQL
query tools or applications. Using standard SQL database queries you can get any or all
information out of the report database for use with other applications or databases.
To export a report:
1 Generate any report, and bring the report window to the front.
2 If desired, sort the report rows by selecting a new column to sort by.
3 If you do not want to export the entire report, select the rows to be exported.
4 Choose File > Export Window.
5 Name the file, and choose a location to save to.
6 Select a text encoding.
Â Western (Mac OS Roman): Best choice if the report information uses the Roman
alphabet, and the exported document will be opened in an application or on an
operating system that does not support Unicode text encoding (for example, some
installations of Mac OS 9).
Â Unicode (UTF-8): Best choice if the exported file will be opened on Mac OS X and
contains no Asian language characters (such as Chinese or Japanese).126 Chapter 8 Administering Client Computers
Â Unicode (UTF-16): Best choice if the report contains Asian language characters.
7 Select a field separator.
Â Tab: Inserts a Tab character between column values.
Â Comma: Inserts a comma between column values.
8 If you have selected only some rows of the report and want to export only the selected
rows, select Export Selected Items Only.
9 Click Save.
Using Report Windows to Work with Computers
After you’ve created a report, you can use it to select computers and then do any of the
following:
Â Create new computer lists.
Select computers in the report window and select File > New List From Selection.
Â Generate other reports.
Select any number of rows in a report window; then choose another report from the
Report menu. The new report will be generated based on the computers in the
selected rows.
Â Initiate any management task.
Select any row in a report window; then choose a management task from the
Manage menu. This has the same effect as selecting the computer in an Apple
Remote Desktop computer list.
Â Interact with users.
Select any row in a report window; then choose a task from the Interact menu. This
has the same effect as selecting the computer in an Apple Remote Desktop
computer list.
Â Delete a file from a computer.
Select a file in any file or software report window and click the Delete button.
Â Copy an item to your computer.
Select an item in any software report window and click Copy to This Computer.Chapter 8 Administering Client Computers 127
Maintaining Systems
Apple Remote Desktop provides easy and powerful tools for maintaining client
computers, including tasks such as deleting files, emptying the Trash, and setting
computer startup options.
Deleting Items
If you delete a file from a client computer, it is moved to the client’s Trash.
To delete an item from a client:
1 Select a computer list in the Remote Desktop window.
2 Select one or more computers in the selected computer list.
3 Choose Report > File Search.
4 Find the software you want to delete, using the File Search report.
For more information, see “Finding Files, Folders, and Applications” on page 116.
5 Select the item or items you want to delete in the File Search report window.
6 Click Delete Selected in the report window.
7 Click Delete.128 Chapter 8 Administering Client Computers
Emptying the Trash
Apple Remote Desktop allows you to empty the Trash on clients to free up disk space.
To find out how much free disk space is on a computer, create a System Overview or
Storage report using the Report menu.
As a part of routine maintenance for client computers, you can free disk space by
emptying the Trash. Emptying the Trash completely removes any items you’ve
previously deleted on the client. You can use the System Overview report to see how
much disk space you can recover by emptying the Trash.
To empty the Trash:
1 Select a computer list in the Remote Desktop window.
2 Select one or more computers in the selected computer list.
3 Choose Manage > Empty Trash.
4 Click Empty.
Setting the Startup Disk
Apple Remote Desktop can set the startup disk on any client computer. You can choose
between a volume on a local hard disk or any available NetBoot volume.
The startup disk must have a valid operating system installed on it. To set the startup
volume on a local hard disk for multiple computers at once, the local volume name
must be the same for all computers.
Alternatively, you can set the startup disk to be a NetBoot volume provided by
Mac OS X Server. This allows you to start up a number of clients from a NetBoot server.
To set the startup disk:
1 Select a computer list in the Remote Desktop window.
2 Select one or more computers in the selected computer list.
3 Choose Manage > Set Startup Disk.
The list that appears shows the client’s local hard disk, a custom NetBoot server item,
and a list of all available NetBoot and Network Install servers available on the local
network subnet.
4 Choose the client’s local hard disk or a NetBoot server volume.
5 If you want to choose a specific local hard disk volume, select Hard Disk, click Edit, and
enter the desired volume name.
6 If you want to choose a custom NetBoot server volume, enter the server IP address or
fully qualified domain name, and the NetBoot volume name.
7 If desired, select Restart When Done.Chapter 8 Administering Client Computers 129
If you select Restart When Done, the client computer will restart after having its startup
volume set. You need to have Restart privileges to use this option.
8 Click Set.
Renaming Computers
Apple Remote Desktop can set the name that a client computer uses for file sharing.
You can rename multiple computers with the same name followed by a number (such
as Computer1, Computer2, and so on). This is especially useful for differentiating client
computers after a clean system installation.
Note: The Rename Computer feature does not change the Local Hostname or the DNS
name of a client computer.
To rename a computer:
1 Select a computer list in the Remote Desktop window.
2 Select one or more computers in the selected computer list.
3 Choose Manage > Rename Computers.
4 Enter the new computer name.
5 If desired, select “Append a unique number for each computer.”
Selecting this option appends a unique number to the end of the computer name. For
example, if you rename three computers “Computer,” the computers will be named
“Computer1,” “Computer2,” and “Computer3.”
6 Click Rename.
Synchronizing Computer Time
Maintaining synchronized clocks across your clients is essential for management
reliability. Synchronized times allow for more precise audits and allow you to accurately
correlate events between clients on the network. In addition, many internet services
rely on, or benefit from, clock times that are synchronized to a Network Time Protocol
(NTP) server. Any scheduled event benefits from synchronized client time.
All Mac OS X clients can be set to automatically synchronize their clocks with an NTP
server. Mac OS X Server can be configured to act as an NTP server as well. In order to
maintain synchronization across your clients, you should choose a single NTP server to
synchronize to. Apple provides an NTP server at time.apple.com.
Setting computer time requires the use of Apple Remote Desktop’s Send UNIX
Command feature and its built-in command-line tool, systemsetup. See “Built-in
Command-Line Tools” on page 147 for more information about the tool.130 Chapter 8 Administering Client Computers
To synchronize client computer clocks:
1 Select a computer list in the Remote Desktop window.
2 Select one or more computers in the selected computer list.
3 Choose Manage > Send UNIX Command.
4 Use the provided Templates for Send UNIX Command to set the time server (see “Send
UNIX Command Templates” on page 143 for more information).
a Select System Setup > Network Time from the Template pop-up menu.
b Click Send.
c Select System Setup > Network Time Server from the Template pop-up menu.
Change the time server from time.apple.com to whichever time server you want, if
desired.
5 Alternatively, manually enter the UNIX command.
a Type or paste the following UNIX command:
systemsetup -setusingnetworktime on -setnetworktimeserver
b Set the user permissions for this command to be sent as the user “root.”
6 Click Send.
Setting Computer Audio Volume
You may want to standardize or otherwise configure the output volume of your
computers. You could use this to silence a lab of computers all playing music, or turn
up the volume on a single remote computer for a user’s benefit. You can also set the
alert volume separately from the output volume and input volume. Additionally you
can set “output muted.” Muting the volume causes the computer to remember what
the previous volume level was and return to it when the sound is enabled again.
Setting computer audio volume requires the use of Apple Remote Desktop’s Send UNIX
Command feature, AppleScript, and the command-line tool osascript. See “UNIX Shell
Commands” on page 143 for more information. See AppleScript’s StandardAdditions
dictionary for information about using this tool.
To set a computer’s audio volume:
1 Select a computer list in the Remote Desktop window.
2 Select one or more computers in the selected computer list.
3 Choose Manage > Send UNIX Command.
4 Use the provided Templates for Send UNIX Command to set the computer volume (see
“Send UNIX Command Templates” on page 143 for more information).
a Select Miscellaneous > Volume On from the Template pop-up menu.
b Set the desired volume level in the Send UNIX Task dialog.Chapter 8 Administering Client Computers 131
5 Alternatively, manually enter the UNIX command.
a Type or paste the following UNIX command:
osascript -e 'set volume output volume any_number_from_0-100'
b or for Mac OS X v.10.3 clients enter or paste the following:
osascript -e 'set volume any_number_from_0-7'
6 Click Send.
Repairing File Permissions
Sometimes a client’s system file permissions can be corrupted or changed from their
expected values. In such a case, it may be necessary to manually repair the permissions
on the client. Repairing permissions returns system and library files to their default
settings.
Repairing file permissions requires the use of Apple Remote Desktop’s Send UNIX
Command feature, and the command-line tool diskutil. See “UNIX Shell Commands” on
page 143 for more information. For information about using this tool, see diskutil’s man
page.
To repair a computer’s file permissions:
1 Select a computer list in the Remote Desktop window.
2 Select one or more computers in the selected computer list.
3 Choose Manage > Send UNIX Command.
4 Type or paste the following UNIX command:
diskutil repairPermissions /
5 Set the user permissions for this command to be sent as the user “root.”
6 Click Send.
Adding Items to the Dock
If you install software on your client computers by dragging and dropping, the file,
folder, or application isn’t immediately added to the user’s Dock. The instructions
provided here are a workaround for clients that are not part of a managed client
environment.
Note: Dock management is best done in a Mac OS X Server Workgroup Management
environment. If you use Mac OS X Server to manage client settings and preferences,
the correct place to change the Dock is within the management settings of Workgroup
Manager.
To add an application or other item to the Dock:
1 Select a computer list in the Remote Desktop window.
2 Select one or more computers in the selected computer list.
3 Choose Manage > Send UNIX Command.132 Chapter 8 Administering Client Computers
4 Type or paste the following UNIX command (replace /Path_To_Application with your
own path to the desired application, and be sure to include the application file
extension, .app):
defaults write com.apple.dock persistent-apps -array-add 'tiledatafile-data
_CFURLString/Path_To_Application
_CFURLStringType0
';killall -HUP Dock
Use “persistent-others” instead of “persistent-apps” if the item is anything other than an
application.
5 Set the permissions for those of currently logged-in user.
6 Click Send.
Changing Energy Saver Preferences
You can get and change the settings found in the Energy Saver pane of System
Preferences. You can change the computer sleep time, as well as other Energy Saver
Options. You can set all the clients to have the same sleep time and even turn on the
preference necessary for them to respond to the Apple Remote Desktop Wake
command (“Wake for Ethernet network administrator access”).
Changing the Energy Saver preferences requires the use of Apple Remote Desktop’s
Send UNIX Command, and its built-in systemsetup command-line tool. See “Built-in
Command-Line Tools” on page 147 for more detailed information about the
systemsetup tool.
To change the Energy Saver preferences:
1 Select a computer list in the Remote Desktop window.
2 Select one or more computers in the selected computer list.
3 Choose Manage > Send UNIX Command.
4 Use the provided Templates for Send UNIX Command to set the energy saver
preferences.
a Select any one of the following Energy Saver items from the System Setup group:
Â Restart After Freeze
Â Restart After Power Failure
Â System Sleep Time
Â Display Sleep Time
Â Wake On Network Access
Â Wake On Modem Activity
b Change the template values to the desired values, and click Send.
5 Alternatively, manually enter the UNIX command.Chapter 8 Administering Client Computers 133
a Type or paste the following UNIX command:
systemsetup -setsleep minutes number_of_minutes_to_sleep -setwakeonmodem
(on | off) -setwakeonnetworkaccess (on | off) -setrestartpowerfailure
(on | off) -setrestartfreeze (on | off)
b Set the permissions for this command to root.
6 Click Send.
Changing Sharing Preferences for Remote Login
Mac OS X’s Sharing System Preference pane allows you to enable or disable SSH login
access to the computer. You can use Remote Desktop to change enable or disable a
remote computer’s preference.
Setting the remote login sharing preference requires the use of Apple Remote
Desktop’s built-in command-line tool, systemsetup. See “Built-in Command-Line Tools”
on page 147 for more detailed information about the tool.
To change the Remote Login sharing preference:
1 Select a computer list in the Remote Desktop window.
2 Select one or more computers in the selected computer list.
3 Choose Manage > Send UNIX Command.
4 Use the provided Templates for Send UNIX Command to set the Remote Login (SSH)
setting (see “Send UNIX Command Templates” on page 143 for more information).
a Select System Setup > Remote Login (SSH) from the Template pop-up menu.
b Set the login for on or off.
5 Alternatively, manually enter the UNIX command.
a Type or paste the following UNIX command:
systemsetup -setremotelogin (on | off)
b Set the permissions for this command to root.
6 Click Send.
Setting Printer Preferences
You can set the default printer for your client computers so that they all have the same
default and configured printer. There are several ways to set up printer preferences for
a client computer. If you have a computer whose printer setup is correct, you can use
Remote Desktop to copy the necessary configuration files to the client computers. If
you don’t have a configured computer available, you can use the command-line tools
in Mac OS X to set the printer preference.
Setting the printer preference via Remote Desktop involves using the Copy Items task.
See “Copying from Administrator to Clients” on page 108 for more information.134 Chapter 8 Administering Client Computers
To set up printer preferences using Copy Items:
1 Set up a client computer’s print preference using the Printer Setup Utility.
2 Use the Copy Items task to copy the following file and folder to all the target
computers:
/private/etc/cups/printers.conf
/private/etc/cups/ppd/
Because these files are hidden in the Finder, you may have to use the Terminal or the
Finder’s “Go to Folder” command to add them to the “Items to copy” list.
3 Choose a “Same relative location” as the copy destination.
4 Choose to replace existing items.
5 Click Copy.
6 Restart the client computers’ printer process by restarting the clients.
If you are comfortable with the command-line, you can use Remote Desktop’s Send
UNIX Command to configure all the client computer preferences at once.
Setting printer preferences using Send UNIX Command requires the use of the built-in
lpadmin command-line tool. For more information, see the lpadmin man page.
To set up printer preferences using Send UNIX Command:
1 Select a computer list in the Remote Desktop window.
2 Select one or more computers in the selected computer list.
3 Choose Manage > Send UNIX Command.
4 Type or paste the following UNIX command:
lpadmin -p printer_name -E -v lpd://printer_and_queue_address -m
printer_model_ppd_file -L “text_description_of_printer_location”
5 Set the user permissions for this command to “root.”
6 Click Send.Chapter 8 Administering Client Computers 135
Managing Computers
Using Apple Remote Desktop, you can control multiple client computers
simultaneously, issuing commands that are found in Mac OS X’s Apple menu (Log Out,
Sleep, Restart, etc.), as well as other commands.
Opening Files and Folders
Apple Remote Desktop can open existing items (files, folders, and applications) on
client computers. The item to open must be on the administrator computer, in addition
to being on the client computers, and must have the same name, type, size,
permissions, and file creation date as the item on the administrator computer.
The Open Items command opens files in the application used to create them, if it exists
on the client computer, or in the application assigned to open files with that file’s
extension. Folders open in the Finder. Applications are opened, or brought to the front,
if already open.136 Chapter 8 Administering Client Computers
To open an item:
1 Select a computer list in the Remote Desktop window.
2 Select one or more computers in the selected computer list.
3 Choose Manage > Open Items.
4 Click the Add (+) button and browse for the item on the administrator computer.
Alternatively, drag the item from the administrator computer’s Finder to the Open
Items dialog.
5 Click Open when the item is selected.
The Open Items dialog shows the icon and name of the item to open.
6 Click Open.
Opening Applications
Apple Remote Desktop can open applications on client computers. The application to
open must be on the administrator computer, in addition to being on client computers.
If the application is already open, the Open Application command brings it to the front.
You can open both Mac OS X and Classic applications with this command.
The application on the administrator computer must have the same name, type, and
permissions as the one to be opened on the client computer.
To open an application:
1 Select a computer list in the Remote Desktop window.
2 Select one or more computers in the selected computer list.
3 Choose Manage > Open Application.
The Open Application dialog shows the applications installed and found in the
Applications folder at the top level of the hard disk of the administrator’s computer.
4 Select the application or click the Add (+) button and browse to find the desired
application on the administrator computer.
Alternatively, drag the item from the administrator computer’s Finder to the Open
Application dialog.
The Open Application dialog shows the icon and name of the application to open.
5 Click Open.Chapter 8 Administering Client Computers 137
Quitting Applications Without Logging Out the User
Apple Remote Desktop can quit running applications on client computers. You can quit
both Mac OS X and Classic applications with this command. The administrator must be
able to use the Send UNIX Command on the client computer. You can get more
information on the killall command by seeing its man page.
Note: Unsaved changes to documents on the client will be lost.
To quit an open application:
1 Select a computer list in the Remote Desktop window.
2 Select one or more computers in the selected computer list.
3 Choose Manage > Send UNIX Command.
4 Use the provided Templates for Send UNIX Command to quit an application (see “Send
UNIX Command Templates” on page 143 for more information).
a Select Miscellaneous > Quit Application from the Template pop-up menu.
b Fill in the desired Application Name.
5 Alternatively, manually enter the UNIX command.
a Type or paste the following UNIX command:
killall “application_name”
b Set the user permissions for this command to be sent as the user “root.”
6 Click Send.
Putting a Computer to Sleep
Apple Remote Desktop can put client computers to sleep. This has the same result as
choosing the Sleep command on the client: the display sleeps, the hard disks spin
down, and the computer’s central processor and network interface are put in a lowpower mode.
Note: Although you can put computers to sleep which are on other network subnets
besides your own, and via AirPort, you will not be able to wake them using Remote
Desktop.
To put a computer to sleep:
1 Select a computer list in the Remote Desktop window.
2 Select one or more computers in the selected computer list.
3 Choose Manage > Sleep.
4 Click Sleep.138 Chapter 8 Administering Client Computers
Waking Up a Computer
Apple Remote Desktop can wake up computers that have gone to sleep or been put to
sleep with Remote Desktop. To wake a computer using Remote Desktop, the
computer’s networking hardware must support waking via network packet
(wakeonlan), and the computer must have “Wake For Ethernet Network Administrator
Access” enabled in the Wake Options of Energy Saver preferences.
You cannot wake up computers connected to the network via AirPort or computers not
located on your local subnet. Apple Remote Desktop uses a “wakeonlan” packet to
wake sleeping client computers. The packet can only be delivered by way of a local
broadcast address, so it only works on a local area network. Also, the network hardware
still needs to be powered to receive and act on the packet. AirPort and other wireless
network interfaces completely power down on sleep and therefore can’t receive or act
on a wakeonlan packet.
If you must wake computers on a different subnet, you may want to use a computer on
that subnet as a type of sentry. It never sleeps, and runs another licensed copy of
Remote Desktop, as well as allows itself to be controlled by your local copy of Remote
Desktop. That way you can control the “sentry” computer and instruct it to wake client
computers on its local subnet.
To wake a computer:
1 Select a computer list in the Remote Desktop window.
2 Select one or more computers from the list that show a status as “Sleeping” or offline.
3 Choose Manage > Wake.
4 Click Wake.
Locking a Computer Screen
Apple Remote Desktop can lock a computer screen. When you lock a computer screen,
no one can see the desktop or use the mouse and keyboard on that computer. By
default, Apple Remote Desktop displays a picture of a padlock on locked screens, but
you can display a custom picture. See “Displaying a Custom Picture on a Locked
Screen” on page 139 for more information.
You can continue to work with computers using Remote Desktop after you’ve locked
their screens.Chapter 8 Administering Client Computers 139
To lock a computer screen:
1 Select a computer list in the Remote Desktop window.
2 Select one or more computers in the selected computer list.
3 Choose Interact > Lock Screen.
4 Enter a message to be displayed on the locked screen, if desired.
5 Click Lock Screen.
The client screen goes black, except for the administrator’s name, the default picture,
and any message text.
Displaying a Custom Picture on a Locked Screen
You can display a picture of your choice on the client screen while it is locked by Apple
Remote Desktop. When creating images, make sure the image size will fit on the client
computer’s screen. For example, if you have clients with 800 x 600 screens, a picture
that is 1024 x 768 will be scaled down to fit the screen.
To create a custom locked screen picture:
1 Create a picture using a graphics program, such as AppleWorks.
2 Save the picture in PICT, TIFF, GIF, JPEG, or any other QuickTime-compatible static image
format.
QuickTime-compatible movies or QuickTime VR objects cannot be used.
3 Name the picture “Lock Screen Picture”.
4 Copy the “Lock Screen Picture” file to /Library/Preferences/ on the client computer.
Unlocking a Computer Screen
You must use Apple Remote Desktop to unlock any computer screen locked by Remote
Desktop. When you unlock a computer screen, you restore the desktop and use of the
mouse and keyboard on that computer.
To unlock a computer screen:
1 Select a computer list in the Remote Desktop window.
2 Select one or more computers from the list that show a “Locked Screen” status.
3 Choose Interact > Unlock Screen.
4 Click Unlock Screen.140 Chapter 8 Administering Client Computers
Disabling a Computer Screen
Sometimes you may want to control a client computer with a user at the client
computer, but you don’t want the user to see what you’re doing. In such a case, you
can disable the client computers screen while preserving your own view of the client
computer. This is a special control mode referred to as “curtain mode.” You can change
what’s “behind the curtain” and reveal it when the mode is toggled back to the
standard control mode.
This feature only works with Mac OS X v.10.4 clients.
To disable a computer screen while you work:
1 Control a client computer.
See “Controlling Apple Remote Desktop Clients” on page 78 or “Controlling VNC
Servers” on page 82 for detailed information.
2 Click the Lock Computer Screen While You Control button in the control window
toolbar.
Alternatively, if you are not currently in a Control window and have added the “Control
Computer in Curtain Mode” button to your toolbar, click that toolbar icon. You can also
select Interact > Curtain.
Logging In a User at the Login Window
Apple Remote Desktop can log in any user on a client computer by using AppleScript
System Events and the Send UNIX Command feature. Using these powerful features
you can log in any number of client computers to the same user name simultaneously
from the login window.
This script is for use on computers at the login screen only.
To log in a user:
This method uses the osascript command. For detailed information on osascript,
see the osascript man page.
1 Select a computer list in the Remote Desktop window.
2 Select one or more computers in the selected computer list.
3 Choose Manage > Send UNIX Command.
4 Type the following AppleScript in the UNIX Command window, adding the user name
and password:
osascript "
keystroke tab
delay 0.5
keystroke ""
delay 0.5 Chapter 8 Administering Client Computers 141
keystroke return
end tell
EndOfMyScript
5 Choose user “root” to run the command.
6 Click Send.
The client computer executes the script.
Logging Out the Current User
Apple Remote Desktop can log out the current user on a client computer. Other users,
besides the current active user, who are logged in using Fast User Switching are not
logged out using this command. Using this command returns the client computer to
the login window.
Unsaved work will stop the logout process.
To log out a user:
1 Select a computer list in the Remote Desktop window.
2 Select one or more computers in the selected computer list.
3 Choose Manage > Log Out Current User.
4 Click Log Out.
Restarting a Computer
Apple Remote Desktop can restart a client computer. This has the same result as
choosing the Restart command from the client computer’s Apple menu.
This feature is especially useful when used with the Install Packages command. Install
Packages doesn’t restart the computer, even if the package requires it. You can restart
the computer using Remote Desktop after installing a package.
To restart a computer:
1 Select a computer list in the Remote Desktop window.
2 Select one or more computers in the selected computer list.
3 Choose Manage > Restart.
4 Select the type of restart.
You can allow users to save files or cancel the restart, or you can force an immediate
restart, which will cause the users to lose unsaved changes to any open files.
5 Click Restart.142 Chapter 8 Administering Client Computers
Shutting Down a Computer
Apple Remote Desktop can shut down a client computer. This has the same result as
choosing the Shut Down command from the client computer’s Apple menu.
Note: If you shut down an Apple Remote Desktop client, you cannot start it up using
Remote Desktop.
This command is especially useful when used with Energy Saver preferences. You can
set your client computers to start up every morning at a designated time and use
Remote Desktop to shut them down at night. The next morning, they will start up and
be ready to administer.
To shut down a computer:
1 Select a computer list in the Remote Desktop window.
2 Select one or more computers in the selected computer list.
3 Choose Manage > Shut Down.
4 Select the type of shutdown.
You can choose to allow users to save files or cancel the shutdown, or you can force an
immediate shutdown, which will cause the users to lose unsaved changes to any open
files.
5 Click Shut Down.Chapter 8 Administering Client Computers 143
UNIX Shell Commands
In addition to its own tasks, Apple Remote Desktop provides a way to easily execute
UNIX commands on client computers. In order to send UNIX commands to the client
computers, the client computers must have the BSD subsystem installed. The UNIX
commands are shell command, which means you can write a script with conditionals,
loops, and other functions of the shell, and not just send a single command.
Send UNIX Command Templates
 Remote Desktop has a few built-in UNIX shell command templates for use with Send
UNIX Command. In the Send UNIX Command task configuration dialog, you can select
any one of the commands from the Templates pop-up menu. Selecting a template
pastes a generic script into the UNIX command field. All you have to do is customize
the script to your situation. For example, if you want to set a manual IP address for a
client computer, you would select the Manual IP template from the Template >
Network Setup pop-up menu, replace the placeholder indicated in the pasted-in UNIX
command with the real IP address, and send the command.
You are free to make as many templates as your want from either existing templates or
from scratch. Once saved, a template can be made the task’s default, with all new
instances of the task opening with the default template settings.144 Chapter 8 Administering Client Computers
For more information about Task Templates, see “Creating and Using Task Templates”
on page 100.
The built-in Send UNIX Command templates include:
Template sub-menu Template name
Network Setup Â List All Services
Â Manual IP
Â DHCP
Â BOOTP
Â Manual with DHCP Router
Â DNS Servers
Â Search Domains
Â Web Proxy
System Setup Â Allow Power Button To Sleep
Â Bonjour Name
Â Current Date
Â Current Time
Â Time Zone
Â Network Time
Â Network Time Server
Â Remote Apple Events
Â Remote Login (SSH)
Â Restart After Freeze
Â Restart After Power Failure
Â System Sleep Time
Â Display Sleep Time
Â Hard Disk Sleep Time
Â Delay After Power Failure
Â Wake On Modem Activity
Â Wake On Network Access
Miscellaneous Â Login User
Â Quit Application
Â Volume Off
Â Volume On
Â List Required Software Updates
Â Install Required Software Updates
Â Repair Disk Permissions
Â Computer Uptime
Â Free Swap Space
Â Top UsersChapter 8 Administering Client Computers 145
Executing a Single UNIX Command
Using the UNIX Command window, you can send a single command to the selected
client computers. The command is executed using the bash shell.
To execute a single UNIX command:
1 Select a computer list in the Remote Desktop window.
2 Select one or more computers in the selected computer list.
3 Choose Manage > Send UNIX Command.
4 Type or paste the command.
If your command is a multi-line script, enter each command on its own line. If you want
to break up a single-line command for better readability, use a backslash (\) to begin a
new line.
5 Set the permissions used to execute the command.
You can choose the currently logged-in user, or choose the name of another user on
the client computers.
6 Click Send.
Executing Scripts Using Send UNIX Command
There are two kinds of scripts you can execute via the command line. First, and most
common with command lines, is a shell script. A shell script is a file containing a
collection of UNIX commands that are all executed in sequence. Shell scripts can have
normal programming procedures like loops, conditionals, and variables. Shell scripts
are text files with UNIX line endings. Shell scripts are interpreted using the bash shell.
The second kind of script you can execute, and the most common in the Mac OS X
environment, is an AppleScript. AppleScripts are files that contain English-like
commands, using the AppleScript programming language and they are created using
the Script Editor application.
Running a UNIX command as the current user will fail if the target computer is at the
login window, since there is no current user at that point. You can use root user for
tasks by entering root in the specified user field of the task dialog. You don’t actually
need to have the root account enabled on the client computer to specify the root user.
You should never use sudo or su to do tasks as the root user. They are interactive and
expect further input and response from your script. Instead, run your script as root or
whatever user you were planning on.
Executing Shell Scripts with Remote Desktop
Shell scripts can be copied, then executed. If a script has any degree of complexity, or if
it cannot be expressed on a single line, you can use Copy Items to copy the script file to
the client computers, then execute it using Send UNIX Command. To send a single-line
command you can simply use Send UNIX Command.146 Chapter 8 Administering Client Computers
To copy and execute a script:
1 Prepare and save your script.
Make sure your script is saved as plain text with UNIX line breaks.
2 Open Remote Desktop.
3 Select a computer list in the Remote Desktop window.
4 Select one or more computers in the selected computer list.
5 Use the Copy Items command to copy your script to the client computers.
See “Copy Options” on page 107 and “Copying from Administrator to Clients” on
page 108 for more information.
6 After copying the script, choose Manage > Send UNIX Command.
7 Execute the script by typing:
sh script pathname
8 Click Send.
Executing AppleScripts with Remote Desktop
AppleScripts can be executed on client computers in two ways. They can be saved and
executed as an application, or sent at once using the command line.
To learn more about AppleScript, see AppleScript Help in Help Viewer or go to:
www.apple.com/applescript/.
To send and execute an AppleScript:
1 Save the AppleScript as an application.
2 Open Remote Desktop.
3 Select a computer list in the Remote Desktop window.
4 Select one or more computers in the selected computer list.
5 Use the Copy Items command with the Open Items option selected in the Copy Items
dialog.
See “Copy Options” on page 107 for more information.
To execute an AppleScript using the Send UNIX Command:
This method uses the osascript command. See the osascript man page for more
information.
1 Select a computer list in the Remote Desktop window.
2 Select one or more computers in the selected computer list.
3 Choose Manage > Send UNIX Command.
4 Type or paste the AppleScript in the UNIX Command window, like this:
osascript -e 'First line of script' -e 'Next line of script' [-e ...]Chapter 8 Administering Client Computers 147
Alternatively, you could use a UNIX “read standard input” redirection which looks like:
osascript value must be a multiple of 30
seconds. Example:
systemsetup -
setWaitForStartupAfterPowerFailure 30
-setwakeonmodem (on | off) Use this command to specify whether or not the
server will wake from sleep when modem activity
is detected. Example:
systemsetup -setwakeonmodem on
-setwakeonnetworkaccess (on | off) Use this command to specify whether the server
wakes from sleep when a network admin packet
is sent to it. Example:
systemsetup -setwakeonnetworkaccess
on
Flag DescriptionChapter 8 Administering Client Computers 151
Any command in the Mac OS X Server command-line guide that uses systemsetup
can be used in Remote Desktop using the Send UNIX Command task.
Using kickstart
The kickstart command-line utility is embedded within the Apple Remote Desktop
client software. It allows you to install, uninstall, activate, configure, and restart
components of Apple Remote Desktop without restarting the computer. You can
configure all the features found in the Remote Desktop section of the Sharing System
Preferences. The kickstart utility can be used via SSH to configure remote computers,
including Xserves. The kickstart utility is located at:
/System/Library/CoreServices/RemoteManagement/ARDAgent.app/Contents/
Resources/kickstart.
The syntax and list of actions possible with kickstart are available by running
kickstart as follows:
$sudo /System/Library/CoreServices/RemoteManagement/ARDAgent.app/Contents/
Resources/kickstart -help
If you are running the kickstart utility through Apple Remote Desktop’sSend UNIX
Command function, you don’t need the full path, just the name kickstart and root as
the command’s user.
You can use the sudo command with an administrator account to use the kickstart
utility, or you can use the root user via Send UNIX Command. All commands presented
in this section should be typed as one line of text. It’s OK if the text wraps as you enter
it; just be sure not to enter return characters.
The following are some examples of actions possible with kickstart:
Â Activate Remote Desktop sharing, enable access privileges for all users, and restart
the Apple Remote Desktop Agent:
$ sudo /System/Library/CoreServices/RemoteManagement/ARDAgent.app/
Contents/Resources/kickstart -activate -configure -access -on -restart
-agent -privs -all
Â Activate Remote Desktop sharing, enable access privileges for the users “admin”, grant
full privileges for the users “admin,” and restart the Apple Remote Desktop Agent and
Menu item:
$ sudo /System/Library/CoreServices/RemoteManagement/ARDAgent.app/
Contents/Resources/kickstart -activate -configure -access -on -users
admin -privs -all -restart -agent -menu
Â Activate Remote Desktop sharing, and disable access privileges for all users:
$ sudo /System/Library/CoreServices/RemoteManagement/ARDAgent.app/
Contents/Resources/kickstart -activate -configure -access -off
Â Shut down the Apple Remote Desktop Agent process:
$ sudo /System/Library/CoreServices/RemoteManagement/ARDAgent.app/
Contents/Resources/kickstart -agent -stop152 Chapter 8 Administering Client Computers
Â Deactivate Remote Desktop access for a computer:
$ sudo /System/Library/CoreServices/RemoteManagement/ARDAgent.app/
Contents/Resources/kickstart -deactivate -configure -access -off
Automating Functions
You can automate any command or function in Remote Desktop. Additionally, Remote
Desktop supports scripting (either UNIX or AppleScript) to help automate their client
management.
Setting the Client’s Data Reporting Policy
To speed up reporting and allow reporting from offline clients, Apple Remote Desktop
uses saved client system and file information. You can automate the collection of this
information by setting the data reporting policy. This schedule determines how often
the client updates its system and file information for reports.
In accordance with the collection schedule you set, each client computer connects to a
central reporting database and uploads the information you designate. There are
certain trade-offs to the frequency of these updates. If you require all the clients to
update their information too often, you run the risk of added network traffic and slower
client performance during updates. If you don’t require the clients to update often
enough, the report data that you receive may be out of date. You should take care to
balance your reporting needs and your network and client performance needs.
The collection policy includes four kinds of information: system data, file data, user
accounting data, and application usage data.
System data includes all possible reported information for the following reports:
Â System Overview
Â Storage
Â USB Devices
Â FireWire Devices
Â Memory
Â PCI Cards
Â Network Interfaces
The file data includes all possible reported information for the following reports:
Â File Search
Â Software Version
Â Software DifferenceChapter 8 Administering Client Computers 153
The user accounting data includes all possible reported information for the following
report:
Â User History
The application usage data includes all possible reported information for the following
report:
Â Application Usage
To set a client’s data reporting policy:
1 Select a computer list in the Remote Desktop window.
2 Select one or more computers in the selected computer list.
3 Choose File > Get Info.
4 If you have selected only one computer, select the Data Settings tab, and click the Edit
button.
If you have selected more than one computer, this tab is already selected.
5 Select “Upload on a schedule.”
To disable a client’s automatic data collection, deselect “Upload on a schedule.”
6 If you have already made a default schedule, you can use it by clicking “Use default
schedule” to automatically fill in the appropriate information and click Done.
Otherwise, choose the day or days the data collection should occur.
For more information about setting a default schedule, see “Creating a Template Data
Reporting Policy” on page 153.
7 Set the time at which the collection occurs.
8 Choose which data types to upload: System Data, File Search Data, Application Usage
Data or User Accounting Data, or any combination.
9 In order to upload Application Usage Data and User Accounting Data, you need to
specify collection of that data.
Choose Collect Application Usage Data to tell a client computer to save report
information for the Application Usage Report.
Choose User Accounting Data to tell a client computer to save report information for
the User History Report.
10 Click Apply.
Creating a Template Data Reporting Policy
To speed up client configuration for data reporting, you can set a default time and
frequency of report data collection. This template must be applied to any computer or
group of computers that you want to use it. Afterwards, the setting can be customized
on a per-computer or group basis.154 Chapter 8 Administering Client Computers
To set the default data reporting policy template:
1 Choose Remote Desktop > Preferences.
2 Select Task Server.
3 Check which additional data types the clients will collect: Application Usage Data, User
Accounting Data, or both.
4 Check “Upload report data to the Task Server on a schedule.”
5 Click Change Schedule.
6 Choose the day or days the data collection should occur.
7 Set the time at which the collection should occur.
8 Choose which data types to upload: “System Data,” “File Search Data,” “Application
Usage Data,” “User Accounting Data,” or any combination.
9 Click OK.
Designating the Task Server and Setting the Report Data Collection
Location
To speed up reporting, Apple Remote Desktop uses a database of client system and file
information. You can automate the collection of this data for reports, and determine
where the database will reside. By default, the database is stored on the administrator
computer. Use these instructions to change the data collection location.
First, determine where the data will be located: on the administrator computer, or a
remote computer (called a Task Server). A Task Server needs to be an unlimited-client
licensed Apple Remote Desktop administrator computer and have TCP and UDP ports
3283 open to all of the reporting client computers (and TCP port 5900 open, if you
want to control the clients). If you choose to use another Apple Remote Desktop
administrator computer’s database, you must configure it to allow data access to other
Apple Remote Desktop administrators. The default Task Server is the computer upon
which you installed Remote Desktop.
See also “Using a Task Server for Report Data Collection” on page 112.
If you choose to store the data locally and you have an unlimited client license, you can
allow other Apple Remote Desktop administrators with unlimited-managed computer
licenses to access the database on your computer by selecting the “Allow remote
connections to this server” option.
Warning: If you change the location of the report database from the one selected in
the initial setup, you will need to reset the collection policies for the client computers.
The database will not be moved, but will be regenerated at the next collection
interval.Chapter 8 Administering Client Computers 155
To set the Task Server location:
1 Open Remote Desktop.
2 Choose Remote Desktop > Preferences.
3 Click Task Server.
4 If you want to use the database on this administrator computer, select “Use Task Server
on this computer.”
5 If you use your Remote Desktop administration computer as a Task Server on the local
administrator computer, click “Allow remote connections to this server.”
6 If you want to use a database on another administrator computer, select “Use remote
Task Server.”
Then, enter the IP address or fully qualified domain name of the other Apple Remote
Desktop administrator computer, and click Select.
7 Close the window to save changes.
Scheduled Tasks
You can use Apple Remote Desktop to automate and schedule almost any task. For
example, you can make sure a particular application or a specific set of fonts is always
available on a client computer by setting Remote Desktop to copy applications and
fonts to the client every night.
When you schedule an automated task, information about the scheduled task is saved
on the administrator computer. At the appointed time, the client software on that
computer activates and initiates the task. Remote Desktop must be open to perform a
scheduled task.
Setting Scheduled Tasks
Any task with the Schedule Task button in the task configuration window can be
scheduled. Tasks that you have scheduled appear on the left in the main Remote
Desktop window.
To schedule a task:
1 Select a computer list in the Remote Desktop window.
2 Select one or more computers in the selected computer list.
3 Choose the task you want to schedule from the menu bar.
4 Configure the task as needed.
5 Before executing the task, click the Schedule button.
The scheduling information is revealed.
6 Choose when and how often you want the task to execute.
7 If you want the task to repeat, click Repeating Every then set the repeat interval.156 Chapter 8 Administering Client Computers
8 Click OK.
9 Save the task and choose where the task will appear in the Remote Desktop window.
Editing Scheduled Tasks
Once saved, a task can be changed and all future executions of the task will reflect the
changes. You may want to edit which computers are affected by the task or any other
task parameter.
To edit a task schedule:
1 Double-click a scheduled task in the Remote Desktop window.
2 Edit the task, as needed.
3 Click the Schedule Task button.
4 Edit the task schedule, as needed.
5 Click OK.
6 Click Save.
Deleting Scheduled Tasks
Unneeded tasks can be deleted. If you want to keep the task, but stop it from
repeating, you should edit the scheduled task instead of deleting it. See “Editing
Scheduled Tasks” for more information.
To delete a scheduled task:
1 Select the saved task in the Remote Desktop window.
2 Press the Delete key.
3 Click Delete.
Using AppleScript with Remote Desktop
AppleScript is a powerful and versatile scripting language that is built into Mac OS X.
You can use AppleScript to create shortcuts, automate repetitive tasks, or even make
custom applications that save you a great amount of time. AppleScript is an Englishlike language you can use to write scripts that contain commands. Scripts can make
decisions based on user interaction, or by parsing and analyzing data, documents, or
situations. Remote Desktop is scriptable, as are many other Mac OS X applications, and
it can be controlled with AppleScript commands. AppleScript is a complete language
with conditional statements, comparison and arithmetic operations, and the ability to
store variables.
This documentation doesn’t teach AppleScript language syntax or programming
practices. For information about learning how to program with AppleScript, see the
AppleScript online help.
This section provides a brief description of AppleScript, a brief discussion of using the
Remote Desktop AppleScript Dictionary, and a sample script.Chapter 8 Administering Client Computers 157
Remote Desktop’s AppleScript Basics
AppleScript scripts consist of commands that are sent to objects. Objects can be a wide
variety of things, including applications, scripts, windows, settings, or the Finder. These
objects can receive a specific set of commands and respond with the desired actions.
Essentially, a script tells an application (Remote Desktop in this case) to either complete
a certain task or retrieve information. You can give the script decision-making
capabilities by using conditional statements; you can give the script a memory by
defining variables.
Remote Desktop has made all of its fundamental functions scriptable. The tasks that
you perform as an administrator by pointing and clicking the mouse can all be
accomplished by running an AppleScript. For example, you can:
Â Get information on or rename a computer
Â Add computers to a list
Â Copy or install items
Â Execute a report task
Using the Remote Desktop AppleScript Dictionary
Each scriptable application contains an AppleScript dictionary—the list of objects and
messages that an application can understand. For example, in Remote Desktop’s
dictionary there is an object named “computer list” that has this entry:
A “computer list” is an object which contains other objects (“computers” in this case)
and has properties like its “id” and its “name.” When queried, this object can return the
values for the properties (in Unicode text as indicated), but you can’t change “id” from
within the script (it’s labeled r/o for read-only). This object can be acted upon by the
“verbs,” or messages, in a script.
The dictionary also contains “verbs,” or messages. These verbs are commands that act
on the objects in the dictionary. For example, in Remote Desktop’s dictionary there is a
verb named “add,” and this is its entry:
computer list n [inh. item] : A list which holds computers.
ELEMENTS
contains computers; contained by application.
PROPERTIES
id (Unicode text, r/o) : The unique identifier (UUID) of the computer list.
name (Unicode text) : The name of the computer list.
add v : Add a computer to a task.
add computer : The computer.
to computer list : The computer list (or task) to add the computer to.158 Chapter 8 Administering Client Computers
This entry tells you what the verb can act on and how. This entry says that Remote
Desktop can add a specified computer to a computer list. The objects “computer” and
“computer list” are being acted upon by “add.”
To access the full AppleScript dictionary for Remote Desktop:
1 Launch Script Editor in the /Applications/AppleScript/ folder.
2 Select File > Open Dictionary.
3 Choose Remote Desktop.
4 Click Open.
The AppleScript Dictionary for Remote Desktop is also available in Appendix C,
“AppleScript Remote Desktop Suite.”
Sample AppleScript
This AppleScript is one that could be used to do a quick cleanup of a group of
computers. First, it locks the computer screens to prevent interference. Second, it
deletes all items left on the currently active desktops of the client computers. Finally, it
finishes by emptying the clients’ trash and unlocking the screens.
This script is for educational use only and no warranty is explicit or implied as to the
suitability of this script for your computing environment. Additionally, this sample
script deletes items on the target computers. Use at your own risk.
-- Start commanding the local copy of Remote Desktop
tell application "Remote Desktop"
-- decide which list to perform this on, in this case it's called
"Classroom"
set these_computers to computer list "Classroom"
-- decide what locked screen text you want displayed
set screen_message to "Please wait" as Unicode text
-- make a UNIX script which executes an AppleScript on the remote
computers
set the UNIX_script to "osascript -e 'tell application \"Finder\" to
delete every item of the desktop whose class is not disk'"
-- set the lock task parameters
set lock_task to make new lock screen task with properties {name:”Lock
Classroom”, message:screen_message}
-- perform the task
execute lock_task on these_computers
-- set the UNIX script parameters
set clean_task to make new send unix command task with properties
{name:”Clean Desktop”, showing output:false, script:UNIX_script}Chapter 8 Administering Client Computers 159
-- perform the task
execute clean_task on these_computers
-- empty the trash afterward
execute (make new empty trash task) on these_computers
-- unlock the screen when finished
execute (make new unlock screen task) on these_computers
end tell
Using Automator with Remote Desktop
Accomplish all of your time-consuming, repetitive manual tasks quickly, efficiently, and
effortlessly with Automator workflows. It’s simple to create custom workflows just by
dragging items, pointing, and clicking. You can easily automate Remote Desktop tasks
such as Lock Screen or Install Packages, then repeat those tasks again and again.
Simple and easy-to-understand application actions are the building blocks, so you
don’t have to write any code. Each actions has all of the options and settings available
to you.
Here’s the sample AppleScript above, but done using Automator:160 Chapter 8 Administering Client Computers
Using Automator actions, you can even create your own interfaces to Apple Remote
Desktop functions without having to give users access to Remote Desktop. For
instance, say you wanted to give all your teachers a tool to lock and unlock screens in
their classrooms. You still need to configure Remote Desktop and set up computer lists,
but instead of giving the teachers all access to Remote Desktop, you can create an
Automator plug-in or application. This plug-in lets them select only the computers in
their classroom, and the plug-in does the rest of the work for them.
You can create an Automator workflow, application, Finder plug-in, or iCal alarm similar
to the AppleScript mentioned above. By stringing together Remote Desktop actions in
Automator, you accomplish the same work as an AppleScript, but without having to
write code. 161
A Appendix
A Icon and Port Reference
The following tables illustrate some of the icons found in the
main window of Remote Desktop. The final table shows
which network port numbers are in use by Apple Remote
Desktop.
Client Status Icons
The following icons appear next to the names of computers in a scanner search results
list. The icons show the status of each computer in the list.
Apple Remote Desktop Status Icons
The Apple Remote Desktop status icon appears in the menu bar of each Apple Remote
Desktop client. The status icon has several states, depending on the status of the client
computer.
Icon What it means
Accessible to Apple Remote Desktop
Offline Apple Remote Desktop client
Ping response at IP address, but no Apple Remote Desktop client
response
Icon What it means
Not Active
Apple Remote Desktop is installed but is not currently running on
the client computer.
Ready
Apple Remote Desktop is installed and running on the client.
Administered
Apple Remote Desktop is installed and running on the client
computer, the administrator is actively observing or controlling,
and the client is set to indicate when it is being observed.162 Appendix A Icon and Port Reference
List Menu Icons
The following icons are used in the Apple Remote Desktop list area of Remote
Desktop’s main window.
Task Status Icons
The following icons are used in task list areas of Remote Desktop’s main window.
Icon What it means
Master list
Apple Remote Desktop list
Smart list
Scanner
Active Task list
Task History list
Task Server queue
Icon What it means
Running
Finished successfully
Exited with error
Incomplete
Queued
ScheduledAppendix A Icon and Port Reference 163
System Status Icons (Basic)
The following icons are shown as initial high-level status indicators for observed client
computers.
System Status Icons (Detailed)
The following icons are shown after further inspection of observed client computer
status indicators.
Icon Indicates
 or
One or more service statistic is red. This takes precedence over any
yellow or green indicator.
 or
One or more service statistic is yellow This takes precedence over
any green indicator
Service is operating within established parameters.
No service informaiton available.
Service Icon Status
CPU Usage Usage is at 60% or less
Usage is between 60% to 85%
Usage is at 85% or higher
No status information is available
DIsk Usage Usage is at 90% or less
Usage is between 90% and 95%
Usage is at 95% or higher
No status information is available
Free Memory Less than 80% used
Between 80% and 95% used164 Appendix A Icon and Port Reference
TCP and UDP Port Reference
Apple Remote Desktop uses the following TCP and UDP ports for the functions
indicated.
Over 95% used
No status information is available
Service Icon Status
Port Protocol Function
5900 TCP Observe and Control
5900 UDP Send screen, share screen
3283 TCP Reporting
3283 UDP Everything else
22 TCP Encrypted file transfer, observe,
and control (via SSH tunnel) 165
B Appendix
B Report Field Definitions Reference
The following sections describe the available fields in some of
the Apple Remote Desktop reports. For information on
generating reports, see “Creating Reports” on page 111.
The file search reports (File Search, Software Version, and Software Difference) are not
included because their fields closely match those already found in the Finder.
System Overview Report
List category Field name Notes or example
AirPort AirPort Active Yes/No
AirPort Firmware Version Version number
AirPort Hardware Address 00:30:65:01:79:EC
AirPort Locale
AirPort Type
AirPort Installed Yes/No
AirPort Network Channel Channel number 1-11
AirPort Network Name Network name
AppleTalk AppleTalk Active Yes/No
AppleTalk Network
AppleTalk Node
AppleTalk Zone
Computer Active Processors Number of processors
Available user memory Memory in KB
Boot ROM ROM version number
Bus Clock Speed In MHz
Bus Data Size
CPU Speed In MHz
Serial number 166 Appendix B Report Field Definitions Reference
Velocity Engine Yes/No
L2 Cache Size In KB
L3 Cache Size In KB
Machine Model
Memory In KB
Empty RAM Slots
PCI slots Used
Processor Count
CPU Type Internal value
Sales Order Number
VM Size
Total RAM Slots
Devices ATA Device Count
Firewire Device Count
Keyboard Connected
Mouse Connected
Optical Drive Type
SCSI Device Count
USB Device Count
Display 2nd Monitor Depth In bits
2nd Monitor Type
2nd Monitor Resolution Pixels horizontal and vertical
Monitor Depth In bits
Monitor Type
Monitor Resolution Pixels horizontal and vertical
Modem Modem Country
Modem Driver
Modem Firmware Version
Modem Installed Yes/No
Modem Interface
Modem Model
Network First Ethernet Address en0 MAC address
NetBooted Yes/No
Primary IP Address
Primary Network Collisions
Primary Network Flags
List category Field name Notes or exampleAppendix B Report Field Definitions Reference 167
Primary Network Hardware
Address
Primary Network Input Errors
Primary Network Input Packets
Primary Network Output Errors
Primary Network Output Packets
Primary Network
Preferences Sleep Display Yes/No
Sleep Hard Disk Yes/No
Sleep Computer Yes/No
Wake for Ethernet Access Yes/No
Printing Printer Name
Printer Sharing Yes/No
Printer Type
Printer Version
Remote Desktop Computer Info #1
Computer Info #2
Computer Info #3
Computer Info #4
Sharing Computer Name File sharing name, “Bob’s
Computer”
FTP Access Yes/No
Remote AppleEvents Yes/No
Remote Login Yes/No
UNIX hostname foo.example.com
Web Sharing Yes/No
Windows Sharing Yes/No
Software Kernel Version
System Version Mac OS X v10.4.2 (8C46)
Storage Free Disk Space In KB, MB, or GB
Total Disk Space In KB, MB, or GB
Trash Size In KB, MB, or GB
List category Field name Notes or example168 Appendix B Report Field Definitions Reference
Storage Report
List category Field name Notes or example
Hardware Options Drive Manufacturer
Drive Model
Drive Revision
Drive Protocol
Removable Yes/No
Serial Number
Logical Unit Number
Detachable
Volume Options Creation date UNIX GMT format
Disk Name Macintosh HD
File Count
Folder Count
Total Disk Space
Free Space In KB, MB, or GB
Startup Disk
UNIX Mount Point /dev/disk0s10
File System Options Disk Format HFS, HFS+, UFS
Owner
Group Yes/No
Permission Modes
Permissions Yes/No
Write Access
Modification date UNIX GMT format
Case Sensitive Yes/No
Preserves Case Yes/No
Backup Options Journaling Capable Yes/No
Journaled Yes/No
Last Backup date UNIX GMT format
Last Check date UNIX GMT formatAppendix B Report Field Definitions Reference 169
USB Devices Report
FireWire Devices Report
Memory Report
PCI Cards Report
Field name Notes or example
Product Name
Product ID
Vendor ID
Vendor Name
Device Speed 1.5Mb, 12Mb
Bus Power In mA
Date collected
Field name Notes or example
Device Speed 200, 400, 800 Mbits per second
Software Version
Manufacturer
Model
Firmware Revision
Date collected
Field name Notes or example
Slot Identifier DIMM0/J21
Size In MB
Speed PC133-222 (Mac OS X 10.3 only)
Type SDRAM
Date collected
Field name Notes or example
Card Name
Slot Name Slot4
Card Type Display
Vendor ID
Device ID170 Appendix B Report Field Definitions Reference
Network Interfaces Report
ROM Revision Displays only
Card Revision
Card Memory Displays only
Date collected
Field name Notes or example
List category Field name Notes or example
Network Overview Name Location name
Active Yes/No
Primary Yes/No
Configured With Ethernet
Hardware Address 00:30:65:01:79:EC
Interface Name en0
Flags
Active Interface Domain example.com
Router Address
IP Address
Broadcast Address
DNS Server
Subnet Mask
IP Addresses
Broadcast Addresses
DNS Servers
Subnet Masks
Network Statistics Network Collisions
Network Input Errors
Network Input Packets
Network Output Errors
Network Output Packets
Output Statistics Output Queue Capacity
Output Queue Size
Output Queue Peak Size
Output Queue Drop Count
Output Queue Output Count
Output Queue Retry CountAppendix B Report Field Definitions Reference 171
Output Queue Stall Count
Ethernet Statistics Ethernet Alignment Errors
Ethernet FCS Errors Frame Check Sequence errors
Ethernet Single Collision Frames
Ethernet Multiple Collision
Frames
Ethernet SQE Test Errors “heartbeat” test errors
Ethernet Deferred Transmissions
Ethernet Late Collisions
Ethernet Excessive Collisions
Ethernet Internal MACTransmit
Errors
Ethernet Carrier Sense Errors
Ethernet Frame Too Long
Ethernet Internal Mac Receive
Errors
Ethernet Chip Set
Ethernet Missed Frames
Ethernet Receiver Overruns
Ethernet Receiver Watchdog
Timeouts
Ethernet Receiver Frame Too
Short
Ethernet Receiver Collision
Errors
Ethernet Receiver PHY Errors
Ethernet Receiver Timeouts
Ethernet Receiver Interrupts
Ethernet Receiver Resets
Ethernet Receiver Resource
Errors
Ethernet Transmitter Underruns
Ethernet Transmitter Jabber
Events
Ethernet Transmitter PHY Errors Physical Errors
Ethernet Transmitter Timeouts
Ethernet Transmitter Interrupts
Ethernet Transmitter Resets
List category Field name Notes or example172 Appendix B Report Field Definitions Reference
Network Test Report
Administration Settings Report
Ethernet Transmitter Resource
Errors
Ethernet Collision Frequencies
List category Field name Notes or example
Field name Notes or example
Computer Computer sharing name
Min,. Time Shortest time for ping response
Max. TIme Longest time for a ping response
Avg. Time Average time for ping response
Lost Packets Number of pings without a response
Total Packets Number of pings sent.
List category Field name Notes or example
Computer Computer sharing name
Privileges Generate Reports On or off
Send Messages On or off
Open & Quit On or off
Restart & Shutdown On or off
Change Settings On or off
Copy Items On or off
Delete Items On or off
Control On or off
Observe On or off
Show Observe On or off
Data Settings Collect Application Usage Data On or off
Collect User Accounting Data On or off
Upload Schedule Time and days to upload
information
Upload System Data On or off
Upload File Data On or off
Upload Application Usage Data On or off
Upload User Accounting Data On or offAppendix B Report Field Definitions Reference 173
Application Usage Report
User History Report
General Version Apple Remote Desktop version
and build number
Last Contacted Relative date
List category Field name Notes or example
Field name Notes or example
Computer name File sharing computer name
Name Application name
Launch date 24 hour local time and date
Total run time Length of time the application was running
Frontmost Length of time the application was the frontmost application
User name Short user name of application process owner
State What the application is doing now (running, terminated, etc.)
Field name Notes or example
Computer name file sharing computer name
User name
Login type) Console, tty, ssh
Login time Date and 24 hour format local time
Logout time Date 24 hour format local time
Remote Login Host Originating host to the login session, localhost, or some remote
computer174
C Appendix
C AppleScript Remote Desktop
Suite
This appendix shows the contents of Remote Desktop’s
AppleScript Dictionary.
This appendix is not a substitute for the AppleScript Dictionary view in Script Editor.
It is included as a quick reference so that AppleScript commands might be found by a
search of PDF contents. The Dictionary itself has the most recent information about
scriptable objects and events in Remote Desktop, and better usability.
Classes and Commands for the Remote Desktop Application.
add v: Add a computer to a task.
add computer: The computer.
to computer list: The computer list (or task) to add the computer to.
control v: Start a control session with the computer.
control computer: The computer to control.
execute v: Executes a task.
execute task: The task to execute.
[on computer list]: The computer list (or computer) on which to run the task.
observe v: Start an observation session.
observe item: The computer, list, or computer list to observe.
release v: Release computers from a control or observation session.
release item: The computer, list, or computer list to release.
remove v: Remove a computer from a task.
remove computer: The computer to remove.
from computer list: The computer list (or task) to remove the computer from.
stop v: Stops an executing share screen task.
stop task: The task to stop.Appendix C AppleScript Remote Desktop Suite 175
application n [inh. application; see also Standard Suite]: Remote Desktop’s top level
scripting object.
ELEMENTS
contains computers, computer lists, copy items tasks, copy to me tasks, documents,
empty trash tasks, install package tasks, lock screen tasks, logout tasks, open
application tasks, open item tasks, rename computer tasks, restart tasks, send message
tasks, send unix command tasks, set local startup disk tasks, set network startup disk
tasks, share screen tasks, shutdown tasks, sleep tasks, unlock screen tasks, upgrade
client tasks, wake up tasks, windows.
PROPERTIES
selection (item, r/o): The current selection.
computer n [inh. item]: A physical computer.
ELEMENTS
contained by application, computer lists.
PROPERTIES
boot volume (Unicode text, r/o): The boot volume of the computer.
CPU (Unicode text, r/o): The CPU type of the computer.
current application (Unicode text, r/o): The current frontmost application on the
computer.
current user (Unicode text, r/o): The currently logged in user on the computer.
DNS name (Unicode text, r/o): The DNS name of the computer.
id (Unicode text, r/o): The unique identifier (UUID) of the computer.
Internet address (Unicode text, r/o): The Internet address of the computer.
last activity (date, r/o): The time of the most recent activity on the computer.
last contacted (date, r/o): The time of last contact with the computer.
machine model (Unicode text, r/o): The model of the computer.
name (Unicode text, r/o): The name of the computer.
physical memory (Unicode text, r/o): The physical ram installed in the computer.
primary Ethernet address (Unicode text, r/o): The primary ethernet address of the
computer.
remote desktop version (Unicode text, r/o): The version of the Remote Desktop client
running on the computer.
status message (Unicode text, r/o): The current status of the computer.
system version (Unicode text, r/o): The Mac OS version running on the computer.
computer list n [inh. item]: A list which holds computers.
ELEMENTS
contains computers; contained by application.
PROPERTIES
id (Unicode text, r/o): The unique identifier (UUID) of the computer list.
name (Unicode text): The name of the computer list.176 Appendix C AppleScript Remote Desktop Suite
copy items task n [inh. task > item]: Copy items to the target computers.
ELEMENTS
contained by application.
PROPERTIES
bandwidth limit (integer): Network usage limit in kilobytes per second (0 = unlimited).
conflict resolution (ask what to do/rename the existing item/rename the item being
copied/replace/replace if older): Specifies what to do if the item(s) already exist in this
location.
copy items (list): A list of files and/or folders to copy.
destination group (Unicode text): If ownership is set to a ‘specific owner’, a valid group
name on the destination computer.
destination owner (Unicode text): If ownership is set to a ‘specific owner’, a valid user
name on the destination computer.
destination path (alias): If the location is ‘specific folder’, a fully specified path to the
destination folder.
encrypting (boolean): Should the items be encrypted during copying
location (applications folder/current users desktop folder/current users home directory/
same relative location/specific folder/system folder/system fonts folder/system
preferences folder/top folder of the boot disk): The target location to copy to.
ownership (current console user/current owner/destination folder owner/specific
owner): Specifies the new ownership of the copied item(s).
should open (boolean): Should the items be opened after being copied
stopping on error (boolean): Should the copy terminate if an error occurs during
copying
copy to me task n [inh. task > item]: Copy items from the target computers to the
administrator computer.
ELEMENTS
contained by application.
PROPERTIES
bandwidth limit (integer): Network usage limit in kilobytes per second (0 = unlimited).
conflict resolution (ask what to do/rename the existing item/rename the item being
copied/replace/replace if older): Specifies what to do if the item(s) already exist in this
location.
copy items (list): A list of files and/or folders to copy.
destination path (alias): If the location is ‘specific folder’, a fully specified path to the
destination folder.
encrypting (boolean): Should the items be encrypted during copying
location (applications folder/current users desktop folder/current users home directory/
same relative location/specific folder/system folder/system fonts folder/system
preferences folder/top folder of the boot disk): The target location to copy to.Appendix C AppleScript Remote Desktop Suite 177
empty trash task n [inh. task > item]: Empty the trash on the target computers.
ELEMENTS
contained by application.
install package task n [inh. task > item]: Install package(s) on the target computers.
ELEMENTS
contained by application.
PROPERTIES
after installing (attempt restart/do nothing/force immediate restart): Specifies what to
do after installing the package(s).
bandwidth limit (integer): Network usage limit in kilobytes per second (0 = unlimited).
delegating to task server (boolean): Should this task be delegated to the task server
encrypting (boolean): Should the packages be encrypted during copying
packages (list): A list of packages to install.
stopping on error (boolean): Should the copy terminate if an error occurs during
copying
lock screen task n [inh. task > item]: Lock the screen(s) on the target computers.
ELEMENTS
contained by application.
PROPERTIES
message (Unicode text): Message to display on the screen(s).
logout task n [inh. task > item]: Log out the current user on the target computers.
ELEMENTS
contained by application.
open application task n [inh. task > item]: Launch an application on the target
computers.
ELEMENTS
contained by application.
PROPERTIES
application (alias): The path to the application to open.
open item task n [inh. task > item]: Open files on the target computers.
ELEMENTS
contained by application.
PROPERTIES
files (list): A list of files to open.
rename computer task n [inh. task > item]: Change the name of the target
computers.
ELEMENTS
contained by application.
PROPERTIES178 Appendix C AppleScript Remote Desktop Suite
naming uniquely (boolean): Should each machine be forced to have a numerically
unique name
target name (Unicode text): The new name for the computer.
restart task n [inh. task > item]: Restart the target computers.
ELEMENTS
contained by application.
PROPERTIES
user can save changes or cancel (boolean): Is the user allowed to save changes or
cancel the restart
send message task n [inh. task > item]: Send a text message to the target
computers.
ELEMENTS
contained by application.
PROPERTIES
message (Unicode text): Message to display on the screen(s).
send unix command task n [inh. task > item]: Send a UNIX command or script to the
target computers.
ELEMENTS
contained by application.
PROPERTIES
script (Unicode text): The command string to be executed.
showing output (boolean): Should the complete output of command be displayed in a
window
user (Unicode text): The user to execute the command as.
set local startup disk task n [inh. task > item]: Set the startup volume on the target
computers.
ELEMENTS
contained by application.
PROPERTIES
boot volume (Unicode text): Specific volume of drive to boot (optional).
restarting (boolean): Should the machine be restarted after setting the startup volume
set network startup disk task n [inh. task > item]: Set the startup volume on the
target computers.
ELEMENTS
contained by application.
PROPERTIES
from server (Unicode text): Internet address of the server to boot from.
mount volume (Unicode text): Volume name on server to mount.
restarting (boolean): Should the machine be restarted after setting the startup volume Appendix C AppleScript Remote Desktop Suite 179
share screen task n [inh. task > item]: Share a computers screen to the target
computers.
ELEMENTS
contained by application.
PROPERTIES
source computer (computer): The computer (other than the admin) whose screen to
share.
shutdown task n [inh. task > item]: Shutdown the target computers.
ELEMENTS
contained by application.
PROPERTIES
user can save changes or cancel (boolean): Is the user allowed to save changes or
cancel the shutdown
sleep task n [inh. task > item]: Put the target computers to sleep.
ELEMENTS
contained by application.
task n [inh. item]: A task. This abstract class represents the tasks which can be
executed by Remote Desktop. There are subclasses for each specific type of task.
ELEMENTS
contained by application.
PROPERTIES
computer list (computer list): The computer list associated with the task.
id (Unicode text, r/o): The unique identifier (UUID) of the computer.
name (Unicode text): The name of the task.
recurrence (Unicode text, r/o): A string which describes the task recurrence, if defined.
starting at (date): If the task is scheduled, the date and time of the first execution.
unlock screen task n [inh. task > item]: Release the screen(s) of the target
computers.
ELEMENTS
contained by application.
upgrade client task n [inh. task > item]: Upgrade the Remote Desktop client on the
target computers.
ELEMENTS
contained by application.
wake up task n [inh. task > item]: Wake up the target computers.
ELEMENTS
contained by application.180
D Appendix
D PostgreSQL Schema Sample
This chapter contains SQL commands to assist SQL
programmers in obtaining the database schema used in
Apple Remote Desktop’s report database. You can use this
knowledge about the schema to create your own
applications that access Apple Remote Desktop report
information.
Sample list of main database schema
Command:
/System/Library/CoreServices/RemoteManagement/rmdb.bundle/bin/psql -U ard -c
"\\d propertynamemap" ard
Output:
 Table "public.propertynamemap"
 Column | Type | Modifiers
---------------+------------------------+-----------
 objectname | character varying(128) | not null
 propertyname | character varying(128) | not null
 propertymapid | integer |
Sample list of system information table
Command:
/System/Library/CoreServices/RemoteManagement/rmdb.bundle/bin/psql -U ard -c
"\\d systeminformation" ard
Output:
 Table "public.systeminformation"
 Column | Type | Modifiers
--------------+--------------------------+-----------
 computerid | character(17) | not null
 objectname | character varying(128) | not null
 propertyname | character varying(128) | not null
 itemseq | integer |
 value | character varying(512) | Appendix D PostgreSQL Schema Sample 181
 lastupdated | timestamp with time zone |
Sample list of property names
Command:
/System/Library/CoreServices/RemoteManagement/rmdb.bundle/bin/psql -U ard -c
"select * from propertynamemap" ard
Output:
objectname | propertyname | propertymapid
-----------------------+------------------------------+---------------
 Mac_SystemInfoElement | WirelessCardIsActive | 0
 Mac_SystemInfoElement | WirelessCardFirmwareVersion | 1
 Mac_SystemInfoElement | WirelessCardHardwareAddress | 2
 Mac_SystemInfoElement | WirelessCardLocale | 3
 Mac_SystemInfoElement | WirelessCardType | 4
 Mac_SystemInfoElement | WirelessCardInstalled | 5
 Mac_SystemInfoElement | WirelessChannelNumber | 6
 Mac_SystemInfoElement | WirelessNetworkAvailable | 7
 Mac_SystemInfoElement | WirelessIsComputerToComputer | 8
......
Sample list of table from one computer
Command:
/System/Library/CoreServices/RemoteManagement/rmdb.bundle/bin/psql -U ard -c
"select * from systeminformation" ard
Output:
 computerid | objectname | propertyname | itemseq |
value | lastupdated
-------------------+----------------------+-----------------+---------+-----
----------------+------------------------
 00:03:93:af:15:cc | Mac_HardDriveElement | CreationDate | 0 |
2005-02-25T03:30:07Z| 2005-02-26 22:21:38-08
 00:03:93:af:15:cc | Mac_HardDriveElement | FileSystemType | 0 |
18475 | 2005-02-26 22:21:38-08
 00:03:93:af:15:cc | Mac_HardDriveElement | FreeSpace | 0 |
4101610 | 2005-02-26 22:21:38-08
 00:03:93:af:15:cc | Mac_HardDriveElement | GroupName | 0 |
admin | 2005-02-26 22:21:38-08Index
182
Index
A
aborting a task 98
access
changing privileges 69
group-based 62
via local account 61
Access Privileges 59
adding Dock items 131
administrator announce 92
Apple keyboard keys 79
Apple Remote Desktop menu icon 94, 95
application use report 115
asset tracking
application use 115
FireWire devices 121
hardware 119
management 118
memory 123
PCI cards 123
software 118
software changes 118
USB devices 121
B
basic file copy 108
best practices
networking 71
reporting 113–114
security 73
C
chat 92
cleaning up hard disks 128
client data upload policy 152
clipboard sharing 82
computer audio volume 130
computer list
making a new 54
removing 54
smart 54
computer lists 49
description of 53
computer sharing names 129
Control/Observe preferences 36
controlling a client 78
control window 32
buttons 79–82
Copy and Open 108
copying items
data encryption 107
overview 106
UNIX permissions 107
copying to relative locations 107
Copy Items options 107
CPU serial number, accessing 120
Create Custom Installer 43, 44
curtain mode 81, 140
customizing reports 35
D
Dashboard observe 91
deleting files 128
demonstration mode 93
designated data collector 112
directory services 62
drag and drop
copies 109
installation 104
E
enabling SSH on clients 133
encryption
one-time use 76
scheme description 75
setting defaults 75
Ethernet address tracking 122
F
file mirroring 110
file system maintenance 131
finding free disk space 120
firewall settings 49
full screen display 81Index 183
G
General preferences 36
group-based authorization 65
guest access 65
H
hard disk maintenance 131
hardware asset management 119
Help Desk Mode. See sharing control
human interface
customizing 36
icons 29
tips and shortcuts 37
I
installation, Remote Desktop 40
Install Packages options 107
K
keyboard shortcut exceptions 78
kickstart tool 147, 151
L
launching remote applications 136
limiting access privileges 66
limiting features to administrators 66
logging in remote users 140
logging out users 141
M
main window 29
Managed Client settings 46
mcx_setting attribute 62, 64
metadata search 116
mirroring a folder 110
moving computer lists 56–57
multi-observe 85, 91
window 33
muting a computer 130
N
NetBoot 128
networking best practices 71
networking with AirPort 72
Network Install 128
network interface audit 122
network performance tuning 73
networksetup tool 147
Network Time Protocol (NTP) server 129
notification script 97
O
observation settings 87, 88
Observe Widget 91
observe window 32, 33
offline installation 103
Open Directory 62
P
package installation 101, 105
preferences 36
preference standardization 133
printer setup 133
Property List Editor tool 62
putting wired clients to sleep 137
Q
quitting applications 137
R
reclaiming hard disk space 127
Remote 42
removing client software 47, 48
removing files 127
removing Remote Desktop 46
renaming
copied items 108
multiple computers 129
repairing UNIX permissions 131
replacing copied items 108
report
access privileges 69
Application Usage 115
File Search 117
Software Difference 118
Software Version 118
System Overview 119
User History 114
report data sources 111
reporting best practices 113–114
reporting policy template 153
report window 34
restarting client computers 141
reusing tasks 99, 100
S
saving reporting policy preferences 153
saving reports 125
saving settings 99
saving tasks 99, 100
scan
file import 52
IP range 50, 52
LAN 50
scanner display 49
scanners 49
screen pushing 93
screen sharing console 94
Scripting Remote Desktop
AppleScript 156–159184 Index
Automator 159
Secure Screen Blanking. See curtain mode.
security
best practices 73
preferences 36
sending scripts via UNIX command 145–147
serial number 40
setting boot disk 128
setting encryption defaults 75
setting Energy Saver preferences 132
setting up a Task Server 154
setting wake-on-LAN 132
sharing control 80
Sharing Preference 59
sharing screens 93
software installation 101
software version report 105
Spotlight search 116
SSH access description 68
start VNC server 68
system requirements 39
systemsetup tool 132, 133, 147, 149
T
task history 96
task progress 96, 98
task results 99
task schedules 155
Task Server
data collection 112
Install Package 103
preferences 36
setup 154
task status 98
task templates
saving 100
UNIX commands 143
templates
UNIX commands 143
temporary access 65
testing network performance 124–125
text announce 92
text chat 92
third-party installers 104
Tiger-only features
Spotlight search 116
tips
using report windows 126
using the observe window 90
tracking. See asset tracking.
trashing files 127, 128
U
uninstalling client software 47, 48
uninstalling Remote Desktop 46
unique computer names 129
UNIX command templates 143
updating software 118
upgrading
client software 42
Remote Desktop 41
user history report 114
user interface. See human interface.
user login report 114
user mode 66
user requests, viewing 93
using a time server 129
V
VNC 67
connecting to server 82
Control-Alt-Delete 83
custom display designation 84
Mac OS X Client as VNC server 85
non–Mac OS X basic set-up 83
port customization 84
W
wakeonlan packet 138
waking wired clients 138
window, shortcuts 37
Workgroup Manager 46, 131
X
XML 64

Finger Tips
Quick Start Guide
Welcome to iPhone.
This Quick Start guide tells you how to set up
your iPhone and use its key features. To start,
turn on your iPhone by pressing and holding
the On/Off button for a few seconds. Then
follow the onscreen instructions to set up
your iPhone.
Button basics.
To turn off or restart iPhone, press and hold
the On/Off button for a few seconds, then drag
the slider to confirm. To turn off the screen but
still receive calls, press On/Off once. Press the
Home button at any time to return to the Home
screen. To quickly switch between recently used
apps, double-click the Home button and tap
an app icon.
Voice Control.
Use Voice Control to make a hands-free call or
play music. To activate Voice Control, hold down
the Home button or the center button on the
iPhone headset until the Voice Control screen
appears. After the tone, speak a command
such as “call Elliot” or “dial 555-1212.” You can
also ask iPhone to play a specific album, artist,
or playlist or to “play more songs like this.”
You can even ask iPhone “what’s playing?”
or say “play songs by the Rolling Stones,”
for example.
Notifications.
When you receive a notification, it appears
briefly at the top of the screen without
interrupting what you’re doing. Ignore it or
tap it to respond right away. To see a summary
of your recent notifications, swipe down from
the top of any screen. You can access a new
notification from the Lock screen by sliding
its icon to the right.
Messages.
Tap the Messages icon to send an iMessage
to other iPhone, iPad, and iPod touch users
running iOS 5, or to send an SMS or MMS
to other mobile phone users. Type a name
or phone number in the To field or select
someone from your contacts. Type your
message, then tap Send. To send photos
or video, tap the Camera button.
Make a call.
Tap a phone number in Contacts, Favorites,
an email, a text message, or almost anywhere
in iPhone to make a call. Or open the Phone
app and tap the Keypad button to dial
manually. To silence an incoming call, press
the On/Off button once. To send a call directly
to voicemail, press On/Off twice. To answer
a call while using the iPhone headset, press
the center button once. Press it again to end
your call.
Search.
To search your iPhone or the web, go to the
main Home screen and press the Home button
or swipe the screen from left to right. Type
in what you’d like to find—a name, app, song,
artist, movie, or any keyword. iPhone offers
suggestions as you type to make searching
even faster. To search within an app like Mail,
Contacts, or Messages, tap the status bar.
Intelligent keyboard.
iPhone automatically corrects and suggests
words as you type. So if you tap a wrong letter,
just keep typing. To accept the suggested word,
tap the space bar. Or tap the “x” to ignore the
suggestion. The keyboard automatically inserts
apostrophes in contractions. If you tap the space
bar twice, it adds a period. You can double-tap
a word to look it up in the dictionary.
Cut, copy, and paste.
Tap the text you want to edit, or touch and
hold to bring up the magnifying glass, then
slide your finger to move the insertion point.
You can select a word by double-tapping it,
and select more or less text by dragging the
grab points. Then tap to cut, copy, or paste.
To copy text from web pages, email, or text
messages, touch and hold to select the text,
then tap Copy.
On/Off
Sleep/Wake
Ring/Silent
Volume
Up/Down
HomeNot all features are available in all areas.
TM and © 2011 Apple Inc. Designed by Apple in California.
Printed in China. 034-6177-A
Learn more.
Learn more about iPhone features
at www.apple.com/iphone.
For the iPhone User Guide and important
information, visit support.apple.com/manuals/
iphone. To view the guide on iPhone,
download it from the iBookstore or use
the Safari bookmark.
Get support.
Contact your wireless service provider for
support on network services, voicemail,
and billing. Visit www.apple.com/support/
iphone for support on iPhone and iTunes.
Photos.
Tap the Photos icon on the Home screen to
see your pictures. Flick right or left to move
between images. Double-tap or pinch to zoom.
Tap once to bring up the onscreen controls.
You can edit or enhance a photo, share it,
print it, and more. If you have Photo Stream
enabled in iCloud, new pictures you take are
automatically pushed to all your other devices.
Cars 2 will be available on iTunes beginning November 1, 2011. Cars 2 © Disney/Pixar.
*Requires second-generation Apple TV.
Video and song controls.
While playing music or watching a movie,
tap anywhere on the screen to bring up the
controls. Tap again to hide them. To stream
your music or video to an Apple TV, tap the
AirPlay button.* From the Lock screen, you
can double-click the Home button to quickly
access your audio controls.
See the web up close.
In Safari, double-tap any element on a web
page—picture or text—to zoom in. Doubletap again to zoom back out. Rotate iPhone
to see the web in widescreen. Tap the Reader
button at the top of the screen to view an
article without clutter. Tap the Multi-page
button to flick between multiple web pages
or open a new one.
Google, the Google logo, and Google Maps are trademarks of Google Inc.
© 2011. All rights reserved.
Find location. Search surroundings.
To see where you are on a map, tap the
Location button. A blue dot appears at your
current position. To see which way you’re
facing, tap the Location button again to turn
on compass view. Find places around you
by typing words like “Starbucks” or “pizza”
in the search field. Double-tap to zoom in.
Tap once with two fingers to zoom out. You
can also get directions or tap the Page Curl
button for additional map views.
App Store.
Tap the App Store icon to browse hundreds
of thousands of apps in categories like games,
business, travel, social networking, and more.
Browse by Featured, Categories, or Top 25 or
search by name. To purchase and download
an app directly to your iPhone, tap Buy Now.
Many apps are free.
iTunes Store.
You can access the iTunes Store by tapping
the iTunes icon. Search the store for music,
movies, TV shows, music videos, and more.
Browse, purchase, and download from the
store directly to your iPhone. Tap any item
to hear or see a preview.
Create folders. Organize apps.
Touch and hold any app icon until it starts
to jiggle. Then drag one app onto another
to create a folder. Folders are automatically
named by category, or you can rename
them. You can customize your Home screen
by dragging apps and folders to different
positions and screens. When you’re done,
press the Home button.
Get directions.
In Maps, tap Directions, then enter start and
end points. You can use your current location,
type in an address, or select an address from
your contacts or bookmarked locations. Tap
Route to display driving directions. Tap the Walk
button for walking directions or the Bus button
to view transit routes and times. iPhone can
track and show your progress along whichever
route you take.
iCloud.
iCloud stores your music, photos, apps,
calendars, documents, and more. It’s seamlessly
integrated into your apps and wirelessly pushes
your content to all your devices. Tap the Settings
icon and choose iCloud to turn on Photo Stream
and other iCloud features. You can also download
music and apps you’ve previously purchased
from the iTunes Store and the App Store.

This guide contains all the information you
need to get from setup to your sofa.
Welcome. You’re watching Apple TV.Contents 3
Contents
Chapter 1: Connect.
7	 What’s in the Box
8	 Apple TV at a Glance
10	 What You Need
11	 Setting Up Apple TV
Chapter 2: Configure.
16	 Network Configuration
17	 Connecting to iTunes
Chapter 3: Watch.
20	 Using Your Apple Remote
21	 Basic Remote Functions
21	 Pairing Apple TV with a Remote
22	 Unpairing Apple TV from a Remote
23	 Changing the Remote Battery
24	 Renting Movies and Purchasing TV Shows4 Contents
Chapter 4: Problem? No Problem.
26	 Troubleshooting
31	 Status Light
32	 Service and Support
32	 Serial Number
33	 Care and Cleaningwww.apple.com/support/appletv
Connect.
16 Chapter 1 Connect. Chapter 1 Connect.
With Apple TV, you can rent high-definition movies, purchase TV shows, watch
streaming content from Netflix, and enjoy podcasts, YouTube and Vimeo videos, and
Internet radio. And, you can stream your personal iTunes content wirelessly from
a Mac or PC, and view photos from your computer or Flickr on your widescreen
HDTV, from the comfort of your couch. And with AirPlay, you can wirelessly
stream videos, music, and photos from your iPhone, iPad, and iPod touch to
Apple TV.
Note:  Content availability varies by region.
For information about See
What you need to get started “What You Need” on page 10
Setting up Apple TV “Setting Up Apple TV” on page 11
Setting up your network connection “Network Configuration” on page 16
Using the Apple Remote “Using Your Apple Remote” on page 20
Troubleshooting Apple TV “Troubleshooting” on page 26
Apple TV safety and warranty The Apple TV Important Product
Information GuideChapter 1 Connect. Chapter 1 Connect. 7
What’s in the Box
AC power cord Apple Remote
Note:  Your power cord may look different from the one pictured here.8 Chapter 1 Connect. Chapter 1 Connect.
Apple TV at a Glance
IR receiver Status light
£ HDMI port d Micro USB port Optical digital audio port
Power port G Ethernet portChapter 1 Connect. Chapter 1 Connect. 9
IR receiver
Use with the included Apple Remote to control Apple TV.
Status light
The status light flashes slowly when Apple TV starts up.When Apple TV is on,
the status light glows. See “Status Light” on page 31.
d Micro USB port
For service and diagnostics.
≤ Power port
Connect the included AC power cord to the power port on Apple TV.
G Ethernet port
If your network is Ethernet-based, connect an Ethernet cable.
£ HDMI port
Connect Apple TV to the HDMI port of a high-definition TV using an HDMI cable.
Optical digital audio port
Connect Apple TV to a home theater receiver that has an optical digital audio port,
using an optical digital audio (also called S/PDIF or TOSLINK) cable.
Z Built-in 802.11n Wi-Fi technology
Connect Apple TV to your wireless network.10 Chapter 1 Connect. Chapter 1 Connect.
What You Need
To start using Apple TV, you need the following:
High-Definition TV
A high-definition TV capable of displaying 720p video
Cables
Â An HDMI cable to connect Apple TV to your TV
Â An optical digital audio cable (if you plan to use one)
Network
Â An 802.11b, g, or n Wi-Fi wireless network (wireless video streaming requires
802.11g or 802.11n), or 10/100Base-T Ethernet network
Â A broadband Internet connection (DSL, cable, or LAN)
Â Your wireless network name and password (if you use one)
Software and Accounts
To play content from a Mac or PC on Apple TV, you need the following:
Â An Apple ID to rent movies or purchase TV shows from the iTunes store,
and to use Home Sharing to stream content from a Mac or PC
Â iTunes 10.2 or later
Â A Netflix account to stream contentChapter 1 Connect. Chapter 1 Connect. 11
Setting Up Apple TV
Apple TV connects to your TV through an HDMI port that delivers both audio
and video. Before you set up Apple TV, look at the ports on the back of your TV
to make sure you have the right cables.
You can connect Apple TV to a high-definition TV or home theater receiver that
has an HDMI port, using an HDMI cable for both video and audio.
You can also use an optical digital audio cable to connect Apple TV to a receiver
for audio.
Important:  Before you connect Apple TV to a power outlet, carefully read
these installation instructions and the safety information in the included
Important Product Information Guide.12 Chapter 1 Connect. Chapter 1 Connect.
Step 1: Connecting the cables
1 Connect one end of an HDMI cable to the back of your TV.
2 Connect the other end of the cable to the HDMI port on the back of Apple TV.
3 If you’re using an optical digital audio cable for audio, connect one end of the
cable to the audio input port on your receiver or TV, and the other end to the
optical digital audio port on the back of Apple TV.
Apple TV
Television
HDMI port HDMI port
HDMI cable
Note:  The built-in 802.11 Wi-Fi technology connects Apple TV to your wireless
network. If your network is Ethernet-based, connect Apple TV to your network
using an Ethernet cable.Chapter 1 Connect. Chapter 1 Connect. 13
Step 2: Connect the power cord
Connect one end of the power cord to the power port on the back of Apple TV
and the other end to a power outlet.
Power port
Important:  Don’t place anything on top of Apple TV. Objects placed on top
may interfere with the wireless signal. Don’t place Apple TV on other electronic
equipment in a media cabinet.
Step 3: Turn on your TV and select the input
The first time you use Apple TV, it helps you choose a language, select a network,
and configure Apple TV to work with your network (if necessary). See Chapter 2,
“Configure.” on page 15.
If you see just a black screen the first time you use Apple TV, make sure the input
setting you’ve selected on your TV matches the input you connected the cables
to on your TV or home theater receiver. See Chapter 4,“Problem? No Problem.” on
page 25, and refer to the documentation that came with your TV for information
about its inputs.www.apple.com/support/appletv
Configure.
216 Chapter 2 Configure. Chapter 2 Configure.
Apple TV helps you select and configure your wireless network connection, and,
if you want to watch or listen to the contents of your iTunes library, connect to
iTunes on your computer.
Network Configuration
Have your network name and password (if you use one) and your Apple Remote
handy when you configure Apple TV. Make sure there are no obstructions
between the remote and Apple TV. For information about using your remote,
see Chapter 3,“Watch.” on page 19.
If you:
Â Use a wired Ethernet network to connect, Apple TV automatically detects
your network.
Â Use a wireless network to connect, Apple TV helps you select and configure your
network connection.
Connecting to Your Wireless Network
Apple TV helps you connect to your wireless network. If you use a name and
password to access your network, have them ready.
Use the Apple Remote to:
1 Select your network from the list, or enter your network name if the network
is hidden.
2 Enter your network password (if you use one).Chapter 2 Configure. Chapter 2 Configure. 17
If you don’t connect using DHCP, you may need to enter your IP address, subnet
mask, router address, and DNS address.
To complete the network connection, follow the onscreen instructions.
Connecting to iTunes
To access the content in your iTunes library on Apple TV, you need iTunes 10.2 or
later installed on your computer. For a complete list of system requirements, see
“Software and Accounts” on page 10.
Updating Your iTunes Software
You can update to the latest version of iTunes.
Â On a Mac, use Software Update to update to the latest version of iTunes. To use
Software Update, choose Apple () > Software Update.
Â On a Windows-based computer, go to iTunes Help to update to the latest version
of iTunes. Open iTunes, and then choose Help > Check for Updates.
Setting Up Home Sharing
After you set up your network connection, you need to set up iTunes and
Apple TV to share the contents of your iTunes library. Use Home Sharing in
iTunes and on Apple TV to share the iTunes library of any computer on your local
network that has Home Sharing set up.18 Chapter 2 Configure.
To set up Home Sharing in iTunes:
1 Open iTunes on your computer.
2 Choose Advanced > Turn On Home Sharing.
3 Type your Apple ID and password, and then click Create Home Share.
4 Repeat steps 1 through 3 on each computer you want to use for Home Sharing.
For more information about iTunes, open iTunes and choose Help > iTunes Help.
To set up Home Sharing on Apple TV:
1 On Apple TV, choose Settings > Computers.
2 Choose Turn On Home Sharing, and then enter the same Apple ID and password
you entered on your computer.www.apple.com/support/appletv
Watch.
320 Chapter 3 Watch. Chapter 3 Watch.
Read on to learn about pairing and using your Apple Remote with Apple TV.
Using Your Apple Remote
Use the Apple Remote to control Apple TV settings and navigate your content.
Make sure there are no obstructions between the remote and Apple TV.
MENU
Up
Down
Menu Play/Pause
Left Right
SelectChapter 3 Watch. Chapter 3 Watch. 21
Basic Remote Functions
Your Apple Remote has the basic functions described below.
To Do this
Move through the menu options Press Up, Down, Left, or Right
Select an option from a menu Press Select
Return to a previous menu Press Menu
Return to the main menu Hold down Menu
Reset Apple TV Hold down Menu and Down until the Apple TV
status light blinks rapidly
Pair Apple TV and a remote Hold down Menu and Right for 6 seconds
Up and Down on the Apple Remote don’t control the volume on your TV or
home theater receiver. Use the remote that came with your TV or receiver to
change the volume.
Pairing Apple TV with a Remote
The Apple Remote works with the built-in IR receiver on Apple TV. You can
set Apple TV to work only with the included remote by pairing Apple TV and
the remote.22 Chapter 3 Watch. Chapter 3 Watch.
To pair Apple TV with the included remote:
1 Choose Settings from the Apple TV main menu.
2 Choose General > Remotes > Pair Apple Remote.
You can also hold down Menu and Right for 6 seconds to pair Apple TV and the
Apple Remote.
When you successfully pair your Apple Remote, Apple TV displays a chainlink
symbol () above a picture of a remote. Apple TV now works only with the
paired remote.
Unpairing Apple TV from a Remote
If you lose the Apple Remote that you paired Apple TV with, you can use any
Apple Remote to unpair Apple TV from the lost remote by holding down Menu
and Left for 6 seconds. You can also follow these steps.
To unpair Apple TV from a paired remote:
1 Choose Settings from the Apple TV main menu.
2 Choose General > Remotes > Unpair Apple Remote.
When you successfully unpair the lost remote, Apple TV displays a broken
chainlink symbol () above a picture of a remote. You can now pair Apple TV
with a different remote.Chapter 3 Watch. Chapter 3 Watch. 23
Changing the Remote Battery
When the battery charge in your Apple Remote is low, Apple TV displays a
picture of a remote and a warning symbol (·). Replace the battery with a
CR2032 battery.
Battery
compartment
To replace the battery:
1 Use a coin to remove the battery compartment cover.
2 Remove the battery.
3 Insert a CR2032 battery with the positive side (∂) facing up.
4 Replace the battery compartment cover and use a coin to tighten it.
Important:  Dispose of the used battery according to your local environmental
laws and guidelines.24 Chapter 3 Watch.
Renting Movies and Purchasing TV Shows
You can rent standard or high-definition movies and purchase TV shows directly
on Apple TV (where available). Follow the onscreen instructions to find out when
a rented movie expires. Purchased TV shows don’t expire.
When a rented movie expires, it’s no longer available for playback. To watch it
again, you can rent it again from iTunes.
Note:  Rented movies are not available in all regions.www.apple.com/support/appletv
Problem? No Problem.
426 Chapter 4 Problem? No Problem. Chapter 4 Problem? No Problem.
Most problems with Apple TV can be solved quickly by following the advice
in this chapter. For additional tips and troubleshooting information, see the
Apple TV Support page at www.apple.com/support/appletv.
Troubleshooting
If you have a problem with Apple TV, there’s usually a quick and simple solution.
First, make sure:
Â The cables between Apple TV and your TV are pushed in all the way.
Â The power cords for Apple TV and your TV are securely connected to a working
power source.
Â Your TV is turned on and set to the correct input.
Â Apple TV is connected to your network. Go to the Settings menu on Apple TV,
select Network, and see if Apple TV has an IP address.
Â Your network and Internet connections are on and working properly.
If you still have trouble, try resetting your equipment by disconnecting Apple TV,
your TV, your wireless networking equipment or base station, and your router
from the power outlet.Wait 30 seconds, and then reconnect everything.
If the remote isn’t working
Â Point the remote directly at Apple TV.
Â If you paired Apple TV with an Apple Remote, make sure you’re using the
paired remote.Chapter 4 Problem? No Problem. Chapter 4 Problem? No Problem. 27
Â If the Apple TV status light flashes once when you press buttons on the paired
remote, the problem isn’t with the remote. See “If you can see a picture but
Apple TV isn’t responding” on page 28.
Â If you’re using an unpaired remote, the Apple TV status light flashes three times.
Â If you paired Apple TV with an Apple Remote and you can’t find the paired
remote, set Apple TV to work with any Apple Remote by holding down Menu
and Left for 6 seconds on another remote.
Â Make sure the front of Apple TV isn’t blocked.
Â If Apple TV displays a picture of a remote and a warning symbol (·), you need
to replace the battery in the remote. See “Changing the Remote Battery” on
page 23.
If Apple TV can’t access the network
Â Check the IP address Apple TV is using. If it starts with 169.x.x.x, the router or
base station may not be configured properly. Check to see if DHCP access is
available, or configure Apple TV with a manual IP address.
Â Check for any obstructions, and adjust the location of the base station or
Apple TV.
Â If security is enabled on the network, temporarily disable it on the base station
and try connecting again.
Â Apple TV cannot connect to a wireless network that contains high (extended)
ASCII or double-byte (Unicode) characters (such as Japanese, Korean, or
Chinese) in the name or password.
Â If your network has security enabled, make sure you enter the correct password.28 Chapter 4 Problem? No Problem. Chapter 4 Problem? No Problem.
If your TV screen appears fuzzy or black
Â Make sure you’re using the correct HDMI cable and that it’s connected firmly
to Apple TV and to your TV.
Â Make sure the input setting on your TV matches the input port the HDMI
cable is connected to. For information, see the documentation that came
with your TV.
Â Make sure your HDTV supports 720p video.
If you can see a picture but Apple TV isn’t responding
Â Hold down Menu on the Apple Remote to return to the Apple TV main menu.
Â Make sure your TV is turned on and functioning properly. For information, see
the documentation that came with your TV.
Â If you paired an Apple Remote with Apple TV, make sure you’re using the paired
remote. See “Pairing Apple TV with a Remote” on page 21.
Â Reset Apple TV by doing one of the following:
Â Hold down both Menu and Down on the Apple Remote until the Apple TV
status light blinks rapidly.
Â Disconnect Apple TV from the power outlet, wait about five seconds,
and then reconnect it.
Â Choose General > Reset Settings from the main menu on Apple TV.Chapter 4 Problem? No Problem. Chapter 4 Problem? No Problem. 29
If Apple TV doesn’t respond, try restoring it
Â On Apple TV, choose Settings > General > Reset, and then select Restore.
Restoring Apple TV can take some time, so be patient.
Â If your network doesn’t use DHCP, choose Configure TCP/IP and enter the
TCP/IP configuration.
Â If Apple TV still doesn’t respond:
Â Disconnect the power and HDMI cables from Apple TV.
Â Connect one end of a micro USB cable (sold separately) to the back of
Apple TV, and the other end to your computer.
Â Open iTunes on your computer, select Apple TV in the Source list, and then
click Restore.
If you can’t hear sound
Â If Apple TV is connected to a home theater receiver, make sure the receiver is
turned on.
Â Make sure the input setting you selected on your TV or receiver matches the
input you have your audio cable connected to. For more information, see the
documentation that came with your receiver.
Â Make sure the volume on your TV or receiver is turned up and isn’t muted.
Â Make sure you’re using the correct audio cable and that it’s connected firmly to
Apple TV and to your TV or receiver.
Â If you’re using the HDMI port for audio, make sure your TV supports audio
through its HDMI port. The HDMI ports on some older TVs support only video.30 Chapter 4 Problem? No Problem. Chapter 4 Problem? No Problem.
If Apple TV isn’t playing your photo albums or slideshows
Â Make sure you have photos in your photo library or in a folder on your
computer.
Â Make sure Apple TV and the computer you’re using are set up for Home
Sharing. See “Setting Up Home Sharing” on page 17.
Â Make sure the photos you want to share are selected. In iTunes, choose
Advanced >“Choose Photos to Share,” and then select the photos you want
to share.
Â Make sure Apple TV and your computer are on the same local network.
Â Make sure Apple TV and your computer are using the same Home Sharing
account.
If noise is coming from your TV speakers:
Â If your TV or speakers support Dolby Digital audio, make sure the Dolby Digital
Out setting is correct for your TV or speakers. On Apple TV, choose Settings >
Audio & Video > Dolby Digital Out, and select On or Off.
If you don’t see your iTunes library under Computers on Apple TV:
Â Make sure Apple TV and your computer are on the same local network.
Â Make sure Apple TV and iTunes are using the same account name and
password.Chapter 4 Problem? No Problem. Chapter 4 Problem? No Problem. 31
Status Light
The status light on the front of Apple TV indicates what’s happening.
If Apple TV is The status light
On Glows
Off or in standby Is off
Starting up Flashes slowly
Accepting a command from the remote Flashes once
Rejecting a command from the remote
(you paired a remote with Apple TV, but
you’re using a remote that’s not paired)
Flashes three times
Having problems Flashes quickly32 Chapter 4 Problem? No Problem. Chapter 4 Problem? No Problem.
Service and Support
More information about using Apple TV is available in iTunes onscreen help and
on the web. The following table describes where to get software and service
information.
To learn about Do this
Service and support, discussions, tutorials,
and Apple software downloads
Go to:		www.apple.com/support/appletv
Using iTunes Open iTunes and choose Help > iTunes Help.
For an onscreen iTunes tutorial (available in
some areas only), go to:		
www.apple.com/support/itunes
Using iPhoto (in Mac OS X) Open iPhoto and choose iPhoto > iPhoto Help
Safety and regulatory compliance
information
See the Important Product Information Guide
that comes with Apple TV.
Serial Number
The serial number is printed on the bottom of Apple TV. You can also find the
serial number in the Apple TV Settings menu. On Apple TV, choose Settings >
General > About.Chapter 4 Problem? No Problem. Chapter 4 Problem? No Problem. 33
Care and Cleaning
NOTICE:  Failure to follow these care and cleaning instructions could result in
damage to Apple TV or other property.
Using Connectors and Ports
Never force a connector into a port. Check for obstructions on the port. If the
connector and port don’t join with reasonable ease, they probably don’t match.
Make sure that the connector matches the port and that you have positioned
the connector correctly in relation to the port.
Keeping Apple TV Within Acceptable Temperatures
Operate Apple TV in a place where the temperature is always between 0º and
40º C (32º to 104º F).
Keeping the Outside of Apple TV Clean
To clean Apple TV, unplug the power cord and all cables. Then use a soft,
lint-free cloth. Avoid getting moisture in openings. Don’t use window cleaners,
household cleaners, aerosol sprays, solvents, alcohol, ammonia, or abrasives to
clean Apple TV.
Disposing of Apple TV Properly
For information about the proper disposal of Apple TV, and for other important
regulatory compliance information, see the Important Product Information Guide.K Apple Inc.
© 2011 Apple Inc. All rights reserved.
Under the copyright laws, this manual may not
be copied, in whole or in part, without the written
consent of Apple.
Every effort has been made to ensure that the
information in this manual is accurate. Apple is
not responsible for printing or clerical errors.
Apple
1 Infinite Loop
Cupertino, CA 95014
408-996-1010
www.apple.com
The Apple logo is a trademark of Apple Inc.,
registered in the U.S. and other countries. Use of
the “keyboard”Apple logo (Option-Shift-K) for
commercial purposes without the prior written
consent of Apple may constitute trademark
infringement and unfair competition in violation
of federal and state laws.
Apple, the Apple logo, AirPlay, Apple TV, iPad,
iPhone, iPhoto, iPod touch, iTunes, Mac, and
Mac OS are trademarks of Apple Inc., registered
in the U.S. and other countries.
Apple Store and iTunes Store are service marks
of Apple Inc., registered in the U.S. and other
countries.
Manufactured under license from Dolby
Laboratories.“Dolby,”“Pro Logic,” and the
double-D symbol are trademarks of Dolby
Laboratories. Confidential Unpublished Works,
© 1992-1997 Dolby Laboratories, Inc. All
rights reserved.
Other company and product names mentioned
herein may be trademarks of their respective
companies. Mention of third-party products is
for informational purposes only and constitutes
neither an endorsement nor a recommendation.
Apple assumes no responsibility with regard to
the performance or use of these products.

USB Device Interface
GuideContents
Introduction to USB Device Interface Guide 4
Organization of This Document 4
See Also 4
USB Device Overview 6
USB Device Types and Bus Speeds 6
USB Device Architecture and Terminology 7
USB Device Component Descriptors 8
USB Composite Class Devices 8
USB Transfer Types 8
Stalls and Halts 9
Data Synchronization in Non-Isochronous Transfers 10
USB 2.0 and Isochronous Transfers 10
USB Devices on OS X 11
Finding USB Devices and Interfaces 12
USB Family Error Codes 14
Determining Which Interface Version to Use 14
Tasks and Caveats 15
Handling Stalls, Halts, and Data Toggle Resynchronization 15
Using the Low Latency Isochronous Functions 15
Errors Reported by the EHCI Hub 17
Changes in Isochronous Functions to Support USB 2.0 17
USB Device Access in an Intel-Based Macintosh 18
Working With USB Device Interfaces 20
Using USB Device Interfaces 20
Accessing a USB Device 22
Definitions and Global Variables 22
The main Function 23
Working With the Raw Device 27
Working With the Bulk Test Device 34
Working With Interfaces 36
Document Revision History 46
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
2Tables and Listings
USB Device Overview 6
Table 1-1 Examples of USB devices 6
Table 1-2 Keys for finding a USB device 12
Table 1-3 Keys for finding a USB interface 13
Working With USB Device Interfaces 20
Listing 2-1 Definitions and global variables 22
Listing 2-2 The main function 24
Listing 2-3 Accessing and programming the raw device 27
Listing 2-4 Releasing the raw device objects 30
Listing 2-5 Configuring a USB device 30
Listing 2-6 Two functions to download firmware to the raw device 32
Listing 2-7 Accessing the bulk test device 34
Listing 2-8 Finding interfaces on the bulk test device 36
Listing 2-9 Two asynchronous I/O completion functions 43
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
3Note: This document was previously titled Working With USB Device Interfaces.
The I/O Kit provides a device interface mechanism that allows applications to communicate with and control
hardware from outside the kernel. This document focuses on how to use that mechanism to create an application
that detects the attachment of a USB device, communicates with it, and detects its detachment.
This document does not describe how to develop an in-kernel driver for a USB modem or networking device.
If you need to do this, refer to the documentation and sample code listed in “See Also” (page 4).
Important: If your application is sandboxed, it must request the com.apple.security.device.usb
entitlement in order to access USB devices.
Organization of This Document
This document contains the following chapters:
●
“USB Device Overview” (page 6) provides an overview of USB device architecture and terminology and
describes how USB devices are represented in OS X.
●
“Working With USB Device Interfaces” (page 20) describes how to use the device interface mechanism to
create a command-line tool that accesses a USB device.
●
“Document Revision History” (page 46) lists the revisions of this document.
See Also
The ADC Reference Library contains several documents on device driver development for OS X and numerous
sample drivers and applications.
● Accessing Hardware From Applications describes various ways to access devices from outside the kernel,
including the device interface mechanism provided by the I/O Kit. For an overview of the I/O Kit terms
and concepts used in this document, read the chapter Device Access and the I/O Kit.
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
4
Introduction to USB Device Interface Guide●
I/O Kit Framework Reference contains API reference for I/O Kit methods and functions and for specific
device families.
● Sample Code > Hardware & Drivers > USB includes both application-level and in-kernel code samples. Of
particular relevance to this document is the application-level sample USBPrivateDataSample .
● OS X Man Pages provides access to existing reference documentation for BSD and POSIX functions and
tools in a convenient HTML format.
● The usb mailing list provides a forum for discussing technical issues relating to USB devices in OS X.
If you need to develop an in-kernel driver for a USB modem or networking device, refer to the following:
●
I/O Kit Fundamentals describesthe architecture ofthe I/OKit,the object-oriented framework for developing
OS X device drivers.
● ADC members can view the AppleUSBCDCDriver project in the source code for OS X v10.3.7 and later,
available at Darwin Releases. To find the source code, select a version of OS X equal to or greater than
v10.3.7 and click Source (choose the source for the PPC version, if there's a choice). This displays a new
page, which lists the open source projects available for the version of OS X you've chosen. Scroll down to
AppleUSBCDCDriver and click it to view the source. Be prepared to supply your ADC member name and
password.
● Additional code samples that demonstrate specific in-kernel driver programming techniques are included
as part of the OS X Developer Toolsinstallation package in /Developer/Examples/Kernel/IOKit/usb.
If you're ready to create a universal binary version of your USB device-access application to run in an Intel-based
Macintosh,seeUniversalBinaryProgrammingGuidelines.TheUniversalBinaryProgrammingGuidelines describes
the differences between the Intel and PowerPC architectures and provides tips for developing a universal
binary.
If you are working with a device that complies with the USB mass storage specification but declares its device
class to be vendor specific, see Mass Storage Device Driver Programming Guide for information on how to
ensure the correct built-in driver loads for the device.
Apple provides additional USB information (including the OS X USB Debug Kits) at http://developer.apple.com/hardwaredrivers/usb/index.html.
A detailed description of the USB device specification is beyond the scope of this document—for more
information, see Universal Serial Bus Specification Revision 2.0 available at http://www.usb.org.
Introduction to USB Device Interface Guide
See Also
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
5This chapter provides a summary of USB device architecture and describes how USB devices are represented
in OS X. It also presents a few specific guidelines for working with USB devices in an application.For details on
the USB specification, see http://www.usb.org.
USB Device Types and Bus Speeds
The USB specification supports a wide selection of devices that range from lower-speed devices such as
keyboards, mice, and joysticks to higher-speed devices such as scanners and digital cameras. The specification
lists a number of device classes that each define a set of expected device behaviors. Table 1-1 (page 6) lists
some examples of USB devices, categorized by class.
Table 1-1 Examples of USB devices
USB device class USB devices in class
Audio class Speakers, microphones
Chip Card Interface Device Class Smart cards, chip cards
Communication class Speakerphone, modem
A device in which all class-specific information is embedded in its
interfaces
Composite class
HID class Keyboards, mice, joysticks, drawing tablets
Hub class Hubs provide additional attachment points for USB devices
Hard drives, flash memory readers, CD Read/Write drives, digital
cameras, and high-end media players
Mass storage class
Printing class Printers
A device that doesn’t fit into any other predefined class or one that
doesn’t use the standard protocols for an existing class
Vendor specific
Digital camcorders, webcams, digital still cameras that support
video streaming
Video class
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
6
USB Device OverviewVersion 1.1 of the USB specification supports two bus speeds:
● Low speed (1.5 Mbps)
● Full speed (12 Mbps)
Version 2.0 of the specification adds another bus speed to this list:
● High speed (480 Mbps)
The USB 2.0 specification is fully compatible with low-speed and full-speed USB devices and even supports
the use of cables and connectors made to meet earlier versions of the specification. Apple provides USB 2.0
ports on all new Macintosh computers and fully supports the new specification with Enhanced Host Controller
Interface (EHCI) controllers and built-in, low-level USB drivers.
For the most part, you do not have to change existing applications to support the faster data rate because the
speed increase and other enhancements are implemented at such a low level. The exceptions to this are some
differences in isochronous transfers. For information on how the USB 2.0 specification affects isochronous
transfers, see “USB 2.0 and Isochronous Transfers” (page 10).
USB Device Architecture and Terminology
The architecture of a generic USB device is multi-layered. A device consists of one or more configurations, each
of which describes a possible setting the device can be programmed into. Such settings can include the power
characteristics of the configuration (for example, the maximum power consumed by the configuration and
whether it is self-powered or not) and whether the configuration supports remote wake-up.
Each configuration contains one or more interfacesthat are accessible after the configuration isset. An interface
provides the definitions of the functions available within the device and may even contain alternate settings
within a single interface. For example, an interface for an audio device may have different settings you can
select for different bandwidths.
Each interface contains zero or more endpoints. An endpoint is a uniquely identifiable portion of a USB device
that is the source or sink of information in a communication flow between the host and the device. Each
endpoint has characteristics that describe the communication it supports, such as transfer type (control,
isochronous, interrupt, or bulk, described in “USB Transfer Types” (page 8)), maximum packet size, and transfer
direction (input or output).
Communication with a USB device is accomplished through a pipe, a logical association between an endpoint
and software running on the host. Endpoint and pipe are often used synonymously although an endpoint is
a component of a USB device and a pipe is a logical abstraction of the communications link between endpoint
and host.
USB Device Overview
USB Device Architecture and Terminology
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
7USB Device Component Descriptors
Each layer of a USB device providesinformation about its attributes and resource requirementsin its descriptor,
a data structure accessible through device interface functions. By examining the descriptors at each layer, you
can determine exactly which endpoint you need to communicate successfully with a particular device.
At the top layer is the device descriptor, which has fields associated with information such as the device’s class
and subclass, vendor and product numbers, and number of configurations. Each configuration in turn has a
configuration descriptor containing fields that describe the number of interfaces it supports and the power
characteristics of the device when it is in that configuration, along with other information. Each interface
supported by a configuration has its own descriptor with fields for information such as the interface class,
subclass, and protocol, and the number of endpoints in that interface. At the bottom layer are the endpoint
descriptors that specify attributes such as transfer type and maximum packet size.
The USB specification defines a name for each descriptor field, such as the bDeviceClass field in the device
descriptor and the bNumInterfaces field in the configuration descriptor, and each field is associated with a
value. For a complete listing of all descriptor fields, see the USB specification at www.usb.org. The USB family
defines structures that represent the descriptors defined by the USB specification. For the definitions of these
structures, see USB in Kernel Framework Reference .
USB Composite Class Devices
The USB specification defines a composite class device as a device whose device-descriptor fields for device
class (bDeviceClass) and device subclass (bDeviceSubClass) both have the value 0. A composite class
device appears to the system as a USB device using a single bus address that may present multiple interfaces,
each of which represents a separate function. A good example of a composite class device is a multifunction
device, such as a device that performs printing, scanning, and faxing. In such a device, each function is
represented by a separate interface. In OS X, the I/O Kit loads the AppleUSBComposite device driver for
composite class devices that do not already have vendor-specific device drivers to drive them. The
AppleUSBComposite driver configures the device and causes drivers to be loaded for each USB interface.
Although most multifunction USB devices are composite class devices, not all composite class devices are
multifunction devices. The manufacturer of a single-function USB device is at liberty to classify the device as
a composite class device as long as the device meets the USB specifications. For more information on how OS
X represents USB devices and interfaces, see “USB Devices on OS X” (page 11).
USB Transfer Types
The USB specification defines four types of pipe transfer:
● Control—intended to support configuration, command, and status communication between the host
software and the device. Control transfers support error detection and retry.
USB Device Overview
USB Device Architecture and Terminology
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
8●
Interrupt—used to support small, limited-latency transfers to or from a device such as coordinates from
a pointing device or status changes from a modem. Interrupt transfers support error detection and retry.
●
Isochronous—used for periodic, continuous communication between the host and the device, usually
involving time-relevant information such as audio or video data streams. Isochronous transfers do not
support error detection or retry.
● Bulk—intended for non-periodic, large-packet communication with relaxed timing constraints such as
between the host software and a printer or scanner. Bulk transfers support error detection and retry.
Pipes also have a transfer direction associated with them. A control pipe can support bidirectional communication
but all other pipes are strictly uni-directional. Therefore, two-way communication requires two pipes, one for
input and one for output.
Every USB device is required to implement a default control pipe that provides access to the device’s
configuration, status, and control information. This pipe, implemented in the IOUSBDevice nub object
(described in “USB Devices on OS X” (page 11)), is used when a driver such as the AppleUSBComposite driver
configures the device or when device-specific control and status information is needed. For example, your
application would use the default control pipe if it needs to set or choose a configuration for the device. The
default control pipe is connected to the default endpoint (endpoint 0). Note that endpoint 0 does not provide
an endpoint descriptor and it is never counted in the total number of endpoints in an interface.
The interfaces associated with a configuration can contain any combination of the three remaining pipe types
(interrupt, isochronous, and bulk), implemented in the IOUSBInterface nub objects (described in “USB
Devices on OS X” (page 11)). Your application can query the interface descriptors of a device to select the pipe
most suited to its needs.
Stalls and Halts
Although a stall and a halt are different, they are closely related in their effect on data transmission. Halt is a
feature of an endpoint and it can be set by either the host or the device itself in response to an error. A stall
is a type of handshake packet an endpoint returns when it is unable to transmit or receive data or when its
halt feature is set (the host never sends a stall packet). When an endpoint sends a stall packet, the host can
halt the endpoint.
Depending on the precise circumstances and on how compliant the device is, the halt feature must be cleared
in the host, the endpoint, or both before data transmission can resume. When the halt is cleared the data
toggle bit, used to synchronize data transmission, is also reset (see “Data Synchronization in Non-Isochronous
Transfers” (page 10) for more information about the data toggle). For information on how to handle these
conditions in your application, see “Handling Stalls, Halts, and Data Toggle Resynchronization” (page 15).
USB Device Overview
USB Device Architecture and Terminology
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
9Data Synchronization in Non-Isochronous Transfers
The USB specification defines a simple protocol to provide data synchronization across multiple packets for
non-isochronoustransfers(recall that isochronoustransfers do notsupport error recovery or retry). The protocol
is implemented by means of a data toggle bit in both the host and the endpoint which is synchronized at the
start of a transaction (or when a reset occurs). The precise synchronization mechanism varies with the type of
transfer; see the USB specification for details.
Both the host and the endpoint begin a transaction with their data toggle bitsset to zero. In general, the entity
receiving data toggles its data toggle bit when it is able to accept the data and it receives an error-free data
packet with the correct identification. The entity sending the data toggles its data toggle bit when it receives
a positive acknowledgement from the receiver. In this way, the data toggle bits stay synchronized until, for
example, a packet with an incorrect identification is received. When this happens, the receiver ignores the
packet and does not increment its data toggle bit. When the data toggle bits get out of synchronization (for
this or any other reason), you will probably notice that alternate transactions are not getting through in your
application. The solution to this is to resynchronize the data toggle bits. For information on how to do this,
see “Handling Stalls, Halts, and Data Toggle Resynchronization” (page 15).
USB 2.0 and Isochronous Transfers
The USB 2.0 specification supports the same four transfer types as earlier versions of the specification. In
addition to supporting a higher transfer rate, the new specification defines an improved protocol for high-speed
transfers and new ways of handling transactions for low-speed and full-speed devices. For details on the
protocols and transaction-handling methods, see the specification at http://www.usb.org.
For the most part, these enhancements are implemented at the hostsoftware level and do not require changes
to your code. For isochronous transfers, however, you should be aware of the following differences:
● Earlier versions of the specification divide bus time into 1-millisecond frames, each of which can carry
multiple transactionsto multiple destinations. (A transaction containstwo or more packets: a token packet
and one or more data packets, a handshake packet, or both.) The USB 2.0 specification divides the
1-millisecond frame into eight, 125-microsecond microframes, each of which can carry multiple transactions
to multiple destinations.
● The maximum amount of data allowed in a transaction is increased to 3 KB.
● Any isochronous endpoints in a device’s default interface must have a maximum packet size of zero. (This
means that the default setting for an interface containing isochronous pipes is alternate setting zero and
the maximum packet size for that interface’s isochronous endpoints must be zero.) This ensures that the
host can configure the device no matter how busy the bus is.
For a summary of how these differences affect the OS X USB API, see “Changes in Isochronous Functions to
Support USB 2.0” (page 17).
USB Device Overview
USB Device Architecture and Terminology
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
10USB Devices on OS X
When a USB device is plugged in, the OS X USB family abstracts the contents of the device descriptor into an
I/O Kit nub object called an IOUSBDevice. This nub object is attached to the IOService plane of the I/O
Registry as a child of the driver for the USB controller. The IOUSBDevice nub object is then registered for
matching with the I/O Kit.
If the device is a composite class device with no vendor-specific driver to match against it, the
AppleUSBComposite driver matches against it and starts as its provider. The AppleUSBComposite driver
then configures the device by setting the configuration in the device’s list of configuration descriptors with
the maximum power usage that can be satisfied by the port to which the device is attached. This allows a
device with a low power and a high power configuration to be configured differently depending on whether
it’s attached to a bus-powered hub or a self-powered hub. In addition, if the IOUSBDevice nub object has
the “Preferred Configuration” property, the AppleUSBComposite driver will always use that value when it
attempts to configure the device.
The configuration of the device causes the USB family to abstract each interface descriptor in the chosen
configuration into an IOUSBInterface nub object. These nub objects are attached to the I/O Registry as
children of the original IOUSBDevice nub object and are registered for matching with the I/O Kit.
Important: Because a composite class device is configured by the AppleUSBComposite driver, setting
the configuration again from your application will result in the destruction of the IOUSBInterface nub
objects and the creation of new ones. In general, the only reason to set the configuration of a composite
class device that’s matched by the AppleUSBComposite driver is to choose a configuration other than
the first one.
For non-composite class devices or composite class devices with vendor-specific drivers that match against
them, there is no guarantee that any configuration will be set and you may have to perform this task within
your application.
It's important to be mindful of the difference between a USB device (represented in the I/O Registry by an
IOUSBDevice nub object) and its interfaces (each represented by an IOUSBInterface nub object). A
multifunction USB device, for example, is represented in the I/O Registry by one IOUSBDevice object and one
IOUSBInterface object for each interface.
The distinction between interface and device isimportant because it determines which object your application
must find in the I/O Registry and which type of device interface to get. For example, if your application needs
to communicate with a specific interface in a multifunction USB device, it must find that interface and get an
IOUSBInterfaceInterface to communicate with it. An application that needs to communicate with the
USB device as a whole, on the other hand, would need to find the device in the I/O Registry and get an
IOUSBDeviceInterface to communicate with it. For more information on finding devices and interfaces in
USB Device Overview
USB Devices on OS X
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
11the I/O Registry, see “Finding USB Devices and Interfaces” (page 12); for more information on how to get the
proper device interface to communicate with a device or interface, see “Using USB Device Interfaces” (page
20).
Finding USB Devices and Interfaces
To find a USB device or interface, use the keys defined in the Universal Serial Bus Common Class Specification,
Revision 1.0 (available for download from http://www.usb.org/developers/devclass_docs/usbccs10.pdf) to
create a matching dictionary that defines a particular search. If you are unfamiliar with the concept of device
matching, see the section “Finding Devices in the I/O Registry” in Accessing Hardware From Applications.
The keys defined in the specification are listed in the tables below. Each key consists of a specific combination
of elements in a device or interface descriptor. In the tables below, the elements in a key are separated by the
‘+’ character to emphasize the requirement that all a key’s elements must appear together in your matching
dictionary. Both tables present the keys in order of specificity: the first key in each table defines the most
specific search and the last key defines the broadest search.
Before you build a matching dictionary, be sure you know whether your application needs to communicate
with a device or a specific interface in a device. It’s especially important to be aware of this distinction when
working with multifunction devices. A multifunction device is often a composite class device that defines a
separate interface for each function. If, for example, your application needs to communicate with the scanning
function of a device that does scanning, faxing, and printing, you need to build a dictionary to match on only
the scanning interface (an IOUSBInterface object), not the device as a whole (an IOUSBDevice object). In this
situation, you would use the keys defined for interface matching (those shown in Table 1-3 (page 13)), not
the keys for device matching.
Table 1-2 (page 12) lists the keys you can use to find devices (not interfaces). Each key element is a piece of
information contained in the device descriptor for a USB device.
Table 1-2 Keys for finding a USB device
Key Notes
bcdDevice contains the release number of the
device
idVendor + idProduct + bcdDevice
idVendor + idProduct
Use this key only if the device’s bDeviceClass is
$FF
idVendor + bDeviceSubClass +
bDeviceProtocol
Use this key only if the device’s bDeviceClass is
$FF
idVendor + bDeviceSubClass
USB Device Overview
USB Devices on OS X
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
12Key Notes
Use this key only if the device’s bDeviceClass is
not $FF
bDeviceClass + bDeviceSubClass +
bDeviceProtocol
Use this key only if the device’s bDeviceClass is
not $FF
bDeviceClass + bDeviceSubClass
Table 1-3 (page 13) lists the keys you can use to find interfaces (not devices). Each key element is a piece of
information contained in an interface descriptor for a USB device.
Table 1-3 Keys for finding a USB interface
Key Notes
idVendor + idProduct + bcdDevice +
bConfigurationValue + bInterfaceNumber
idVendor + idProduct + bConfigurationValue +
bInterfaceNumber
Use this key only if bInterfaceClass
is $FF
idVendor + bInterfaceSubClass +
bInterfaceProtocol
Use this key only if
bInterfaceSubClass is $FF
idVendor + bInterfaceSubClass
Use this key only if
bInterfaceSubClass is not $FF
bInterfaceClass + bInterfaceSubClass +
bInterfaceProtocol
Use this key only if
bInterfaceSubClass is not $FF
bInterfaceClass + bInterfaceSubClass
For a successful search, you must add the elements of exactly one key to your matching dictionary. If your
matching dictionary contains a combination of elements not defined by any key, the search will be unsuccessful.
For example, if you create a matching dictionary containing values representing a device’s vendor, product,
and protocol, the search will be unsuccessful even if a device with those precise values in its device descriptor
is currently represented by an IOUSBDevice nub in the I/O Registry. This is because there is no key in Table
1-2 (page 12) that combines the idVendor, idProduct, and bDeviceProtocol elements.
USB Device Overview
USB Devices on OS X
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
13USB Family Error Codes
As you develop an application to access a USB device or interface, you will probably encounter error codes
specific to the OS X USB family. If you are using Xcode, you can search for information about these error codes
in the Xcode documentation window.
To find error code documentation, select Documentation from the Xcode Help menu. Select Full-Text Search
from the pull-down menu associated with the search field (click the magnifying glass icon to reveal the menu).
Select Reference Library in the Search Groups pane at the left of the window. Type an error code number in
the search field, such as 0xe0004057, and press Return. Select the most relevant entry in the search results to
display the document in the lower portion of the window. Use the Find command (press Command-F) to find
the error code in this document. Using the example of error code 0xe0004057, you’ll see that this error is
returned when the endpoint has not been found.
For help with deciphering I/O Kit error codes in general, see Technical Q&A QA1075, “Making sense of I/O Kit
error codes.”
Determining Which Interface Version to Use
As described in “USB Devices on OS X” (page 11), the OS X USB family provides an IOUSBDeviceInterface
object you use to communicate with a USB device as a whole and an IOUSBInterfaceInterface object
you use to communicate with an interface in a USB device. There are a number of different versions of the USB
family, however, some of which provide new versions of these interface objects. (One way to find the version
of the USB family installed in your computer is to view the Finder preview information for the
IOUSBFamily.kext located in /System/Library/Extensions.) This section describes how to make sure
you use the correct interface object and how to view the documentation for the interface objects.
The first version of the USB family was introduced in OS X v10.0 and contains the first versions of the interface
objects IOUSBDeviceInterface and IOUSBInterfaceInterface. When new versions of the USB family
introduce new functions for an interface object, a new version of the interface object is created, which gives
access to both the new functions and all functions defined in all previous versions of that interface object. For
example, the IOUSBDeviceInterface197 object provides two new functions you can use with version 1.9.7
of the USB family (available in OS X v10.2.3 and later), in addition to all functions available in the previous
device interface objects IOUSBDeviceInterface187, IOUSBDeviceInterface182, and
IOUSBDeviceInterface.
As you develop an application that accesses a USB device or interface, you should use the latest version of the
interface object that is available in the earliest version of OS X that you want to support. For example, if your
application must run in OS X v10.0, you must use the IOUSBDeviceInterface and
IOUSBInterfaceInterface objects. If, however, you develop an application to run in OS X v10.4 and later,
you use the IOUSBDeviceInterface197 object to access the device as a whole and the
USB Device Overview
USB Devices on OS X
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
14IOUSBInterfaceInterface220 object to access an interface in it. This is because
IOUSBDeviceInterface197 is available inOS X version 10.2.3 and later and IOUSBInterfaceInterface220
is available in OS X v10.4 and later.
Note: When you view the documentation for these interface objects, notice that each version is
documented separately. For example, the documentation for IOUSBDeviceInterface197 contains
information about the two new functions introduced in this version, but does not repeat the
documentation for the functions introduced in IOUSBDeviceInterface187,
IOUSBDeviceInterface182, and IOUSBDeviceInterface.
Tasks and Caveats
This section presents some specific tasks your application might need to perform, along with some caveats
related to USB 2.0 support of which you should be aware.
Handling Stalls, Halts, and Data Toggle Resynchronization
As described in “Stalls and Halts ” (page 9), stalls and halts are closely related in their effect on data
transmission. To simplify the API, the USB family uses the pipe stall terminology in the names of the functions
that handle these conditions:
● ClearPipeStall
● ClearPipeStallBothEnds
The ClearPipeStall function operates exclusively on the host controller side, clearing the halt feature and
resetting the data toggle bit to zero. If the endpoint’s halt feature and data toggle bit must be reset as well,
your application must do so explicitly, using one of the ControlRequest functions to send the appropriate
device request. See the documentation for the USB.h header file in I/O Kit Framework Reference for more
information about standard device requests.
In OS X version 10.2 and later, you can use the ClearPipeStallBothEnds function which, as its name
suggests, clears the halt and resets the data toggle bit on both sides at the same time.
Using the Low Latency Isochronous Functions
In OS X, the time between when an isochronous transaction completes on the USB bus and when you receive
your callback can stretch to tens of milliseconds. This is because the callback happens on the USB family work
loop, which runs at a lower priority than some other threads in the system. In most cases, you can work around
USB Device Overview
Tasks and Caveats
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
15this delay by queuing read and write requests so that the next transaction is scheduled and ready to start
before you receive the callback from the current transaction. In fact, this scheme is a good way to achieve
higher performance whether or not low latency is a requirement of your application.
In a few cases, however, queuing isochronous transactions to keep the pipe busy is not enough to prevent a
latency problem that a user might notice. Consider an application that performs audio processing on some
USB input (from a musical instrument, for example) before sending the processed data out to USB speakers.
In this scenario, a user hears both the raw, unprocessed output of the instrument and the processed output
of the speakers. Of course, some small delay between the time the instrument creates the raw sound waves
and the time the speaker emits the processed sound waves is unavoidable. If this delay is greater than about
8 milliseconds, however, the user will notice.
In OS X version 10.2.3 (version 1.9.2 of the USB family) the USB family solves this problem by taking advantage
of the predictability of isochronous data transfers. By definition, isochronous mode guarantees the delivery of
some amount of data every frame or microframe. In earlier versions of OS X, however, it was not possible to
find out the exact amount of data that was transferred by a given time. This meant that an application could
not begin processing the data until it received the callback associated with the transaction, telling it the transfer
status and the actual amount of data that was transferred.
Version 1.9.2 of the USB family introduced the LowLatencyReadIsochPipeAsync and
LowLatencyWriteIsochPipeAsync functions. These functions update the frame list information (including
the transferstatus and the number of bytes actually transferred) at primary interrupt time. Using these functions,
an application can request that the frame list information be updated as frequently as every millisecond. This
means an application can retrieve and begin processing the number of bytes actually transferred once a
millisecond, without waiting for the entire transaction to complete.
Important: Because these functions cause processing at primary interrupt time, it is essential you use them
only if it is absolutely necessary. Overuse of these functions can cause degradation of system performance.
To support the low latency isochronous read and write functions, the USB family also introduced functions to
create and destroy the buffers that hold the frame list information and the data. Although you can choose to
create a single data buffer and a single frame list buffer or multiple buffers of each type, you must use the
LowLatencyCreateBuffer function to create them. Similarly, youmust use the LowLatencyDestroyBuffer
function to destroy the buffers after you are finished with them. This restricts all necessary communication
with kernel entities to the USB family.
For reference documentation on the low latency isochronous functions, see the IOUSBLib.h documentation
in I/O Kit Framework Reference .
USB Device Overview
Tasks and Caveats
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
16Errors Reported by the EHCI Hub
The EHCI hub that supports high-speed devices (as well as low-speed and full-speed devices) provides
coarser-grained error reporting than the OHCI hub does. For example, with an OHCI hub, you might receive
an “endpoint timed out” error if you unplug the device while it is active. If you perform the same action with
an EHCI hub, you might receive a “pipe stalled” error instead.
The Apple EHCI hub driver cannot get more detailed error information from the hub, so it alternates between
reporting “device not responding” and “pipe stalled” regardless of the actual error reported by the device. To
avoid problems with your code, be sure your application does not rely on other, more specific errors to make
important decisions.
Changes in Isochronous Functions to Support USB 2.0
Recall that the USB 2.0 specification divides the 1-millisecond frame into eight, 125-microsecond microframes.
The USB family handles this by reinterpreting some function parameters (where appropriate) and adding a
couple of new functions. This section summarizes these changes; for reference documentation, see
documentation for IOUSBLib.h in I/O Kit Framework Reference .
The functions you use to read from and write to isochronous endpoints are ReadIsochPipeAsync and
WriteIsochPipeAsync. Both functions include the following two parameters:
● numFrames—The number of frames for which to transfer data
● frameList—A pointer to an array of structures that describe the frames
If you need to handle high-speed isochronous transfers, you can think of these parameters as referring to
“transfer opportunities” instead of frames. In other words, numFrames can refer to a number of frames for
full-speed devices or to a number of microframes for high-speed devices. Similarly, frameList specifies the
list of transfers you want to occur, whether they are in terms of frames or microframes.
Note: The ReadIsochPipeAsync and WriteIsochPipeAsync functions also have the frameStart
parameter in common, but it does not get reinterpreted. Thisis because all isochronoustransactions,
including high-speed isochronoustransactions,start on a frame boundary, not amicroframe boundary.
To help you determine whether a device isfunctioning in full-speed or high-speed mode, the USB family added
the GetFrameListTime function, which returns the number of microseconds in a frame. By examining the
result (kUSBFullSpeedMicrosecondsInFrame or kUSBHighSpeedMicrosecondsInFrame) you can tell
in which mode the device is operating.
USB Device Overview
Tasks and Caveats
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
17The USB family also added the GetBusMicroFrameNumber function which is similar to the
GetBusFrameNumber function, except that it returns both the current frame and microframe number and
includes the time at which that information was retrieved.
To handle the new specification’s requirement that isochronous endpoints in a device’s default interface have
a maximum packetsize of zero, the USB family added functionsthat allow you to balance bandwidth allocations
among isochronous endpoints. A typical scenario is this:
1. Call GetBandwidthAvailable (available inOS X version 10.2 and later)to determine howmuch bandwidth
is currently available for allocation to isochronous endpoints.
2. Call GetEndpointProperties (available in OS X version 10.2 and later) to examine the alternate settings
of an interface and find one that uses an appropriate amount of bandwidth.
3. Call SetAlternateInterface (available in OS X version 10.0 and later) to create the desired interface
and allocate the pipe objects.
4. Call GetPipeProperties (available in OS X version 10.0 and later) on the chosen isochronous endpoint.
Thisis a very importantstep because SetAlternateInterface willsucceed, even if there is not enough
bandwidth for the endpoints. Also, another device might have claimed the bandwidth that was available
at the time the GetBandwidthAvailable function returned. If this happens, the maximum packet size
for your chosen endpoint (contained in the maxPacketSize field) is now zero, which means that the
bandwidth is no longer available.
In addition, in OS X version 10.2, the USB family added the SetPipePolicy function, which allows you to
relinquish bandwidth that might have been specified in an alternate setting.
USB Device Access in an Intel-Based Macintosh
This section provides an overview of some of the issues related to developing a universal binary version of an
application that accesses a USB device. Before you read this section, be sure to read Universal Binary
Programming Guidelines. That document covers architectural differences and byte-ordering formats and
provides comprehensive guidelines for code modification and building universal binaries. The guidelines in
that document apply to all types of applications, including those that access hardware.
Before you build your application as a universal binary, make sure that:
● You port your project to GCC 4 (Xcode uses GCC 4 to target Intel-based Macintosh computers)
● You install the OS X v10.4 universal SDK
● You develop your project in Xcode 2.1 or later
USB Device Overview
USB Device Access in an Intel-Based Macintosh
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
18The USB bus is a little-endian bus. Structured data appears on the bus in the little-endian format regardless of
the native endian format of the computer an application isrunning in. If you've developed a USB device-access
application to run in a PowerPC-based Macintosh, you probably perform some byte swapping on data you
read from the USB bus because the PowerPC processor uses the big-endian format. For example, the USB
configuration descriptor structure contains a two-byte field that holds the descriptor length. If your PowerPC
application reads this structure from the USB bus (instead of receiving it from a USB device interface function),
you need to swap the value from the USB bus format (little endian) to the PowerPC format (big endian).
The USB family provides several swapping macros that swap from USB to host and from host to USB (for more
information on these macros, see USB.h). The Kernel framework also provides byte-swapping macros and
functions you can use in high-level applications (see the OSByteOrder.h header file in libkern). If you use
these macros in your application, you shouldn't have any trouble developing a universal binary version of your
application. This is because these macros determine at compile time if a swap is necessary. If, however, your
application uses hard-coded swaps from little endian to big endian, your application will not run correctly in
an Intel-based Macintosh. As you develop a universal binary version of your application, therefore, be sure to
use the USB family swapping macros or the macros in libkern/OSByteOrder.h for all byte swapping.
Although you may need to perform byte swapping on values your application reads from the USB bus, you
do not need to perform any byte swapping on values you pass in arguments to functions in the USB family
API. You should pass argument values in the computer's host format. Likewise, any values you receive from
the USB family functions will be in the computer's host format.
USB Device Overview
USB Device Access in an Intel-Based Macintosh
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
19This chapter describes how to develop a user-space tool that finds and communicates with an attached USB
device and one of its interfaces.
Important: The sample code featured in this document isintended to illustrate how to access a USB device
from an application. It is not intended to provide guidance on error handling and other features required
for production-quality code.
Using USB Device Interfaces
Applications running in OS X get access to USB devices by using I/O Kit functions to acquire a device interface,
a type of plug-in that specifies functions the application can call to communicate with the device. The USB
family provides two types of device interface:
● IOUSBDeviceInterface for communicating with the device itself
● IOUSBInterfaceInterface for communicating with an interface in the device
Both device interfaces are defined in
/System/Library/Frameworks/IOKit.framework/Headers/usb/IOUSBLib.h.
Communicating with the device itself is usually only necessary when you need to set or change its configuration.
For example, vendor-specific devices are often not configured because there are no default drivers that set a
particular configuration. In this case, your application must use the device interface for the device to set the
configuration it needs so the interfaces become available.
Important: If your application is sandboxed, it must request the com.apple.security.device.usb
entitlement in order to access USB devices.
The process of finding and communicating with a USB device is divided into two sets of steps. The first set
outlines how to find a USB device, acquire a device interface of type IOUSBDeviceInterface for it, and set
or change its configuration. The second set describes how to find an interface in a device, acquire a device
interface of type IOUSBInterfaceInterface for it, and use it to communicate with that interface. If you
need to communicate with an unconfigured device or if you need to change a device’s configuration, you
follow both sets of steps. If you need to communicate with a device that is already configured to your
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
20
Working With USB Device Interfacesspecification, you follow only the second set of steps. The sample code in “Accessing a USB Device” (page 22)
follows both sets of steps and extends them to include setting up notifications it can receive when devices are
dynamically added or removed.
Follow this first set of steps only to set or change the configuration of a device. If the device you’re interested
in is already configured for your needs, skip these steps and follow the second set of steps.
1. Find the IOUSBDevice object that represents the device in the I/O Registry. This includes setting up a
matching dictionary with a key from the USB Common Class Specification (see “Finding USB Devices and
Interfaces” (page 12)). The sample code usesthe key elements kUSBVendorName and kUSBProductName
to find a particular USB device (this is the second key listed in Table 1-2 (page 12)).
2. Create a device interface of type IOUSBDeviceInterface for the device. This device interface provides
functionsthat perform taskssuch assetting or changing the configuration of the device, getting information
about the device, and resetting the device.
3. Examine the device’s configurations with GetConfigurationDescriptorPtr, choose the appropriate
one, and call SetConfiguration to set the device’s configuration and instantiate the IOUSBInterface
objects for that configuration.
Follow thissecond set ofstepsto find and choose an interface, acquire a device interface for it, and communicate
with the device.
1. Create an interface iterator to iterate over the available interfaces.
2. Create a device interface for each interface so you can examine its properties and select the appropriate
one. To do this, you create a device interface of type IOUSBInterfaceInterface. This device interface
providesfunctionsthat perform taskssuch as getting information about the interface,setting the interface’s
alternate setting, and accessing its pipes.
3. Use the USBInterfaceOpen function to open the selected interface. This will cause the pipes associated
with the interface to be instantiated so you can examine the properties of each and select the appropriate
one.
4. Communicate with the device through the selected pipe. You can write to and read from the pipe
synchronously or asynchronously—the sample code in “Accessing a USB Device” (page 22) shows how
to do both.
Working With USB Device Interfaces
Using USB Device Interfaces
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
21Accessing a USB Device
This section provides snippets of sample code that show how to access a Cypress EZ-USB chip with an 8051
microcontroller core. The sample code followsthe firstset ofstepsin section “Using USB Device Interfaces” (page
20) to find the Cypress EZ-USB chip in its default, unprogrammed state (also referred to as the “raw device”).
It then configures the device and downloads firmware provided by Cypress to program the chip to behave as
a device that echoes all information it receives on its bulk out pipe to its bulk in pipe.
Once the chip has been programmed, the device nub representing the default, unprogrammed device is
detached from the I/O Registry and a new device nub, representing the programmed chip, is attached. To
communicate with the programmed chip (also referred to as the “bulk test device”), the sample code must
perform the first set of steps again to find the device, create a device interface for it, and configure it. Then it
performs the second set of steps to find an interface, create a device interface for it, and test the device. The
sample code also shows how to set up notifications for the dynamic addition and removal of a device.
Important: If your application is sandboxed, it must request the com.apple.security.device.usb
entitlement in order to access USB devices.
Definitions and Global Variables
The code in the USB Notification Example uses the definitions and global variables shown in Listing 2-1 (page
22). The definition of USE_ASYNC_IO allows you to choose to use either synchronous or asynchronous calls
to read from and write to the chip by commenting out the line or leaving it in, respectively. The definition of
kTestMessage sets up a simple message to write to the device. The remaining definitions are specific to the
Cypress EZ-USB chip.
Listing 2-1 Definitions and global variables
#define USE_ASYNC_IO //Comment this line out if you want to use
//synchronous calls for reads and writes
#define kTestMessage "Bulk I/O Test"
#define k8051_USBCS 0x7f92
#define kOurVendorID 1351 //Vendor ID of the USB device
#define kOurProductID 8193 //Product ID of device BEFORE it
//is programmed (raw device)
#define kOurProductIDBulkTest 4098 //Product ID of device AFTER it is
//programmed (bulk test device)
//Global variables
Working With USB Device Interfaces
Accessing a USB Device
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
22static IONotificationPortRef gNotifyPort;
static io_iterator_t gRawAddedIter;
static io_iterator_t gRawRemovedIter;
static io_iterator_t gBulkTestAddedIter;
static io_iterator_t gBulkTestRemovedIter;
static char gBuffer[64];
The main Function
The main function in the USB Notification Example project (contained in the file main.c) accomplishes the
following tasks.
●
It establishes communication with the I/O Kit and sets up a matching dictionary to find the Cypress EZ-USB
chip.
●
It sets up an asynchronous notification to be called when an unprogrammed (raw) device is first attached
to the I/O Registry and another to be called when the device is removed.
●
It modifies the matching dictionary to find the programmed (bulk test) device.
●
It sets up additional notifications to be called when the bulk test device is first attached or removed.
●
It starts the run loop so the notifications that have been set up will be received.
The main function uses I/O Kit functions to set up and modify a matching dictionary and set up notifications,
and Core Foundation functions to set up the run loop for receiving the notifications. It calls the following
functions to access both the raw device and the bulk test device.
● RawDeviceAdded, shown in Listing 2-3 (page 27), iterates over the set of matching devices and creates
a device interface for each one. It calls ConfigureDevice (shown in Listing 2-5 (page 30)) to set the
device’s configuration, and then DownloadToDevice (shown in Listing 2-6 (page 32)) to download the
firmware to program it.
● RawDeviceRemoved,shown in Listing 2-4 (page 30), iterates over the set of matching devices and releases
each one in turn.
● BulkTestDeviceAdded, shown in Listing 2-7 (page 34), iterates over the new set of matching devices,
creates a device interface for each one, and calls ConfigureDevice (shown in Listing 2-5 (page 30)) to
set the device’s configuration. It then calls FindInterfaces (shown in Listing 2-8 (page 36)) to get access
to the interfaces on the device.
● BulkTestDeviceRemoved iterates over the new set of matching devices and releases each one in turn.
This function is not shown in this chapter; see RawDeviceRemoved (Listing 2-4 (page 30)) for a nearly
identical function.
Working With USB Device Interfaces
Accessing a USB Device
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
23Listing 2-2 The main function
int main (int argc, const char *argv[])
{
mach_port_t masterPort;
CFMutableDictionaryRef matchingDict;
CFRunLoopSourceRef runLoopSource;
kern_return_t kr;
SInt32 usbVendor = kOurVendorID;
SInt32 usbProduct = kOurProductID;
// Get command line arguments, if any
if (argc > 1)
usbVendor = atoi(argv[1]);
if (argc > 2)
usbProduct = atoi(argv[2]);
//Create a master port for communication with the I/O Kit
kr = IOMasterPort(MACH_PORT_NULL, &masterPort);
if (kr || !masterPort)
{
printf("ERR: Couldn’t create a master I/O Kit port(%08x)\n", kr);
return -1;
}
//Set up matching dictionary for class IOUSBDevice and its subclasses
matchingDict = IOServiceMatching(kIOUSBDeviceClassName);
if (!matchingDict)
{
printf("Couldn’t create a USB matching dictionary\n");
mach_port_deallocate(mach_task_self(), masterPort);
return -1;
}
//Add the vendor and product IDs to the matching dictionary.
//This is the second key in the table of device-matching keys of the
//USB Common Class Specification
Working With USB Device Interfaces
Accessing a USB Device
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
24CFDictionarySetValue(matchingDict, CFSTR(kUSBVendorName),
CFNumberCreate(kCFAllocatorDefault,
kCFNumberSInt32Type, &usbVendor));
CFDictionarySetValue(matchingDict, CFSTR(kUSBProductName),
CFNumberCreate(kCFAllocatorDefault,
kCFNumberSInt32Type, &usbProduct));
//To set up asynchronous notifications, create a notification port and
//add its run loop event source to the program’s run loop
gNotifyPort = IONotificationPortCreate(masterPort);
runLoopSource = IONotificationPortGetRunLoopSource(gNotifyPort);
CFRunLoopAddSource(CFRunLoopGetCurrent(), runLoopSource,
kCFRunLoopDefaultMode);
//Retain additional dictionary references because each call to
//IOServiceAddMatchingNotification consumes one reference
matchingDict = (CFMutableDictionaryRef) CFRetain(matchingDict);
matchingDict = (CFMutableDictionaryRef) CFRetain(matchingDict);
matchingDict = (CFMutableDictionaryRef) CFRetain(matchingDict);
//Now set up two notifications: one to be called when a raw device
//is first matched by the I/O Kit and another to be called when the
//device is terminated
//Notification of first match:
kr = IOServiceAddMatchingNotification(gNotifyPort,
kIOFirstMatchNotification, matchingDict,
RawDeviceAdded, NULL, &gRawAddedIter);
//Iterate over set of matching devices to access already-present devices
//and to arm the notification
RawDeviceAdded(NULL, gRawAddedIter);
//Notification of termination:
kr = IOServiceAddMatchingNotification(gNotifyPort,
kIOTerminatedNotification, matchingDict,
RawDeviceRemoved, NULL, &gRawRemovedIter);
Working With USB Device Interfaces
Accessing a USB Device
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
25//Iterate over set of matching devices to release each one and to
//arm the notification
RawDeviceRemoved(NULL, gRawRemovedIter);
//Now change the USB product ID in the matching dictionary to match
//the one the device will have after the firmware has been downloaded
usbProduct = kOurProductIDBulkTest;
CFDictionarySetValue(matchingDict, CFSTR(kUSBProductName),
CFNumberCreate(kCFAllocatorDefault,
kCFNumberSInt32Type, &usbProduct));
//Now set up two notifications: one to be called when a bulk test device
//is first matched by the I/O Kit and another to be called when the
//device is terminated.
//Notification of first match
kr = IOServiceAddMatchingNotification(gNotifyPort,
kIOFirstMatchNotification, matchingDict,
BulkTestDeviceAdded, NULL, &gBulkTestAddedIter);
//Iterate over set of matching devices to access already-present devices
//and to arm the notification
BulkTestDeviceAdded(NULL, gBulkTestAddedIter);
//Notification of termination
kr = IOServiceAddMatchingNotification(gNotifyPort,
kIOTerminatedNotification, matchingDict,
BulkTestDeviceRemoved, NULL, &gBulkTestRemovedIter);
//Iterate over set of matching devices to release each one and to
//arm the notification. NOTE: this function is not shown in this document.
BulkTestDeviceRemoved(NULL, gBulkTestRemovedIter);
//Finished with master port
mach_port_deallocate(mach_task_self(), masterPort);
masterPort = 0;
Working With USB Device Interfaces
Accessing a USB Device
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
26//Start the run loop so notifications will be received
CFRunLoopRun();
//Because the run loop will run forever until interrupted,
//the program should never reach this point
return 0;
}
Working With the Raw Device
Now that you’ve obtained an iterator for a set of matching devices, you can use it to gain access to each raw
device, configure it, and download the appropriate firmware to it. The function RawDeviceAdded (shown in
Listing 2-3 (page 27)) uses I/O Kit functions to create a device interface for each device and then calls the
following functions to configure the device and download firmware to it.
● ConfigureDevice, shown in Listing 2-5 (page 30), uses device interface functions to get the number of
configurations, examine the first one, and set the device’s configuration.
● DownloadToDevice, shown in Listing 2-6 (page 32), downloads the firmware in bulktest.c to the
device.
Listing 2-3 Accessing and programming the raw device
void RawDeviceAdded(void *refCon, io_iterator_t iterator)
{
kern_return_t kr;
io_service_t usbDevice;
IOCFPlugInInterface **plugInInterface = NULL;
IOUSBDeviceInterface **dev = NULL;
HRESULT result;
SInt32 score;
UInt16 vendor;
UInt16 product;
UInt16 release;
while (usbDevice = IOIteratorNext(iterator))
{
//Create an intermediate plug-in
Working With USB Device Interfaces
Accessing a USB Device
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
27kr = IOCreatePlugInInterfaceForService(usbDevice,
kIOUSBDeviceUserClientTypeID, kIOCFPlugInInterfaceID,
&plugInInterface, &score);
//Don’t need the device object after intermediate plug-in is created
kr = IOObjectRelease(usbDevice);
if ((kIOReturnSuccess != kr) || !plugInInterface)
{
printf("Unable to create a plug-in (%08x)\n", kr);
continue;
}
//Now create the device interface
result = (*plugInInterface)->QueryInterface(plugInInterface,
CFUUIDGetUUIDBytes(kIOUSBDeviceInterfaceID),
(LPVOID *)&dev);
//Don’t need the intermediate plug-in after device interface
//is created
(*plugInInterface)->Release(plugInInterface);
if (result || !dev)
{
printf("Couldn’t create a device interface (%08x)\n",
(int) result);
continue;
}
//Check these values for confirmation
kr = (*dev)->GetDeviceVendor(dev, &vendor);
kr = (*dev)->GetDeviceProduct(dev, &product);
kr = (*dev)->GetDeviceReleaseNumber(dev, &release);
if ((vendor != kOurVendorID) || (product != kOurProductID) ||
(release != 1))
{
printf("Found unwanted device (vendor = %d, product = %d)\n",
vendor, product);
Working With USB Device Interfaces
Accessing a USB Device
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
28(void) (*dev)->Release(dev);
continue;
}
//Open the device to change its state
kr = (*dev)->USBDeviceOpen(dev);
if (kr != kIOReturnSuccess)
{
printf("Unable to open device: %08x\n", kr);
(void) (*dev)->Release(dev);
continue;
}
//Configure device
kr = ConfigureDevice(dev);
if (kr != kIOReturnSuccess)
{
printf("Unable to configure device: %08x\n", kr);
(void) (*dev)->USBDeviceClose(dev);
(void) (*dev)->Release(dev);
continue;
}
//Download firmware to device
kr = DownloadToDevice(dev);
if (kr != kIOReturnSuccess)
{
printf("Unable to download firmware to device: %08x\n", kr);
(void) (*dev)->USBDeviceClose(dev);
(void) (*dev)->Release(dev);
continue;
}
//Close this device and release object
kr = (*dev)->USBDeviceClose(dev);
kr = (*dev)->Release(dev);
Working With USB Device Interfaces
Accessing a USB Device
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
29}
}
The function RawDeviceRemoved simply uses the iterator obtained from the main function (shown in Listing
2-2 (page 24)) to release each device object. This also has the effect of arming the raw device termination
notification so it will notify the program of future device removals. RawDeviceRemoved is shown in Listing
2-4 (page 30).
Listing 2-4 Releasing the raw device objects
void RawDeviceRemoved(void *refCon, io_iterator_t iterator)
{
kern_return_t kr;
io_service_t object;
while (object = IOIteratorNext(iterator))
{
kr = IOObjectRelease(object);
if (kr != kIOReturnSuccess)
{
printf("Couldn’t release raw device object: %08x\n", kr);
continue;
}
}
}
Although every USB device has one or more configurations, unless the device is a composite class device that’s
been matched by the AppleUSBComposite driver which automatically sets the first configuration, none of
those configurations may have been set. Therefore, your application may have to use device interface functions
to get the appropriate configuration value and use it to set the device’s configuration. In the sample code, the
function ConfigureDevice (shown in Listing 2-5 (page 30)) accomplishes this task. In fact, it is called twice:
once by RawDeviceAdded to configure the raw device and again by BulkTestDeviceAdded (shown in
Listing 2-7 (page 34)) to configure the bulk test device.
Listing 2-5 Configuring a USB device
IOReturn ConfigureDevice(IOUSBDeviceInterface **dev)
Working With USB Device Interfaces
Accessing a USB Device
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
30{
UInt8 numConfig;
IOReturn kr;
IOUSBConfigurationDescriptorPtr configDesc;
//Get the number of configurations. The sample code always chooses
//the first configuration (at index 0) but your code may need a
//different one
kr = (*dev)->GetNumberOfConfigurations(dev, &numConfig);
if (!numConfig)
return -1;
//Get the configuration descriptor for index 0
kr = (*dev)->GetConfigurationDescriptorPtr(dev, 0, &configDesc);
if (kr)
{
printf("Couldn’t get configuration descriptor for index %d (err =
%08x)\n", 0, kr);
return -1;
}
//Set the device’s configuration. The configuration value is found in
//the bConfigurationValue field of the configuration descriptor
kr = (*dev)->SetConfiguration(dev, configDesc->bConfigurationValue);
if (kr)
{
printf("Couldn’t set configuration to value %d (err = %08x)\n", 0,
kr);
return -1;
}
return kIOReturnSuccess;
}
Working With USB Device Interfaces
Accessing a USB Device
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
31Now that the device is configured, you can download firmware to it. Cypress makes firmware available to
program the EZ-USB chip to emulate different devices. The sample code in this document uses firmware that
programs the chip to be a bulk test device, a device that takes the data it receives from its bulk out pipe and
echoesit to its bulk in pipe. The firmware, contained in the file bulktest.c, is an array of INTEL_HEX_RECORD
structures (defined in the file hex2c.h).
The function DownloadToDevice uses the function WriteToDevice (shown together in Listing 2-6 (page
32)) to prepare the device to receive the download and then to write information from each structure to the
appropriate address on the device. When all the firmware has been downloaded, DownloadToDevice calls
WriteToDevice a last time to inform the device that the download is complete. At this point, the raw device
detaches itself from the bus and reattaches as a bulk test device. This causes the device nub representing the
raw device to be removed from the I/O Registry and a new device nub, representing the bulk test device, to
be attached.
Listing 2-6 Two functions to download firmware to the raw device
IOReturn DownloadToDevice(IOUSBDeviceInterface **dev)
{
int i;
UInt8 writeVal;
IOReturn kr;
//Assert reset. This tells the device that the download is
//about to occur
writeVal = 1; //For this device, a value of 1 indicates a download
kr = WriteToDevice(dev, k8051_USBCS, 1, &writeVal);
if (kr != kIOReturnSuccess)
{
printf("WriteToDevice reset returned err 0x%x\n", kr);
(*dev)->USBDeviceClose(dev);
(*dev)->Release(dev);
return kr;
}
//Download firmware
i = 0;
while (bulktest[i].Type == 0) //While bulktest[i].Type == 0, this is
Working With USB Device Interfaces
Accessing a USB Device
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
32{ //not the last firmware record to
//download
kr = WriteToDevice(dev, bulktest[i].Address,
bulktest[i].Length, bulktest[i].Data);
if (kr != kIOReturnSuccess)
{
printf("WriteToDevice download %i returned err 0x%x\n", i,
kr);
(*dev)->USBDeviceClose(dev);
(*dev)->Release(dev);
return kr;
}
i++;
}
//De-assert reset. This tells the device that the download is complete
writeVal = 0;
kr = WriteToDevice(dev, k8051_USBCS, 1, &writeVal);
if (kr != kIOReturnSuccess)
printf("WriteToDevice run returned err 0x%x\n", kr);
return kr;
}
IOReturn WriteToDevice(IOUSBDeviceInterface **dev, UInt16 deviceAddress,
UInt16 length, UInt8 writeBuffer[])
{
IOUSBDevRequest request;
request.bmRequestType = USBmakebmRequestType(kUSBOut, kUSBVendor,
kUSBDevice);
request.bRequest = 0xa0;
request.wValue = deviceAddress;
request.wIndex = 0;
Working With USB Device Interfaces
Accessing a USB Device
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
33request.wLength = length;
request.pData = writeBuffer;
return (*dev)->DeviceRequest(dev, &request);
}
Working With the Bulk Test Device
After you download the firmware to the device, the raw device is no longer attached to the bus. To gain access
to the bulk test device, you repeat most of the same steps you used to get access to the raw device.
● Use the iterator obtained by a call to IOServiceAddMatchingNotification in the main function
(shown in Listing 2-2 (page 24)) to iterate over a set of matching devices.
● Create a device interface for each device.
● Configure the device.
This time, however, the next step is to find the interfaces on the device so you can choose the appropriate one
and get access to its pipes. Because of the similarities of these tasks, the function BulkTestDeviceAdded
follows the same outline of the RawDeviceAdded function except that instead of downloading firmware to
the device, it calls FindInterfaces (shown in Listing 2-8 (page 36)) to examine the available interfaces and
their pipes. The code in Listing 2-7 (page 34) replaces most of the BulkTestDeviceAdded function’s code
with comments, focusing on the differences between it and the RawDeviceAdded function.
Listing 2-7 Accessing the bulk test device
void BulkTestDeviceAdded(void *refCon, io_iterator_t iterator)
{
kern_return_t kr;
io_service_t usbDevice;
IOUSBDeviceInterface **device=NULL;
while (usbDevice = IOIteratorNext(iterator))
{
//Create an intermediate plug-in using the
//IOCreatePlugInInterfaceForService function
//Release the device object after getting the intermediate plug-in
Working With USB Device Interfaces
Accessing a USB Device
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
34//Create the device interface using the QueryInterface function
//Release the intermediate plug-in object
//Check the vendor, product, and release number values to
//confirm we’ve got the right device
//Open the device before configuring it
kr = (*device)->USBDeviceOpen(device);
//Configure the device by calling ConfigureDevice
//Close the device and release the device interface object if
//the configuration is unsuccessful
//Get the interfaces
kr = FindInterfaces(device);
if (kr != kIOReturnSuccess)
{
printf("Unable to find interfaces on device: %08x\n", kr);
(*device)->USBDeviceClose(device);
(*device)->Release(device);
continue;
}
//If using synchronous IO, close and release the device interface here
#ifndef USB_ASYNC_IO
kr = (*device)->USBDeviceClose(device);
kr = (*device)->Release(device);
#endif
}
}
Working With USB Device Interfaces
Accessing a USB Device
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
35The function BulkTestDeviceRemoved simply uses the iterator obtained from the main function (shown in
Listing 2-2 (page 24)) to release each device object. This also has the effect of arming the bulk test device
termination notification so it will notify the program of future device removals.The BulkTestDeviceRemoved
function is identical to the RawDeviceRemoved function (shown in Listing 2-4 (page 30)), with the exception
of the wording of the printed error statement.
Working With Interfaces
Now that you’ve configured the device, you have access to its interfaces. The FindInterfaces function
(shown in Listing 2-8 (page 36)) creates an iterator to iterate over all interfaces on the device and then creates
a device interface to communicate with each one. For each interface found, the function opens the interface,
determines how many endpoints (or pipes) it has, and prints out the properties of each pipe. Because opening
an interface causes its pipes to be instantiated, you can get access to any pipe by using its pipe index. The
pipe index is the number of the pipe within the interface, ranging from one to the number of endpoints
returned by GetNumEndpoints. You can communicate with the default control pipe (described in “USB Transfer
Types” (page 8)) from any interface by using pipe index 0, but it is usually better to use the device interface
functions for the device itself (see the use of IOUSBDeviceInterface functions in Listing 2-5 (page 30)).
The sample code employs conditional compilation using #ifdef and #ifndef to demonstrate both
synchronous and asynchronous I/O. If you’ve chosen to test synchronous I/O, FindInterfaces writes the
test message (defined in Listing 2-1 (page 22)) to pipe index 2 on the device and readsits echo before returning.
For asynchronous I/O, FindInterfaces first creates an event source and adds it to the run loop created by
the main function (shown in Listing 2-2 (page 24)). It then sets up an asynchronous write and read that will
cause a notification to be sent upon completion. The completion functions WriteCompletion and
ReadCompletion are shown together in Listing 2-9 (page 43).
Listing 2-8 Finding interfaces on the bulk test device
IOReturn FindInterfaces(IOUSBDeviceInterface **device)
{
IOReturn kr;
IOUSBFindInterfaceRequest request;
io_iterator_t iterator;
io_service_t usbInterface;
IOCFPlugInInterface **plugInInterface = NULL;
IOUSBInterfaceInterface **interface = NULL;
HRESULT result;
SInt32 score;
Working With USB Device Interfaces
Accessing a USB Device
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
36UInt8 interfaceClass;
UInt8 interfaceSubClass;
UInt8 interfaceNumEndpoints;
int pipeRef;
#ifndef USE_ASYNC_IO
UInt32 numBytesRead;
UInt32 i;
#else
CFRunLoopSourceRef runLoopSource;
#endif
//Placing the constant kIOUSBFindInterfaceDontCare into the following
//fields of the IOUSBFindInterfaceRequest structure will allow you
//to find all the interfaces
request.bInterfaceClass = kIOUSBFindInterfaceDontCare;
request.bInterfaceSubClass = kIOUSBFindInterfaceDontCare;
request.bInterfaceProtocol = kIOUSBFindInterfaceDontCare;
request.bAlternateSetting = kIOUSBFindInterfaceDontCare;
//Get an iterator for the interfaces on the device
kr = (*device)->CreateInterfaceIterator(device,
&request, &iterator);
while (usbInterface = IOIteratorNext(iterator))
{
//Create an intermediate plug-in
kr = IOCreatePlugInInterfaceForService(usbInterface,
kIOUSBInterfaceUserClientTypeID,
kIOCFPlugInInterfaceID,
&plugInInterface, &score);
//Release the usbInterface object after getting the plug-in
kr = IOObjectRelease(usbInterface);
if ((kr != kIOReturnSuccess) || !plugInInterface)
{
printf("Unable to create a plug-in (%08x)\n", kr);
Working With USB Device Interfaces
Accessing a USB Device
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
37break;
}
//Now create the device interface for the interface
result = (*plugInInterface)->QueryInterface(plugInInterface,
CFUUIDGetUUIDBytes(kIOUSBInterfaceInterfaceID),
(LPVOID *) &interface);
//No longer need the intermediate plug-in
(*plugInInterface)->Release(plugInInterface);
if (result || !interface)
{
printf("Couldn’t create a device interface for the interface
(%08x)\n", (int) result);
break;
}
//Get interface class and subclass
kr = (*interface)->GetInterfaceClass(interface,
&interfaceClass);
kr = (*interface)->GetInterfaceSubClass(interface,
&interfaceSubClass);
printf("Interface class %d, subclass %d\n", interfaceClass,
interfaceSubClass);
//Now open the interface. This will cause the pipes associated with
//the endpoints in the interface descriptor to be instantiated
kr = (*interface)->USBInterfaceOpen(interface);
if (kr != kIOReturnSuccess)
{
printf("Unable to open interface (%08x)\n", kr);
(void) (*interface)->Release(interface);
break;
Working With USB Device Interfaces
Accessing a USB Device
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
38}
//Get the number of endpoints associated with this interface
kr = (*interface)->GetNumEndpoints(interface,
&interfaceNumEndpoints);
if (kr != kIOReturnSuccess)
{
printf("Unable to get number of endpoints (%08x)\n", kr);
(void) (*interface)->USBInterfaceClose(interface);
(void) (*interface)->Release(interface);
break;
}
printf("Interface has %d endpoints\n", interfaceNumEndpoints);
//Access each pipe in turn, starting with the pipe at index 1
//The pipe at index 0 is the default control pipe and should be
//accessed using (*usbDevice)->DeviceRequest() instead
for (pipeRef = 1; pipeRef GetPipeProperties(interface,
pipeRef, &direction,
&number, &transferType,
&maxPacketSize, &interval);
if (kr2 != kIOReturnSuccess)
printf("Unable to get properties of pipe %d (%08x)\n",
pipeRef, kr2);
else
Working With USB Device Interfaces
Accessing a USB Device
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
39{
printf("PipeRef %d: ", pipeRef);
switch (direction)
{
case kUSBOut:
message = "out";
break;
case kUSBIn:
message = "in";
break;
case kUSBNone:
message = "none";
break;
case kUSBAnyDirn:
message = "any";
break;
default:
message = "???";
}
printf("direction %s, ", message);
switch (transferType)
{
case kUSBControl:
message = "control";
break;
case kUSBIsoc:
message = "isoc";
break;
case kUSBBulk:
message = "bulk";
break;
case kUSBInterrupt:
message = "interrupt";
Working With USB Device Interfaces
Accessing a USB Device
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
40break;
case kUSBAnyType:
message = "any";
break;
default:
message = "???";
}
printf("transfer type %s, maxPacketSize %d\n", message,
maxPacketSize);
}
}
#ifndef USE_ASYNC_IO //Demonstrate synchronous I/O
kr = (*interface)->WritePipe(interface, 2, kTestMessage,
strlen(kTestMessage));
if (kr != kIOReturnSuccess)
{
printf("Unable to perform bulk write (%08x)\n", kr);
(void) (*interface)->USBInterfaceClose(interface);
(void) (*interface)->Release(interface);
break;
}
printf("Wrote \"%s\" (%ld bytes) to bulk endpoint\n", kTestMessage,
(UInt32) strlen(kTestMessage));
numBytesRead = sizeof(gBuffer) - 1; //leave one byte at the end
//for NULL termination
kr = (*interface)->ReadPipe(interface, 9, gBuffer,
&numBytesRead);
if (kr != kIOReturnSuccess)
{
printf("Unable to perform bulk read (%08x)\n", kr);
(void) (*interface)->USBInterfaceClose(interface);
(void) (*interface)->Release(interface);
Working With USB Device Interfaces
Accessing a USB Device
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
41break;
}
//Because the downloaded firmware echoes the one’s complement of the
//message, now complement the buffer contents to get the original data
for (i = 0; i < numBytesRead; i++)
gBuffer[i] = ~gBuffer[i];
printf("Read \"%s\" (%ld bytes) from bulk endpoint\n", gBuffer,
numBytesRead);
#else //Demonstrate asynchronous I/O
//As with service matching notifications, to receive asynchronous
//I/O completion notifications, you must create an event source and
//add it to the run loop
kr = (*interface)->CreateInterfaceAsyncEventSource(
interface, &runLoopSource);
if (kr != kIOReturnSuccess)
{
printf("Unable to create asynchronous event source
(%08x)\n", kr);
(void) (*interface)->USBInterfaceClose(interface);
(void) (*interface)->Release(interface);
break;
}
CFRunLoopAddSource(CFRunLoopGetCurrent(), runLoopSource,
kCFRunLoopDefaultMode);
printf("Asynchronous event source added to run loop\n");
bzero(gBuffer, sizeof(gBuffer));
strcpy(gBuffer, kTestMessage);
kr = (*interface)->WritePipeAsync(interface, 2, gBuffer,
strlen(gBuffer),
WriteCompletion, (void *) interface);
if (kr != kIOReturnSuccess)
Working With USB Device Interfaces
Accessing a USB Device
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
42{
printf("Unable to perform asynchronous bulk write (%08x)\n",
kr);
(void) (*interface)->USBInterfaceClose(interface);
(void) (*interface)->Release(interface);
break;
}
#endif
//For this test, just use first interface, so exit loop
break;
}
return kr;
}
When an asynchronous write action is complete, the WriteCompletion function is called by the notification.
WriteCompletion then calls the interface function ReadPipeAsync to perform an asynchronous read from
the pipe. When the read is complete, control passes to ReadCompletion which simply prints status messages
and adds a NULL termination to the global buffer containing the test message read from the device. The
WriteCompletion and ReadCompletion functions are shown together in Listing 2-9 (page 43).
Listing 2-9 Two asynchronous I/O completion functions
void WriteCompletion(void *refCon, IOReturn result, void *arg0)
{
IOUSBInterfaceInterface **interface = (IOUSBInterfaceInterface **) refCon;
UInt32 numBytesWritten = (UInt32) arg0;
UInt32 numBytesRead;
printf("Asynchronous write complete\n");
if (result != kIOReturnSuccess)
{
printf("error from asynchronous bulk write (%08x)\n", result);
(void) (*interface)->USBInterfaceClose(interface);
(void) (*interface)->Release(interface);
return;
}
Working With USB Device Interfaces
Accessing a USB Device
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
43printf("Wrote \"%s\" (%ld bytes) to bulk endpoint\n", kTestMessage,
numBytesWritten);
numBytesRead = sizeof(gBuffer) - 1; //leave one byte at the end for
//NULL termination
result = (*interface)->ReadPipeAsync(interface, 9, gBuffer,
numBytesRead, ReadCompletion, refCon);
if (result != kIOReturnSuccess)
{
printf("Unable to perform asynchronous bulk read (%08x)\n", result);
(void) (*interface)->USBInterfaceClose(interface);
(void) (*interface)->Release(interface);
return;
}
}
void ReadCompletion(void *refCon, IOReturn result, void *arg0)
{
IOUSBInterfaceInterface **interface = (IOUSBInterfaceInterface **) refCon;
UInt32 numBytesRead = (UInt32) arg0;
UInt32 i;
printf("Asynchronous bulk read complete\n");
if (result != kIOReturnSuccess) {
printf("error from async bulk read (%08x)\n", result);
(void) (*interface)->USBInterfaceClose(interface);
(void) (*interface)->Release(interface);
return;
}
//Check the complement of the buffer’s contents for original data
for (i = 0; i < numBytesRead; i++)
gBuffer[i] = ~gBuffer[i];
Working With USB Device Interfaces
Accessing a USB Device
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
44printf("Read \"%s\" (%ld bytes) from bulk endpoint\n", gBuffer,
numBytesRead);
}
Working With USB Device Interfaces
Accessing a USB Device
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
45This table describes the changes to USB Device Interface Guide .
Date Notes
2012-01-09 Added information about App Sandbox.
2007-09-04 Made minor corrections.
Described how to determine which version of an interface object to use
when accessing a USB device or interface.
2007-02-08
2006-04-04 Made minor corrections.
Emphasized which type of device interface to get for USB devices and
interfaces and clarified definition of composite class device.
2006-03-08
2005-11-09 Made minor corrections.
Added information about creating a universal binary for an application
that accesses a USB device.
2005-09-08
2005-08-11 Made minor bug fixes.
Added information about low latency isochronous transactions and
functions.
2005-06-04
Included discussion of USB 2.0 and associated changes to isochronous
functions. Changed title from "Working With USB Device Interfaces."
2005-04-29
2004-05-27 Fixed URL for USB Common Class Specification.
2002-11-15 First version.
2012-01-09 | © 2002, 2012 Apple Inc. All Rights Reserved.
46
Document Revision HistoryApple Inc.
© 2002, 2012 Apple Inc.
All rights reserved.
No part of this publication may be reproduced,
stored in a retrievalsystem, or transmitted, in any
form or by any means, mechanical, electronic,
photocopying, recording, or otherwise, without
prior written permission of Apple Inc., with the
following exceptions: Any person is hereby
authorized to store documentation on a single
computer for personal use only and to print
copies of documentation for personal use
provided that the documentation contains
Apple’s copyright notice.
No licenses, express or implied, are granted with
respect to any of the technology described in this
document. Apple retains all intellectual property
rights associated with the technology described
in this document. This document is intended to
assist application developers to develop
applications only for Apple-labeled computers.
Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010
Apple, the Apple logo, Finder, Mac, Macintosh,
OS X, Pages, Sand, and Xcode are trademarks of
Apple Inc., registered in the U.S. and other
countries.
Intel and Intel Core are registered trademarks of
Intel Corporation or its subsidiaries in the United
States and other countries.
PowerPC and the PowerPC logo are trademarks
of International Business Machines Corporation,
used under license therefrom.
Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THIS
DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE.ASARESULT, THISDOCUMENT IS PROVIDED
“AS IS,” AND YOU, THE READER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY AND ACCURACY.
IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL,OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS DOCUMENT, even if advised of
the possibility of such damages.
THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple dealer,
agent, or employee is authorized to make any
modification, extension, or addition to this warranty.
Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have other
rights which vary from state to state.

Core Data Model
Versioning and Data
Migration Programming
GuideContents
Core Data Model Versioning and Data Migration 5
At a Glance 5
Prerequisites 6
Understanding Versions 7
Model File Format and Versions 10
Lightweight Migration 12
Core Data Must Be Able to Infer the Mapping 12
Request Automatic Migration Using an Options Dictionary 13
Use a Migration Manager if Models Cannot Be Found Automatically 14
Mapping Overview 17
Mapping Model Objects 17
Creating a Mapping Model in Xcode 19
The Migration Process 20
Overview 20
Requirements for the Migration Process 20
Custom Entity Migration Policies 21
Three-Stage Migration 21
Initiating the Migration Process 23
Initiating the Migration Process 23
The Default Migration Process 24
Customizing the Migration Process 26
Is Migration Necessary 26
Initializing a Migration Manager 27
Performing a Migration 28
Multiple Passes—Dealing With Large Datasets 29
Migration and iCloud 30
2012-01-09 | © 2012 Apple Inc. All Rights Reserved.
2Document Revision History 31
2012-01-09 | © 2012 Apple Inc. All Rights Reserved.
3
ContentsFigures and Listings
Understanding Versions 7
Figure 1-1 Recipes models “Version 1.0” 7
Figure 1-2 Recipes model “Version 1.1” 7
Figure 1-3 Recipes model “Version 2.0” 8
Model File Format and Versions 10
Figure 2-1 Initial version of the Core Recipes model 10
Figure 2-2 Version 2 of the Core Recipes model 11
Mapping Overview 17
Figure 4-1 Mapping model for versions 1-2 of the Core Recipes models 19
Initiating the Migration Process 23
Listing 6-1 Opening a store using automatic migration 24
Customizing the Migration Process 26
Listing 7-1 Checking whether migration is necessary 26
Listing 7-2 Initializing a Migration Manager 27
Listing 7-3 Performing a Migration 28
2012-01-09 | © 2012 Apple Inc. All Rights Reserved.
4Core Data provides support for managing changes to a managed object model as your application evolves.
You can only open a Core Data store using the managed object model used to create it. Changing a model
will therefore make it incompatible with (and so unable to open) the stores it previously created. If you change
your model, you therefore need to change the data in existing stores to new version—changing the store
format is known as migration.
To migrate a store, you need both the version of the model used to create it, and the current version of the
model you want to migrate to. You can create a versioned model that contains more than one version of a
managed object model. Within the versioned model you mark one version as being the current version. Core
Data can then use this model to open persistent stores created using any of the model versions, and migrate
the stores to the current version. To help Core Data perform the migration, though, you may have to provide
information about how to map from one version of the model to another. This information may be in the form
of hints within the versioned model itself, or in a separate mapping model file that you create.
At a Glance
Typically, as it evolves from one version to another, numerous aspects of your application change: the classes
you implement, the user interface, the file format, and so on. You need to be aware of and in control of all
these aspects; there is no API that solves the problems associated with all these—for example Cocoa does not
provide a means to automatically update your user interface if you add a new attribute to an entity in your
managed object model. Core Data does not solve all the issues of how you roll out your application. It does,
though, provide support for a small—but important and non-trivial—subset of the tasks you must perform as
your application evolves.
● Model versioning allows you to specify and distinguish between different configurations of your schema.
There are two distinct views of versioning: your perspective as a developer, and Core Data’s perspective.
These may not always be the same. The differences are discussed in “Understanding Versions” (page 7).
The format of a versioned managed object model, and how you add a version to a model, is discussed in
“Model File Format and Versions” (page 10).
● Core Data needs to know how to map from the entities and properties in a source model to the entities
and properties in the destination model.
2012-01-09 | © 2012 Apple Inc. All Rights Reserved.
5
Core Data Model Versioning and Data MigrationIn many cases, Core Data can infer the mapping from existing versions of the managed object model. This
is described in “Lightweight Migration” (page 12).
If you make changes to your models such that Core Data cannot infer the mapping from source to
destination, you need to create a mapping model. A mapping model parallels a managed object model,
specifying how to transform objects in the source into instances appropriate for the destination.
How you create a mapping model is discussed in “Mapping Overview” (page 17).
● Data migration allows you to convert data from one model (schema) to another, using mappings.
The migration process itself is discussed in “The Migration Process” (page 20).
How you perform a migration is discussed in “Initiating the Migration Process” (page 23).
You can also customize the migration process—that is, how you programmatically determine whether
migration is necessary; how you find the correct source and destination models and the appropriate
mapping model to initialize the migration manager; and then how you perform the migration.
You only customize the migration process if you want to initiate migration yourself. You might do this to,
for example, search locations other than the application’s main bundle for models or to deal with large
data sets by performing the migration in several passes using different mapping models.
How you can customize the process is described in “Customizing the Migration Process” (page 26).
●
If you are using iCloud, there are some constraints on what migration you can perform.
If you are using iCloud, you must use lightweight migration. Other factors to be aware of are described in
“Migration and iCloud” (page 30).
Although Core Data makes versioning and migration easier than would typically otherwise be the case, these
processes are still non-trivial in effect. You still need to carefully consider the implications of releasing and
supporting different versions of your application.
Prerequisites
This document assumes that you are familiar with the Core Data architecture and the fundamentals of using
Core Data. You should be able to identify the parts of the Core Data stack and understand the roles of the
model, the managed object context, and the persistent store coordinator. You need to know how to create a
managed object model, how to create and programmatically interact with parts of the Core Data stack.
If you do not meet these requirements, you should first read the Core Data Programming Guide and related
materials. You are strongly encouraged also to work through the Core Data Utility Tutorial .
Core Data Model Versioning and Data Migration
Prerequisites
2012-01-09 | © 2012 Apple Inc. All Rights Reserved.
6There are two distinct views of versioning: your perspective as a developer, and Core Data’s perspective. These
may not always be the same—consider the following models.
Figure 1-1 Recipes models “Version 1.0”
Recipe
 Attributes
cuisine
directions
name
 Relationships
chef
ingredients
Chef
 Attributes
name
training
 Relationships
recipes
Ingredient
 Attributes
amount
name
 Relationships
recipes
Figure 1-2 Recipes model “Version 1.1”
Recipe
 Attributes
cuisine
directions
name
 Relationships
chef
ingredients
Chef
 Attributes
name
training
 Relationships
recipes
Ingredient
 Attributes
amount
name
 Relationships
recipes
Recipe changes:
• Add validation rules
• Change User Info values
• Use custom class
2012-01-09 | © 2012 Apple Inc. All Rights Reserved.
7
Understanding VersionsFigure 1-3 Recipes model “Version 2.0”
Recipe
 Attributes
directions
name
rating
 Relationships
chef
cuisines
ingredients
Chef
 Attributes
firstName
lastName
 Relationships
recipes
Ingredient
 Attributes
amount
name
 Relationships
recipe
Cuisine
 Attributes
name
 Relationships
recipes
As a developer, your perspective is typically that a version is denoted by an identifier—a string or number,
such as “9A218”, “2.0.7”, or “Version 1.1”. To support this view, managed object models have a set of identifiers
(see versionIdentifiers)—typically for a single model you provide a single string (the attribute itself is a
set so that if models are merged all the identifiers can be preserved). How the identifier should be interpreted
is up to you, whether it represents the version number of the application, the version that was committed
prior to going on vacation, or the last submission before it stopped working.
Core Data, on the other hand, treats these identifiers simply as “hints”. To understand why, recall that the
format of a persistent store is dependent upon the model used to create it, and that to open a persistent store
you must have a model that is compatible with that used to create it. Consider then what would happen if
you changed the model but not the identifier—for example, if you kept the identifier the same but removed
one entity and added two others. To Core Data, the change in the schema is significant, the fact that the
identifier did not change is irrelevant.
Core Data’s perspective on versioning isthat it is only interested in features of the model that affect persistence.
This means that for two models to be compatible:
● For each entity the following attributes must be equal: name, parent, isAbstract, and properties.
className, userInfo, and validation predicates are not compared.
● For each property in each entity, the following attributes must be equal: name, isOptional, isTransient,
isReadOnly, for attributes attributeType, and for relationships destinationEntity, minCount,
maxCount, deleteRule, and inverseRelationship.
userInfo and validation predicates are not compared.
Notice that Core Data ignores any identifiers you set. In the examples above, Core Data treats version 1.0 (Figure
1-1 (page 7)) and 1.1 (Figure 1-2 (page 7)) as being compatible.
Understanding Versions
2012-01-09 | © 2012 Apple Inc. All Rights Reserved.
8Rather than enumerating through all the relevant parts of a model, Core Data creates a 32-byte hash digest
of the components which it compares for equality (see versionHash (NSEntityDescription) and
versionHash (NSPropertyDescription)). These hashes are included in a store’s metadata so that Core
Data can quickly determine whether the store format matches that of the managed object model it may use
to try to open the store. (When you attempt to open a store using a given model, Core Data compares the
version hashes of each of the entities in the store with those of the entities in the model, and if all are the same
then the store is opened.) There is typically no reason for you to be interested in the value of a hash.
There may, however, be some situations in which you have two versions of a model that Core Data would
normally treat as equivalent that you want to be recognized as being different. For example, you might change
the name of the class used to represent an entity, or more subtly you might keep the model the same but
change the internal format of an attribute such as a BLOB—this is irrelevant to Core Data, but it is crucial for
the integrity of your data. To support this, Core Data allows you to set a hash modifier for an entity or property
see versionHashModifier (NSEntityDescription) and versionHashModifier
(NSPropertyDescription).
In the examples above, if you wanted to force Core Data to recognize that “Version 1.0” (Figure 1-1 (page 7))
and “Version 1.1” (Figure 1-2 (page 7)) of your models are different, you could set an entity modifier for the
Recipe entity in the second model to change the version hash Core Data creates.
Understanding Versions
2012-01-09 | © 2012 Apple Inc. All Rights Reserved.
9A managed object model that supports versioning is represented in the filesystem by a .xcdatamodeld
document. An .xcdatamodeld document is a file package (see “Document Packages”) that groups versions of
the model, each represented by an individual .xcdatamodel file, and an Info.plist file that contains the
version information.
The model is compiled into a runtime format—a file package with a .momd extension that containsindividually
compiled model files with a .mom extension. You load the .momd model bundle using
NSManagedObjectModel’s initWithContentsOfURL:.
To add a version to a model, you start with a model such as that illustrated in Figure 2-1.
Figure 2-1 Initial version of the Core Recipes model
2012-01-09 | © 2012 Apple Inc. All Rights Reserved.
10
Model File Format and VersionsTo add a version, select Editor > Add Model Version. In the sheet that appears, you enter the name of the new
model version and select the model on which it should be based.
To set the new model asthe current version of the model,select the .xcdatamodeld document in the project
navigator, then select the new model in the pop-up menu in the Versioned Core Data Model area in the
Attributes Inspector (see Figure 2-2).
Figure 2-2 Version 2 of the Core Recipes model
Model File Format and Versions
2012-01-09 | © 2012 Apple Inc. All Rights Reserved.
11If you just make simple changes to your model (such as adding a new attribute to an entity), Core Data can
perform automatic data migration, referred to aslightweightmigration. Lightweight migration isfundamentally
the same as ordinary migration, except that instead of you providing a mapping model (as described in
“Mapping Overview” (page 17)), Core Data infers one from differences between the source and destination
managed object models.
Lightweight migration is especially convenient during early stages of application development, when you may
be changing your managed object model frequently, but you don’t want to have to keep regenerating test
data. You can migrate existing data without having to create a custom mapping model for every model version
used to create a store that would need to be migrated.
A further advantage of using lightweight migration—beyond the fact that you don’t need to create the mapping
model yourself—is that if you use an inferred model and you use the SQLite store, then Core Data can perform
the migration in situ (solely by issuing SQL statements). This can represent a significant performance benefit
as Core Data doesn’t have to load any of your data. Because of this, you are encouraged to use inferred migration
where possible, even if the mapping model you might create yourself would be trivial.
Core Data Must Be Able to Infer the Mapping
To perform automatic lightweight migration, Core Data needs to be able to find the source and destination
managed object models itself at runtime. Core Data looks for models in the bundles returned by NSBundle’s
allBundles and allFrameworks methods. If you store your models elsewhere, you must follow the steps
described in “Use a Migration Manager if Models Cannot Be Found Automatically ” (page 14). Core Data must
then analyze the schema changes to persistent entities and properties and generate an inferred mapping
model.
For Core Data to be able to generate an inferred mapping model, changes must fit an obvious migration
pattern, for example:
● Simple addition of a new attribute
● Removal of an attribute
● A non-optional attribute becoming optional
● An optional attribute becoming non-optional, and defining a default value
2012-01-09 | © 2012 Apple Inc. All Rights Reserved.
12
Lightweight Migration● Renaming an entity or property
If you rename an entity or property, you can set the renaming identifier in the destination model to the name
of the corresponding property or entity in the source model. You set the renaming identifier in the managed
object model using the Xcode Data Modeling tool’s property inspector (for either an entity or a property). For
example, you can:
● Rename a Car entity to Automobile
● Rename a Car’s color attribute to paintColor
The renaming identifier creates a “canonical name,” so you should set the renaming identifier to the name of
the property in the source model (unless that property already has a renaming identifier). This means you can
rename a property in version 2 of a model then rename it again version 3, and the renaming will work correctly
going from version 2 to version 3 or from version 1 to version 3.
In addition, Core Data supports:
● Adding relationships and changing the type of relationship
● You can add a new relationship or delete an existing relationship.
● Renaming a relationship (by using a renaming identifier, just like an attribute)
● Changing a relationship from a to-one to a to-many, or a non-ordered to-many to ordered (and
visa-versa)
● Changing the entity hierarchy
● You can add, remove, rename entities
● You can create a new parent or child entity and move properties up and down the entity hierarchy
● You can move entities out of a hierarchy
You cannot, however, merge entity hierarchies; if two existing entities do not share a common parent
in the source, they cannot share a common parent in the destination
Request Automatic Migration Using an Options Dictionary
You request automatic lightweight migration using the options dictionary you pass in
addPersistentStoreWithType:configuration:URL:options:error:, by setting values corresponding
to both the NSMigratePersistentStoresAutomaticallyOption and the
NSInferMappingModelAutomaticallyOption keys to YES:
NSError *error = nil;
Lightweight Migration
Request Automatic Migration Using an Options Dictionary
2012-01-09 | © 2012 Apple Inc. All Rights Reserved.
13NSURL *storeURL = ;
NSPersistentStoreCoordinator *psc = ;
NSDictionary *options = [NSDictionary dictionaryWithObjectsAndKeys:
[NSNumber numberWithBool:YES], NSMigratePersistentStoresAutomaticallyOption,
[NSNumber numberWithBool:YES], NSInferMappingModelAutomaticallyOption, nil];
BOOL success = [psc addPersistentStoreWithType:
configuration: URL:storeURL
options:options error:&error];
if (!success) {
// Handle the error.
}
If you want to determine in advance whether Core Data can infer the mapping between the source and
destination models without actually doing the work of migration, you can use NSMappingModel’s
inferredMappingModelForSourceModel:destinationModel:error: method. Thisreturnsthe inferred
model if Core Data is able to create it, otherwise nil.
Use a Migration Manager if Models Cannot Be Found Automatically
To perform automatic migration, Core Data has to be able to find the source and destination managed object
models itself at runtime (see “Core Data Must Be Able to Infer the Mapping” (page 12)). If you need to put
your models in the locations not checked by automatic discovery, then you need to generate the inferred
model and initiate the migration yourself using a migration manager (an instance of NSMigrationManager).
The following code sample illustrates how to generate an inferred model and initiate the migration using a
migration manager. The code assumes that you have implemented two methods—sourceModel and
destinationModel—that return the source and destination managed object models respectively.
- (BOOL)migrateStore:(NSURL *)storeURL toVersionTwoStore:(NSURL *)dstStoreURL
error:(NSError **)outError {
// Try to get an inferred mapping model.
NSMappingModel *mappingModel =
[NSMappingModel inferredMappingModelForSourceModel:[self sourceModel]
destinationModel:[self destinationModel] error:outError];
Lightweight Migration
Use a Migration Manager if Models Cannot Be Found Automatically
2012-01-09 | © 2012 Apple Inc. All Rights Reserved.
14// If Core Data cannot create an inferred mapping model, return NO.
if (!mappingModel) {
return NO;
}
// Create a migration manager to perform the migration.
NSMigrationManager *manager = [[NSMigrationManager alloc]
initWithSourceModel:[self sourceModel] destinationModel:[self
destinationModel]];
BOOL success = [manager migrateStoreFromURL:storeURL type:NSSQLiteStoreType
options:nil withMappingModel:mappingModel toDestinationURL:dstStoreURL
destinationType:NSSQLiteStoreType destinationOptions:nil error:outError];
return success;
}
Lightweight Migration
Use a Migration Manager if Models Cannot Be Found Automatically
2012-01-09 | © 2012 Apple Inc. All Rights Reserved.
15Note: Prior to OS X v10.7 and iOS 4, you need to use a store-specific migration manager to perform
lightweight migration. You get the migration manager for a given persistent store type using
migrationManagerClass, as illustrated in the following example.
- (BOOL)migrateStore:(NSURL *)storeURL toVersionTwoStore:(NSURL *)dstStoreURL
error:(NSError **)outError {
// Try to get an inferred mapping model.
NSMappingModel *mappingModel =
[NSMappingModel inferredMappingModelForSourceModel:[self sourceModel]
destinationModel:[self destinationModel] error:outError];
// If Core Data cannot create an inferred mapping model, return NO.
if (!mappingModel) {
return NO;
}
// Get the migration manager class to perform the migration.
NSValue *classValue =
[[NSPersistentStoreCoordinator registeredStoreTypes]
objectForKey:NSSQLiteStoreType];
Class sqliteStoreClass = (Class)[classValue pointerValue];
Class sqliteStoreMigrationManagerClass = [sqliteStoreClass
migrationManagerClass];
NSMigrationManager *manager = [[sqliteStoreMigrationManagerClass alloc]
initWithSourceModel:[self sourceModel] destinationModel:[self
destinationModel]];
BOOL success = [manager migrateStoreFromURL:storeURL type:NSSQLiteStoreType
options:nil withMappingModel:mappingModel toDestinationURL:dstStoreURL
destinationType:NSSQLiteStoreType destinationOptions:nil error:outError];
return success;
}
Lightweight Migration
Use a Migration Manager if Models Cannot Be Found Automatically
2012-01-09 | © 2012 Apple Inc. All Rights Reserved.
16In many cases, Core Data may be able to infer how to transform data from one schema to another (see
“Lightweight Migration” (page 12). If Core Data cannot infer the mapping from one model to another, you
need a definition of how to perform the transformation. This information is captured in a mapping model.
A mapping model is a collection of objects that specifies the transformations that are required to migrate part
of a store from one version of your model to another (for example, that one entity is renamed, an attribute is
added to another, and a third split into two). You typically create a mapping model in Xcode. Much as the
managed object model editor allows you to graphically create the model, the mapping model editor allows
you to customize the mappings between the source and destination entities and properties.
Mapping Model Objects
Like a managed object model, a mapping model is a collection of objects. Mapping model classes parallel the
managed object model classes—there are mapping classes for a model, an entity, and a property
(NSMappingModel, NSEntityMapping, and NSPropertyMapping respectively).
● An instance of NSEntityMapping specifies a source entity, a destination entity (the type of object to
create to correspond to the source object) and mapping type (add, remove, copy as is, or transform).
● An instance of NSPropertyMapping specifiesthe name of the property in the source and in the destination
entity, and a value expression to create the value for the destination property.
The model does not contain instances of NSEntityMigrationPolicy or any of its subclasses, however
amongst other attributes instance of NSEntityMapping can specify the name of an entity migration policy
class (a subclass of NSEntityMigrationPolicy) to use to customize the migration. For more about entity
migration policy classes, see “Custom Entity Migration Policies” (page 21).
You can handle simple property migration changes by configuring a custom value expression on a property
mapping directly in the mapping model editor in Xcode. For example, you can:
● Migrate data from one attribute to another.
To rename amount to totalCost, enter the custom value expression for the totalCost property mapping
as $source.amount.
● Apply a value transformation on a property.
2012-01-09 | © 2012 Apple Inc. All Rights Reserved.
17
Mapping OverviewTo convert temperature from Fahrenheit to Celsius, use the custom value expression
($source.temperature - 32.0) / 1.8.
● Migrate objects from one relationship to another.
To rename trades to transactions, enter the custom value expression for the transactions property
mapping as FUNCTION($manager,
"destinationInstancesForEntityMappingNamed:sourceInstances:", "TradeToTrade",
$source.trades). (This assumes the entity mapping that migrates Trade instances is named
TradeToTrade.)
There are six predefined keys you can reference in custom value expressions. To access these keys in source
code, you use the constants as declared. To access them in custom value expression strings in the mapping
model editor in Xcode, follow the syntax rules outlined in the predicate format string syntax guide and refer
to them as:
NSMigrationManagerKey: $manager
NSMigrationSourceObjectKey: $source
NSMigrationDestinationObjectKey: $destination
NSMigrationEntityMappingKey: $entityMapping
NSMigrationPropertyMappingKey: $propertyMapping
NSMigrationEntityPolicyKey: $entityPolicy
Mapping Overview
Mapping Model Objects
2012-01-09 | © 2012 Apple Inc. All Rights Reserved.
18Creating a Mapping Model in Xcode
From the File menu, you select New File and in the New File pane select Design > Mapping Model. In the
following pane, you select the source and destination models. When you click Finish, Xcode creates a new
mapping model that contains as many default mappings as it can deduce from the source and destination.
For example, given the model files shown in Figure 1-1 (page 7) and Figure 1-2 (page 7), Xcode creates a
mapping model as shown in Figure 4-1.
Figure 4-1 Mapping model for versions 1-2 of the Core Recipes models
Reserved words in custom value expressions: If you use a custom value expression, you must
escape reserved words such as SIZE, FIRST, and LAST using a # (for example, $source.#size).
Mapping Overview
Creating a Mapping Model in Xcode
2012-01-09 | © 2012 Apple Inc. All Rights Reserved.
19During migration, Core Data creates two stacks, one for the source store and one for the destination store.
Core Data then fetches objects from the source stack and inserts the appropriate corresponding objects into
the destination stack. Note that Core Data must re-create objects in the new stack.
Overview
Recall that stores are bound to their models. Migration is required when the model doesn't match the store.
There are two areas where you get default functionality and hooks for customizing the default behavior:
● When detecting version skew and initializing the migration process.
● When performing the migration process.
To perform the migration processrequirestwo Core Data stacks—which are automatically created for you—one
for the source store, one for the destination store. The migration process is performed in 3 stages, copying
objects from one stack to another.
Requirements for the Migration Process
Migration of a persistent store is performed by an instance of NSMigrationManager. To migrate a store, the
migration manager requires several things:
● The managed object model for the destination store.
This is the persistent store coordinator’s model.
● A managed object model that it can use to open the existing store.
● Typically, a mapping model that defines a transformation from the source (the store’s) model to the
destination model.
You don’t need a mapping model if you’re able to use lightweight migration—see “Lightweight
Migration” (page 12).
2012-01-09 | © 2012 Apple Inc. All Rights Reserved.
20
The Migration ProcessYou can specify custom entity migration policy classes to customize the migration of individual entities. You
specify custom migration policy classesin the mapping model (note the “Custom Entity Policy Name” text field
in Figure 4-1 (page 19)).
Custom Entity Migration Policies
If your new model simply adds properties or entities to your existing model, there may be no need to write
any custom code. If the transformation is more complex, however, you might need to create a subclass of
NSEntityMigrationPolicy to perform the transformation; for example:
●
If you have a Person entity that also includes address information that you want to split into a separate
Address entity, but you want to ensure uniqueness of each Address.
●
If you have an attribute that encodes data in a string format that you want to change to a binary
representation.
The methods you override in a custom migration policy correspond to the different phases of the migration
process—these are called out in the description of the process given in “Three-Stage Migration.”
Three-Stage Migration
The migration process itself is in three stages. It uses a copy of the source and destination models in which
the validation rules are disabled and the class of all entities is changed to NSManagedObject.
To perform the migration, Core Data sets up two stacks, one for the source store and one for the destination
store. Core Data then processes each entity mapping in the mapping model in turn. It fetches objects of the
current entity into the source stack, creates the corresponding objects in the destination stack, then recreates
relationships between destination objects in a second stage, before finally applying validation constraints in
the final stage.
Before a cycle starts, the entity migration policy responsible for the current entity is sent a
beginEntityMapping:manager:error: message. You can override this method to perform any initialization
the policy requires. The process then proceeds as follows:
1. Create destination instances based on source instances.
At the beginning of this phase, the entity migration policy is sent a
createDestinationInstancesForSourceInstance:entityMapping:manager:error:message;
at the end it is sent a endInstanceCreationForEntityMapping:manager:error: message.
In this stage, only attributes (not relationships) are set in the destination objects.
The Migration Process
Custom Entity Migration Policies
2012-01-09 | © 2012 Apple Inc. All Rights Reserved.
21Instances of the source entity are fetched. For each instance, appropriate instances of the destination
entity are created (typically there is only one) and their attributes populated (for trivial cases, name =
$source.name). A record is kept of the instances per entity mapping since this may be useful in the
second stage.
2. Recreate relationships.
At the beginning of this phase, the entity migration policy is sent a
createRelationshipsForDestinationInstance:entityMapping:manager:error: message;
at the end it is sent a endRelationshipCreationForEntityMapping:manager:error: message.
For each entity mapping (in order), for each destination instance created in the first step any relationships
are recreated.
3. Validate and save.
In this phase, the entity migration policy is sent a
performCustomValidationForEntityMapping:manager:error: message.
Validation rules in the destination model are applied to ensure data integrity and consistency, and then
the store is saved.
At the end of the cycle, the entity migration policy issent an endEntityMapping:manager:error: message.
You can override this method to perform any clean-up the policy needs to do.
Note that Core Data cannot simply fetch objects into the source stack and insert them into the destination
stack, the objects must be re-created in the new stack. Core Data maintains “association tables” which tell it
which object in the destination store isthe migrated version of which object in the source store, and vice-versa.
Moreover, because it doesn't have a means to flush the contexts it is working with, you may accumulate many
objects in the migration manager as the migration progresses. If this presents a significant memory overhead
and hence gives rise to performance problems, you can customize the process as described in “Multiple
Passes—Dealing With Large Datasets” (page 29).
The Migration Process

[image:]

